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We perform a detailed study of the modified gravity fðRÞ models in the light of the basic geometrical

symmetries, namely Lie and Noether point symmetries, which serve to illustrate the phenomenological

viability of the modified gravity paradigm as a serious alternative to the traditional scalar field approaches.

In particular, we utilize a model-independent selection rule based on first integrals, due to Noether

symmetries of the equations of motion, in order to identify the viability of fðRÞ models in the context of

flat Friedmann-Lemaı̂tre-Robertson-Walker cosmologies. The Lie/Noether point symmetries are com-

puted for six modified gravity models that include also a cold dark matter component. As it is expected,

we confirm that all the proposed modified gravity models admit the trivial first integral, namely energy

conservation. We find that only the fðRÞ ¼ ðRb � 2�Þc model, which generalizes the concordance �

cosmology, accommodates extra Lie/Noether point symmetries. For this fðRÞ model the existence of

nontrivial Noether (first) integrals can be used to determine the integrability of the model. Indeed within

this context we solve the problem analytically and thus we provide for the first time the evolution of the

main cosmological functions such as the scale factor of the universe and the Hubble expansion rate.
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I. INTRODUCTION

The comprehensive study carried out in recent years by
the cosmologists has converged towards a cosmic expan-
sion history that involves a spatially flat geometry and a
recent accelerating expansion of the universe (see [1–8]
and references therein). From a theoretical point of view,
an easy way to explain this expansion is to consider an
additional energy component with negative pressure, usu-
ally called dark energy, that dominates the universe at late
times. In spite of that, the absence of a fundamental physi-
cal theory, regarding the mechanism inducing the cosmic
acceleration, has given rise to a plethora of alternative
cosmological scenarios. Most of them are based either on
the existence of new fields in nature (dark energy) or in
some modification of Einstein’s general relativity (GR),
with the present accelerating stage appearing as a sort of
geometric effect (‘‘geometrical’’ dark energy).

The necessity to preserve Einstein’s equations inspired
cosmologists to conservatively invoke the simplest avail-
able hypothesis, namely, a cosmological constant, � (see
[9–11] for reviews). Indeed the so-called spatially flat
concordance �CDM model, which includes cold dark
matter and a cosmological constant (�), fits accurately
the current observational data and thus it is an excellent
candidate model of the observed universe. Nevertheless,
the identification of � with the quantum vacuum has
brought another problem which is: the estimate that the
vacuum energy density should be 120 orders of magnitude
larger than the measured � value. This is the ‘‘old’’
cosmological constant problem [9]. The ‘‘new’’ problem
[12] is related with the following question: why is the

vacuum density so similar to the matter density at the
present time?
Such problems have inspired many authors to propose

alternative dark energy candidates (see [13] for review)
such as �ðtÞ cosmologies, quintessence, k essence, vector
fields, phantom dark energy, tachyons, and Chaplygin gas
(see [9,14–30] and references therein). Naturally, in order
to establish the evolution of the dark energy equation of
state, a realistic form of HðaÞ is required which should be
constrained through a combination of independent dark
energy probes.
On the other hand, there are other possibilities to explain

the present accelerating stage. For instance, one may con-
sider that the dynamical effects attributed to dark energy
can be resembled by the effects of a nonstandard gravity
theory. In other words, the present accelerating stage of the
universe can be driven only by cold dark matter, under a
modification of the nature of gravity. Such a reduction of
the so-called dark sector is naturally obtained in the fðRÞ
gravity theories [31]. In the original nonstandard gravity
models, one modifies the Einstein-Hilbert action with a
general function fðRÞ of the Ricci scalar R. The fðRÞ
approach is a relatively simple but still fundamental tool
used to explain the accelerated expansion of the universe.
A pioneering fundamental approach was proposed long
ago, where fðRÞ ¼ RþmR2 [32]. Later on, the fðRÞ
models were further explored from different points of
view in [33–35] and indeed a large number of functional
forms of fðRÞ gravity is currently available in the literature.
It is interesting to mention here that subsequent investiga-
tions [35] confirmed that 1=R gravity is an unacceptable
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model because it fails to reproduce the correct cosmic
expansion in the matter era.

In this paper, we wish to test some basic functional
forms of fðRÞ in light of the Lie/Noether point symmetries.
The idea to use Noether symmetries in cosmological stud-
ies is not new and indeed a lot of attention has been paid in
the literature (see [36–46]). Recently, we have proposed
(see Basilakos et al. [47]) that the existence of Lie/Noether
point symmetries can be used as a selection criterion in
order to distinguish the functional form of the potential
energy Vð�Þ of the dark energy models that adhere to
general relativity (GR). In this work we would like to
extend the paper of Basilakos et al. [47] by applying the
same approach to fðRÞ models. In particular, the scope of
the current article is (a) to investigate which of the avail-
able fðRÞ models admit extra Lie and Noether point sym-
metries, and (b) for these models to solve the system of the
resulting field equations and derive analytically (for the
first time to our knowledge) the main cosmological func-
tions (the scale factor, the Hubble expansion rate, etc.).
We would like to remind the reader that a fundamental
approach to derive the Lie and Noether point symmetries
for a given dynamical problem living in a Riemannian
space has been published recently by Tsamparlis and
Paliathanasis [48] (a similar analysis can be found in
[49–55]).

The structure of the paper is as follows. The basic
theoretical elements of the problem are presented in
Sec. II, where we also introduce the basic Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) cosmological equa-
tions in the framework of fðRÞ models. The geometrical
Lie/Noether point symmetries and their connections to the
fðRÞ models are discussed in Sec. III. In Sec. IV we
provide analytical solutions for those fðRÞ models which
admit nontrivial Lie/Noether point symmetries. Finally, we
draw our main conclusions in Sec. V.

II. COSMOLOGY WITH A MODIFIED GRAVITY

Consider the modified Einstein-Hilbert action:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2k2
fðRÞ þLm

�
; (1)

where Lm is the Lagrangian of dustlike (pm ¼ 0) matter
and k2 ¼ 8�G. Now varying the action with respect to the
metric1 we arrive at

ð1þf0ÞG�
� �g��fR;�;�þ

�
2hf0 �ðf�Rf0Þ

2

�
�
�
� ¼k2T

�
� ;

(2)

where the prime denotes derivative with respect to R,G�
� is

the Einstein tensor, and T�
� is the energy-momentum tensor

of matter. Based on the matter era we treat the expanding

universe as a perfect fluid which includes only cold dark
matter with 4-velocity U�. Thus, the energy-momentum

tensor becomes T�
� ¼ �pmg

�
� þ ð�m þ pmÞU�U�, where

�m and pm ¼ 0 are the energy density and pressure of
the cosmic fluid, respectively. The Bianchi identity
5�T�� ¼ 0 leads to the matter conservation law:

_�m þ 3H�m ¼ 0; (3)

the solution of which is �m ¼ �m0a
�3. Note that the over-

dot denotes derivative with respect to the cosmic time t,
aðtÞ is the scale factor, and H � _a=a is the Hubble
parameter.
Now, in the context of a flat FLRW metric with

Cartesian coordinates

ds2 ¼ �dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ; (4)

the Einstein’s tensor components are given by

G0
0 ¼ �3H2; G�

� ¼ ���
� ð2 _H þ 3H2Þ: (5)

Inserting Eq. (5) into the modified Einstein’s field equation
(2), for comoving observers, we derive the modified
Friedmann’s equations:

3f0H2 ¼ k2�m þ f0R� f

2
� 3Hf00 _R (6)

2f0 _H þ 3f0H2 ¼ �2Hf00 _R� ðf000 _R2 þ f00 €RÞ � f� Rf0

2
:

(7)

Also, the contraction of the Ricci tensor provides the Ricci
scalar

R ¼ g��R�� ¼ 6

�
€a

a
þ _a2

a2

�
¼ 6ð2H2 þ _HÞ: (8)

Of course, if we consider fðRÞ ¼ R then the field equation
(2) boils down to the nominal Einstein’s equations, a
solution of which is the Einstein de Sitter model. On the
other hand, the concordance � cosmology is fully recov-
ered for fðRÞ ¼ R� 2�.
From the current analysis it becomes clear that unlike

the standard Friedmann equations in Einstein’s GR the
modified equations of motion (6) and (7) are complicated
and thus it is difficult to solve analytically. However, the
existence of nontrivial Noether (first) integrals can be used
to simplify the system of differential equations (6) and (7)
as well as to determine the integrability of the system
(see Sec. IV).

A. The fðRÞ functional forms

In order to solve the system of Eqs. (6) and (7), we need
to know a priori the functional form of fðRÞ. Because of
the absence of a physically well-motivated functional
form for the fðRÞ parameter, there are many theoretical
speculations in the literature. Below we briefly present
various fðRÞ models whose free parameters, namely1We use the metric, i.e., the Hilbert variational approach.
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ðm; n; RcÞ> ð0; 0; 0Þ, can be constrained from the current
cosmological data.

(i) The power law model [33,56,57]:

fðRÞ ¼ R�m=Rn: (9)

(ii) The Amendola et al. [35] modified gravity model:

fðRÞ ¼ R�mRcðR=RcÞp (10)

with 0< p< 1.
(iii) The Hu and Sawicki [58] model:

fðRÞ ¼ R�mRc

ðR=RcÞ2n
ðR=RcÞ2n þ 1

: (11)

(iv) The Starobinsky [59] model:

fðRÞ ¼ R�mRc½1� ð1þ R2=R2
cÞ�n�: (12)

(v) The Tsujikawa [60] model:

fðRÞ ¼ R�mRc tanhðR=RcÞ: (13)

(vi) The generalization of the �CDM model (hereafter
�bcCDM model [61]):

fðRÞ ¼ ðRb � 2�Þc; (14)

where the product bc is of order of unity Oð1Þ and
c � 1. The latter inequality is due to the existence
of the matter epoch.

Detailed analyses of these potentials exist in the litera-
ture, including their confrontation with the observational
data (see [13] for extensive reviews). We would like to
stress here that within the context of the metric formalism
the above fðRÞ cosmological models must obey simulta-
neously the same strong conditions (for an overall discus-
sion see [13]). Briefly these are: (i) f0 > 0 for R � R0 > 0,
where R0 is the Ricci scalar at the present time. If the final
attractor is a de Sitter point we need to have f0 > 0 for R �
R1 > 0, where R1 is the Ricci scalar at the de Sitter point,
(ii) f00 > 0 for R � R0 > 0, (iii) fðRÞ � R� 2� for R �
R0, and finally (iv) 0< Rf00

f0 ðrÞ< 1 at r ¼ � Rf0
f ¼ �2.

Notice, that the power law fðRÞ model fails with respect
to condition (ii). The rest of the models satisfy all the above
conditions and thus they provide predictions which are
similar to those of the usual dark energy models, as far
as the cosmic history (presence of the matter era, stability
of cosmological perturbations, stability of the late de Sitter
point, etc.) is concerned. Finally, in an appendix we discuss
more fðRÞ models which however do not satisfy the con-
ditions (i)–(iv) [62].

III. MODIFIED GRAVITY VERSUS SYMMETRIES

In Basilakos et al. [47], we have proposed to use the
Noether symmetry approach as a model-independent cri-
terion, in order to classify the dark energy models that
adhere to general relativity. The aim of this work is along
the same lines, attempting to investigate the nontrivial
Noether symmetries (first integrals of motion) by general-
izing the methodology of Basilakos et al. [47] for modified
gravity models (see Sec. II A). This can help us to under-
stand better the theoretical basis of the fðRÞmodels as well
as the variants from GR.
In the past decade, a large number of experiments have

been proposed in order to constrain dark energy and study
its evolution. Naturally, in order to establish the evolution
of the dark energy (’’geometrical’’ in the current work)
equation of state parameter a realistic form of HðaÞ is
required while the included free parameters must be con-
strained through a combination of independent DE probes
(for example SNIa, BAOs, CMB, etc.). However, a weak
point here is the fact that the majority of the fðRÞ models
which appeared in the literature are plagued with no clear
physical basis and/or many free parameters. Because of the
large number of free parameters many such models could
fit the data. The proposed additional criterion of the Lie/
Noether symmetry requirement is a physically meaningful
geometric ansatz, which could be employed in order to
select amongst the set of viable models those which satisfy
this constraint. Practically for those fðRÞ models which
manage to survive from the comparison with the available
cosmological data, our goal is to define a method that can
further distinguish the fðRÞmodels on a more fundamental
(e.g. geometrical) level and at the same time provide first
integrals which can be used to integrate the modified
Friedmann’s equations.
According to the theory of general relativity, the space-

time symmetries (Killing and homothetic vectors) via
the Einstein’s field equations, are also symmetries of the
energy-momentum tensor. Because of the fact that the
fðRÞ models provide a natural generalization of GR, one
would expect that the theories of modified gravity must
inherit the symmetries of the space-time as the usual
gravity (GR) does.
Furthermore, besides the geometric symmetries we have

to consider the dynamical symmetries, which are the sym-
metries of the field equations (Lie symmetries). If the field
equations are derived from a Lagrangian then there is a
special class of Lie symmetries, the Noether symmetries,2

which lead to conserved currents or, equivalently, to first
integrals of the equations of motion. The Noether integrals
are used to reduce the order of the field equations or even to
solve them. Therefore a sound requirement which is pos-
sible to be made in Lagrangian theories is that they admit

2Note that the Noether symmetries are a subalgebra of the
algebra defined by the Lie symmetries [48].
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extra Noether symmetries. This assumption is model inde-
pendent, because it is imposed after the field equations
have been derived, therefore it does not lead to conflict
with the geometric symmetries while, at the same time,
serves the original purpose of a selection rule. Of course, it
is possible that a different method could be assumed and
select another subset of viable models. However, symmetry
has always played a dominant role in physics and this gives
an aesthetic and a physical priority to our proposal.

In the Lagrangian context, we can easily prove that the
main field equations (6) and (7), described in Sec. II, can be
produced by the following Lagrangian:

L ¼ 6af0 _a2 þ 6a2f00 _a _Rþa3ðf0R� fÞ (15)

in the space of the variables fa; Rg. Using Eq. (15) we
obtain the Hamiltonian of the current dynamical system:

E ¼ 6af0 _a2 þ 6a2f00 _a _R�a3ðf0R� fÞ (16)

or

E ¼ 6a3
�
f0H2 � ðf0R� fÞ

6
þ _RHf00

�
: (17)

Combining the first equation of motion (6) with Eq. (17),
we find

�m ¼ E

2k2
a�3: (18)

The latter equation together with �m ¼ �m0a
�3 implies

that

�m0 ¼ E

2k2
) �m�cr;0 ¼ E

2k2
) E ¼ 6�mH

2
0 ; (19)

where�m ¼ �m0=�cr;0, �cr;0 ¼ 3H2
0=k

2 is the critical den-

sity at the present time, and H0 is the Hubble constant.
We note that the current Lagrangian Eq. (15) is time

independent implying that the dynamical system is
autonomous; hence, the Hamiltonian E is conserved
(@tE � dE

dt ¼ 0). Therefore, all the fðRÞ functions de-

scribed in Sec. II A admit the trivial Noether symmetry,
namely, energy conservation as they should.

Extra Lie and Noether symmetries

Here we briefly present only the main points of the
method used to constrain the fðRÞ models. In particular,
let us assume a modified gravity fðRÞ cosmological model
which accommodates a late time ’’accelerated’’ expansion
and it satisfies the strong conditions (i)–(iv) of Sec. II A.
We pose here a similar question with that proposed in
Basilakos et al. [47] for the dark energy models that adhere
to GR. For the modified gravity, namely fðRÞ that lives into
a two-dimensional Riemannian space fa; Rg and which is
embedded in the space-time, how many (if any) of the
previously presented functional forms (see Sec. II A) can
provide nontrivial Noether symmetries (or first integrals of
motion)? As an example, if we find a modified gravity
model (or a family of models) for which its fðRÞ admits
nontrivial first integrals of motion with respect to the other

fðRÞ cosmological models, then obviously this model con-
tains an extra geometrical feature. Therefore, we can use
this geometrical characteristic in order to classify this
particular fðRÞ cosmological model into a special category
(see also [36,39–41,43,44]).
In order to compute the Lie/Noether point symmetries of

equations of motion (6) and (7), we consider the
Lagrangian3 (15) as the sum of a kinetic energy and a
conservative force field. The kinetic term defines a
two-dimensional metric in the space of fa; Rg. Following
standard lines (see [47] and references therein), the two-
dimensional metric takes the form

dŝ2 ¼ 12af0da2 þ 12a2f00dadR (20)

while the ‘‘potential’’ is

Vða; RÞ ¼ �a3ðf0R� fÞ: (21)

The signature of the metric Eq. (20) is þ1 and the Ricci

scalar is computed to be R̂ ¼ 0, therefore the space is the
2D Euclidean space.4 Using the kinematic metric (20) we
can utilize the plethora of results of differential geometry
on collineations to produce the solution of the Lie/Noether
point symmetry problem.
We recall that the special projective algebra of the of the

Euclidean 2D metric (20) consists of the following vectors:

K1 ¼ a@a � 3
f0

f00
@R;

K2 ¼ 1

a
@a � 1

a2
f0

f00
@R;

K3 ¼ 1

a

1

f00
@R;

Hi ¼ a

2
@a þ 1

2

f0

f00
@R;

A1 ¼ f0@a � 1

a

ðf0Þ2
f00

@R;

A2 ¼ a

f00
@R;

A3 ¼ a@a;

A4 ¼ f0

f00
@R;

P1 ¼ 3

2
a2f0@a þ 3

2
a
ðf0Þ2
f00

@R;

P2 ¼ 3

2
a3@a þ 3

2
a2

f0

f00
@R

3In Appendix B we discuss the Noether symmetries in nonflat
fðRÞ models.

4For the traditional dark energy models the signature of the
two-dimensional metric is �1 which means that the 2D space is
Minkowski [47]. Also all two-dimensional Riemannian spaces
are Einstein spaces implying that if R̂ ¼ 0 the space is flat.
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where K are Killing vectors (K2;3 are gradient), H is a
gradient Homothetic vector,A are affine collineations, and
P are special projective collineations. These are ten vectors
whereas the projective algebra of the two-dimensional flat
space consists of eight vectors [63]. It can be shown that
the vectors K1, Hi are a linear combination of the affine
vectors AI, I ¼ 3; 4.

Now we are looking for Noether symmetries beyond the
standard one, @t. Utilizing the potential Eq. (21) and the-
orems 1 and 2 of [48,55], we find that among the fðRÞ
models explored here (see Sec. II A), only the �bcCDM
model [61] with ðb; cÞ ¼ ð1; 32Þ admits extra Lie/Noether

point symmetries. In particular, the Lie point symmetries
are

XL1
¼ A3; XL2

¼ ðc1e
ffiffiffi
m

p
t þ c2e

� ffiffiffi
m

p
tÞK2; (22)

where the quantity XL2
is also Noether symmetry with

gauge function

gL2
¼ 9

ffiffiffiffi
m

p ðc1e
ffiffiffi
m

p
t � c2e

� ffiffiffi
m

p
tÞa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R� 2�

p
;

where c1;2 are constants and m ¼ 2�=3. If we relax the

condition of c � 1 [61], then we discover a second
�bcCDM model with ðb; cÞ ¼ ð1; 78Þ that accommodates

two Lie point symmetries, the XL1
and the Noether point

symmetry

XL3
¼

�
c1ffiffiffiffi
m

p e2
ffiffiffi
m

p
t � c2ffiffiffiffi

m
p e�2

ffiffiffi
m

p
t

�
@t

þ ðc1e2
ffiffiffi
m

p
t þ c2e

�2
ffiffiffi
m

p
tÞHi; (23)

with gauge function

gL3
¼ 21

4

ffiffiffiffi
m

p ðc1e2
ffiffiffi
m

p
t � c2e

�2
ffiffiffi
m

p
tÞa3ðR� 2�Þ�ð1=8Þ:

We have to mention here that the fðRÞ ¼ ðR� 2�Þ7=8
model does not satisfy the condition (ii), namely f00ðRÞ> 0.

To conclude the discussion we would like to stress that
the novelty in this work is the fact that among the current
modified gravity models (see Sec. II A) only the �bcCDM
model [61], which generalizes the concordance �CDM
model, admits extra Lie/Noether point symmetries. This
implies that the �bcCDM model can be clearly distin-
guished from the other modified gravity models.
Interestingly enough, the existence of the extra Lie/
Noether point symmetries puts even further theoretical
constraints on the free parameters of the �bcCDM model,
ðb; cÞ ¼ ð1; 32Þ and ðb; cÞ ¼ ð1; 78Þ. From now on, we focus

on the latter fðRÞ models and in the next section we
provide for a first time (to our knowledge) analytical
solutions.

IV. ANALYTICAL SOLUTIONS

Using the Noether symmetries and the associated
Noether integrals we solve analytically differential
Eqs. (6) and (7).

A. �bcCDM model with ðb; cÞ ¼ ð1; 32Þ
Inserting fðRÞ ¼ ðR� 2�Þ3=2 into Eq. (15) we obtain

L ¼ 9a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R� 2�

p
_a2 þ 9a2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R� 2�

p _a _R

þ a3

2
ðRþ 4�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R� 2�

p
: (24)

Changing now the variables from ða; RÞ to ðx; yÞ via the
relations

a ¼
�
9

2

��ð1=3Þ ffiffiffi
x

p
; R ¼ 2�þ y2

x
; ðx; yÞ � ð0; 0Þ;

the Lagrangian (24) and the Hamiltonian (16) become

L ¼ _x _yþV0ðy3 þ �mxyÞ (25)

E ¼ _x _y�V0ðy3 þ �mxyÞ; (26)

where V0 ¼ 1=9 and �m ¼ 6�.
The equations of motion, using the Euler-Lagrange

equations, in the new coordinate system are

€x� 3V0y
2 � �mV0x ¼ 0 (27)

€y� �mV0y ¼ 0: (28)

The Noether point symmetries (22) in the coordinate sys-
tem fx; yg become

X0
L2

¼ ðc1e!t þ c2e
�!tÞ@y; (29)

where ! ¼ ffiffiffiffiffiffiffiffiffiffi
�mV0

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2�=3

p
and the corresponding

Noether integrals are

I1 ¼ e!t _y�!e!ty (30)

I2 ¼ e�!t _yþ!e�!ty: (31)

From these we construct the time independent first integral

� ¼ I1I2 ¼ _y2 �!2y2: (32)

The constants of integration are further constrained by the
condition that at the singularity (t ¼ 0), the scale factor has
to be exactly zero, that is, xð0Þ ¼ 0.
We consider the cases � ¼ 0 and � � 0.
A. Case � ¼ 0.
We have the following subcases:
A.1. I1 ¼ I2 ¼ 0
The solution of the system of equations (27) and (28) is

xðtÞ ¼ x1e
!t þ x2e

�!t; yðtÞ ¼ 0 (33)
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and the Hamiltonian constraint gives E ¼ 0, where x1;2 are
constants. The singularity condition gives the constraint
x1 ¼ �x2. At late enough times the scale factor evolves as
a2ðtÞ / xðtÞ / x1e

!t. However, this particular solution is
ruled out because it violates yðtÞ � 0.

A.2. I1 ¼ 0 (I2 � 0)
The solution of the system (27) and (28) is

yðtÞ ¼ I2
2!

e!t (34)

xðtÞ ¼ x01e!t þ x02e�!t þ I22
4!2 �m

e2!t (35)

and the Hamiltonian constraint gives E ¼ �x02I2!, where
x01;2 are constants. The singularity condition gives the con-

straint

x01 þ x02 þ
I22

4!2 �m
¼ 0: (36)

At late times the solution becomes a2ðtÞ / xðtÞ ’ I22
4!2 �m

e2!t.

A.3. I2 ¼ 0 (I1 � 0)
The solution of the system (27) and (28) is

yðtÞ ¼ � I1
2!

e�!t (37)

xðtÞ ¼ �x1e
!t þ �x2e

�!t þ I21
4!2 �m

e�2!t (38)

and the Hamiltonian constraint gives E ¼ �x1I1!, where
�x1;2 are constants. The singularity condition gives the con-

straint

�x 1 þ �x2 þ I21
4!2 �m

¼ 0:

This particular solution is not viable because in the matter
era we have e�!t � 0 implying that yðtÞ � 0.

B. Case � � 0
In this case the I1;2 � 0. The general solution of the

system (27) and (28) is

yðtÞ ¼ I2
2!

e!t � I1
2!

e�!t (39)

xðtÞ ¼ x1Ge
!t þ x2Ge

�!t þ 1

4 �m!2
ðI2e!t þ I1e

�!tÞ2

þ �

�m!2
: (40)

The Hamiltonian constraint gives E ¼ !ðx1GI1 � x2GI2Þ,
where x1G;2G are constants and the singularity condition

results in the constraint

x1G þ x2G þ 1

4 �m!2
ðI1 þ I2Þ2 þ �

�m!2
¼ 0:

Interestingly, one can show that the general solution

includes a proper matter era in which HðaÞ / a�3=2

(see Appendix C). Also, at late enough times the solution
becomes a2ðtÞ / xðtÞ / ½I22=ð4!2 �mÞ�e2!t.

B. �bcCDM model with ðb; cÞ ¼ ð1; 78Þ
Despite the fact that the current fðRÞmodel is physically

unacceptable due to f00ðRÞ< 0, below we present its ana-
lytical solution for mathematical interest. In this case the

Lagrangian Eq. (15) of the fðRÞ ¼ ðR� 2�Þ7=8 model is
written as

L ¼ 21a

ðR� 2�Þð1=8Þ _a2 � 21

32

a2

ðR� 2�Þð9=8Þ _a _R

� 1

8
a3

ðR� 16�Þ
ðR� 2�Þð1=8Þ : (41)

We introduce the new coordinates ðu; vÞ by means of the
transformations:

a ¼
�
21

8

��ð1=3Þ ffiffiffi
x

p
; R ¼ 2�þ x4

y8
; ðx; yÞ � ð0; 0Þ

and

x ¼ 1ffiffiffi
2

p uv; y ¼ 1ffiffiffi
2

p u

v
:

In the coordinates ðu; vÞ the Lagrangian is

L ¼ 1

2
_u2 � 1

2

u2

v2
_v2 þ V0

m

8
u2 þ 2V0

v12

u2
; (42)

where �m ¼ �14�, V0 ¼ � 1
21 , and the Hamiltonian

E ¼ 1

2
_u2 � 1

2

u2

v2
_v2 � V0

m

8
u2 � 2V0

v12

u2
: (43)

The Euler-Lagrange equations provide the following equa-
tions of motion:

€uþ u

v2
_v2 � V0m

4
uþ 4V0

v12

u3
¼ 0 (44)

€vþ 2

u
_u _v� 1

v
_v2 þ 24V0

v13

u4
¼ 0: (45)

The Noether symmetries (23) become

X0
L3

¼
�
c1
�
e2�t � c2

�
e�2�t

�
@t þ ðc1e2�t þ c2e

�2�tÞu@u;
(46)

where � ¼ 1
2

ffiffiffiffiffiffiffiffiffiffi
�mV0

p ¼ 1
2

ffiffiffiffiffiffiffi
2
3�

q
. The corresponding Noether

integrals are

Iþ ¼ 1

�
e2�tE� e2�tu _uþ �e2�tu2 (47)

I� ¼ 1

�
e�2�tEþ e�2�tu _uþ �e�2�tu2: (48)
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Following [53] we construct the following time indepen-
dent integral using a combination of the first integrals (43),
(47), and (48):

� ¼ u4

v2
_v2 þ 4V0v

12: (49)

The first integral� is called the Ermakov-Lewis invariant.5

Using the Ermakov-Lewis invariant, the Hamiltonian (43)
and Eq. (44) are written:

1

2
_u2 � V0

m

8
u2 � 1

2

�

u2
¼ E (50)

€u� V0m

4
uþ �

u3
¼ 0: (51)

The solution of (51) has been given by Pinney [64] and it is
the following:

uðtÞ ¼ ðu1e2�t þ u2e
�2�t þ 2u3Þ1=2; (52)

where u1�3 are constants such as

� ¼ 4�2ðu23 � u1u2Þ: (53)

From the Hamiltonian constraint (50) and the Noether
integrals (47) and (48) we find

E ¼ �2�u3; Iþ ¼ 2�u2; I� ¼ 2�u1:

Replacing (52) in the Ermakov-Lewis invariant (49) and
assuming � � 0 we find

vðtÞ ¼ 21=6�1=12e�AðtÞð4V0 þ e�12AðtÞÞ�1=6; (54)

where

AðtÞ ¼ arctan

�
2�ffiffiffiffi
�

p ðu1e2�t þ u3Þ
�
þ 4�2u1

ffiffiffiffi
�

p
: (55)

Then the solution is

xðtÞ ¼ 2�1=3�1=12e�AðtÞð4V0 þ e�12AðtÞÞ�1=6

� ðu1e2�t þ u2e
�2�t þ 2u3Þ1=2; (56)

where from the singularity condition xð0Þ ¼ 0 we have the
constraint u1 þ u2 þ 2u3 ¼ 0, or

2E� ðIþ þ I�Þ ¼ 0: (57)

At late enough time we find AðtÞ ’ A0, which implies
a2ðtÞ / xðtÞ / e�t.

In the case where � ¼ 0 equations (50) and (51) de-
scribe the hyperbolic oscillator and the solution is

uðtÞ ¼ sinh�t; 2E ¼ �2: (58)

From the Ermakov-Lewis invariant we have

vðtÞ ¼
�

� sinh�t

�v1 sinh�t� 12
ffiffiffiffiffiffiffiffiffijV0j

p
e�2�t

�
1=6

; (59)

where v1 is a constant. In this case the solution is

xðtÞ ¼ 1ffiffiffi
2

p
�

�sinh7�t

�v1 sinh�t� 12
ffiffiffiffiffiffiffiffiffijV0j

p
e�2�t

�
1=6

: (60)

At late times the scale factor varies a2ðtÞ / xðtÞ / e�t.

V. CONCLUSIONS

In the literature the functional forms of fðRÞ of the
modified fðRÞ gravity models are mainly defined on a
phenomenological basis. In this article we use the
Noether symmetry approach to constrain these models
with the aim to utilize the existence of nontrivial Noether
symmetries as a selection criterion that can distinguish the
fðRÞ models on a more fundamental (e.g., geometrical)
level. Furthermore, the resulting Noether integrals can be
used to provide analytical solutions.
In Basilakos et al. [47], we have utilized the Noether

symmetry approach to study the dark energy (quintessence
or phantom) models within the context of scalar field
FLRW cosmology. Overall the combination of the work
of Basilakos et al. [47] with the current article provides a
complete investigation of the Noether symmetry approach
in cosmological studies. From both works it becomes clear
that the Noether symmetry approach could provide an
efficient way to discriminate either the geometrical (modi-
fied gravity) dark energy models or the dark energy models
that adhere to general relativity. This is possible via the
geometrical symmetries of the FLRW space-time in which
both GR gravity and modified gravity (or scalar field) live.
In the context of fðRÞ models, following the general

methodology of [48] (see also the references therein), the
Noether symmetries are computed for six modified gravity
models that contain also a dark matter component. The
main results of the current paper can be summarized in the
following statements (see Secs. III and IV):
(i) We verified that all the fðRÞ models studied here

admit the trivial first integral, namely energy con-
servation, as they should.

(ii) Among the six modified gravity models only the
fðRÞ ¼ ðRb � 2�Þc �bcCDM model with ðb; cÞ ¼
ð1; 32Þ provides a cosmic history which is similar to

those of the usual dark energy models [see condi-
tions (i)–(iv) in Sec. II A] and at the same time it
admits extra integrals of motion. In general, we
propose that the fðRÞ models that simultaneously
obey the conditions (i)–(iv), fit the cosmological
data, and admit extra Noether symmetries (integral
of motions) should be preferred along the hierarchy
of modified gravity models. Of course, one has

to test the fðRÞ ¼ ðR� 2�Þ3=2 model against the

5An alternative way to compute the Ermakov-Lewis invariant
is with the use of dynamical Noether symmetries [49]. The
corresponding dynamical Noether symmetry is XD ¼ u2 _v@v.
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cosmological data (SNIa, BAOs, and CMB shift
parameter). Such an analysis is in progress and
will be published elsewhere. Therefore the
�bcCDM modified gravity model appears to be a
promising candidate for describing the physical
properties of ’’geometrical’’ dark energy. We argue
that, although the �bcCDM model [61] was phe-
nomenologically selected in order to extend the
concordance � cosmology, it appears from the cur-
rent analysis that it has a strong geometrical basis.

(iii) Section IV provides for a first time (to our knowl-
edge) analytical solutions in the light of the
�bcCDM model that include also a nonrelativistic
matter (cold dark matter) component.
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APPENDIX A: ADDITIONAL fðRÞ MODELS
WHICH ADMIT EXTRA LIE/NOETHER

POINT SYMMETRIES

From the mathematical point of view and for the com-
pleteness of the present study, we would like to give the
form of all fðRÞ functions which admit extra Lie/Noether
point symmetries but do not pass the conditions (i)–(iv).

(i) If fðRÞ is arbitrary we have the Lie point symmetries

XL1;2
¼ l1@t þ l2a@a

and the sole Noether point symmetry @t with Noether
integral (constant of motion) the Hamiltonian E.

(ii) If fðRÞ ’ R3=2 the dynamical system admits the
extra Lie point symmetries

XL3
¼ 1

a
@a � 2R

a2
@R;

XL4
¼ t

�
1

a
@a � 2R

a2
@R

�
;

XL5
¼ t@t � 2R@a

and the extra Noether point symmetries

XN2
¼ 1

a
@a � 2R

a2
@R;

XN3
¼ t

1

a
@a � t

2R

a2
@R;

XN4
¼ 2t@t þ 4

3
a@a � 4R@R;

with corresponding Noether integrals

I2 ¼ d

dt
ða ffiffiffiffi

R
p Þ;

I3 ¼ t
d

dt
ða ffiffiffiffi

R
p Þ � a

ffiffiffiffi
R

p
;

I4 ¼ 2tE� 6a2 _a
ffiffiffiffi
R

p �6
a3ffiffiffiffi
R

p _R:

(iii) If fðRÞ ’ R7=8 the dynamical system admits the
extra Lie point symmetries

XL6
¼ 2t@t � 4R@R;

XL7
¼ t2@t þ t

�
a

2
@a � 4R@R

�

and the extra Noether point symmetries

XN5
¼ 2t@t þ a

2
@a � 4R@R;

XN6
¼ t2@t þ t

�
a

2
@a � 4R@R

�

with corresponding Noether integrals

I5 ¼ 2tE� 21

8

d

dt
ða3R�ð1=8ÞÞ

I6 ¼ t2E� 21

8
t
d

dt
ða3R�ð1=8ÞÞ þ 21

8
a3R�ð1=8Þ:

(iv) If fðRÞ ’ Rn (with n � 3
2 ;

7
8 ) the dynamical system

admits the extra Lie point symmetry

XL8
¼ � 1

2ðn� 1Þ t@t þ
1

n� 1
R@R

and the extra Noether point symmetry

XN7
¼ 2t@t þ ð23að2n� 1Þ@a � 4R@RÞ

with Noether integral

I7 ¼ 2tE� 8na2Rn�1 _að2� nÞ
� 4na3Rn�2 _Rð2n� 1Þðn� 1Þ:

Finally with the above analysis we would like to give the
reader the opportunity to appreciate the fact that the Lie/
Noether point symmetries provided in the current appendix
can be seen as an extension of those found by Vakili [45].

APPENDIX B: NOETHER SYMMETRIES IN
SPATIALLY NONFLAT fðRÞ MODELS

In this Appendix we study further the Noether symme-
tries in nonflat fðRÞ cosmological models. Briefly, in the
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context of a FRLW space-time the Lagrangian of the over-
all dynamical problem and the Ricci scalar are

L ¼ 6f0a _a2 þ 6f00 _Ra2 _aþ a3ðf0R� fÞ � 6Kaf0

R ¼ 6

�
€a

a
þ _a2 þ K

a2

�
;

where K is the spatial curvature. Note that the two-
dimensional metric is given by Eq. (20) while the ’’poten-
tial’’ in the Lagrangian takes the form Vða; RÞ ¼
�a3ðf0R� fÞ þ Kaf0. Based on the above equations
and using the theoretical formulation presented in
Sec. III, we find that the fðRÞ models which admit non-

trivial Noether symmetries are: fðRÞ ¼ ðR� 2�Þ3=2,
fðRÞ ¼ R3=2, and fðRÞ ¼ R2. Notice that the fðRÞ ¼
ðR� 2�Þ7=8 does not accept an analytical solution.

In particular, inserting fðRÞ ¼ ðR� 2�Þ3=2 into the
Lagrangian and changing the variables from ða; RÞ to
ðx; yÞ [see Sec. IVA], we find

L ¼ _x _yþV0ðy3 þ �mxyÞ � �Ky (B1)

E ¼ _x _y�V0ðy3 þ �mxyÞ þ �Ky; (B2)

where �K ¼ 3ð61=3KÞ. Therefore, the equations of motion
are

€x� 3V0y
2 � �mV0xþ �K ¼ 0 €y� �mV0y ¼ 0:

The constant term �K appearing into the first equation of
motion is not expected to affect the Noether symmetries (or
the integrals of motion). Indeed we find that the corre-
sponding Noether symmetries coincide with those of the

spatially flat fðRÞ ¼ ðR� 2�Þ3=2 model [see Eqs. (22) and
(30)–(32)]. However, in the case of K � 0 (or �K � 0) the

analytical solution for the x variable is written as xKðtÞ �
xðtÞ þ �K

!2 , where xðtÞ is the solution of the flat model

K ¼ 0 (see Sec. IVA). Note that the solution of the y
variable remains unaltered [see Sec. IVA or Eq. (C4)].
As expected, in the spatially flat regime K ¼ 0, the current
equations reduce those equations of Sec. IVA.

Similarly, in the case of fðRÞ ¼ R3=2 and fðRÞ ¼ R2 the
Noether symmetries can be found in Appendix A. Of
course, we again confirm that all the proposed modified
gravity models with K � 0 accommodate the trivial first
integral @tE ¼ 0 (energy conservation).

APPENDIX C: TESTING THE ANALYTICAL
SOLUTIONS

In this Appendix we would like to test the validity of our

analytical solutions in the case of the fðRÞ ¼ ðR� 2�Þ3=2
model. Below we investigate the behavior of the Hubble
parameter in the matter dominated era. First of all inserting
�m ¼ �m0a

�3 [see our Eq. (18)] into the modified
Friedmann equation [see Eq. (6)], we get

H2 ¼ k2
�m0a

�3

3f0
þ f0R� f

6f0
�Hf00 _R

f0
: (C1)

Obviously, in order to reveal the evolution of the Hubble
parameter in the matter era, in which the evolution of the
matter density dominates the global dynamics, we have to
understand the evolution of the first and the third term in

Eq. (C1). Using R ¼ 2�þ y2

x (see the transformations in

Sec. IVA) we have, after some simple algebra, that

k2
�m0a

�3

3f0
¼ 2k2

�m0a
�3

9ðR� 2�Þ1=2 ¼
2k2

9
�m0a

�3

�
x

y2

�
1=2

(C2)

f00 _R
f0

¼ _R

2ðR� 2�Þ ¼
dðy2=xÞ=dt
2ðy2=xÞ : (C3)

For the benefit of the reader we repeat here the general
solution of the system:

yðtÞ ¼ I2
2!

e!t � I1
2!

e�!t (C4)

xðtÞ ¼ x1Ge
!t þ x2Ge

�!t þþ 1

4 �m!2
ðI2e!t þ I1e

�!tÞ2

þ I1I2
�m!2

; (C5)

where I1;2 � 0 are the Noether integrals.

Inserting the general solution into Eqs. (C2) and (C3)
and using at the same time that e�!t � 0, we find

k2
�m0a

�3

3f0
¼ 2k2

9
�m0a

�3

�
x

y2

�
1=2 ! 2k2 �m

9
�m0a

�3

f00 _R
f0

¼ dðy2=xÞ=dt
2ðy2=xÞ � e�!t 	 1:

Obviously, inserting the above results into the modified
Friedmann equation (C1), one can easily show that in the
matter dominated era the evolution of the Hubble parame-

ter tends to its nominal form, namely, HðaÞ ! a�3=2.

CONSTRAINTS AND ANALYTICAL SOLUTIONS OF . . . PHYSICAL REVIEW D 84, 123514 (2011)

123514-9



[1] M. Tegmark et al., Astrophys. J. 606, 702
(2004).

[2] D. N. Spergel et al., Astrophys. J. Suppl. Ser. 170, 377
(2007).

[3] T.M. Davis et al., Astrophys. J. 666, 716 (2007).
[4] M. Kowalski et al., Astrophys. J. 686, 749 (2008).
[5] M. Hicken et al., Astrophys. J. 700, 1097 (2009).
[6] E. Komatsu et al., Astrophys. J. Suppl. Ser. 180, 330

(2009); G. Hinshaw et al., Astrophys. J. Suppl. Ser. 180,
225 (2009); E. Komatsu et al., Astrophys. J. Suppl. Ser.
192, 18 (2011).

[7] J. A. S. Lima and J. S. Alcaniz, Mon. Not. R. Astron. Soc.
317, 893 (2000); J. F. Jesus and J. V. Cunha, Astrophys. J.
Lett. 690, L85 (2009).

[8] S. Basilakos and M. Plionis, Astrophys. J. Lett. 714, L185
(2010).

[9] S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
[10] P. J. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559

(2003).
[11] T. Padmanabhan, Phys. Rep. 380, 235 (2003).
[12] P. J. Steinhardt, in Critical Problems in Physics, edited by

V. L. Fitch, D. R. Marlow, and M.A. E. Dementi
(Princeton University Press, Princeton, 1997); Phil.
Trans. R. Soc. A 361, 2497 (2003).

[13] E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod.
Phys. D 15, 1753 (2006); L. Amendola and S. Tsujikawa,
Dark Energy Theory and Observations (Cambridge
University Press, Cambridge, UK, 2010); R. R. Caldwell
and M. Kamionkowski, Annu. Rev. Nucl. Part. Sci. 59,
397 (2009); I. Sawicki and W. Hu, Phys. Rev. D 75,
127502 (2007).

[14] B. Ratra and P. J. E. Peebles, Phys. Rev. D 37, 3406
(1988).

[15] M. Ozer and O. Taha, Nucl. Phys. B287, 776 (1987).
[16] W. Chen and Y-S. Wu, Phys. Rev. D 41, 695 (1990); J. C.

Carvalho, J. A. S. Lima, and I. Waga, Phys. Rev. D 46,
2404 (1992); J. A. S. Lima and J.M. F. Maia, Phys. Rev. D
49, 5597 (1994); J. A. S. Lima, Phys. Rev. D 54, 2571
(1996); A. I. Arbab and A.M.M. Abdel-Rahman, Phys.
Rev. D 50, 7725 (1994); J.M. Overduin and F. I.
Cooperstock, Phys. Rev. D 58, 043506 (1998).

[17] S. Basilakos, M. Plionis, and S. Solà, Phys. Rev. D 80,
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