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We study an inflationary model driven by a single minimally coupled standard kinetic term scalar field

with a step in its mass modeled by an Heaviside step function. We present an analytical approximation for

the mode function of the curvature perturbation, obtain the power spectrum analytically and compare it

with the numerical result. We show that, after the scale set by the step, the spectrum contains damped

oscillations that are well described by our analytical approximation. We also compute the dominant

contribution to the bispectrum in the equilateral and the squeezed limits and find new shapes. In the

equilateral and squeezed limits the bispectrum oscillates and it has a linear growth envelope towards

smaller scales. The bispectrum size can be large depending on the model parameters.
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I. INTRODUCTION

The inflationary paradigm [1–6] solves successfully the
problems of the big bang model and also provides us with a
mechanism to generate the primordial perturbations from
quantum fluctuations that are later imprinted as anisotro-
pies in the cosmic microwave background (CMB) radiation
and in the large-scale structure of the universe. In particu-
lar, regarding the CMB power spectrum, we now know that
it is nearly scale invariant [7], mostly of adiabatic origin
and it contains almost all the information about the pri-
mordial perturbations (i.e. the perturbations are nearly
Gaussian). This is in agreement with the predictions of
many models of inflation.

However, a small amount of non-Gaussianity is still
allowed by the CMB data and recently there have been
several claims of detection of non-Gaussianity of the pri-
mordial perturbations [8–11]. If the values of the non-
Gaussianity parameters are of the order of magnitude
claimed then ESA’s satellite, Planck [12], which is already
up in the sky taking data, should be able to measure these
values at many standard deviations [13]. These are exciting
times for theoretical cosmologists that for the past ten years
or so have been trying to construct models where large
non-Gaussianity is produced.

It is well known that the simplest and most popular
inflationary model, a single scalar field with standard
kinetic term satisfying the slow-roll conditions and with
standard initial conditions for the vacuum state of the
quantum perturbation predicts a level of non-Gaussianity

that is small and unobservable [14–19], even for the Planck
satellite [20–22]. Therefore, the previously mentioned ob-
servations have the potential if confirmed to rule out a large
and most popular class of models. It is good on itself to rule
out many models in one go and even better that a detection
of non-Gaussianity (the same applies to the tensor-to-
scalar ratio) would allows us to progress significantly in
our understanding of the mechanism that drove inflation in
the early universe, this is because higher-order statistics
contain much more information about the dynamics that
the power spectrum.
Our searches for inflationary models producing large

observable non-Gaussianity have been fruitful. Many pos-
sibilities have been found, for example, models with non-
canonical kinetic terms (like Dirac-Born-Infeld inflation, k
inflation, ghost inflation) [23–34], multiple field models of
inflation [35–66], temporary violations of the slow-roll
conditions and small departures of the initial vacuum state
from the standard Bunch-Davies vacuum [67–75]. For
recent reviews about these mechanisms to produce non-
Gaussian perturbations see [76–80].
Both at the bispectrum level (three-point correlation

function) and the trispectrum level (four-point correlation
function) many observationally distinct shapes of these
higher-order correlations have been found [81–85]. Some
of these shapes of non-Gaussianity have been constrained
with CMB data [7,86] and large-scale structure data
[21,22,87–89]. Current limits on the amplitude of the
bispectrum, taken from the 7-year WMAP [90] data at

95% confidence level are [7]: �10< flocalNL < 74, �214<

fequilNL < 266 and �410< forthoNL < 6 for the local, equilat-

eral and orthogonal shapes, respectively. Reference [86]
has a more recent analysis of the CMB bispectrum (see
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[91] for the trispectrum analysis) including many other
shapes. Planck satellite will improve all these constraints
significantly and will also improve existing constraints on
the amplitude of the trispectrum. For some review papers
on observational aspects of non-Gaussianity see for in-
stance [92–96].

In this paper, in order to produce large and observable
non-Gaussianity, we shall study a model where the slow-
roll conditions are temporarily violated. This model can
be included in the class of models with ‘‘features’’ (i.e.
nonscale invariant models) in the potential or more gen-
erally in the field’s Lagrangian [97–103]. There are sev-
eral other reasons that motivate the study of ‘‘feature(s)’’
models. For instance, it has been shown that these models
can provide better fits to the power spectrum of the CMB
anisotropies than the �CDM model [104–108]. In these
models, this is achieved thanks to the introduction of new
parameters (and scales) that can be tuned to coincide with
well known ‘‘glitches’’ ‘� 20–40 in the CMB spectrum
data. These models are also of theoretical interest because
they have very distinct bispectrum signatures like scale-
dependence (e.g. ‘‘ringing’’ and localization of fNL). The
features often have a more fundamental physical expla-
nation, like, for example, they might be localized sharp
features due to particle production during inflation
[109–112], due to a duality cascade in brane inflation
[113], periodic features due to the production of instan-
tons in axion monodromy inflation [114–116] or phase
transitions [117]. The study of these more realistic sce-
narios might eventually allows us to identify the under-
lying microscopic theory of inflation.

In particular, in this paper we will study a model where
the mass of the inflaton field suddenly changes. We will
describe this using a toy model where the change is ap-
proximated by a Heaviside step function. For example, this
might be a toy model for a first order phase transition. We
will compute the power spectrum and the bispectrum of the
curvature perturbation and show that its amplitude can be
large and that its shape is new with very distinctive
features.

This paper is divided into the following sections. In
Sec. II, we introduce the model and give the analytical
background solution under some approximations. In
Sec. III we discuss linear perturbations, present an analyti-
cal approximation for the mode function of the primordial
curvature perturbation and finally calculate the analytical
power spectrum and compare it with the numerical result.
In Sec. IV, we compute the dominant contribution to the
bispectrum of the curvature perturbation in two interesting
limits, namely, the equilateral limit and the squeezed limit.
Sec. V is devoted to the conclusion.

II. THE MODEL

We will consider a canonical minimally coupled single
scalar field model with the potential given by

Vð�Þ ¼
8<
:V0 þ 1

2m
2
��

2 : �>�0

V0a þ 1
2m

2
�ð1þ AÞ�2 : �<�0

(1)

where � is the scalar field,m� its mass, V0 and V0a are the

vacuum energies before and after the transition field value
�0 respectively. A is a constant amplitude and a parame-
ter of the model. We restrict the allowed range of A as
A >�1. Requiring continuity of the potential across �0

implies V0a ¼ V0 � 1=2m2
�A�

2
0, where �0 ¼ �ðt0Þ and

t0 is the transition time. We will assume that this change
in vacuum energy is small and we shall neglect it. In the
next section, we will consider perturbations. We will
perform the calculation in the comoving gauge therefore
the background value of �, i.e. �0, fully determines when
the transition happen even in the perturbed spacetime.
We are interested in flat, homogeneous, and isotropic

Friedmann-Lemaı̂tre-Robertson-Walker background uni-
verses described by the line element

ds2 ¼ �dt2 þ a2ðtÞ�ijdx
idxj; (2)

where aðtÞ is the scale factor. The Friedmann equation
reads

H2 ¼ 1

3M2
Pl

�
1

2
_�2 þ Vð�Þ

�
; (3)

where the Hubble rate is H ¼ _a=a, dot denotes derivative
with respect to cosmic time t and MPl denotes the reduced
Planck mass. We will assume that Vð�Þ is dominated by
the vacuum energy V0, therefore the previous equation
simplifies to

H2 � V0

3M2
Pl

: (4)

The equation of motion for the scalar field reads

€�ðtÞ þ 3H _�ðtÞ þm2
��ðtÞ½1þ A�ð�0 ��Þ� ¼ 0; (5)

where �ð�Þ denotes the Heaviside step function.
The slow-roll parameters are defined as

� ¼ � _H

H2
¼

_�2

2H2M2
Pl

; � ¼ _�

�H
¼ 2

� €�
_�H

þ �

�
: (6)

With the assumption of a vacuum dominated inflationary
model, the solution of Eq. (5) before t0 is

�bðtÞ ¼ �0bU
þ
b ðtÞ þ ~�0bU

�
b ðtÞ; (7)

where �0b and ~�0b are the initial conditions, which we

choose such that ~�0b is equal to zero. U
�
b ðtÞ are defined as

U�
b ðtÞ ¼ e�

�
b
Ht; (8)

with ��
b defined as
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��
b ¼ � 3

2

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

9
�2

s 1
A; (9)

where �2 is �2 ¼ m2
�

H2 . If �
2 is small then �þ

b � � �2

3 and

��
b � �3ð1� �2

9 Þ. After t0 the solution of Eq. (5) is

�aðtÞ ¼ �0aU
þ
a ðtÞ þ ~�0aU

�
a ðtÞ; (10)

where �0a and ~�0a are integration constants and the func-
tions U�

a ðtÞ are defined as

U�
a ðtÞ ¼ e�

�
a Ht; (11)

with ��
a defined as

��
a ¼ � 3

2

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

9
�2

a

s 1
A; (12)

where �2
a is �2

a ¼ �2ð1þ AÞ. UþðtÞ describes the slow-
roll solution while U�ðtÞ the rapidly decaying solution.

Imposing the continuity of� and _� across t0 determines

the integration constants �0a and ~�0a as

�0a ¼ �0b

��
a � �þ

b

��
a � �þ

a

eHt0ð�þ
b
��þ

a Þ;

~�0a ¼ �0b

�þ
b � �þ

a

��
a � �þ

a

eHt0ð�þ
b
���

a Þ:
(13)

In the plots of the following sections, we will make the
following choice for the parameters of the model

m� ¼ 6� 10�9MPl;

H ¼ 2� 10�7MPl;

�0b ¼ 10MPl:

(14)

We should note that the use of trans-Planckian field values
might not be well justified in the context of the effective
field theory, where higher dimensional operators are ex-
pected to destroy the flatness of the potential. However see
the notable exception [118,119] where a model which
directly realizes sharp transitions and that is fully natural
was presented.

In Fig. 1, we plot we slow-roll parameters �, � and _�
H

for an amplitude of the transition of A ¼ 2. We chose
t0 ¼ �1=H lnH (which corresponds to conformal time
�0 ¼ �1). One can see that for our choice of parameters

� is always small, while � and _�
H become large for some

time after the transition time t0. During this time the
slow-roll expansion breaks down and this will introduce
some scale-dependence in the power spectrum and pro-
duce non-Gaussian perturbations as we shall see in the
next two sections.

III. PERTURBATIONS

In this section, we will discuss linear perturbations of the
previous background. We shall present an analytical ap-
proximation to the mode function that will allows to obtain
an analytical and accurate approximation to the power
spectrum on scales sufficiently different from the scale k0
set by the transition. Finally we integrate numerically the
equation of motion of the curvature perturbation and obtain
the power spectrum which we then compare with the
analytical approximation.
On the comoving time-slices, the scalar field fluctuations

vanish, �� ¼ 0, and the three-dimensional spatial metric
hij is perturbed as [14]

hij ¼ a2e2R�ij; (15)

where tensor perturbations have been neglected because
they do not contribute for the tree-level scalar bispectrum

FIG. 1 (color online). Plots of � (left), � (center) and 1
H

d�
dt (right) for A ¼ 2. The heights of the peaks in the central and right plots are

approximately 6A and �18Að1þ AÞ, respectively. While � remains always small, both � and 1
H

d�
dt become large after the transition

and will source a large bispectrum.
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and R denotes the curvature perturbation on comoving
slices.

The linear equation of motion for R is

@

@t

�
a3�

@

@t
R
�
� a��ij @2

@xi@xj
R ¼ 0: (16)

In Fourier space and using the variable z ¼ a
ffiffiffiffiffiffi
2�

p
the

previous equation can be written as

R 00
k þ 2

z0

z
R0

k þ k2Rk ¼ 0; (17)

where prime denotes derivative with respect to conformal
time � and k denotes the comoving wave number.

Because we assume the potential is vacuum energy
dominated, H is constant and the scale factor may be
approximated by that of a pure de Sitter universe a ¼
�1=ðH�Þ and �Ht ¼ lnð�H�Þ. We choose aðt ¼ 0Þ ¼ 1.
The inflaton perturbation on flat hypersurfaces �� is
related to R at first order as

�� ¼ �
_�

H
R: (18)

The equation of motion for the field perturbation can be
written as

u00 þ
�
k2 � z00

z

�
u ¼ 0; (19)

where the variable u is defined as u � a�� ¼
�signð _�ÞMPlzR. At the time of the transition � ¼ �0 (or
t ¼ t0), Eq. (5) implies that �00 is discontinuous which in
turn implies that z00 contains a Dirac delta function. Using
Eq. (19) one can immediately see that also u00 contains a
Dirac delta function and u0 is discontinuous at � ¼ �0. One
can evaluate this discontinuity as

D0 ¼ lim
	!0

Z �0þ	

�0�	

z00

z
d� ¼ lim

	!0

Z �0þ	

�0�	

�000

�0 d�

¼ �m2
�Aa

2ð�0Þ �ð�0Þ
�0ð�0Þ ¼ ��2

�þ
b

Ak0; (20)

where k0 is the transition scale given by k0 ¼ �1=�0. Thus
the matching conditions for u at the point � ¼ �0 are given
by

uð�þ0 Þ ¼ uð��0 Þ; u0ð�þ0 Þ ¼ u0ð��0 Þ þD0uð��0 Þ; (21)

where the superscripts � and þ mean the left-hand side
and right-hand side limits at the point �0 respectively. In
terms of the comoving curvature perturbation R, these
matching conditions imply the continuity of both R and
R0 at � ¼ �0. This is obviously consistent with the equa-
tion of motion for R, Eq. (17), in which there is no Dirac
delta function. In the next section, it is this last Eq. (17) that
we will integrate numerically to find the solution for the
mode functions. Regarding the initial conditions we will
assume the standard Bunch-Davies vacuum for �� at

� ! �1. At sufficiently early times, � ! �1, the
mode functions are well approximated by

ub ¼ v � e�ik�ffiffiffiffiffi
2k

p
�
1� i

k�

�
; (22)

where we denote the mode function at � < �0 by ub. In
our numerical analysis, we will use this previous equation
to set the initial conditions at the initial integration time �i
for each mode u when it is inside the horizon and for
� < �0. Then we change variables to R and integrate
numerically Eq. (17).
For long wavelength modes compared with k0, i.e.

k < k0, the transition in the mass happens when the modes
are outside the horizon and Eq. (22) is a good approxi-
mation until the modes cross the horizon. So we will use it
to set the initial conditions at some time before horizon
crossing and then solve Eq. (16) numerically. On the other
hand, for modes with wave number greater than k0, the
sudden change in the mass happens before horizon cross-
ing and we will set the initial conditions using Eq. (22) at
the time � ¼ �i < �0 when it is still a good approximation
for the mode function.
To quantize the curvature perturbation, we follow the

standard procedure in quantum field theory. We promote
R to an operator that is expanded in terms of creation and
annihilation operators and mode functions as

R̂ð�;kÞ ¼ Rð�;kÞaðkÞ þR	ð�;�kÞayð�kÞ; (23)

where a and ay satisfy the usual commutation relation

½aðkÞ; ayðk0Þ� ¼ ð2
Þ3�ð3Þðk� k0Þ.
The power spectrum of the curvature perturbation is

given by

2
P1=2
R ðkÞ ¼

ffiffiffiffiffiffiffiffi
2k3

p
jRkðtfÞj; (24)

where tf is the time at which inflation ends. PRðkÞ
has been measured observationally to be PRðk0Þ ¼
2:95� 10�9Aðk0Þ, where Aðk0Þ is Aðk0Þ � 0:71–0:75 and
k0 ¼ 0:002 Mpc�1 [120].

A. Analytical approximation to the mode function

In this subsection, we will present an analytical approxi-
mation to the mode function. This approximation has been
discussed in previous work, see for example [97,110].
For modes with k < k0, the transition happens when the

modes are outside the horizon and the only possible time
variation of R is through the discontinuity of z0=z present
in Eq. (17), however z0=z ¼ a _z=z which means that it
grows exponentially with time and so the effect of the
discontinuity become more and more irrelevant. In fact,
Ref. [121] has shown that the only expected modification
with respect to the usual result is for scales around k ¼ k0.
Therefore, for k < k0 and for � < �k, where �k is the
horizon crossing time for that mode, we will approximate
the mode function by Eq. (22).
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For modes with wave number k > k0, Eq. (22) is still a
good approximation for � < �0 and we shall use this fact.
For some time after the transition, the slow-roll expansion
breaks down and one can not use the slow-rolling solution
for the background, however for sufficiently large k, the
mode is well inside the horizon at the time of the transition
and this small violation of slow-roll becomes negligible
because the mode equation (19) is dominated by the term
proportional to k2 and the slow-roll violating term z00=z can
be safely neglected. Hence, Eq. (22) is still a good approxi-
mation even for � > �0, including the short non-slow-roll
period after the transition. However, the solution for the
mode function ua after � ¼ �0 is no longer given by just
the positive frequency mode function v, instead it will be a
mixture of positive and negative frequency modes as

ua ¼ �kvþ �kv
	; (25)

where the Bogoliubov coefficients �k and �k can be ex-
pressed in terms of v, v	 and the outgoing mode function
ua as

�k ¼ �iðv	0ua � v	u0aÞ; �k ¼ iðv0ua � vu0aÞ; (26)

and they satisfy j�kj2 � j�kj2 ¼ 1. The matching condi-
tions (21) imply

uað�þ0 Þ ¼ v0; u0að�þ0 Þ ¼ v0
0 þD0v0; (27)

where v0 ¼ vð�0Þ and together with Eqs. (26) applied at
the time � ¼ �þ0 they can be used to find the Bogoliubov

coefficients as

�k ¼ 1þ ifD0v0v
	
0 ¼ 1þ if

D0

2k

�
1þ 1

ðk�0Þ2
�
;

�k ¼ �ifD0v
2
0 ¼ �if

D0

2k

�
1� i

k�0

�
2
e�2ik�0 ;

(28)

where we introduced the parameter f that will be useful
later and which will be set identical to one in the rest of this
section. If f ¼ 0 this is equivalent to set the Bogoliubov
coefficients to their expected behavior in the infinite fre-
quency limit.
In terms of the original variable, the comoving curvature

perturbation, the analytical approximation for the mode
function that we use is

Rð�; kÞ ¼ 1

MPlað�Þ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

vð�;kÞffiffiffiffiffiffiffiffi
2�ð�Þ

p : k 
 k0 and � 
 �k

vð�;kÞffiffiffiffiffiffiffiffiffiffi
2�ð�kÞ

p : k 
 k0 and � > �k

vð�;kÞffiffiffiffiffiffiffiffi
2�ð�Þ

p : k > k0 and � 
 �0

�ðkÞvð�;kÞþ�ðkÞv	ð�;kÞffiffiffiffiffiffiffiffi
2�ð�Þ

p : k > k0 and �0 < � 
 �k

�ðkÞvð�;kÞþ�ðkÞv	ð�;kÞffiffiffiffiffiffiffiffiffiffi
2�ð�kÞ

p : k > k0 and � > �k

(29)

where the difference between the last two branches and
between the second branch and the first and the third
branches is that we fixed the value of the slow-roll parame-
ter � to its horizon crossing value, i.e. when the modes are
superhorizon. We have assumed that signð _�Þ ¼ �1. Note
that Rð�; kÞ is discontinuous on the line k ¼ k0 and for
� > �0. The time derivative is discontinuous on the horizon
crossing line k�k ¼ �1, in particular, the time derivative
is discontinuous at the point ð�0; k0Þ, i.e. R0ð�0; kþ0 Þ �
R0ð�0; k�0 Þ, we choose R0ð�0; k0Þ ¼ R0ð��0 ; kþ0 Þ. Note
that R0ð��0 ; k�0 Þ ¼ R0ð�þ0 ; k�0 Þ. We have solved numeri-
cally the mode function equation of motion (16) an used
the analytical solutions for the background given in Sec. II
and we found that the previous analytical approximation
(29) is a good approximation for the mode functions at any
time � and for scales far from k0 even if the amplitude of
the transition A is of order one. All the following results in
this paper that use the analytical approximation for the
mode function are only to be trusted for scales k suffi-
ciently smaller or larger than k0. As expected this approxi-
mation deteriorates for scales near k0, however for A small,

the violation of slow-roll is also small and the approxima-
tion continues to be a good approximation even for scales
k� k0.

B. The power spectrum of the primordial
curvature perturbation

In this subsection, we shall present the result for the
power spectrum calculated numerically and compare it
with the power spectrum given by the analytical
approximation.
As discussed previously, for modes with wave number k

such that k � k0 there can be no superhorizon evolution of
R and the curvature perturbation power spectrum has to be
given by the standard formula, which in our present case is

P1=2
R ðkÞ ¼ H2

2
j _�ðtkÞj
¼ H

2
j�þ
b j�0b

�
H

k

�
�þ
b � P1=2

< ðkÞ;
(30)

where tk is the horizon crossing time, k ¼ aðtkÞH. This is
the same equation as in the case of no transition. Our
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analytical approximation consists of using this result all the
way down to the scale k0 however for scales near k0 this
might not be a good approximation.

For modes with k > k0, using Eq. (25) in the power
spectrum definition (24) one can find that the spectrum is

P1=2
R ðkÞ ¼ H2

2
j _�ðtkÞj
j�k � �kj; (31)

where the Bogoliubov coefficients are given in Eq. (28). In
the following plots of our analytical approximation we will
use the previous result for scales k � k0 but one should
keep in mind that in principle this is expected to be a good
approximation only for scales k  k0.

For k  k0, one can find a simple expression for the
power spectrum [110]

P1=2
R ðkÞ ¼ H2

2
j _�ðtkÞj
�
1þD0

k

�
sinð2k�0Þ þO

�
1

k�0

��

þ D2
0

2k2

�
1þ cosð2k�0Þ þO

�
1

k�0

���
1=2

: (32)

For later use we define P1=2
> ðkÞ as

P1=2
> ðkÞ � H

2
j�þ
a j�0b

�
H

k

�
�þ
b � P1=2

< ðkÞ
1þ A

: (33)

This is the asymptotic value of the power spectrum for
scales much smaller than the transition scale k0. We should

note that if A is large then the amplitude of the power
spectrum for scales much smaller than k0 is significantly
different from the amplitude for scales much larger than k0.
The ratio of these amplitudes is proportional to 1þ A.
The spectral index is defined as

ns � 1 � d lnPRðkÞ
d lnk

¼ �2�� � � 2

3
�2 þOð�4Þ> 0;

(34)

where in the last equality we particularized the result for
our model and we used the formula for PR given on large
scales Eq. (30). This means that for scales larger than k0 the
spectral index in the present model is positive. For scales
smaller than k0 the power spectrum contains oscillations
which are damped. For k  k0, the spectral index ap-
proaches a constant given by 2=3�2

a. Recent observations
favor a negative spectral index [7], however a scale invari-
ant spectrum is still allowed [122], this constraints the
parameters �2 and �2

a of the model to be much smaller
than 1.
As can be seen from Fig. 2 the analytical approximation

agrees well with the numerical results at large and small
scales compared with k0. As expected, this approximation
loses some accuracy for modes around k0. This is because
these modes leave the horizon around the time of the
transition, for them the effect of the violation of the
slow-roll conditions is non-negligible and the approximate
solution (22) is no longer good.

FIG. 2 (color online). Plots of P1=2
R ðkÞ for A ¼ 0:01 (left) and A ¼ 2 (right). The red dashed line is the numerical result and the

green continuous line is the analytical approximation. It can be seen that the analytical approximation is good for scales different
from k0 and, in particular, it provides a good approximation for the small-scale damped oscillations. On the left-hand side plot and for
k * 10k0 the numerical result deviates from the analytical approximation by at most Oð0:5%Þ, this is due to the numerical error of
our integrator. For large A the amplitude of the power spectrum on small scales is significantly different from the amplitude on large
scales.
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IV. THE BISPECTRUM

In this section, we will present the calculation of the
bispectrum of the primordial curvature perturbation using
the so-called in-in formalism [123,124]. We will use the
analytical approximation of the mode function described in
the previous section and therefore we will be able to obtain
analytical expressions for the leading order bispectrum for
the present model in certain interesting limits.

In order to use the machinery of the in-in formalism to
compute the tree-level three-point correlation function (or
bispectrum) one needs to calculate the cubic-order inter-
action Hamiltonian, see for example [76] for a review
about this procedure.

The third-order action after ignoring many total deriva-
tive terms that appear when one simplifies the action by
using integrations by parts has been know since the seminal
work by Maldacena [14] and can be also found in [26,125],
it reads

S3 ¼ M2
Pl

Z
dtd3x

�
a3�2R _R2 þ a�2Rð@RÞ2

� 2a� _Rð@RÞð@Þ þ a3�

2

d�

dt
R2 _R

þ �

2a
ð@RÞð@Þ@2þ �

4a
ð@2RÞð@Þ2

þ 2

�
�

4
R2 þ ~fðRÞ

�
�L

�R

��������1

�
; (35)

where we should note that no slow-roll approximation has
been made and we define

 ¼ a2�@�2 _R;

�L

�R

��������1
¼ a

�
d@2

dt
þH@2� �@2R

�
; (36)

~fðRÞ¼ 1

H
R _Rþ 1

4a2H2
½�ð@RÞð@RÞ

þ@�2ð@i@jð@iR@jRÞÞ�
þ 1

2a2H
½ð@RÞð@Þ�@�2ð@i@jð@iR@jÞÞ�: (37)

In the previous equations, @�2 denotes the inverse
Laplacian and �L=�Rj1 denotes the variation of the qua-
dratic action with respect to the perturbationR. In order to
proceed, usually one performs a field redefinition to elimi-
nate the terms proportional to the linear equations of
motion. Recently, it was shown [126] that instead of doing
field redefinitions one obtains the same result by working
with the original variable R and without ignoring the
boundary terms that were omitted in Eq. (35). In the
present work we will follow a mixed procedure, i.e. we
will use a field redefinition as

R ! Rn þ ~fðRnÞ (38)

to eliminate the last term of the third-order action (35)
and we will keep the boundary terms as in [126] (see
also [127]).
The previous field redefinition involves terms that con-

tain at least one derivative onR therefore if one chooses to
evaluate them after horizon crossing they should give a
negligible contribution to the bispectrum. This implies that
at such time the bispectra of R and Rn are equal. For this
reason from now on we will drop the subscript n and
identify Rn with R.
In Maldacena’s calculation [14] and in the following

ones [26,125] the first three terms in the second line of
Eq. (35) which are higher-order in the slow-roll expansion
were properly neglected because these authors work at
leading order in slow-roll. In the present case, � is small
but � and �0 may be large, this means that the dominant
contribution to the three-point function comes from the
following terms in the total third-order action:

S3 � M2
Pl

Z
dtd3x

�
a3�

2

d�

dt
R2 _Rþ 2

�

4
R2 �L

�R

��������1

�

þM2
Pl

Z
dtd3x

d

dt

�
��a

2
R2@2

�
; (39)

where the last total time derivative term comes from the
boundary interaction terms recently obtained in [128] (see
also [126]). Instead of using the previous third-order action
we found it is more convenient to do one integration by
parts in time to simplify the action to

S3 � M2
Pl

Z
dtd3x

�
���a3R _R2 � ��

2
aR2@2R

�
: (40)

This form of the action makes it clear that R is constant
outside the horizon to nonlinear order as expected.1

The interaction Hamiltonian in conformal time is

Hintð�Þ ¼ M2
Pl

Z
d3x

�
��aRR02 þ ��

2
aR2@2R

�
: (41)

The tree-level three-point correlation function at the
time �e after horizon exit is

h�jR̂ð�e;k1ÞR̂ð�e;k2ÞR̂ð�e;k3Þj�i
¼ �i

Z �e

�1
d�ah0j½R̂ð�e;k1ÞR̂ð�e;k2Þ

� R̂ð�e;k3Þ; Ĥintð�Þ�j0i; (42)

where j�i and j0i denotes the interacting vacuum and the
free theory vacuum, respectively. [,] denotes the standard

commutator and the interaction Hamiltonian Ĥint is used to
evolve the free theory vacuum to the interaction vacuum at
the time the three-point function is evaluated [14].

1This procedure is equivalent to the usual one used in for
instance Refs. [67,68].
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More explicitly, the bispectrum is

h�jR̂ð0;k1ÞR̂ð0;k2ÞR̂ð0;k3Þj�i
� ð2
Þ3�ð3Þðk1þk2þk3Þ
� 2M2

Pl=
�
Rð0;k1ÞRð0;k2ÞRð0;k3Þ

�
Z 0

�0

d���a2R	ð�;k1Þ� ð2R0	ð�;k2Þ

�R0	ð�;k3Þ� k21R
	ð�;k2ÞR	ð�;k3ÞÞ

�
þ two perms:;

(43)

where we have set �e ¼ 0 and we evaluate the integral from
�0 instead of�1 because for � < �0, slow-roll is valid, the
slow-roll parameters are small and therefore the integral is
small.We expect that the approximation of setting�e ¼ 0 in
the integral is good enough because some time after horizon
crossing the mode function becomes constant and the in-
tegral approximately vanishes. ‘‘two perms.’’ means the
other two permutations of k1, k2 and k3.

In the following calculation of the bispectrum, we will
approximate the exact analytical solutions for the slow-roll
parameters found in Sec. II as

�ð�Þ � �2
0bð�þ

a Þ2
2M2

Pl

að�Þ2�þ
a

�
1� A

1þ A

�
�

�0

�
3
�
2
;

�ð�Þ � �6

1� 1þA
A ð�0� Þ3

;

(44)

which are a good approximation to the exact analytical
expressions for times after �0, as can be seen in Fig. 3.
Following [67], the meaningful quantity to plot to show

the shape of the bispectrum when the three wave numbers
ki, i ¼ 1, 2, 3 have comparable magnitudes is

Gðk1; k2; k3;k	Þ
k1k2k3

¼ 1

�ð3Þðk1 þk2 þk3Þ
ðk1k2k3Þ2

ð2
Þ7P2
Rðk	Þ

� h�jRð�e;k1ÞRð�e;k2ÞRð�e;k3Þj�i;
(45)

where k	 denotes a pivot scale at which the power spectrum
PR is to be evaluated. In the previous equation one should
use the formula for the power spectrum amplitude as given
by Eq. (30) or by Eq. (33) depending on whether one is
interested in large or small scales, respectively. In this way
the oscillations seen in the following plots are truly bis-
pectrum oscillations and are not due to the oscillations
already present in the power spectrum. If this quantity is
at least of order of a few then there is hope that for instance
the Planck satellite will measure it. In the present work,
because the asymptotic amplitudes of the power spectrum
for scales much larger and much smaller than the transition
scale can be very different if A is large, it makes sense to
define two separate functions G< and G> to study the
bispectrum when the three wave numbers have magnitudes
smaller and larger than k0, respectively. The two new
functions are defined as

FIG. 3 (color online). Plots of � (left) and � (right) for A ¼ 2. The blue dashed lines are the plots of the approximated expressions
Eqs. (44). The red continuous lines are the plots of the exact analytical solutions found in Sec. II. The height of the peak in the right-
hand side plot is approximately 6A. While � remains always small, � becomes large after the transition and will source a large
bispectrum. The simple analytical approximation to � becomes poor some time after the transition but from this time � is small
anyway and we expect a very small error to the bispectrum coming from this deviation.
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G<ðk1;k2;k3;k	Þ
k1k2k3

¼ 1

�ð3Þðk1þk2þk3Þ
ðk1k2k3Þ2

ð2
Þ7P2
<ðk	Þ

�h�jRð�e;k1ÞRð�e;k2ÞRð�e;k3Þj�i;
(46)

G>ðk1;k2;k3;k	Þ
k1k2k3

¼ 1

�ð3Þðk1þk2þk3Þ
ðk1k2k3Þ2

ð2
Þ7P2
>ðk	Þ

�h�jRð�e;k1ÞRð�e;k2ÞRð�e;k3Þj�i:
(47)

For comparison the so-called local model of the bispec-
trum is

hRðk1ÞRðk2ÞRðk3Þilocal

¼ ð2
Þ7�ð3Þðk1 þ k2 þ k3Þ 310 fNLP
2
R

P
i
k3i

�ik
3
i

; (48)

where the sign of fNL was chosen to agree with the WMAP
team definition [7] but it has the opposite sign of the
definition present in [14,67] for example. We should stress
that the definition of fNL in the present paper is different
from the definition in [7] but both definitions agree for a
scale invariant power spectrum.

Following the definition of the function FNL, which is
useful to study the squeezed limit of the bispectrum and
was first introduced in Ref. [70], here and for the reason
discussed above, we also define two functions F<

NL and
F>
NL as

F<
NLðk1; k2; k3; k	Þ �

10k1k2k3
3
P

i k
3
i

G<ðk1; k2; k3; k	Þ
k1k2k3

; (49)

F>
NLðk1; k2; k3; k	Þ �

10k1k2k3
3
P

i k
3
i

G>ðk1; k2; k3; k	Þ
k1k2k3

; (50)

which reduce, respectively, to G<ðk1; k2; k3; k	Þ=ðk1k2k3Þ
and G>ðk1; k2; k3; k	Þ=ðk1k2k3Þ in the approximately equi-
lateral case and to fNL for the local model.

A. The squeezed limit

Using the analytical approximations for the mode func-
tion (29) and for the slow-roll parameters (44) one can
calculate the integrals analytically, for scales larger than
k0, or numerically for any scale.

In the squeezed limit for large scales, i.e. k1 � k2,
k3 � k and k � k0, F

<
NL is

F<
NLðk1; k; k; k	Þ � � 1

12

Að8þ 3AÞ
ð1þ AÞ2

�
�þ
a

�þ
b

�
2
�
k

k0

�
2

�
�
aðð�þ

a Þ=ð�þ
b
ÞÞð�0Þa2ð�	Þ

að�k1Þa2ð�kÞ
�
2�þ

b

� � 1

12
Að8þ 3AÞ

�
k

k0

�
2
: (51)

The suppression of FNL by the square of the ratio k=k0
has been previously found using the next-order gradient
expansion method [73] and using the consistency relation
[129]. In this limit and for values of A of order one the
quantity FNL is too small as can be seen in Fig. 4. In this
work, we are interested in the situation where the bispec-
trum becomes large so in the previous result (and in the
following ones in this and next subsections) we dropped
terms of order �. If the contribution present in (51)
becomes of the same order or smaller than this slow-
roll contribution then the result (51) cannot be taken as
a good approximation for the full bispectrum in this limit.
To calculate the bispectrum on small scales we used a

further approximation in the analytical expressions for the
mode function Eq. (29). We fixed the value of �ð�Þ to the
horizon crossing value of that mode �ð�kÞ for any time after
and before horizon crossing. We found for the squeezed
limit on small scales, i.e. k1 � k2, k3 � k and k0 � k1

FIG. 4 (color online). Plots of F<
NLðk0=500; k0=�; k0=�; k0Þ for

A ¼ 2. For the red line, the bispectrum integral in Eq. (43) was
calculated numerically and we used the analytical approximation
for the mode function. The green and black lines are the plots
made using the first and second parts of Eq. (51) respectively. It
can be seen that the lines are practically indistinguishable. For
scales k� k0, i.e. � of order one, our analytical approximation
for the mode functions should break down and the result in this
plot should not be taken seriously.
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F>
NLðk1; k; k; k	Þ �

�
�þ
b

�þ
a

�
4 a4�

þ
b ð�	Þ

a6�
þ
b ð�0Þ

�
a4ð�0Þ

að�k1Þa2ð�kÞ
�
2�þ

a
�
5A

4

��
2kþ k1

k0

k1
k

sin

�
2kþ k1

k0

�

þ ð2� 3fAÞ cos
�
2kþ k1

k0

�
� 3fA cos

��2kþ k1
k0

��

� 5

4

A

ð1þ AÞ4
�
2kþ k1

k0

k1
k

sin

�
2kþ k1

k0

�
þ ð2� 3fAÞ cos

�
2kþ k1

k0

�
� 3fA cos

��2kþ k1
k0

��
; (52)

where the parameter f should be equal to one. If f ¼ 0 this
is equivalent to set the Bogoliubov coefficients to �k ¼ 1,
�k ¼ 0 (the expected behavior in the infinite frequency
limit). We found that the previous additional approxima-
tion of fixing the value of �ð�Þ to the horizon crossing value
of that mode �ð�kÞ for any time after and before horizon
crossing is not a good approximation in the calculation of
the amplitude of the bispectrum, this is because for some
time after the transition the value of �ð�Þ varies signifi-
cantly due to the presence of the background decaying
mode of the scalar field. However, as can be seen in
Figs. 5 and 6 this approximation reproduces the shape
very well. If one allows �ð�Þ to vary, the amplitude turns
out to be larger than in the fixed �ð�Þ case. In the varying
�ð�Þ case, we were unable to calculate the bispectrum
integral analytically so we proceeded numerically in order
to find the amplitude, the result for A ¼ 2 can be found in
Figs. 5 and 6. We were able to find a simple and accurate
fitting formula to the numerical result for the amplitude of
F>
NL on small scales as

F>
NLð50k0; 1000k0; 1000k0; k0Þ

� 9

200Að1þ AÞC1A
C2eC3A; (53)

where the constants are

C1 � 2873:31; C2 � 2:00; C3 � 0:02 or

C1 � 2961:32; C2 ¼ 2; C3 ¼ 0: (54)

In the range of values of A as A ¼ ½0:01; 10�, for the first
and second set of constants the approximation is good to
2% and 15%, respectively. In Fig. 7 we plot the value of
F>
NLð50k0; 1000k0; 1000k0; k0Þ as a function of A using the

numerical result and the above fitting formula (53).
As can be seen in Eq. (52) or in Fig. 5, the envelope of

the sinusoidal grows with k1, this can have important
consequences regarding the magnitude of the non-
Gaussianity of this model and its potential observability

FIG. 5 (color online). Plots of F>
NLð�k0; 1000k0; 1000k0; k0Þ for A ¼ 2. For the red dots, the bispectrum integral in Eq. (43) was

calculated numerically and we used the analytical approximation for the mode function. The black line is the plot made using the last
line of Eq. (52). The blue dashed line is the plot made using only the first term in the last line of Eq. (52). It can be seen that both lines
are almost indistinguishable and are a good approximation for the red points. Both black and blue lines were normalized at the point
� ¼ 50 with the normalization fitting formula Eq. (53) and using the first set of constants of Eq. (54).
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even for A relatively small. This growth might be worri-
some because the bispectrum would increase without
bound for very small scales, however one should note
that at some scale our toy model, i.e. replacing an other-
wise smooth transition by a Heaviside function, ceases to
make sense. This scale gives a natural cutoff below which
the previous result can not be applied. For instance in
Refs. [110,130] it was argued that for the particular model
under consideration there the Heaviside function approxi-
mation was valid for k < 103k0. For scales smaller than
this cutoff and if the width of the transition is taken into
account then the linear growth should stop and the am-
plitude should decay to small values because for these

sufficiently high frequencies the transition becomes an
adiabatic change of the slow-roll parameters and in this
case we expect nearly Gaussian perturbations.
With a simple order of magnitude argument it is possible

to estimate the range of wave numbers �k over which we
expect to have a large deviation from Gaussianity as fol-
lows. If instead of a sharp transition we have a smooth
transition with a width in field space given by �� then for
the vacuum dominated potential Eq. (1) one can find that
the transition happens over a number of e-foldings �N as
�N � ð3��Þ=ð�2�0Þ. Using the fact that �k=k0 �
�0=��� 1=ð�NÞ one estimates that the range of scales
that can be affected by the transition is �k� k0=ð�NÞ �
ð�2�0Þ=ð3��Þk0. One can easily see that for a sharp
Heaviside transition �� ¼ 0 then �k ! 1.

B. The equilateral limit

In the equilateral limit and on large scales, i.e. if k � k0,
we find

G<ðk; k; k; k	Þ
k3

� � 27

160

Að8þ 3AÞ
ð1þ AÞ2

�
�þ
a

�þ
b

�
2
�
k

k0

�
2

�
�
aðð�þ

a Þ=ð�þ
b
ÞÞð�0Þa2ð�	Þ

a3ð�kÞ
�
2�þ

b

� � 27

160
Að8þ 3AÞ

�
k

k0

�
2
; (55)

where to find this result (as in the results of the previous
subsection) we dropped terms of order �. The plot of
G<ðk; k; k; k0Þ=k3 for A ¼ 2 can be seen in Fig. 8. The
amplitude of the graph is too small to be interesting ob-
servationally. This plot highlights the fact that it is very
difficult to generate large non-Gaussianity in single-field
models of inflation when the scales of interest are well
outside the horizon. This is a direct consequence of the
constancy of the curvature perturbation on these scales and
of the fact that at horizon crossing the perturbation was
very Gaussian because the transition had not happened yet.

FIG. 6 (color online). Plots of F>
NLð50k0; �k0; �k0; k0Þ for A ¼ 2. For the red dots, the bispectrum integral in Eq. (43) was calculated

numerically and we used the analytical approximation for the mode function. The black line is the plot made using the last line of
Eq. (52). The blue dashed line is the plot made using only the first term in the last line of Eq. (52). The two lines are almost
indistinguishable in the plot and they are good fits to the red points. Both black and blue lines were normalized at the point � ¼ 1000
with the normalization fitting formula Eq. (53) and using the first set of constants of Eq. (54).

FIG. 7 (color online). Plots of F>
NLð50k0; 1000k0; 1000k0; k0Þ

as a function of A. For the red dots, the bispectrum integral in
Eq. (43) was calculated numerically and we used the analytical
approximation for the mode function. The continuous green line
and the black dashed line are the plots made using the fitting
formula Eq. (53) with the first and second set of constants as in
Eq. (54) respectively. It can be seen that the green line fits well
the red points. The line deviates from the red points at most 2%.
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In the equilateral limit and on small scales, i.e. if k0 � k, and using the extra approximation in the analytical expression
for the mode function Eq. (29) of fixing the value of �ð�Þ to the horizon crossing value for any time, we find

G>ðk; k; k; k	Þ
k3

�
�
�þ
b

�þ
a

�
4 a4�

þ
b ð�	Þ

a6�
þ
b ð�0Þ

�
a4ð�0Þ
a3ð�kÞ

�
2�þ

a 9A

4

�
k

k0
sin

�
3k

k0

�
þ 6� ð2þ 3fÞA

2
cos

�
3k

k0

�
� 9Af

2
cos

�
k

k0

��

� 9

4

A

ð1þ AÞ4
�
k

k0
sin

�
3k

k0

�
þ 6� ð2þ 3fÞA

2
cos

�
3k

k0

�
� 9Af

2
cos

�
k

k0

��
; (56)

where the parameter f should be equal to one. If f ¼ 0 this
is equivalent to set the Bogoliubov coefficients to �k ¼ 1,
�k ¼ 0 (the expected behavior in the infinite frequency
limit). The term with the linear growth in the previous
equation, i.e. the term proportional to k=k0, remains even
if f ¼ 0. This means its origin is not from the mixture with
the negative frequency modes. In fact, this term is present
even in the standard slow-roll scenario if we artificially
switch off the interaction for � < �0, switch it on at �0 and
perform the integration from �0. As argued before, if the
finite width of a realistic transition is taken into account
then for scales smaller than the scale set by this width we
expect the previous result to be unapplicable and the
amplitude of G>=k

3 should decay to small unobservable
values.

The plot of the previous expression for A ¼ 2 is dis-
played in Fig. 9. As in the squeezed limit, the extra

approximation of fixing the value of �ð�Þ to the horizon
crossing value is not a good approximation in the
calculation of the amplitude of the bispectrum as given
by the previous equation. However, to obtain the correct
shape that approximation is enough as can be seen in
Fig. 9. In order to obtain the correct amplitude of the
bispectrum we calculated the integral numerically, but
using the analytical approximations for the mode func-
tions, and we were able to find a simple and accurate
fitting formula to the numerical result for the amplitude of
G>=k

3 on small scales as

G>ðk;k;k;k0Þ
k3

��������k¼100k0

� 9

200Að1þAÞ
~C1A

~C2e
~C3A; (57)

where the constants are

~C1 � �5157:87; ~C2 � 2:01; ~C3 � 0:03 or

~C1 � �5399:03; ~C2 ¼ 2; ~C3 ¼ 0: (58)

In the range of values of A as A ¼ ½0:01; 15�, for the
first and second set of constants the approximation is
good to 5% and 50%, respectively. In Fig. 10 we plot
the value of G>=k

3 with k ¼ 100k0 and k	 ¼ k0 as a
function of A using the numerical result and the above
fitting formula (57).
It is worth mentioning that in Ref. [68], the authors

proposed an approximate sharp feature ansatz to be used
in data analysis as

f NLðkÞ sinðK=k0 þ phaseÞ; (59)

where K � k1 þ k2 þ k3 and fNLðkÞ is some envelope.
This form seems to fit well with the current model.
Finally, it is important to mention that the linear growth
with k that we found in the present model (an Heaviside
step function in the inflaton’s mass) is in principle obser-
vationally distinguishable from the model considered in
[103] where it is the slow-roll parameter � that has a
Heaviside step function discontinuity and the author found
a quadratic growth in K.

FIG. 8 (color online). Plots of G<ðk; k; k; k0Þ=k3 with k ¼
k0=� for A ¼ 2. For the red line, the bispectrum integral in Eq.
(43) was calculated numerically and we used the analytical
approximation for the mode function. The green and black lines
are the plots made using the first and second parts of Eq. (55)
respectively. It can be seen that the lines are practically indis-
tinguishable. For scales k� k0, i.e. � of order one, our analytical
approximation for the mode functions should break down and
again the result in this plot should not be taken seriously.
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V. CONCLUSION

In this paper, we introduced an inflationary model driven
by a single standard kinetic term scalar field. The field’s
potential is dominated by the vacuum energy and the mass
term changes abruptly at a point. This abrupt change is
modeled by an Heaviside step function. This might be seen
as a simple toy model for a first order mass phase transition
occurring during inflation.

Under the vacuum domination assumption, we have
solved the background evolution analytically. As expected
for large step sizes and for some time after the transition
the slow-roll approximation breaks down.
We have considered linear perturbations and presented

an analytical approximation for the mode function that for
scales different from the step scale k0 is a good approxi-
mation to the numerical mode function for any time. We
have computed the power spectrum of the curvature per-
turbation and showed that for scales smaller than k0 it
contains damped oscillations with ‘‘angular frequency’’
2=k0. This behavior is captured well by our analytical
approximation of the spectrum.
Models with temporary violations of slow-roll are ex-

pected to produce large non-Gaussianity. For our choice of
parameters, we showed that the dominant contribution to
the bispectrum comes from the terms containing � in the
third-order interaction Hamiltonian. Using the analytical
approximation of the mode function, we have computed
(analytically when it was possible, otherwise numerically)
the bispectrum produced by these terms in certain interest-
ing limits. We analyzed two well known limiting triangle
configurations of the three momentum vectors on which
the bispectrum depends on.
First, for the equilateral limit, we found that for scales

much larger than k0 the quantity G<=k
3 decreases with

the square of the ratio k=k0 which implies that for values
of A of order one, its value is too small to be of
observational interest. For scales much smaller than k0
it oscillates with an ‘‘angular frequency’’ of approxi-
mately 3=k0. On these scales G>=k3 is linearly enhanced
towards large k as G>=k

3 / k=k0. This enhancement
may be used to push the value of G>=k

3 to within
observational range even for a small amplitude A of
the step. It would be interesting to consider observational
constraints on this kind of strongly scale dependent and

FIG. 9 (color online). Plots of G>ðk; k; k; k0Þ=k3 with k ¼ �k0 for A ¼ 2. For the red dots, the bispectrum integral in Eq. (43) was
calculated numerically and we used the analytical approximation for the mode function. The black line is the plot made using the last
line of Eq. (56). It can be seen that the black line is a good approximation for the red points. The black line was normalized at the point
� ¼ 100 with the normalization fitting formula Eq. (57) and using the first set of constants of Eq. (58).

FIG. 10 (color online). Plots of G>ðk; k; k; k0Þ=k3 with k ¼
100k0 as a function of A. For the red dots, the bispectrum integral
in Eq. (43) was calculated numerically and we used the analyti-
cal approximation for the mode function. The continuous green
line and the black dashed line are the plots made using the fitting
formula Eq. (57) with the first and second set of constants as in
Eq. (58) respectively. It can be seen that the green line fits well
the red points. The line deviates from the red points at most 5%.
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oscillatory bispectrum models but this is outside the
scope of the present paper.

Secondly, we considered the squeezed limit of the bis-
pectrum. For scales much smaller than k0, again we found
an oscillatory behavior in k with ‘‘angular frequency’’
2=k0. When the size of the smallest side of the squeezed
triangle is k1  k0 then the quantity F>

NL has as enhance-
ment factor of k1=k0. This might have important conse-
quences regarding the detectability of the present signal in
the data. For larger scales, we found that the quantity F<

NL

is suppressed by the square of the ratio k=k0 which implies
that for values of A of order one, its value is too small to be
observational relevant.

We have shown that for a wide choice of the model
parameter A, the squeezed and equilateral limits of the
bispectrum can be large for scales much smaller than k0.
This represents a significant enhancement with respect to
the canonical single-field slow-roll model result. In par-
ticular, the squeezed limit of the bispectrum can be large in
comparison with any single-field model of inflation known
to the authors. See however Refs. [74,75] for nonvacuum
initial state scenarios which also give significant enhance-
ment factors but which have been shown [75] not to be
enough to put the CMB bispectrum within the reach of the
Planck satellite. It would be very interesting to repeat that
analysis for the present model.

The analytical approximation for the mode function
used in this paper breaks down for scales close to the scale
set by the transition so the present method cannot be
applied to compute the bispectrum at these scales. In order
to perform that computation one has to numerically inte-
grate the equation of motion for the curvature perturbation

and then calculate the bispectrum integral numerically. We
leave this for future work. Finally, it would also be inter-
esting to study the trispectrum of this model and this will
be presented in a forthcoming publication.
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