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We calculate the 4He abundance in a universe of Bianchi type I whose cosmic anisotropy is dynamically

generated by a fluid with anisotropic equation of state. Requiring that the relative variation of mass

fraction of 4He is less than 4% with respect to the standard isotropic case to be consistent with

astrophysical data, we constrain the parameter of cosmic anisotropy, the shear �, as j�ðTfÞj & 0:4,

where Tf is the freeze-out temperature of the weak interactions that interconvert neutrons and protons.

Anisotropic fluids, whose energy density is subdominant with respect to the energy content of the

Universe during inflation and radiation era, generate much smaller shears at the time of freeze-out and

then do not appreciably affect the standard 4He production. This is the case of anisotropic dark energy, and

of a uniform magnetic field with energy density much smaller than about 1.25 times the energy density of

neutrinos.

DOI: 10.1103/PhysRevD.84.123521 PACS numbers: 98.80.Jk, 98.80.Ft

I. INTRODUCTION

The high level of isotropy of the cosmic microwave
background (CMB) radiation is the most convincing justi-
fication of the cosmological principle: the Universe is
homogeneous and isotropic at large cosmological scales
[1]. However, tiny deviations from perfect isotropy are not
excluded by present CMB data. Indeed, a particular aniso-
tropic cosmological model of Bianchi type I, known as the
ellipsoidal universe [2,3], can better match CMB data and
solve the so-called ‘‘quadrupole problem,’’ namely, the
lack of CMB power detected on large angular scales.

Various mechanisms could give rise to an ellipsoidal
universe, such as a uniform cosmological magnetic field
[2–4], topological defects (e.g. cosmic stings, domain
walls) [4], or a dark energy fluid with anisotropic equation
of state [4,5]. Independently on the nature of the mecha-
nism, however, a modification of the standard picture of
primordial nucleosynthesis can occur if universe anisotrop-
ization takes place during the early Universe [6–9].

The aim of this paper is, indeed, to constrain the level of
cosmic anisotropy, so as to be consistent with observational
bounds on primeval 4He abundance.

II. ELLIPSOIDAL UNIVERSE

The ellipsoidal universe [2,3,10–15] is a cosmological
model described by the Bianchi I line element [16]

ds2 ¼ dt2 � a2ðtÞðdx2 þ dy2Þ � b2ðtÞdz2 (1)

with two scale factors, a and b, normalized as a ¼ b ¼ 1
at the present cosmic time. Cosmic anisotropy is quantified
by the shear

� ¼ Ha �Hb

2Ha þHb

; (2)

with Ha ¼ _a=a and Hb ¼ _b=b, while H ¼ _A=A ¼
ð2Ha þHbÞ=3 and A ¼ ða2bÞ1=3 play the usual role of
Hubble and expansion parameters, respectively. (Here
and in the following a dot indicates a derivative with
respect to cosmic time t).
Anisotropy of the Universe is not assumed a priori but

dynamically generated by an anisotropic fluid (A) with two

equations of state: wk
A ¼ pk

A=�A and w?
A ¼ p?

A =�A, where

pk
A and p?

A are, respectively, the pressures along the x (y)
and z directions, and �A is the energy density. The source
of cosmic anisotropy is then parametrized by the skewness

�A ¼ wk
A � w?

A , while wA ¼ ð2wk
A þ w?

A Þ=3 represents

the usual equation of state parameter.
The Friedmann equation in the ellipsoidal universe takes

the form [13,14]

ð1��2ÞH2 ¼ 8�G

3
ð�þ �AÞ; (3)

where � is the sum of the energy densities of the usual
components in the standard model, namely, photons ��,

neutrinos ��, matter �m, and dark energy �DE. (In the
following discussion, we neglect the effects of matter since
nucleosynthesis takes place in radiation-dominated era.)
The shear is sourced by the skewness according to the

equation [13,14]

ðH�Þ� þ 3H2� ¼ 8�G

3
ð���� þ �A�AÞ; (4)

where �� is the neutrino skewness that takes care of effects
of anisotropic distribution of neutrinos. It depends on the
shear and its form will be discussed later.
Inflation generally causes an isotropization of the

Universe: any cosmic shear present before and/or during
inflation will be reduced to a vanishingly small value after
inflation (see discussion below). Nevertheless, if a source
of anisotropy is present after inflation (e.g. an anisotropic*leonardo.campanelli@ba.infn.it
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fluid), then the cosmic shear can grow and be different
from zero at the time of decoupling. If this is the case,
planar cosmic symmetry induces a quadrupole term in the
CMB radiation which adds to that caused by the inflation-
produced gravitational potential at the last scattering
surface. If the planar-metric induced quadrupole is com-
parable to the inflation-produced one, the overall quadru-
pole power may match the ‘‘anomalously low’’ value of the
observed quadrupole [2,3]. The capability to solve the
CMB quadrupole problem is the main attractive feature
of the ellipsoidal universe model.

III. HELIUM-4 SYNTHESIS

The mass fraction of 4He produced by standard primor-

dial nucleosynthesis at the cosmic time tð0Þnuc’300s—
corresponding to a temperature of Tnuc ’ 0:07 MeV—, is
[17]

Yð0Þ ’ 2ðn=pÞð0Þnuc

1þ ðn=pÞð0Þnuc

’ 0:25; (5)

where

ðn=pÞð0Þnuc ’ e�Q=Tð0Þ
f e�tð0Þnuc=�n ’ 1=7 (6)

is the neutron-to-proton number density ratio. [We indicate
quantities in the standard isotropic cosmological model
with an index ‘‘(0)’’.] The first exponential factor in
Eq. (6), with Q ’ 1:3 MeV being the neutron-proton
mass difference, is the neutron-proton number density ratio
at the time of freeze-out, namely, when the expansion rate

of the Universe, Hð0Þ, equals the rate for the weak inter-
actions, ��G2

FT
5, that interconvert neutrons and protons

(GF is the Fermi constant). This happens at a temperature of

about Tð0Þ
f ’ 0:8 MeV [17]. Because of ‘‘deuterium bottle-

neck’’ [17], the production of 4He is delayed until the
Universe has cooled to the temperature Tnuc. In this time
lag, neutrons decay, reducing their relative abundance and,
in turn, that of 4He. This gives the second exponential term
in Eq. (6), where �n ¼ 885 s is the mean neutron lifetime.

In the ellipsoidal universe, both the freeze-out tempera-
ture and the time of nucleosynthesis are modified, and so is
4He abundance.

Astrophysical observations fix the value of 4He abun-

dance as Yð0Þ ’ 0:25� 0:01 [18]. (See [19] and references

therein for more recent estimates of Yð0Þ which are, how-
ever, all consistent with that quoted here. This can be

considered as the most conservative estimate of Yð0Þ since
it possesses the largest uncertainty.) Therefore, to be con-
sistent with experimental data, we must require that the
maximum variation of 4He abundance (with respect to the
isotropic case) is below the 4%.

A general expression for the freeze-out temperature in
the ellipsoidal universe is easily obtained from Eq. (3) if
one assumes that the energy content of the anisotropic fluid
is subdominant with respect to that of radiation

Tf ¼ Tð0Þ
f

ð1� �2
fÞ1=6

; (7)

where �f is the shear at the time of freeze-out and we use

the fact that � ¼ ð�2=30Þg�T4, with g� the total number of
effectively massless degree of freedom [17]. In the follow-
ing, we simply assume g� ¼ 3:36 during nucleosynthesis
(even if g� increases from that value to 10.75 near Tf).

The time when 4He is produced is easily found by
integrating the Friedmann equation with respect to time:

tnuc ¼ 3
ffiffiffi
5

p
mPl

2�3=2g1=2�

Z 1

Tnuc

dT

T3
ð1��2Þ1=2; (8)

where mPl is the Planck mass and we use the fact that
A / T�1.
Because of positivity of the energy and looking at the

Friedmann equation, we see that the shear is bounded in the
interval ½�1; 1�. This implies, using Eqs. (7) and (8), that

Tf � Tð0Þ
f and tnuc � tð0Þnuc. Since the 4He abundance, Y, is

given by Eqs. (5) and (6) with Tð0Þ
f and tð0Þnuc replaced by Tf

and tnuc, we conclude that in the ellipsoidal universe there
is an overproduction of 4He with respect to the isotropic
case, whatever is the nature of the anisotropic source.
In order to calculate this positive variation of 4He mass

fraction, one has to specify the anisotropic source so as to
integrate Eq. (4), find the shear as a function of tempera-
ture, and obtain tnuc from Eq. (8).
This can be done analytically only in the case where the

effects of the skewness are neglected (�A ¼ �� ¼ 0).
Indeed, the case �A ¼ 0 is that studied numerically in the
literature, taking into account both the full set of nuclear
reactions leading to the production of light elements and the
effects of anisotropic distribution of neutrinos [20,21]. The
effects of having �� � 0 are studied below, but we will
show that they are negligible (at least for small values
of the shear). Introducing the anisotropy parameter B ¼
�2=ð1� �2Þ, the shear Eq. (4) gives B / T2, so we can
easily solve Eq. (7) for the freeze-out temperature, and
perform the integral in Eq. (8) to get the time of nucleo-
synthesis:

Tf ¼ Tð0Þ
f f1½BðTð0Þ

f Þ�; (9)

tnuc ¼ tð0Þnucf2½BðTnucÞ�; (10)

where

f1½x� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	 31=3 þ 21=3ð9þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

81� 12x3
p Þ2=3

62=3ð9þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81� 12x3

p Þ1=3

vuut ; (11)

f2½x� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ x

p � x arccosh
ffiffiffi
x

p
: (12)

In Fig. 1, we plot the relative increase of 4He abundance
(with respect to the isotropic case) as a function of B0,
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namely, the anisotropy parameter evaluated at the reference
temperature T0 ¼ 50	 109 K, well before the nucleosyn-
thesis starts. (B, and then B0, are the same quantity intro-
duced in [21].) The asymptotic expansions of such an
increase, for small and large values of B0, are:

Y � Yð0Þ

Yð0Þ ¼
�
f3B0; B0 ! 0;
f4; B0 ! 1;

(13)

where

f3 ¼
ð2� Yð0ÞÞQTð0Þ

f

12T2
0

þOðlnB0Þ ’ 0:01; (14)

f4 ¼ 1� Yð0Þ

Yð0Þ ’ 3: (15)

The first term in the right-hand side of Eq. (14) takes into
account the rise of the freeze-out temperature in anisotropic
universe, while the logarithmic term takes care of the reduc-
tion of time lag between the freeze-out and the end of
nucleosynthesis, and is negligiblewith respect to thefirst one.

The numerical analysis of [21] shows an increase of light
element abundances. In particular, the relative increase
found for 4He is linear for moderate values of B0 (B0 &
10) and is about B0 	 3%. Therefore, our oversimplified
analytical model confirms qualitatively (and to some extent
also quantitatively) the numerical results of [21].1

The dashed line in Fig. 1 is the relative increase of 4He
abundance assuming no variation on the time of nucleo-

synthesis, tnuc ¼ tð0Þnuc. As it is clear from the figure, the time

delay effect due to cosmic anisotropy, tnuc � tð0Þnuc,
causes appreciable effects only for large shears, which
are, however, unrealistic because of the large excess
of 4He.

We note that if we just replace Tð0Þ
f with Tf and leave t

ð0Þ
nuc

in Eqs. (5) and (6), we obtain a lower limit on Y. Imposing
that the mass fraction of 4He is less than 4% with respect to
the standard isotropic case, we obtain a conservative, but
model-independent limit (not depending on �A and wA) on
the level of cosmic anisotropy at the time of freeze-out

j�ðTfÞj & 0:4: (16)

It is straightforward to show that the above limit is in
agreement with the limit obtained by translating the current
bound on the total number of effectively massless degree of
freedom at time of freeze-out. Indeed, assuming as before
that the energy content of the anisotropic fluid is subdo-
minant with respect to that of radiation, we can rewrite
Eq. (3) as the usual Friedmann equation H2 ¼ ð8�G=3Þ�
where now � ¼ ð�2=30Þg�;effT4 with

g�;eff ¼ g�
1��2

: (17)

Therefore, the effect of having a nonzero shear at the time
of freeze-out can be regarded as a change in the total
number of effectively massless degree of freedom, which
is usually parameterized by the effective number of neu-
trino species, N�, as [17]

g�;eff ¼ 11

2
þ 7

4
N�

�
4

11

�
4=3

: (18)

(The standard value g� ’ 10:75 near Tf corresponds to take

N� ¼ 3 in the above equation.) Using the current bound
N� ¼ 3:2� 1:2 (95% confidence level) [19] on the effec-
tive number of neutrino species at the time of freeze-out,
and comparing Eqs. (17) and (18), we get j�ðTfÞj ¼
0:11� 0:34 (95% confidence level), where we used the
Gauss error propagation law to propagate the uncertainty
onN� to j�ðTfÞj. So, we obtain the upper bound j�ðTfÞj &
0:45, which is compatible with Eq. (16).
The effects of anisotropic distribution of neutrinos can

be described as follows. For temperatures greater than

Tð�Þ
f ¼ OðMeVÞ, neutrinos are strongly coupled to primor-

dial plasma, so their distribution is isotropic and no neu-
trino skewness results. Below a temperature slightly lower

than Tð�Þ
f , instead, neutrinos begin to free-stream and gen-

erate a skewness

��ðTÞ ¼ 8

5

Z T

Tf

dT0

T0 �ðT0Þ: (19)
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FIG. 1. Relative increase of 4He abundance in the ellipsoidal
universewith zero skewness�A andneglecting neutrino anisotropy
effects (continuous line) as a function of the anisotropy parameter
B0 ¼ BðT ¼ 50	 109KÞ, where B ¼ �2=ð1��2Þ. The dotted
line is the asymptotic expansion B0 	 1%, while 300% is the
limiting value forB0 ! 1. The dashed line is the relative increase
of 4He abundance in the samecosmologicalmodel but assumingno

variation on the time of nucleosynthesis, tnuc ¼ tð0Þnuc.

1It is worth noticing that our analysis needs to be modified for
very large values of the anisotropy parameter B since, as pointed
out in [22], the equilibrium of weak interactions can be broken
by very high levels of anisotropic expansion. However, our
forthcoming results will rely just on the part of Fig. 1 that
corresponds to moderate values of the anisotropy parameter
(namely B0 & 10), whose validity has been already confirmed
numerically in [21].
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Here, for the sake of simplicity, we assumed an instanta-

neous neutrino decoupling at Tð�Þ
f ’ Tf, so neutrino free-

streaming affects only the time when 4He is produced,
namely tnuc. The above result (19) is valid for small values
of the shear (j�j 
 1) and can be obtained from [20]
taking the limit, in the Misner’s anisotropy potential, of
large collision time (tc ! 1) for the typical reactions of
neutrinos with plasma.

Using (19) in Eq. (4), we get for T � Tf

� ¼ �f

�
T

Tf

�
1=2

�
cos

�
c� ln

T

Tf

�
þ 1

c�
sin

�
c� ln

T

Tf

��
; (20)

where c� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8��=5� 1=4

p
with �� ¼ ��=�cr being the

neutrino energy density parameter and �cr ¼ 3H2=8�G
the critical density. The neutrino energy density parameter
�� is constant during radiation era and, assuming three
neutrino massless species, equal to about 0.4 after neutrino
decoupling [17], so c� ’ 0:6. The shear is an oscillating
function of time with a damping factor proportional to

T�1=2. This leads to very tiny variations of tnuc with respect
to the case �� ¼ 0, and gives rise to a small increase of

ðY � Yð0ÞÞ=Yð0Þ 	 100%, which is below the 0.15% for 0 �
B0 & 1 (corresponding to � & 0:3).

Since the absolute value of the shear at the time of
freeze-out must be significantly smaller than 1 [see
Eq. (16)], we can now consider a simplified (but more
realistic) model, where the shear is a small quantity during
the radiation era and the effects of both the neutrino skew-
ness �� and the external anisotropic sources �A are taken
into account.

For small shears and �A constant, the energy density of
an anisotropic fluid evolves as in the case of the isotropic

universe, �A / A�3ð1þwAÞ [13,14], and the shear Eq. (4) can
be solved to give in radiation era and before neutrino
decoupling,

� ¼ constant

A
þ �A

2� 3wA

�A;0

�r;0

A1�3wA; (21)

where we assume that the energy density of the anisotropic
component is small with respect to that of radiation. This is
the same as assuming wA < 1=3, or �A�A;0 
 �r;0 if

wA ¼ 1=3. Here, �A;0 and �r;0 are the present energy

density parameters of anisotropic fluid and radiation,
respectively.2

We can fix the integration constant in Eq. (21) by
evaluating the shear at early times, for example, at the

end of inflation, A ¼ Aend 
 1. If wA < 1=3 we get
constant ’ Aend�end, where �end ¼ �ðAendÞ, while for
wA ¼ 1=3 we have constant ’ Aendð�end � �A�A;0=�r;0Þ.
As shown in [4], any cosmic anisotropy is washed out
(exponentially) during (de Sitter) inflation (for wA >
�1), so that anisotropy can develop just at the end of
inflation starting from a vanishingly small value.3 This
means that �end ’ 0, so that we can neglect the first term
in the right-hand side of Eq. (21) for A � Aend.
Let us assume for the moment that the effects of neutrino

free-streaming are negligible. In this case, the above solu-
tion (21) is valid throughout nucleosynthesis and, since
� 
 1, we conclude that no appreciable changes on 4He
production occur with respect to the isotropic case. We can
now check the validity of the assumption of neglecting
neutrino anisotropy. By inserting Eq. (21) in Eq. (19) we
find that the ratio of the anisotropy sources in Eq. (4) is, for
T � Tf and wA � 1=3,

����

�A�A

¼ � 8

5

��;0

�r;0

1� ðT=TfÞ1�3wA

ð1� 3wAÞð2� 3wAÞ ; (22)

where ��;0 is the present neutrino energy density parame-

ter. Assuming three neutrino massless species, we have
��;0=�r;0 ’ 0:4 [17]. For the cosmologically interesting

cases of anisotropic dark energy (wA ’ �1), a cosmic
domain wall (wA ¼ �2=3), and a cosmic string (wA ¼
�1=3), the absolute value of the ratio (22) is maximum
at T ¼ Tnuc and is much smaller than 1 (0.03, 0.05, and

0.11, respectively, assuming Tf ’ Tð0Þ
f ), and this justifies

our previous assumption.
The case wA ¼ 1=3, namely, an anisotropic component

of radiation type, has to be analyzed separately. In this
case, the shear Eq. (4) can be solved and gives, for T � Tf,

Eq. (20) with the factor 1=c� multiplying the sine function
replaced by cA=c�, where cA ¼ �A�A=�f � 1=2. Using

Eq. (21) evaluated at T ¼ Tf, we find cA ¼
�r;0�A=�A;0 � 1=2. Since both �A and �r are constant

in the radiation era and scale as T in matter era, we get
cA ¼ �r � 1=2 in the radiation era, where �r ¼
1��� ’ 0:6 after neutrino decoupling. Therefore cA ’
0:1. Since neglecting neutrino anisotropy we found that �
is constant (up to a logarithmic correction) in the radiation
era [see Eq. (21)] and does not affect Helium-4 synthesis,
we conclude that also in the case �� � 0, where the shear is
an oscillating function of time with a damping factor

proportional to T�1=2, no appreciable changes on 4He
production occur with respect to the isotropic case.

2For wA ¼ 1=3, Eq. (21) is correct up to a logarithmic term.
Indeed, as shown in [4], the last term in the right-hand side of
Eq. (21) should be divided, in this case, by 1þ
2�2

Að�A;0=�r;0Þ lnðA=AendÞ, where Aend is the expansion parame-
ter at the end of inflation. However, the inclusion of this term
modifies Eq. (21) only to second order in the small quantity
�A�A;0=�r;0. Therefore, for simplicity, we neglect this term in
the following.

3In de Sitter inflation, subdominant anisotropic fluids are such
that wA >�1, or �A�A;0 
 1 if wA ¼ �1. For such fluids and
in the limit of small shears, it is easy to see that �end ’ �ie

�3N if
wA > 0 and �end ’ �ð�A=3wAÞ�A;0e

�3ð1þwAÞN if �1 � wA < 0
and A � Ai. Here, �i is the shear at the beginning of inflation at
A ¼ Ai, and N * 60 the number of e-folds of inflation since
inflation began [17].
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Before concluding, let us include in our analysis a
component of free-streaming gravitons, for inflation gen-
erally predicts gravitational waves, namely, tensor fluctua-
tions, which are not in thermal equilibrium below the
Planck scale and then can be considered as free-streaming
radiation from inflation until today. Gravitational waves
introduce the extra term ð8�G=3Þ�GW�GW on the right-
hand side of Eq. (4), where �GW and �GW are the graviton
energy density and skewness, respectively. The energy
density associated to this background of gravitational
waves is typically very small: �GW;0=�r;0 & 10�8 for

modes that cross inside the horizon while the Universe is
radiation-dominated [17], where �GW;0 is the present en-

ergy density parameter of gravitons. The graviton skew-
ness is given, after inflation, by an expression similar to
Eq. (19)

�GWðTÞ ¼ 8

5

Z T

TRH

dT0

T0 �ðT0Þ; (23)

where TRH is the so-called reheating temperature, that is
the temperature of the cosmic plasma at the beginning of
the radiation era. (Here and in the following we assume
that the reheating phase, during which the energy of the
inflaton is converted into ordinary matter is ‘‘instanta-
neous’’ so that, after inflation, the universe enters directly
into the radiation era.) Now it is easy to show that, due to
the smallness of�GW;0, the effect of gravitational waves in

the evolution of the shear is completely negligible. In fact,
proceeding as we did in obtaining Eq. (22), we can verify
that the ratio j�GW�GW=�A�Aj is much smaller than
unity. Indeed, for T � TRH and wA � 1=3, it is given by
the right-hand side of Eq. (22) with ��;0 and Tf replaced

by �GW;0 and TRH, respectively. Therefore we have

j�GW�GW=�A�Aj ��GW;0=�r;0 
 1. For T � TRH and

wA ¼ 1=3 we get, instead,

�GW�GW

�A�A

¼ � 8

5

�GW;0

�r;0

lnðTRH=TÞ: (24)

The absolute value of the above ratio is maximum for T ¼
Tnuc and for the largest allowed value of TRH, TRH ’
1017 GeV [17]. Also in this case it is much smaller than
unity: j�GW�GW=�A�Aj ’ 78�GW;0=�r;0 
 1.

Let us conclude by observing that, for a uniform mag-
netic field, wA ¼ 1=3 and �A ¼ 2. Therefore, the above
results show that uniform magnetic fields created at infla-
tion and whose energy density is small with respect to that
of radiation do not affect nucleosynthesis. However, in the
presence of an external uniform magnetic field, nucleosyn-
thesis is affected, other than by the effect of anisotropiza-
tion of the Universe due to a nonvanishing shear, also by
the increase of weak reaction rates, of the expansion rate of
the Universe, and of the electron density [23]. Taking into
account all these effects, but not the effect here studied of
nonvanishing �, the authors of [23] found that observa-
tions of light elements are compatible with a magnetic field

energy density lower than �B & 0:28��, where �B ¼
B2=2 is the magnetic energy density associated to a uni-
formmagnetic field of intensityB. Their analysis is correct
as long as the effect of the shear can be neglected, which
means, in light of the previous discussion, that the mag-
netic field must be a subdominant component of the
Universe during nucleosynthesis. This is indeed the case,
since the subdominance condition for a uniform magnetic
field, 2�B;0 
 �r;0, translates to

�B 
 �max
B ¼ ��

2��

’ 1:25�� (25)

after neutrino decoupling, a limit about 5 times greater than
that allowed by the analysis of [23].
It is worth noticing that the above limit on the intensity

of a cosmological magnetic field is much less stringent
than that coming from the analysis of the CMB radiation ,
which is at least 2 orders of magnitude stronger. This
agrees with Barrow’s result [4] that anisotropic fluids that
create temperature anisotropies compatible with CMB
spectrum do not have a significant effect on the primordial
synthesis of 4He.

IV. CONCLUSIONS

In this paper, we have analyzed the effects caused by
cosmic anisotropy on the primordial production of 4He. We
worked in the context of a cosmological model of Bianchi
type I, where the anisotropy of spatial geometry, the shear
�, is generated by a fluid with anisotropic equation of state.
We found that in such an anisotropic universe there is an

overproduction of 4He with respect to the standard iso-
tropic case. Imposing that the relative increase of 4He
abundance is below the 4% to be consistent with observa-
tional data, we constrained the absolute value of the shear
to be less than 0.4 at the time of freeze-out. This limit does
not depend on the equation(s) of state of the anisotropic
fluid and has been obtained assuming that the energy
density of the anisotropic fluid is small compared to that
of radiation.
Moreover, we showed that anisotropic fluids generated

at inflation, such as dark energy with anisotropic equation
of state and a uniform magnetic field, create anisotropies
much smaller than the above limit if their energy densities
are subdominant with respect to that of the Universe during
inflation and radiation era. In particular, the existence of a
uniform magnetic field at the time of nucleosynthesis is
compatible with astrophysical data if its energy density is
much smaller than about 1.25 times the energy density of
neutrinos.
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