
Higgs inflation in minimal supersymmetric SUð5Þ grand unified theory

Masato Arai,1,* Shinsuke Kawai,2,3,† and Nobuchika Okada4,‡

1Institute of Experimental and Applied Physics, Czech Technical University in Prague,
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The standard model Higgs boson with large nonminimal coupling to the gravitational curvature can

drive cosmological inflation. We study this type of inflationary scenario in the context of supersymmetric

grand unification and point out that it is naturally implemented in the minimal supersymmetric SUð5Þ
model, and hence virtually in any GUT models. It is shown that with an appropriate Kähler potential the

inflaton trajectory settles down to the standard model vacuum at the end of the slow roll. The predicted

cosmological parameters are also consistent with the 7-year WMAP data.
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I. INTRODUCTION

Recently the idea that the standard model (SM) Higgs
field may be identified with an inflaton field has attracted
much attention [1–9] The major role is played by the non-
minimal coupling to gravity, which renders the Higgs mass
to bewithin the range of 126–194GeV [1–4], while keeping
the amplitude of the primordial curvature perturbation at the
scale of �10�5. The idea of inflation by nonminimally
coupled inflaton field itself is certainly not new [10].
Nevertheless, the striking agreement with the present-day
cosmological data, combined with the minimalistic nature
of the model, makes this type of scenario very attractive.
The predicted mass range of the Higgs particle is also
interesting for the physics of the Large Hadron Collider.

The Higgs potential in the SM is unstable against quan-
tum corrections (the hierarchy problem) and it therefore is
reasonable to reconsider Higgs inflation in supersymmetric
theory [11,12]. It is shown in [11] that Higgs inflation
cannot be implemented within the minimal supersymmet-
ric standard model (MSSM), as the field content of the
latter is too restrictive. Instead, with an extra field (i.e. in
the next-to-minimal supersymmetric standard model,
NMSSM) a sensible scenario of Higgs inflation is found
to be possible. The NMSSM has tachyonic instability in the
direction of the extra field, but this can be cured by con-
sidering a noncanonical Kähler potential [12].

In this paper we discuss the possibility of Higgs inflation
in supersymmetric grand unified theory (GUT). There are
several reasons to motivate this study. One obvious reason
is that the energy scale of inflation is typically above the
grand unification scale, and it is unnatural to suppose that
the SM Lagrangian is valid all the way up to the scale of
inflation; as the GUT scale destabilizes the electroweak

scale without supersymmetry, it seems that supersymmet-
ric GUT is an appropriate theory to start with. Another
reason is the puzzling necessity of the extra field besides
the MSSM fields for successful Higgs inflation, as alluded
to above; going beyond the MSSM is somewhat against the
minimalistic guiding principle of the original Higgs infla-
tion, and as the NMSSM is structurally similar to the SUð5Þ
GUT model, it seems natural to conjecture that the SUð5Þ
GUT, rather than the NMSSM, may be a more appropriate
minimal supersymmetric theory that accommodates Higgs
inflation. Obvious questions are then whether it is possible
to obtain enough inflation (e-folding) somewhere between
the Planck scale and the GUT scale, and if so whether the
prediction of the cosmological parameters is consistent
with the present observation. We shall address these issues
below, and find that a viable Higgs inflationary scenario
nicely fits into the minimal SUð5Þ model. We shall employ
supergravity embedding of GUT [13], since the nonmini-
mal coupling of the Higgs field to gravity naturally arises
in that framework.

II. SUPERSYMMETRIC SUð5Þ GUT

The minimal supersymmetric SUð5Þ model consists of a
vector supermultiplet transforming as an adjoint 24 of the
SUð5Þ, as well as 5 types of chiral supermultiplets, namely
Nf (the number of flavours) multiplets in �5 (that include �d
and L of the MSSM),Nf multiplets in 10 (includeQ, �u, and
�e), one each in 24 (denoted �), 5 (H) and �5 ( �H). � is the
Higgs multiplet responsible for breaking the GUT symme-
try, while H and �H respectively include the up- and down-
type MSSM Higgs multiplets. Among these, only the three
Higgs chiral multiplets �, H and �H play rôles in the
dynamics of inflation. We shall hence disregard the other
fields. The superpotential of our model is,

W ¼ �Hð�þ ��ÞH þm

2
Trð�2Þ þ �

3
Trð�3Þ; (1)
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and the Kähler potential is K ¼ �3�, with

� ¼ 1� 1

3
ðTr�y�þ jHj2 þ j �Hj2Þ � �

2
ð �HH þHy �HyÞ

þ ~!

3
ðTr�y�2 þ Tr�y2�Þ þ �

3
ðTr�y�Þ2; (2)

where �, �, m, �, �, � , ~! are constant parameters (for
simplicity we assume them to be real). The cubic and the
quartic terms have been included in the Kähler potential,
for reasons to be discussed shortly. We shall set the reduced
Planck scale MP ¼ 2:44� 1018 GeV to unity.

For the model to be phenomenologically consistent, the
SUð5Þ symmetry needs to be broken down to the SM gauge
group SUð3Þ � SUð2Þ �Uð1Þ. This is accomplished as
usual by setting,

� ¼
ffiffiffiffiffiffi
2

15

s

S diag

�
1; 1; 1;� 3

2
;� 3

2

�
; (3)

with S a chiral superfield. The MSSM Higgs doublets Hu,
Hd and the Higgs color triplets Hc, �Hc are embedded in H
and �H as

H ¼
�
Hc

Hu

�
; �H ¼

� �Hc

Hd

�
: (4)

The superpotential now reads

W ¼
0

@�þ
ffiffiffiffiffiffi
2

15

s

�S

1

A �HcHc þ
0

@��
ffiffiffiffiffiffi
3

10

s

�S

1

AHuHd

þm

2
S2 � �

3
ffiffiffiffiffiffi
30

p S3: (5)

The masses of Hu and Hd are in the electroweak scale,
which is negligibly smaller than the typical scaleMP of the
inflationary dynamics. Thus the expectation value of the

second term in (5) must vanish, � ¼ ffiffiffiffiffiffiffiffiffiffiffi
3=10

p
�hSi, where

hSi ¼ v � 2� 1016 GeV is the GUT scale. The first term
of (5) indicates thatHc and �Hc have GUT scale masses. For
the color symmetry to be unbroken we require that they are
already stabilized at hHci ¼ h �Hci ¼ 0, from the onset of
the inflation. During inflation the dominant role is played
by the MSSM Higgs fields Hu and Hd, which settle down
to the present values after the inflation. When Hu, Hd � 1
(i.e. close to the end of inflation) the stationary condition

�W=�S ¼ 0withHc ¼ �Hc ¼ 0 yields Sðm� �S=
ffiffiffiffiffiffi
30

p Þ ¼
0. Since the GUT symmetry must be broken, hSi ¼ v � 0
and we must have m ¼ �ffiffiffiffi

30
p v. The charged Higgs can be

consistently set to be zero,

Hu ¼
�

0
H0

u

�
; Hd ¼

�
H0

d

0

�
; (6)

and parametrizing S ¼ sei�, H0
u ¼ 1ffiffi

2
p h1e

i�1 , H0
d ¼

1ffiffi
2

p h2e
i�2 , with s, h1, h2, �, �1, �2 2 R, and further setting

h1 ¼ h sin� and h2 ¼ h cos�, the model depends on five

parameters �, �, �, ~!, � , and six real scalar fields s, h, �,
�, �1, �2. Note that � and � are parameters appearing in
the GUT superpotential and are typically of order one,
while there is no such restriction for �, ~!, and � .
Analyzing the scalar potential, we find stability at � ¼
�1 ¼ �2 ¼ 0. Furthermore, the D-flat condition sets the
value of � to be 	=4. Thus the model reduces to a system
of two real scalars h and s, with the scalar-gravity part of
the Jordan frame Lagrangian (cf. [12]),

L J¼ ffiffiffiffiffiffiffiffiffi�gJ
p �

1

2
�RJ�1

2
g
�

J @�h@
h��g

�

J @�s@
s�VJ

�
:

(7)

The subscript J denotes quantities in the Jordan frame, � �
KSSy ¼ 1� 4!s� 4�s2 is the nontrivial component of the

Kähler metric, ! � � ~!=
ffiffiffiffiffiffi
30

p
, and

� ¼ 1� 1

3
s2 þ 2!

3
s3 þ �

3
s4 þ

�
�

4
� 1

6

�
h2: (8)

VJ is the F-term scalar potential in the Jordan frame,
computed in the standard way [14], as

VJ¼ 3

10

�
�2

2
ðs�vÞ2h2þ 1

�

�
�

4
h2��

3
sðs�vÞ

�
2
�

�f2�sþ!
� ½�h24 ��sðs�vÞ

3 �s2þ�vh2

4 ��vs2

6 � 3��h2ðs�vÞ
4 g2

10½1þ�
4 ð32��1Þh2þ �þ!2

3� s4�
:

(9)

III. THE INFLATION DYNAMICS

The dynamics of inflation is encoded in the scalar po-
tential VE ¼ ��2VJ in the Einstein frame. If we take the
canonical form of the Kähler potential (i.e. ! ¼ � ¼ 0),
the potential exhibits tachyonic instability in the direction
of the s-field. Just as in the case of the NMSSM Higgs
inflation [11,12] the instability is controlled by introducing
a quartic term (� � 0) in the Kähler potential. In the GUT
model, however, this is not the whole story, as the quartic
term has a serious side effect: the SM vacuum becomes
disfavored and the SUð5Þ symmetry tends to be restored at
the end of inflation. This problem is resolved by allowing a
cubic term,1 ! � 0. Note that these terms are perfectly
consistent with the supergravity embedding. The bottom
line is that for a wide range of the parameter space with up
to quartic order terms in the Kähler potential, there exist
reasonable trajectories of the inflaton field. In Fig. 1 we
show the shape of the scalar potential VE (the left panel),
the inflaton trajectory (center), and the values of VE at local
minima (bottom of the valley) for given h (right). In this
example we have taken � ¼ � ¼ 0:5, ! ¼ �100, � ¼
10000, and � ¼ 1:86� 104 (this value of � is determined

1Higher (say sextic) terms in the Kähler potential can also
solve this problem.
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for the e-folding number Ne ¼ 60, as discussed below).
The plateau of the potential at the large h values is a
characteristic feature of Higgs inflation. As the field s
controls breaking of the GUT symmetry, the trajectory
shows that SUð5Þ is broken from the onset, indicating
that problematic topological defects are not produced dur-
ing inflation. For this parameter set the dynamics of the
slow roll inflation is dominated by the h field, as the
displacement of s is negligibly small (�~s=�h & 2%,

with suitable normalization d~s ¼ ffiffiffiffiffiffi
2�

p
ds). Assuming that

s is nearly constant,2 the model simplifies to single field
inflation. The Lagrangian (7) can then be written in a form
similar to the SM Higgs inflation [1–8],

L J ¼ ffiffiffiffiffiffiffiffiffi�gJ
p �

M2 þ �h2

2
RJ � 1

2
g�

J @�h@
h� VJ

�
;

(10)

with M2 ¼ 1� 1
3 s

2 þ 2
3!s3 þ 1

3 �s
4 and � ¼ 1

4�� 1
6 .

IV. COSMOLOGICAL PARAMETERS

The slow roll parameters,

 ¼ 1

2

�
1

VE

dVE

dĥ

�
2
; � ¼ 1

VE

d2VE

dĥ2
; (11)

are defined for the scalar potential VE and the canonically

normalized inflaton field ĥ in the Einstein frame. The latter
is related to h by

dĥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ �h2 þ 6�2h2

p

M2 þ �h2
dh: (12)

For given (�, �, !, �), the nonminimal coupling � is
determined from the power spectrum of the curvature
perturbation P R ¼ VE=24	

2. The slow roll terminates

when either of the slow roll parameters ( in the present
case) becomes Oð1Þ. The values of the inflaton h ¼ h� at
the end of the slow roll and hk at the horizon exit of the
comoving CMB scale k, are related by the e-folding num-

ber Ne ¼
Rhk
h� dhVEðdĥ=dhÞ=ðdVE=dĥÞ. At h ¼ hk the

shape of VE is constrained by the power spectrum P R.
We have used the maximum likelihood value �2

Rðk0Þ ¼
2:42� 10�9 from the 7-year WMAP data [15], where

�2
RðkÞ ¼ k3

2	2 P RðkÞ and the normalization is fixed at k0 ¼
0:002 Mpc�1. With � ¼ � ¼ 0:5, ! ¼ �100 and � ¼
10000, we find h� ¼ 0:0146, hk ¼ 0:128 and � ¼ 4646
for Ne ¼ 60. For Ne ¼ 50 we obtain h� ¼ 0:0160,
hk ¼ 0:130 and � ¼ 3895. With these parameters the pre-
diction of the scalar spectral index ns � d lnP R=d lnk ¼
1� 6þ 2� and the tensor-to-scalar ratio r �
P gw=P R ¼ 16 can be evaluated. We find ns ¼ 0:968,

r ¼ 0:00296 for Ne ¼ 60, and ns ¼ 0:962, r ¼ 0:00419
for Ne ¼ 50. These results are shown in Fig. 2 with ob-
servational constraints [15]. The prediction for ns and r is
insensitive to the change of � and �, as long as they are
Oð1Þ. With ðNe; �; �Þ ¼ ð60; 0:1; 0:5Þ and (60, 0.5, 0.1), for

FIG. 2 (color online). The tensor-to-scalar ratio r and the
scalar spectral index ns, with the 68% and 95% confidence level
contours from the WMAP7þ BAOþH0 data [15]. The
Harrison-Zel’dovich (HZ) values as well as the predictions of
the �4 and �2 chaotic inflation models are also shown for
comparison.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

s

h

0.00 0.05 0.10 0.15 0.20
h

2. 10 11

4. 10 11

6. 10 11

8. 10 11

1. 10 10

V

0. 0.005 0.01

FIG. 1 (color online). The scalar potential VE in the Einstein frame (left), the inflaton trajectory in the contour plot of the same
potential (middle), and the minima of the scalar potential VðsðhÞ; hÞ plotted against h (right). In the middle panel the thick red curve is
the inflaton trajectory. We have chosen � ¼ 0:5, � ¼ 0:5, ! ¼ �100, � ¼ 10000. The nonminimal coupling � ¼ 1:86� 104 is fixed
by the amplitude of the curvature perturbation, evaluated for e-folding Ne ¼ 60.

2The value of s ¼ sðhÞ is taken at the local minimum of VE for
a given h, and derivatives of s are set to be zero.
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example, we obtain the same prediction ns ¼ 0:968 and
r ¼ 0:00296 as above. In contrast to the nonsupersymmet-
ric case, the inflationary dynamics does not constrain the
Higgs mass at the electroweak scale.

V. DISCUSSION

In this paper we have discussed Higgs inflation in super-
symmetric GUT, taking the minimal SUð5Þ model as a
concrete example. In the early days the proposals of cos-
mological inflation were made for the Higgs field in the
GUT models [16]. It is intriguing to see that the prediction
based on the simplest GUT, with the help of nonminimal
coupling to gravity, is in perfect fit with today’s observa-
tional constraints.

The nonminimal coupling is consistent with the symme-
tries of general relativity and the SM, and it naturally arises
in quantum field theory in curved spacetime [17]. The
value of the coupling �� 104, however, is rather large.
This is a generic feature of Higgs inflation, since successful
slow roll requires h2 & M2

P & �h2 [1]. It has been argued
that such large nonminimal coupling could violate the
unitarity bound, since the cut-off scale evaluated as
MP=� is considerably lower than the Planck scale [5–8].
Others contend that such a criticism is not valid, arguing
that at large field values * MP=� the cut-off scale is
actually field-dependent [4,9,12]. The large nonminimal
coupling is, at any rate, a key feature of the Higgs inflation
and it is certainly worthwhile understanding possible dan-
gers arising from this. Another type of criticism concerns
the quantum stability of the classical potential. This prob-
lem was studied using renormalization group (RG) analy-
sis [2–4], and the effects of renormalization are found to be
small except for some extreme values of parameters. We
have also performed RG analysis in our GUT model and
verified that the effects are small (less than 3% for r, less
than 2% for �, and less than 0.1% for ns). This is expected,
since inflation takes place in a narrower energy range of
1016–1018 GeV and the RG effects should be smaller than
the SM case.

A closer look at the potential VE shows that its mini-
mum is at a small negative value, �� 2� 10�16M4

P, for
our parameter choices. This is offset by a contribution
from the supersymmetry breaking sector and the scenario
does not suffer from the cosmological constant problem.
In our scenario the energy scale of inflation is in the GUT
scale and the Higgs fields are directly coupled to the SM
particles. This indicates that the reheating temperature is
high, typically from the intermediate to the GUT scale. It
would be interesting to discuss further phenomenological
implications, such as the gravitino problem and
baryogenesis.
In this paper we considered a single-field Higgs inflation

model appropriate for our parameter choice � ¼ 10000,
! ¼ �100 of the Kähler potential. These values are not
too exotic, as h�i is still very close to 1 and the Planck
scale after inflation is nearly MP. For smaller values of �
and j!j, the displacement of s during inflation becomes
large. This leads to two-field inflation, which is also of
interest, in particular, due to possible generation of detect-
able large non-Gaussianity. Supersymmetric models of
Higgs inflation necessarily involve multiple fields [11].
The engendered isocurvature mode can, in principle, dis-
tinguish various models of Higgs inflation.
Finally, the scenario can also be extended to other GUT

models whose gauge group contains SUð5Þ as a subgroup.
When the Higgs multiplets of the GUT model contain 5, �5
and 24 of the minimal SUð5ÞGUT, a superpotential like (1)
can be introduced. Then a viable model of Higgs inflation
is implemented, as described in this paper. One such simple
example is the SOð10Þ GUT with Higgs multiplets in 10
and 54 representations.
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