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Daniel Grin,1 Olivier Doré,2,3 and Marc Kamionkowski2

1School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540, USA
2California Institute of Technology, Mail Code 350-17, Pasadena, California 91125, USA

3Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA
(Received 28 July 2011; published 16 December 2011)

Measurements of cosmic microwave background (CMB) anisotropies constrain isocurvature fluctuations

between photons and nonrelativistic particles to be subdominant to adiabatic fluctuations. Perturbations in

the relative number densities of baryons and dark matter, however, are surprisingly poorly constrained. In

fact, baryon-density perturbations of fairly large amplitude may exist if they are compensated by dark-

matter perturbations, so that the total density remains unchanged. These compensated isocurvature

perturbations (CIPs) leave no imprint on the CMB at observable scales, at linear order. B modes in the

CMB polarization are generated at reionization through the modulation of the optical depth by CIPs, but

this induced polarization is small. The strongest known constraint& 10% to the CIP amplitude comes from

galaxy-cluster baryon fractions. Here, it is shown that modulation of the baryon density by CIPs at and

before the decoupling of Thomson scattering at z� 1100 gives rise to CMB effects several orders of

magnitude larger than those considered before. Polarization B modes are induced, as are correlations

between temperature/polarization spherical-harmonic coefficients of different lm. It is shown that the CIP

field at the surface of last scatter can be measured with these off-diagonal correlations. The sensitivity of

ongoing and future experiments to these fluctuations is estimated. Data from the WMAP, ACT, SPT, and

Spider experiments will be sensitive to fluctuations with amplitude �5–10%. The Planck satellite and

Polarbear experiment will be sensitive to fluctuations with amplitude �3%. SPTPol, ACTPol, and future

space-based polarization methods will probe amplitudes as low as �0:4%–0:6%. In the cosmic-variance

limit, the smallest CIPs that could be detected with the CMB are of amplitude �0:05%.
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I. INTRODUCTION

The concordance cosmological model posits a nearly
scale-invariant spectrum of primordial density fluctuations
with adiabatic initial conditions, for which the ratios of
neutrino, photon, baryon, and dark-matter number den-
sities are homogeneous. The simplest inflationary models
predict adiabatic fluctuations [1–6], and adiabatic fluc-
tuations are consistent with measurements of cosmic
microwave background (CMB) temperature/polarization
anisotropies [7] and the clustering of galaxies [8,9].

Isocurvature perturbations are fluctuations in the ratios
of number densities of various particle species. They are
produced in topological-defect models for structure for-
mation [10] and in more complicated models of inflation
[11–16]. CMB temperature anisotropies limit the ampli-
tude of baryon isocurvature perturbations (fluctuations in
the baryon-to-photon ratio) [17,18] and cold dark-matter
(CDM) isocurvature perturbations (fluctuations in the
dark-matter–to–photon ratio) [19–22] to be & 13% of the
total perturbation amplitude [7,23–33].

Our intuition thus suggests the matter in the early
Universe was very smoothly distributed. It therefore comes
as somewhat of a surprise to learn that perturbations in the
baryon density can be almost arbitrarily large, as long they
are compensated by dark-matter perturbations such that
the total nonrelativistic matter density remains unchanged

[34,35]. These compensated isocurvature perturbations
(CIPs) thus obey

�c�
CI
c þ �b�

CI
b ¼ 0; �CI

� ¼ 0; (1)

where �c, �b, and �� are fractional energy density pertur-

bations in the dark matter, baryons, and photons, respec-
tively, while �c and �b are the homogeneous dark matter
and baryon densities.
CIPs induce no curvature perturbation at early times,

and they therefore leave the photon density—and thus
large-angle CMB fluctuations—unchanged at linear order.
CIPs induce baryon motion through baryon-pressure gra-
dients, but these motions occur only at the baryon sound
speed which, at the time when Thomson scattering first

decouples (z� 1100, decoupling hereafter), is ðv=cÞ �
ðT=mpÞ1=2 � ðeV=GeVÞ1=2 � 10�4:5. The effects of these

motions on CMB temperature and polarization anisotro-
pies thus occur only on distances smaller than �10�4:5

times the sound horizon at decoupling or CMB multipole
moments l� 106 [34,36,37], scales far smaller than those
probed by CMB experiments.
The effect of CIPs on galaxy surveys is also believed to

be small [34]. Big-bang nucleosynthesis (BBN) and
galaxy-cluster baryon fractions constrain the CIP pertur-
bation amplitude to be & 10% [35]. Measurements of
fluctuations in 21-cm radiation from atomic hydrogen
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during the dark ages may be sensitive to these perturba-
tions [34,37–39], but these measurements are a long way in
the future.

In Ref. [35], it was shown that, although CIPs produce
no observable effect on the CMB at linear order in pertur-
bation theory, they modulate the CMB fluctuations pro-
duced by adiabatic perturbations. In particular, it was
shown that B modes in the CMB polarization are produced
by the angular modulation in the reionization optical depth
induced by the CIP.

Here, we consider the additional effects on CMB fluc-
tuations that arise from modulation of the baryon density
by CIPs at and before decoupling. CIPs modulate the free-
electron density. They thus change the photon diffusion
length and thickness of the surface of last scattering (SLS)
on different patches of sky. CIPs also change the weight of
the baryon-photon plasma and thus the details of the
acoustic-peak structure in the CMB power spectrum.
Variation in the baryon density from one region on the
sky to another thus leads to a modulation of the small-scale
power spectrum from one region of sky to another. This
induces B modes in the polarization and nontrivial higher-
order correlations in the temperature/polarization map
analogous to those induced by variations of other cosmo-
logical parameters [40] and those induced by weak gravi-
tational lensing [41].

As we show below, the effects of CIPs on CMB fluctua-
tions from decoupling are several orders of magnitude
larger than those from reionization, and so the CMB should
provide a far more sensitive probe of CIPs than envisioned
in Ref. [35]. We therefore follow through and develop the
formalism required to look for CIPs with the CMB. To do
so, we write down the minimum-variance estimators that
can be constructed from a CMB temperature-polarization
map for the CIP field�ðn̂Þ as a function of position n̂ on the
sky. We evaluate the noise with which the CIP field can be
reconstructed and estimate the signal-to-noise with which a
scale-invariant spectrum of CIPs may be detected with
various experiments.

We conclude that data from WMAP, Spider, ACT,
and SPT are sensitive to CIP amplitudes of �5–10%.
The Planck satellite [42] and Polarbear experiment are
sensitive to CIP amplitudes as small as �3%. Upcoming
ground-based polarization experiments (ACTPol [43] and
SPTPol [44,45]) or a post-Planck CMB-polarization ex-
periment along the lines of the proposed EPIC experiment
[46] could detect fluctuations of �0:4%–0:6%. In the
cosmic-variance limit, sensitivity to fluctuations of ampli-
tude �0:05% is possible.

Our principle motivation in studying CIPs is curiosity:
can we determine empirically, rather simply assume, that
the primordial baryon fraction is homogeneous and traces
the dark matter? Still, there may be theoretical motivation
as well. For example, curvaton models for inflation may
generate CIPs [36,47–49], with amplitudes approaching

the regime detectable by EPIC [34]. It may also be that
recent models [50–55] that connect the baryon asymmetry
and dark-matter density have implications for CIPs.
Additionally, the techniques introduced in this paper could
be used to empirically disentangle a CDM isocurvature
fluctuation from a baryon isocurvature fluctuation, using
CMB data. These modes are usually treated as degenerate
in the analysis of CMB observations.
In Ref. [56], we presented our basic conclusions. Here

we present in detail our results, their derivation, and the
computational methods used. We calculate the induced
temperature anisotropies in Sec. II and the induced polar-
ization anisotropies in Sec. III. In Sec. IV, we compute the
expected corrections to CMB power spectra for a scale-
invariant spectrum of CIPs and compare the B-mode power
spectrum induced by CIPs at decoupling with that induced
at reionization. In Sec. V, we construct minimum-variance
estimators for CIPs. We then assess in Sec. VI the sensi-
tivity of ongoing and upcoming experiments to CIPs,
and we conclude in Sec. VII. Useful relations involving
tensor spherical harmonics are presented in Appendix A.
Numerical derivatives of transfer functions are discussed in
Appendix B. Second-order harmonic expansions for CMB
transfer functions are derived in Appendix C. Throughout,
we use as our fiducial cosmological parameters those from
Ref. [7].

II. PERTURBED LINE-OF-SIGHT
FORMALISM: TEMPERATURE

Here, we review the standard calculation of the
temperature-fluctuation power spectrum for primordial
adiabatic density perturbations. We then show how this
calculation is altered in the presence of CIPs.

A. General line-of-sight solution for temperature

The spherical-harmonic coefficients Tlm for the CMB
temperature can be written

Tlm �
Z

dn̂Tðn̂ÞY�
lmðn̂Þ

¼ 4�
X
l1m1

Z
dn̂Y�

lmðn̂ÞYl1m1
ðn̂Þ

Z �0

0
d�fð�; n̂Þ

�
Z d3k

ð2�Þ3 � ~ki
l1jl1½kð�0 � �Þ�Y�

l1m1
ðk̂Þ; (2)

where Tðn̂Þ is the CMB temperature in direction n̂, and
Ylmðn̂Þ are spherical harmonics. The Fourier transform of

the primordial gravitational potential for wave-vector ~k is
� ~k, while jlðxÞ denotes a spherical Bessel function. The

conformal time � � R
dt=aðtÞ is here an integration vari-

able, and �0 denotes its value today. The function fð�; n̂Þ,
obtained via the numerical solution of the Boltzmann
equations [57–59], encodes how much a real-space
primordial-potential perturbation �½ð�� �0Þn̂; �� con-
tributes to the temperature anisotropy Tðn̂Þ. It depends on
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the relation between initial gravitational-potential fluctua-
tions and radiation-density fluctuations at decoupling, as
well as the recombination history.

B. Temperature anisotropies with homogeneous
baryon fraction

In the standard calculation, this transfer function is
the same in all directions; i.e., fð�; n̂Þ ¼ fð�Þ. In this
case, Eq. (2) simplifies, via orthogonality of the Ylms,
yielding [58,60]

Tlm¼ 4�il

ð2�Þ3
Z
d�fð�Þ

Z
d3k� ~kjl½kð�0��Þ�Y�

lmðk̂Þ: (3)

The temperature power spectrum is then easily obtained
using Eq. (3), averaging over realizations of the potential

perturbation, and using the identity h�ð ~kÞ��ð ~k0Þi ¼
ð2�Þ3�3

Dð ~k� ~k0ÞP�ðkÞ, where �3
Dð ~k� ~k0Þ is the Dirac delta

function and P�ðkÞ the primordial-potential power spec-
trum, and the angle brackets denote an average over realiza-
tions of the primordial potential. We then find [59]

hT�
l0m0Tlmi ¼ CTT

l �ll0�mm0 ; (4)

where

CTT
l ¼ 2

�

Z
k2dkP�ðkÞ½TlðkÞ�2 (5)

is the CMB temperature power spectrum, written in terms of
a transfer function,

TlðkÞ ¼
Z

d�fð�Þjl½kð�0 � �Þ�: (6)

This transfer function is tabulated by Boltzmann codes like
CAMB [61] andCMBFAST [58], and�ij is theKronecker delta.

C. Temperature anisotropies with CIPs:
Single CIP realization

In the presence of a compensated isocurvature perturba-
tion, the baryon and dark-matter fractions vary from one
point in the Universe to another, and so the transfer func-
tion fð�; n̂Þ now acquires some direction (n̂) dependence.
The CIP involves small changes,

�b ! �b½1þ�ðn̂Þ�; �c ! �c ��b�ðn̂Þ; (7)

in the cosmological parameters between different lines of
sight n̂. Here, �ðn̂Þ is the value of the CIP in direction n̂ at
the surface of last scatter (or reionization—we will make
these statements more precise below). Note that we define
it so that it is the fractional perturbation in the baryon
(rather than dark-matter) density associated with the CIP.
From Eq. (7), the change in the total density is ��m ¼
��c þ ��b ¼ 0, and so this is indeed a compensated
isocurvature perturbation.

In a general treatment of perturbed recombination/
decoupling, one would follow the set of equations for the

electron, dark matter, photon, and neutrino densities,
velocities, and the gravitational potential at second order,
as in Refs. [62–64]. In the case of CIPs, however, the CIP
amplitude does not evolve for all observationally acces-
sible scales, and we can thus model the effect of CIPs as a
modulation in the cosmological parameters �c and �b.
We can build some intuition for the effect of CIP pertur-

bations on the CIP by considering a globally constant CMB
perturbation �. We run the CAMB [61] code with a global
perturbation of the form in Eq. (7) for a variety of� values.
We evaluate the angular sound horizon ls at the surface of
last scatter as a function of �, using the expressions in
Ref. [65]. We see in the top left panel of Fig. 1 that, as the
plasma is more loaded downwith baryons in the presence of
a CIP with a positive � value, the decrease in sound speed
moves the CMB acoustic peaks to smaller angular scales.
CMB temperature anisotropies are suppressed on angu-

lar scales l > ld due to diffusion damping. Using the ex-
pressions in Ref. [60] and the CAMB [61] code, we evaluate
ldð�Þ and show the results in the top right panel of Fig. 1.
We see that, as photons diffuse over smaller distances, as a
result of higher local baryon density in the presence of a
CIP with positive �, the transition to exponential damping
of CMB anisotropies occurs at higher l.
In the bottom panel of Fig. 1, we show the visibility

functions gðzÞ ¼ e��d�=dz for 3 different values of�; � is
the optical depth due to Thomson scattering. The peak of
the visibility function is at the redshift zSLS, at which most
CMB photons last scatter. In the presence of a positive
(negative) � CIP, decoupling occurs later (earlier) due to
higher (lower) baryon density.
To calculate the effects on the CMB moments Tlm, we

perturb the line-of-sight solutions, Eqs. (2) and (3). This
approach is relatively simple and amenable to rapid com-
putation. The results should be accurate for multipole mo-
ments L & 870 for the CIP, as the baryon fluctuation can
be considered as roughly constant in a given direction n̂
across the thickness of the surface of last scatter on such
scales. The transition at L� 870 occurs at an angular scale
corresponding to the thickness of the SLS, as explained in
Sec. IVA. We discuss in Sec. IVA below how we extrapo-
late these results to smaller angular scales (L * 870) with
a Limber approximation.
We proceed by Taylor expanding in real space:

fð�;n̂Þ¼fð0Þð�Þþ�ðn̂Þdf
ð0Þ

d�
ð�Þþ1

2
�2ðn̂Þd

2fð0Þ

d2�
ð�Þþ��� ;

(8)

where fð0Þð�Þ is the value of f under the null hypothesis
�ðn̂Þ ¼ 0. We expand

�ðn̂Þ ¼ X
LM

�LMYLMðn̂Þ (9)

in terms of spherical-harmonic coefficients �LM for the
angular variation in the CIP at the surface of last scatter.
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We then apply the expansion in Eq. (8) to linear order in �
to the line-of-sight expression, Eq. (2), and integrate over
angles to obtain the first-order correction,

�Tð1Þ
lm ¼ 4�

X
LM;l1m1

il1�LM�
LM
lml1m1

KL
ll1

Z
d�

dfð0Þ

d�

�
Z d3k

ð2�Þ3 � ~kjl1½kð�0 � �Þ�Y�
l1m1

ðk̂Þ; (10)

to Tlm in the presence of a CIP, where

�LM
lml1m1

� ðKL
ll1
Þ�1

Z
dn̂Y�

lmðn̂ÞYLMðn̂ÞYl1m1
ðn̂Þ

¼ ð�1Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Lþ 1Þð2lþ 1Þð2l1 þ 1Þ

4�

s

� l L l1

�m M m1

 !
; (11)

KL
ll1

� l L l1

0 0 0

 !
; (12)

and the arrays inside parentheses are Wigner-3J symbols.
Throughout, we use the indices L andM exclusively for the

FIG. 1 (color online). Dependence of physically relevant scales and Thomson scattering visibility function gðzÞ on amplitude of a
global CIP perturbation �. Top left panel shows dependence of the angular sound horizon ls on �. Top right panel shows dependence
of the diffusion damping scale ld on �. Bottom panel shows gðzÞ evaluated for 3 different values of �.
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decomposition of the CIP, while lower-case indices are
used for the multipole moments of the CMB observables
Tlm, Elm, and Blm. Sums over m (M) are always taken over
the range�l � m � l (� L � M � L), while sums over l
(L) are formally taken over 1 � l � 1 (1 � L � 1); in
practice, a maximum value lmax is used for numerical
evaluation, as discussed in Sec. IV. The monopole L ¼ 0
corresponds to a global shift in �b and�c, and we absorb
this term into the cosmological parameters themselves.

For a given realization of the CIP field—that is, for a
given set of �LM—the covariance between temperature
moments is now

hT�
l0m0Tlmi ’ CTT;ð0Þ

l þX
LM

�LM�
LM
lml0m0S

L;TT
ll0 ; (13)

where

SL;TT
ll0 � ðCT;dT

l0 þ CT;dT
l ÞKL

ll0 ; (14)

and

CX;dX0
l � 2

�

Z
k2dkP�ðkÞXlðkÞ dX

0
lðkÞ

d�
; (15)

for fX;X0g 2 fT;E;Bg (a generalization that will be useful

below), and CTT;ð0Þ
l is the temperature power spectrum in

the absence of CIPs. Here,

dX0
lðkÞ

d�
¼
Z

d�
dfð�Þ
d�

jl½kð�0 � �Þ� (16)

describes the change in the transfer function, Eq. (6),
with �.

In deriving these results, we have taken an average over
realizations of the primordial-potential power spectrum
� ~k, but we have restricted our consideration to a given

realization of the CIP. In Sec. V, we build the formalism to
reconstruct �ðn̂Þ from these off-diagonal temperature cor-
relations as well their generalization to polarization.

D. Temperature anisotropies with CIPs: Average
over CIP realizations

We now take an ensemble average over many realiza-
tions of both the primordial potential field and the CIP
field. This allows us, given a spectrum of CIPs, to calculate
the effects of these CIPs on the power spectrum of CMB
fluctuations measured on the entire sky.

We denote the ensemble average of a spatially varying
field X over realizations of the CIP field by hXib. We denote
the ensemble average over realizations of both the CIP
field and the primordial potential by hXibc. From Eqs. (13)
and (14), we see that hT�

l0m0Tlmibc / h�LMib. For an iso-

tropic random field, h�LMib ¼ 0, so we must thus go to
second order in �ðn̂Þ to compute the effects of CIPs on the
CMB power spectrum. We thus obtain, to second order in
�, the temperature power spectrum,

CTT;ð2Þ
l � hjTlmj2ibc

’ CTT;ð0Þ
l þ hj�Tð1Þ

lm j2ibc þ hTð0Þ�
lm �Tð2Þ

lm ibc
þ h�Tð2Þ�

lm Tð0Þ
lm ibc; (17)

where Tð0Þ
lm is the unperturbed moment in Eq. (3), �Tð1Þ

lm is

given by Eq. (10), and CTT;ð0Þ
l is the unperturbed power

spectrum given by Eq. (5). The (2) superscript denotes the
term arising when expanding Tlm to order �2ðn̂Þ. We
evaluate this term using the second-derivative term

d2fð0Þ=d�2 in Eq. (C2). We take an expectation value
over CIPs and primordial-potential realizations. We then
use Eqs. (2), (11), and (17), identities of Wigner-3J sym-
bols [66], and Appendix C to obtain

CTT;ð2Þ
l ¼ CTT;ð0Þ

l þ �CTT;ð1Þ
l þ �CTT;ð2Þ

l ;

�CTT;ð1Þ
l � X

L;l1

C�
LC

dT;dT
l1

ðKL
ll1
Þ2GLl1 ;

GLl1 �
�ð2Lþ 1Þð2l1 þ 1Þ

4�

�
;

(18)

�Cð2Þ
l � �2

bcC
T;d2T
l : (19)

The CIP power spectrum C�
L and total variance �2

bc obey

hj�LMj2ib � C�
L ; (20)

�2
bc ¼

X
L

�
2Lþ 1

4�

�
C�
L ; (21)

while the CMB derivative power spectra are given by

CdX;dX0
l ¼ 2

�

Z
k2dkP�ðkÞdXlðkÞ

d�

dX0
lðkÞ

d�
; (22)

CX;d2X0
l ¼ 2

�

Z
k2dkP�ðkÞXlðkÞd

2X0
lðkÞ

d�2
; (23)

where d2Xl=d
2� are defined analogously to the first-

derivative transfer function in Eq. (16). Appendix B details
the calculation of the derivative power spectra.

III. PERTURBED LINE-OF-SIGHT (LOS)
FORMALISM: POLARIZATION

We now generalize the analysis above to the CMB
polarization. In addition to inducing off-diagonal correla-
tions in the polarization spherical-harmonic coefficients,
CIPs will induce B modes. We begin by reviewing the LOS
solution for polarization under the null hypothesis of no
CIPs. We then compute the effects of CIPs, both for a
single realization of the CIPs, and then for an average
over realizations of a spectrum of CIPs.
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A. Polarization anisotropies with homogeneous
baryon fraction

Polarization is a spin-2 tensor field and can be expanded
as [67,68]

Pabðn̂Þ ¼
X
lm

ðElmY
E
lm;ab þ BlmY

B
lm;abÞ; (24)

where YE
lm;ab and Y

B
lm;ab are the E- and B-mode (‘‘grad’’ and

‘‘curl’’, respectively) tensor spherical harmonics, as de-
fined in Appendix A. The right-most indices after the
comma are tensor indices. In terms of the Stokes polariza-
tion parameters Q and U, the polarization tensor is [67,68]

Pabðn̂Þ ¼ 1

2

Qðn̂Þ �Uðn̂Þ sin�
�Uðn̂Þ sin� �Qðn̂Þsin2�

 !
; (25)

where � is the polar angle of the LOS with respect to some
origin.

Under the null hypothesis, the polarization pattern at the
surface of last scatter is a pure E mode, with multipole
moments given by

Elm ¼ 4�il

ð2�Þ3
Z

d�fEð�Þ
Z

d3k� ~kjlðxÞY�
lmðk̂Þ; (26)

where x � kð�0 � �Þ, and fEð�Þ is the E-mode transfer
function, obtainable numerically from Boltzmann codes.
The polarization covariance and TE covariance are derived
analogously to the results for temperature, yielding [58]

hE�
l0m0Elmi ¼ CEE

l �ll0�mm0 ;

CEE
l ¼ 2

�

Z
k2dkP�ðkÞ½ElðkÞ�2;

ElðkÞ ¼
Z

d�fEð�Þjl½kð�0 � �Þ�;

(27)

and [58]

hE�
l0m0Tlmi ¼ CTE

l �ll0�mm0 ;

CTE
l ¼ 2

�

Z
k2dkP�ðkÞTlðkÞElðkÞ:

(28)

B. Polarization anisotropies with CIPs:
Single CIP realization

We now generalize the analysis to include the effects of
CIPs. In the presence of a CIP field �ðn̂Þ, the real-space
polarization tensor may be Taylor expanded as

Pabðn̂Þ¼Pð0Þ
abðn̂Þþ

dPð0Þ
ab

d�
ðn̂Þ�ðn̂Þ

þ1

2

d2Pð0Þ
ab

d�2
ðn̂Þ�2ðn̂Þþ��� : (29)

Just as in the case of temperature, when considering a
single realization, we need only consider the first-order

terms in Eq. (29). We then utilize Eqs. (24) and (26), and
the first-derivative piece of the usual expansion for �ðn̂Þ
[see Eq. (8)] to obtain an expansion for the polarization
tensor Pab in the presence of CIPs:

Pabðn̂Þ ¼ Pabj�¼0 þ �Pabj1 þ �Pabj2 þ � � � ; (30)

�Pð1Þ
ab � X

l1m1

dEl1m1

d�
YE
l1m1;ab

ðn̂Þ�ðn̂Þ

¼ XLM
l1m1

dEl1m1

d�
YE
l1m1ab

ðn̂Þ�LMYLMðn̂Þ: (31)

We may now pick off the induced E- and B-mode multi-

pole moments �Eð1Þ
lm and �Bð1Þ

lm at order �, using the appro-

priate integral over a tensor spherical harmonic:

�Eð1Þ
lm ¼

Z
dn̂YE;�

lm;abðn̂Þ�Pð1Þ
ab; (32)

Blm ¼ �Bð1Þ
lm ¼

Z
dn̂YB;�

lm;abðn̂Þ�Pð1Þ
ab: (33)

We evaluate Eqs. (32) and (33), calling onEqs. (A10)–(A12),
yielding

�Eð1Þ
lm ¼ XLþl1þl even

LM;l1m1

�LM
lm;l1m1

HL
ll1
�LM

dEl1m1

d�
; (34)

�Bð1Þ
lm ¼ XLþl1þl odd

LM;l1m1

ð�iÞ�LM
lm;l1m1

HL
ll1
�LM

dEl1m1

d�
; (35)

where

HL
ll1

� l L l1
2 0 �2

� �
: (36)

We now evaluate the induced correlations between different
temperature/polarization moments. At first order in �ðn̂Þ,
hB�

l0m0Blmi / hB�ð0Þ
l0m0�B

ð1Þ
lmi ¼ 0. The remaining covariances

are

hE�
l0m0Elmi¼CEE

l �ll0�mm0 þ XLþlþl0 even

LM

�LM�
LM
lm;l0m0S

L;EE
ll0 ;

SL;EE
ll0 � ðCE;dE

l þCE;dE
l0 ÞHL

ll0 ;
(37)

hE�
l0m0Blmi ¼

XLþlþl0 odd

LM

�LM�
LM
lm;l0m0S

L;EB
ll0 ;

SL;EB
ll0 � �iCE;dE

l0 HL
ll0 ;

(38)

hT�
l0m0Blmi ¼

XLþlþl0 odd

LM

�LM�
LM
lm;l0m0S

L;TB
ll0 ;

SL;TBll0 � �iCT;dE
l0 HL

ll0 ;
(39)
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hT�
l0m0Elmi¼CTE

l �ll0�mm0 þ XLþlþl0 even

LM

�LM�
LM
lm;l0m0S

L;TE
ll0 ;

SL;TE
ll0 � ðCT;dE

l0 HL
ll0 þCE;dT

l KL
ll0 Þ:

(40)

C. Polarization anisotropies with CIPs:
Average over CIP realizations

We now extend the ensemble average to multiple real-
izations of the CIP field. We do this in order to compare the
polarization power spectrum induced by CIPs at the sur-
face of last scatter with that induced at reionization. For
temperature, the average over realizations of both the CIP
and primordial-potential perturbations is given by Eq. (17).
Extending this average to X, X0 2 fT; E; Bg, we obtain the
XX0 power spectra, averaged over the entire sky, to second
order in �:

CXX0;ð2Þ
l � hXlmX

0�
lmibc

’ CXX0;ð0Þ
l þ h�Xð1Þ

lm�X
0ð1Þ
lm ibc þ hXð0Þ�

lm �X0ð2Þ
lm ibc

þ h�Xð2Þ�
lm X0ð0Þ

lm ibc; (41)

where C
XX0

; ð0Þ
l is the power spectrum computed with no CIP

contribution. We evaluate Eq. (41) with Eqs. (A12) and
(A13) and Wigner-3J relations to simplify the resulting
integrals and sums. Superscript indices (1) and (2) indicate

the order of the derivative dnfð0Þ=d�n used to derive the
indicated term, as in Sec. II D. The resulting nonzero power
spectra are

CTE
l ’ CTE;ð0Þ

l þ �CTE;ð1Þ
l þ �CTE;ð2Þ

l

�CTE;ð1Þ
l � XLþl1þl even

L;l1

C�
LC

dT;dE
l1

GLl1H
L
ll1
KL

ll1

�CTE;ð2Þ
l � �2

bc

2
ðCT;d2E

l þ CE;d2T
l Þ;

(42)

CEE
l ’ CEE;ð0Þ

l þ �CEE;ð1Þ
l þ �CEE;ð2Þ

l ;

�CEE;ð1Þ
l � XLþl1þl even

L;l1

C�
LC

dE;dE
l1

GLl1ðHL
ll1
Þ2;

�CEE;ð2Þ
l ¼ �2

bcC
E;d2E
l ;

(43)

and

CBB
l ’ XLþl1þl odd

L;l1

C�
LC

dE;dE
l1

GLl1ðHL
ll1
Þ2: (44)

TheCIPfield�ðn̂Þ is a scalar and cannot statistically change
the parity of polarization perturbations. This requires that
CTB
l and CEB

l vanish when averaging over CIP realizations.

Algebraically, this is enforced by the vanishing of the
relevant Wigner-3J symbols, as occurs with optical-depth
fluctuations at reionization [44,69] and with gravitational-
potential perturbations in weak lensing [70,71]. Indeed, the

geometric (Wigner-3J) symbols obtained are the same as
for those effects. CIPs give rise to different ll0 dependences
for the functions SL;XX

0
ll0 , however, through the dependence

on the derivative power spectra CXX0
l , allowing them to be

disentangled observationally from gravitational-potential
fluctuations along the LOS or optical-depth fluctuations at
reionization.

IV. NUMERICAL RESULTS FOR B-MODE
POWER SPECTRA

We now apply the formulas derived in Secs. II D and
III C to compute the power spectra for B modes induced by
CIPs at decoupling. We first discuss the form of the angular
CIP power spectrum C�

L . We then present numerical results
for B modes induced at decoupling. For comparison, we
then reproduce the calculations of Ref. [35] of the B modes
induced at reionization.

A. Power spectrum of compensated perturbations

1. Three-dimensional CIP power spectrum

To proceed further, we must make an ansatz for the
spectrum of CIPs. Motivated by the curvaton model (which
produces a nearly scale-invariant spectrum of CIPs)
[34,36,47], we assume a scale-invariant spectrum for the
three-dimensional CIP field �ðxÞ; that is,

h~��ðk0Þ~�ðkÞi ¼ ð2�Þ3�3
Dðk� k0ÞP�ðkÞ

P�ðkÞ ¼ Ak�3;
(45)

where ~�ðkÞ is the Fourier transform of �ðxÞ, and A is a
dimensionless CIP amplitude.
As discussed in the introduction, the strongest constraint

to A comes from cluster baryon fractions. This constraint
tells us that the variance,

�2
cl ¼

1

2�2

Z
k2dk½3j1ðkRÞ=ðkRÞ�2P�ðkÞ; (46)

in the baryon–to–dark-matter ratio on R� 10 Mpc scales
is �cl & 0:08. The integral has a formal logarithmic diver-
gence at low k which is cut off, however, by the volume
occupied by the clusters surveyed. Taking this to be the
horizon, kmin ’ ð10 GpcÞ�1, we find A & 0:017. Since the
cosmological baryon fraction �b determines primordial
abundances via BBN, there is an additional constraint
from astrophysical measurements of these abundances
[35]. However, this constraint is less stringent than the
one from cluster gas fractions.

2. Angular CIP power spectrum

When the 3-dimensional field is projected onto a narrow
spherical surface, the resulting angular power spectrum
for � will be C�

L ’ A=ð�L2Þ for mulipole moments
L & ð�0 � �lsÞ=	� ’ 870, where �ls and �0 are the con-

formal time at last scatter and today, respectively, and	� is
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the rms conformal-time width of the SLS. At smaller
angular scales (larger L), the angular variation in � is
suppressed by the finite width [72] of the scattering sur-
face. Using the Limber approximation, the angular power
spectrum for � can be approximated by C�

L ’Að�0��lsÞ=
ð2 ffiffiffiffi

�
p

L3	�Þ for L * 870. The exact analytic expression

we use is obtained from the Limber approximation, ap-
proximating the visibility function as a Gaussian. It is

C�
L ¼ A

2
ffiffiffiffi
�

p
L2

U

�
1

2
; 0;

�
L	�

�0 � �sls

�
2
�
; (47)

where Uða; b; xÞ is a confluent hypergeometric function.
We use �0 � �ls ¼ 14100 Mpc and 	� ¼ 16:2 Mpc for

decoupling. We use �0 � �ls ¼ 9760 Mpc and 	� ¼
448 Mpc for reionization. These values are obtained by
directly fitting to the visibility function output by the CAMB

code [61]. Of course, Eq. (47) is an approximation, and the
precise shape of the transition from C�

L / 1=L2 ! C�
L /

1=L3 near L� 870 depends on the interference of Fourier
modes of � with those of �, averaged over the SLS. This
issue warrants future study, but the asymptotic behavior at
low and high L is correct (as shown for an analogous
computation in Ref. [73]). Moreover, as we shall see in
Sec. VI, most signal-to-noise in CIP reconstruction comes
either from L & 100 or L * 2000, and so the main con-
clusions of this work should not be affected.

B. Numerical result for B modes
from CIPs at decoupling

Using the Limber approximationwith values�0 � �ls ¼
14100 Mpc and 	� ¼ 16:2 Mpc appropriate for decou-

pling, Eqs. (42)–(44) can be used to obtain predictions for
the Bmodes induced by CIPs at decoupling. The results are
shown in Fig. 2 for A ¼ 0:017, the largest CIP amplitude
consistent with the galaxy-cluster constraint. Appendix B
details the calculation of the requisite derivative power
spectra. We use a maximum l value of lmax ¼ 10000.

C. Reionization

In Ref. [35], it was noted that spatial inhomogeneities in
the baryon density give rise to angular variations in the
optical depth � for rescattering of CMB photons at reioni-
zation. It was also noted that these inhomogeneities would
give rise to B modes primarily at large angular scales by
patchy rescattering of CMB photons and at smaller angular
scales through patchy screening of the primary CMB po-
larization from the decoupling epoch. These calculations
build upon calculations in Refs. [44,69,74–76] where
optical-depth fluctuations were postulated to arise from
inhomogeneities in the free-electron fraction due to inho-
mogeneous reionization.
In our notation, the contribution of patchy screening

is [44,69]

CTT
l ¼ �2e�2�

X
L;l1

C�
LC

TT;rec
l1

ðKL
ll1
Þ2GLl1 ; (48)

�CTE
l ¼ �2e�2�

XLþl1þl even

L;l1

C�
LC

TE;rec
l1

KL
ll1
HL

ll1
GLl1 ; (49)

�CEE
l ¼ �2e�2�

XLþl1þl even

L;l1

C�
LC

EE;rec
l1

ðHL
ll1
Þ2GLl1 ; (50)

�CBB
l ¼ �2e�2�

XLþl1þl odd

L;l1

C�
LC

EE;rec
l1

ðHL
ll1
Þ2GLl1 ; (51)

where � ¼ 0:086 is the mean optical depth, and C�
L is here

the angular CIP power spectrum for reionization; i.e., ob-
tained with �0 � �ls ¼ 9760 Mpc and 	� ¼ 448 Mpc.

These values are obtained by fitting a Gaussian visibility
function to the reionization model of Ref. [77].
The contributions of patchy scattering are

�CBB
l ¼ �CEE

l ¼ 3�2

100
C�
l Q

2
rmse

�2�; (52)

where Qrms ’ 17:9 
K is the rms temperature quadrupole
at reionization.
Figure 2 shows the B modes induced by patchy scatter-

ing and screening at reionization again using A ¼ 0:017.
We see that at all but the largest scales, the decoupling-
induced B modes are larger (by up to �3 orders of magni-
tude) than those induced at reionization.

FIG. 2 (color online). CMB B-mode polarization power spec-
tra induced by CIP perturbations at decoupling (black solid line),
compared with the effects of CIPs at reionization, for which two
contributions are shown: patchy screening (red dotted line), and
patchy scattering (blue short-dashed line). The amplitude for the
CIP power spectrum is that which saturates the �cl & 0:08
bound from clusters [35].
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We thus conclude that the effects of CIPs on CMB
fluctuations would be much larger than found in
Ref. [35], particularly at the small scales most important
for detection and reconstruction (to be discussed below) of
CIPs from the CMB. We thus now move on to show how
spatial fluctuations in the baryon–to–dark-matter ratio can
be measured with CMB maps.

V. MEASUREMENT OF CIPS WITH THE CMB

In this section, we show how the CIP field �ðn̂Þ can be
measured with off-diagonal CMB correlations, building
upon analogous prior work on measurement of cosmic-
shear fields [70,71,78–81], departures from statistical iso-
tropy [82–84], and cosmic birefringence [85–88]. Having
concluded that the decoupling signal is much bigger than
that from reionization, we consider detection/measurement
of CIPs at the surface of last scatter.

In Sec. VA, we construct a minimum-variance quadratic

estimator �̂LM for themultipolemoments of theCIPfield. In
Sec. VB, we explicitly calculate the noise covariance (due
both to cosmic variance and experimental noise) needed to
evaluate the errors and optimal weights of Sec VA. Finally,
in Sec. VC, we use the results of the preceding sections to
derive an expression for the signal-to-noise ratio (SNR)with
which a CMB experiment can detect CIPs.

A. Minimum-variance estimators for �LM

The total correlation between multipole moments
(including the contribution induced by a given realization
of CIPs) takes the form [see Eq. (13) and (37)–(40)],

hX0�
l0m0Xlmi ¼ CXX0

l �ll0�mm0 þX
LM

DLM;XX0
ll0 �LM

lm;l0m0 ; (53)

where

DLM;XX0
ll0 � �LMS

L;XX0
ll0 :

As before, X;X0 2 fT;E;Bg. As discussed in Secs. II and

III, the functions SL;XX
0

ll0 map �LM to observed off-diagonal

CMB anisotropies. The SL;XX
0

ll0 are assembled in Table I.

The spherical-harmonic coefficients Xmap
lm obtained

by a given CMB experiment are related to the true

coefficients Xlm by Xmap
lm ¼WlXlm, where Wl¼e�lðlþ1Þ	2

b
=2

is the window function, and 	b ¼ �fwhm=
ffiffiffiffiffiffiffiffiffiffi
8 ln2

p ’
0:00741ð�fwhm=1	Þ is related to the beam’s full width at
half maximum �fwhm. The observed two-point correlations
are then

hX0;map�
l0m0 Xmap

lm i ¼ CXX0
l W2

l �ll0�mm0 þX
LM

DLM;XX0;map
ll0 �LM

lm;l0m0 ;

(54)

DLM;XX0;map
ll0 ¼ DLM;XX0

ll0 WlWl0 : (55)

Following Refs. [44,69,84–86,88], the minimum-variance

quadratic estimator for the rotational invariant DLM;XX0
ll0;map

is

D̂
LM;XX0;map
ll0 ¼ ðGll0 Þ�1

X
mm0

Xmap
lm X0;map�

l0m0 �LM
lm;l0m0 : (56)

To extract �LM, CMB temperature and polarization

maps must be used to reconstruct D̂LM;XX0;map
ll0 by applying

Eq. (56). Then, through the estimator �̂ll0;XX0
LM �

D̂
LM;XX0;map
ll0 =ðWlWl0S

L;XX0
ll0 Þ, we obtain many measurements

of �LM. These measurements are generally correlated
(even for fixed l, l0), so we must take care to construct an

optimal estimator �̂LM for CIPs when using the full set of
available maps for a given experiment. Generalizing the
estimator and error formulae in Refs. [84,86] to our case of

interest, we obtain the optimal estimator �̂LM and its rms
error 	�L

, taking into account all possible correlations

between X and X0:

�̂LM ¼ 	2
�LM

X
l0
l

Gll0
X
AA0

ZL;A0
ll0 D̂

LM;A;map
ll0 ½C�1

ll0 �AA0 ;

	�2
�LM

¼ X
l0
l

Gll0
X
AA0

ZL;A0
ll0 ZL;A

ll0 ½C�1
ll0 �AA0 ;

(57)

where fA; A0g 2 fEB;BE;TB;BT;TT;EE;TE;ETg when
l � l, fA; A0g 2 fEB;TB;TT;EE;TEg when l ¼ l0, and

Z L;A
ll0 � SL;A

ll0 WlWl0 : (58)

The inequality l0 
 l is imposed so that we do not double
count correlations. Sums are subject to the additional re-
striction that for fA; A0g 2 ðTE;ET;EE;TTÞ, lþ l0 þ L is
even, while for fA; A0g 2 ðBE;EB;BT;TBÞ, lþ l0 þ L is
odd. The appropriately normalized covariance matrix for

D̂
LM;AA0;map
ll0 is

CAA
0

ll0 � Gll0 ðhD̂LM;A;map
ll0 D̂

LM;A0;map�
ll0 i

� hD̂LM;A;map
ll0 ihD̂LM;A0;map�

ll0 iÞ: (59)

We now proceed to compute the covariance matrix CAA
0

ll0 .

TABLE I. The ‘‘response functions’’ SL;XX
0

ll0 of CMB fluctua-
tions to CIPs, defined in Eqs. (13) and (37)–(40), for the various
correlation functions.

XX0 SL;XX
0

ll0

TT ðCT;dT
l0 þ CT;dT

l ÞKL
ll0

EE ðCE;dE
l þ CE;dE

l0 ÞHL
ll0

EB �iCE;dE
l0 HL

ll0

TB �iCT;dE
l0 HL

ll0

TE ðCT;dE
l0 HL

ll0 þ CE;dT
l KL

ll0 Þ
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B. Off-diagonal covariances

To numerically evaluate Eq. (59), we must have a model
for the statistics of the observed map covariances, includ-
ing noise. We assume the noise in each pixel is statistically
independent, Gaussian, and uncorrelated with the signal,
and we assume no coupling between the noises in fT;E;Bg.
In this case, the noise power spectra are [89]

CBB;noise
l ¼ CEE;noise

l ¼ 2CTT;noise
l ¼ 8�

fsurveyðNETÞ2
tobs

;

(60)

where NET is the (effective) noise-equivalent temperature
for the experiment, tobs the duration of the experiment, and

fsurvey is the fraction of sky surveyed. The cross spectra

CXX0;noise
l ¼ 0 ifX � X0. The power spectra for the map are

C
XX0;map
l � CXX0

l jWlj2 þ CXX0;noise
l : (61)

It is useful to explicitly evaluate Eq. (59) using Eq. (56).
Since all fields involved are Gaussian, all the four-point
functions that arisemay be evaluated usingWick’s theorem.
Wigner-3J identities may then be fruitfully applied to ob-

tain all the elements of CAA
0

ll0 expressed in terms of CXX0;map
l .

If l ¼ l0, then Cll is a 5� 5 diagonal matrix, with rows/
columns in the order TT, EE, TE, BE, BT, and entries

Cll ¼
F ll 0

0� Gll

 !
; F ll ¼ 2

ðCTT;map
l Þ2 ðCTE;map

l Þ2 CTT;map
l CTE;map

l

ðCTE;map
l Þ2 ðCEE;map

l Þ2 CEE;map
l CTE;map

l

CTT;map
l CTE;map

l CEE;map
l CTE;map

l ½ðCTE;map
l Þ2 þ CTT;map

l CEE;map
l �=2

0
BBB@

1
CCCA; (62)

Gll ¼
C
EE;map
l C

BB;map
l C

BB;map
l C

TE;map
l

C
BB;map
l C

TE;map
l C

BB;map
l C

TT;map
l

0
@

1
A: (63)

If l � l0, Cll0 is an 8� 8 block-diagonal matrix, with rows/columns in the order TT, EE, TE, ET, BE, EB, BT, TB, and
entries

Cll0 ¼
N ll0 0

0 Kll0

 !
; N ll0 ¼

C
TT;map
l C

TT;map
l0 C

TE;map
l C

TE;map
l0 C

TT;map
l C

TE;map
l0 C

TE;map
l C

TT;map
l0

C
TE;map
l C

TE;map
l0 C

EE;map
l C

EE;map
l0 C

TE;map
l C

EE;map
l0 C

EE;map
l C

TE;map
l0

CTT;map
l CTE;map

l0 CTE;map
l CEE;map

l0 CTT;map
l CEE;map

l0 CTE;map
l CTE;map

l0

C
TE;map
l C

TT;map
l0 C

EE;map
l C

TE;map
l0 C

TE;map
l C

TE;map
l0 C

EE;map
l C

TT;map
l0

0
BBBBBBB@

1
CCCCCCCA; (64)

Kll0 ¼

C
BB;map
l CEE

l0 0 C
BB;map
l C

TE;map
l0 0

0 CEE;map
l CBB;map

l0 0 CTE;map
l CBB;map

l0

C
BB;map
l C

TE;map
l0 0 C

BB;map
l C

TT;map
l0 0

0 CTE;map
l CBB;map

l0 0 CTT
l CBB;map

l0

0
BBBBBBB@

1
CCCCCCCA:

In Sec. VIA, we apply the preceding formulae to estimate
the noise in the reconstructed CIP field for a variety of
ongoing and upcoming experiments.

In many cases, most of the sensivity to CIPs comes from
a single combination (e.g., TT or TB) of observables. It is
therefore interesting to consider the constraining power of
a single such combination. In the case of TB, the error is
given by [see Eqs. (57)]

	�2
�L

¼ Xlþl0þL odd

l0
l

Gll0
ðSL;TB

ll0 Þ2
CBB;map
l CTT;map

l0
þ fT $ Bg: (65)

To generate the noise curves discussed in Sec. VIA, we use
expressions analogous to Eq. (65) for each pair of observ-
ables. These noise values are then applied to estimate the

SNR with which a given spectrum of CIPs might be
detected.

C. Signal-to-noise formula

Ultimately, we wish to assess the SNR of our estimators
for a given CIP power-spectrum amplitude A. Each esti-

mator �̂LM gives an independent estimator for A, and by
adding them all with inverse-variance weighting, the total
SNR with which CIPs can be detected is

S=N ¼
�
fsky
2

X
L>Lmin

ð2Lþ 1Þ
�
CL

	2
�L

�
2
�
1=2

; (66)

where the error is evaluated using Eqs. (57), fsky is the

fraction of sky used in the data analysis, and Lmin � f�1=2
sky .
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Modes that vary on scales larger than the area of sky
analyzed will have degraded signal-to-noise. A minimum
value of L is thus imposed to conservatively account for
fractional sky coverage. In practice, these modes would
still contribute to the integrated CIP power in the area of
sky analyzed. In this work, however, we impose a cut at
Lmin to avoid an over-estimate of sensitivity, all the same
establishing the utility of CMB observations for probing
CIPs.

VI. EXPERIMENTAL PROSPECTS

We now apply the formalism of Sec. V to assess the
prospects of using CMB experiments to detect CIPs. We
consider specifically the ongoing WMAP [90] and Planck
[42] satellites and a possible future satellite, EPIC [46].
We also consider the following suborbital experiments:
Polarbear [91], Spider [92], and ACT [93] and SPT [94]
and their polarization upgrades ACTPol [43] and SPTPol
[45]. Finally, we consider an idealistic cosmic-variance
limited (CVL) experiment, limited only by sky cuts to
avoid galactic foreground emission. We do this to roughly
quantify the lowest CIP amplitudes that could ever be
probed with the CMB.

The experimental parameters assumed for these experi-
ments are given in Table II. For WMAP, Planck, EPIC,
and the cosmic-variance limited case, we assume that
fsurvey ¼ 1, while for Polarbear, SPT, ACT, SPTPol, and

ACTPol, we assume that fsurvey ¼ fsky. For WMAP, we

assume use of the V and W bands in the analysis. For
Planck, we assume that the 143 and 217 Ghz channels
will be usable for CMB anisotropy measurements and
take appropriate inverse-variance weighted sums of the
noise in these channels. Appendix B details the calculation
of the requisite derivative power spectra. We include BB
correlations induced by gravitational lensing when evalu-

ating CAA
0

ll0 , using the CAMB lensing module [61].

A. Noise curves

We compute the noise curves in the reconstruction �̂LM

for all experiments under consideration and show the re-
sults in Figs. 3–6. We plot the noise power spectrum,

�CL ¼ 	2
�L

fsky
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

p ; (67)

as well as the signalCL. We use the valueA ¼ 0:017, which
saturates the galaxy-cluster bound on CIPs. Experiments
with larger beams, such as Polarbear and Spider, generally
have higher noise levels (for reconstruction of �) than do
others. At low L, temperature is generally the best probe of
CIPs.At sufficiently highL, theBT correlation takes over as
the best probe of CIPs. At very high L, all the noise curves
grow very large, indicating that the fidelity of the recon-
struction of theCIP breaks down at small scales. This is very
similar to lensing and is expected, as fluctuations in the
baryon fraction couple small to large scales. We note that

C
XX0;map
l is computed using � ¼ 0:086, as the observed

CMBanisotropies are affected both by a screening envelope
at high l, due to reionization, and by a reionization ‘‘bump’’
in polarization at low l. We use CAMB’s built-in tanh reio-
nization model with the parameters of Ref. [77].
We then compute the total noise in the reconstruction

�̂LM for each experiment, adding the different correlations
in quadrature with inverse-variance weighting. This should
be a reasonable approximation to the sum in Eq. (57), as
inverse-variance weighting tends to be dominated sharply
by the lowest noise correlation. The results are shown in the
left panel of Fig. 7. We see that, broadly speaking (with
some alternation as a function of L), the best sensitivity is
achieved by EPIC, followed by SPTPol, ACTPol, Planck,
Polarbear, WMAP, ACT, Spider, and SPT. Obviously, any
specific experimental concept will be outperformed by the
CVL case, as confirmed in the left panel of Fig. 7.

B. Signal-to-noise

Calling on Eq. (66), we compute the SNR expected for
all the CMB experiments we consider as a function of the
rms CIP fluctuation �cl. The results are shown in the right
panel of Fig. 7. Assuming a scale-invariant spectrum, we
see that, already with WMAP, we are able to probe com-
pensated fluctuations in the baryon fraction of �10%, the
lowest value probed in Ref. [35]. We define a ‘‘detection’’
as a measurement with S=N 
 3. Currently operating sub-
orbital experiments, like SPT and ACT, and the upcoming
Spider experiment, perform comparably to WMAP.
Although these experiments are sensitive to a fairly large
rms CIP amplitude, the cluster constraint was obtained at a
different scale, and it is important to check the constraint
using the independent probe offered by the CMB.
Planck and Polarbear offer the next major improvement

in SNR, probing �cl ’ 3% and higher. The addition of
polarization sensitivity to SPT and ACT lowers the range

TABLE II. Experimental parameters for the experiments con-
sidered in this work: beamwidth � (in arcminutes), noise-
equivalent temperature (NET) (in 
K sec1=2), and observation
time tobs (in years).

Experiment Channel � NET fsky tobs

WMAP V Band 21 1200 0.65 7

WMAP W Band 13 1600 0.65 7

Polarbear 150 Ghz 4.0 36 0.015 1.0

Planck HFI 143 Ghz 7.1 62 0.65 1.2

Planck HFI 217 Ghz 5.0 91 0.65 1.2

Spider 150 Ghz 30 4.2 0.1 0.016

ACT 148 Ghz 1.4 58 0.0072 0.14

SPT 150 Ghz 1.2 91 0.0024 0.29

ACTPol 150 Ghz 1.4 6.0 0.10 0.21

SPTPol 150 Ghz 1.0 14 0.016 0.75

EPIC 150 Ghz 5.0 2.0 0.65 4.0

CVL � � � � � � 0.0 0.65 � � �
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of detectable �cl to 0.6%. EPIC would be able to measure
�cl ’ 0:4%. This is a factor of 20 lower than the currently
allowed maximum from measurements of the baryon frac-
tion in galaxy clusters. In the CVL case, an additional order
of magnitude improvement in SNR is possible.

As discussed in Sec. VC, we conservatively estimated
sensitivity, omitting low-L modes. In practice, all-sky
experiments like WMAP, Planck, and EPIC could probe
even smaller CIP amplitudes than estimated here, as the
L ¼ 1 mode could contribute significantly to the SNR.

FIG. 3 (color online). Predicted noise power spectrum �CL in the reconstructed CIP perturbation field�LM in four different ongoing/
future CMB anisotropy experiments, as a function of angular scale L. We separately plot the noise for distinct pairs
of observables: TT is shown as an orange (short-dash–long-dashed), TE as a green (dotted-dashed) line, EE as a magenta (short-
dashed) line, BE as a blue (long-dashed) line, and BT as a red (dotted) line. Also shown (black solid line) is the power spectrum C�

L ,
marked signal, for a scale-invariant spectrum of CIPs with the maximum amplitude allowed by galaxy clusters. Each panel shows
estimates for a different experiment, as indicated in the figure. The beige (grey) shaded region shows the range of L that is not included
in our estimates, due to finite sky coverage effects, as discussed in Sec. VC.
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If experimental techniques improve (approaching the
cosmic-variance limit at very high l) and a way is found
to disentangle CIPs from secondary CMB anisotropies at
these high l, a further order of magnitude improvement in
sensitivity is theoretically possible, using the estimators
developed in this work. Additionally, we have been
conservative in our estimates of SNR, assuming that only
one useful frequency channel is available for EPIC. The
mission concept actually calls for�7 channels, in order to

achieve good foreground subtraction. It may be that if
EPIC is built, more than one useful channel of
signal is obtained, improving the SNR by a factor of order
unity.
It may be that CIPs are not an independent Gaussian

random field (as assumed here), but rather, as in some
curvaton models [34], correlated with the usual adiabatic
fluctuations. In that case, CIPs will induce 3-point corre-
lations between CMB observables, through effects at

FIG. 4 (color online). Predicted noise power spectrum �CL in the reconstructed CIP perturbation field�LM in four different ongoing/
future CMB anisotropy experiments, as a function of angular scale L. Colors (line styles) are as in Fig. 3. We separately plot the noise
for distinct pairs of observables: TT is shown as an orange (short-dash–long-dashed), TE as a green (dotted-dashed) line, EE as a
magenta (short-dashed) line, BE as a blue (long-dashed) line, and BT as a red (dotted) line. Also shown (black solid line) is the power
spectrum C�

L for a scale-invariant spectrum of CIPs with the maximum amplitude allowed by galaxy clusters. Each panel shows
estimates for a different experiment, as indicated in the figure. The beige (grey) shaded region shows the range of L that is not included
in our estimates, due to finite sky coverage effects, as discussed in Sec. VC.

COMPENSATED ISOCURVATURE PERTURBATIONS AND . . . PHYSICAL REVIEW D 84, 123003 (2011)

123003-13



decoupling. In future work, we will pursue the possibility
of probing CIPs with the corresponding CMB bispectra.

VII. CONCLUSIONS

Compensated isocurvature perturbations provide an
intriguing empirical possibility for large-amplitude depar-
tures from homogeneity in the early Universe. The current
constraint from galaxy cluster gas fractions,& 10%, to the
amplitude of such perturbations is surprisingly weak. The
constraint from fluctuations in BBN primordial abundan-
ces is even weaker. While Ref. [35] has pointed out that
there may be CMB signatures induced by CIPs at reioni-
zation, we have shown here that the CMB effects of CIPs at
the surface of last scatter would be several orders of
magnitude larger. We then calculated the full two-point
temperature/polarization correlations induced by CIPs on
the CMB and developed the minimum-variance estimators
for measuring the CIP field with the CMB.

The WMAP satellite may be sensitive to a scale-
invariant spectrum of CIPs, but only if the CIP amplitude
is close to its current upper bound. In the future, sensitivity
to CIP amplitudes as small as �3% may be achieved by
instruments in operation and �0:1%-level fluctuations

accessible in the near future with precise ground- and
space-based polarization experiments that are under con-
struction (ACTPol and SPTPol) or in conceptual develop-
ment (EPIC).
Many steps must be taken before such measurements

can be implemented with real data. Techniques to deal
with partial-sky coverage and realistic instrumental noise
properties must be developed, but these techniques should
be similar to those being developed already to measure
the effects of weak gravitational lensing on the CMB.
Likewise, techniques must be developed to distinguish
the off-diagonal correlations induced by CIPs from those
induced by weak gravitational lensing (e.g., [95]), which
should be comparable in amplitude if the CIP field � is
comparable to the lensing potential �, i.e, �1%.
Although lensing is already included in our reconstruc-

tion noise estimates [	�L
in Eq. (57)], it might also induce

bias in the reconstruction of the CIPs. Gravitational lensing
of the CMB will induce correlations of similar form to
Eqs. (53) and (54), with the distinction that the functions

SL;XX
0

ll0 will be different for lensing than for CIPs. In the

case of lensing, these functions describe the remapping of
CMB observables on a lensing-deflected sky. In the case

FIG. 6 (color online). Predicted noise power spectrum �CL in
the reconstructed CIP perturbation field �LM for an ideal
cosmic-variance limited experiment, as a function of angular
scale L. Colors (line styles) are as in Fig. 3. We separately plot
the noise for distinct pairs of observables: TT is shown as an
orange (short-dash–long-dashed), TE as a green (dotted-dashed)
line, EE as a magenta (short-dashed) line, BE as a blue (long-
dashed) line, and BT as a red (dotted) line. Also shown (black
solid line) is the power spectrum C�

L for a scale-invariant
spectrum of CIPs with the maximum amplitude allowed by
galaxy clusters. The beige (grey) shaded region shows the range
of L that is not included in our estimates, due to finite sky
coverage effects, as discussed in Sec. VC.

FIG. 5 (color online). Predicted noise power spectrum �CL in
the reconstructed CIP perturbation field �LM for the proposed
EPIC satellite, as a function of angular scaleL. Colors (line styles)
are as in Fig. 3. We separately plot the noise for distinct pairs of
observables: TT is shown as an orange (short-dash–long-dashed),
TE as a green (dotted-dashed) line, EE as a magenta (short-
dashed) line, BE as a blue (long-dashed) line, and BT as a red
(dotted) line. Also shown (black solid line) is the power spectrum
C�
L for a scale-invariant spectrum of CIPs with the maximum

amplitude allowed by galaxy clusters. The beige (grey) shaded
region shows the range of L that is not included in our estimates,
due to finite sky coverage effects, as discussed in Sec. VC.
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of CIPs, these functions describe the detailed physical
dependence of CMB anisotropies on the baryon density.
If Eq. (57) is applied to the extension of Eqs. (53) and (54)
that includes gravitational lensing, a bias will be induced in
the measurement of �LM.

The differing forms of SL;XX
0

ll0 will allow lensing and

CIPs to be disentangled. Using a straightforward general-
ization of the estimator in Eq. (57) that includes terms for
both CIPs and lensing, the bias induced by lensing on CIP
measurements may be removed, simultaneously recon-
structing the lensing and CIP fields. This is analogous to
the estimators discussed in Ref. [95], where it is shown that
if reionization is patchy because of inhomogeneity in the
distribution of ionized bubbles around the first sources, the
contributions of patchy reionization and lensing may be
distinguished. In future work, we will explicitly compute
the bias in CIP searches that will be induced by lensing and
will construct the estimators that disentangle lensing from
CIPs. As in Ref. [95], we expect that the signal-to-noise of
the biased and unbiased estimators should be nearly the
same, and so gravitational lensing should not affect the
signal-to-noise estimates of this paper.

The measurements we propose in this paper offer a
precise test of how closely the primordial baryon and
dark-matter distributions are matched and approach the
CIP amplitudes allowed in curvaton models. Moreover, if
future CMB experiments detect subdominant isocurvature
fluctuations between matter and radiation, the techniques

developed in this work could disentangle contributions
from the baryon and CDM isocurvature modes. Even
greater gains in sensitivity are theoretically possible if
the cosmic-variance limit is approached at high l by future
experiments. We are optimistic that, in the near future, we
will learn just how well baryons trace dark matter in the
early Universe.
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FIG. 7 (color online). Combined (predicted) noise power spectrum �CL in the reconstructed CIP perturbation field �LM for 9
different CMB experiments, as a function of angular scale L. Colors and line styles for each experiment are indicated in the legend
(center). Here, noise for the 5 different estimators (TT, TE, EE, BE, and BT) is added in quadrature. Noise curves terminate at L values
where modes become inaccessible due to finite sky effects, as discussed in Sec. VC. Also shown (black solid line) is the power
spectrum C�

L , marked signal, for a scale-invariant spectrum of CIPs with the maximum amplitude allowed by galaxy clusters. The left
panel shows predicted total errors for the indicated experiments. The right panel shows the predicted signal-to-noise ratio that results
from these errors, evaluated using Eq. (66) and assuming a scale-invariant spectrum of CIPs [evaluated using Eq. (47)]. The signal-to-
noise ratio is plotted as a function of the rms CIP fluctuation �cl on cluster scales. The range of fluctuations �cl excluded by cluster
measurements [35] is shown as a beige (grey) band, bounded by a vertical black line with rightward pointing arrows. The black line
with upward arrows attached shows the ‘‘detection’’ region, defined by S=N ¼ 3.
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APPENDIX A: TENSORS ON THE SPHERE

Here we review the tensor spherical-harmonic formalism,
following closely Ref. [86]. The metric on the 2-sphere is

g ¼ 1 0
0 sin2�

� �
; (A1)

where � is the polar angle defined with respect to the origin
of the orientation vector n̂. It is useful to introduce the
orthonormal basis

ê� ¼
1

0

 !
ê� ¼ 0

sin2�

 !
: (A2)

The tensor spherical harmonics are [67]

YE
lm;ab ¼

Nl

2

�
Ylm:ab � 1

2
gabY

c
lm:c�

c
a

�
; (A3)

YB
lm;ab ¼

Nl

2
ðYlm:ac�

c
b þ Ylm:bc�

c
aÞ; (A4)

where the normalization constant is given by

Nl �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl� 2Þ!
ðlþ 2Þ!

s
; (A5)

and all indices following ‘‘:’’ denote covariant
derivatives taken on the 2-sphere. The indices l and

FIG. 8. Lowest-order first-derivative power spectra, as defined in Secs. II and III. These are necessary to reconstruct�LM, as described in
Sec. V. We use the numerical methods of Appendix B to obtain these curves using a modified version of the CAMB [61] code.
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m are multipole indices, while a and b are tensor
indices.

Using Ref. [70], the covariant derivatives may be ex-
pressed in terms of spin-2 spherical harmonics [68,70]:

Ylm:ab ¼ � lðlþ 1Þ
2

Ylmgab þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ
ðl� 2Þ!

s
½2Ylmðmþ �mþÞ

þ �2Ylmðm� �m�Þ�ab: (A6)

The left subscript ‘‘2’’ denotes a spin-weighted
spherical harmonic sYlm of spin s, while � denotes
a tensor product. The spherical basis vectors m� are

m� ¼ 1ffiffiffi
2

p ðê� 
 iê�Þ: (A7)

In row-column form, the spherical tensor basis functions
are then [86]

FIG. 9. Second-order first-derivative power spectra, as defined in Secs. II and III. These are necessary to estimate the corrected power

spectra CXX0;ð2Þ
l . We use the numerical methods of Appendix B to obtain these curves using a modified version of the CAMB [61] code.
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YE ¼

ðþ2Y þ �2YÞ i sin�ð�2Y � þ2YÞ
i sin�ð�2Y � þ2YÞ �sin2�ð�2Y þ þ2YÞ

 !

2
ffiffiffi
2

p ; (A8)

YB ¼

iðþ2Y � �2YÞ sin�ð�2Y þ þ2YÞ
sin�ð�2Y þ þ2YÞ isin2�ð�2Y � þ2YÞ

 !

2
ffiffiffi
2

p ; (A9)

where we have suppressed the lm indices for the sake of
brevity.
To evaluate the polarization anistropies induced by CIPs

(see Sec. III), it is useful to obtain identities for the product
of two distinct (generally different l and m values) spheri-
cal harmonics. Using Eqs. (A8) and (A9), it can be shown
that [86]

ðXE;abÞ�YE
ab ¼

1

2
ðþ2X

� � þ2Y þ �2X
� � �2YÞ; (A10)

FIG. 10. Second-derivative power spectra, as defined in Secs. II and III. These are necessary to estimate the corrected power spectra

CXX0;ð2Þ
l . We use the numerical methods of Appendix B to obtain these curves using a modified version of the CAMB [61] code.
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ðXB;abÞ�YE
ab ¼ � i

2
ðþ2X

� � þ2Y � �2X
� � �2YÞ; (A11)

where X and Y signify tensor spherical harmonics on the
left-hand side of Eqs. (A10) and (A11) and the correspond-
ing spin-weighted spherical harmonics on the right-hand
side of these equations. Relations such as these help
express the integrals of Sec. III as integrals over 3 spin-
weighted spherical harmonics. These are then evaluated by
applying the relation [70]

Z
dn̂ðs1Y�

l1m1
Þðs2Yl2m2

Þðs3Yl3m3
Þ

¼ ð�1Þm1þs1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4�

s

� l1 l2 l3

s1 �s2 �s3

 !
l1 l2 l3

�m1 m2 m3

 !
: (A12)

In evaluating the contribution of terms proportional to

d2fð0Þ=d�2 to perturbed LOS solutions for polarization
anisotropies, integrals over 4 spin-weighted spherical har-
monics must be evaluated. They may be simplified using
the identity [96]

�sYl00�m00 � sYl0m0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l00 þ 1Þð2l0 þ 1Þ

p X
L00M00S00

ð�1ÞM00þS00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L00 þ 1

4�

s
YL00M00

� l00 l0 L00

m00 �m0 M00

 !
l00 l0 L00

�s s �S00

 !
: (A13)

APPENDIX B: DERIVATIVE POWER SPECTRA

We wish to estimate the derivatives dnXlðkÞ=d�n of the
transfer functions XlðkÞ. For the first derivatives, we use a
5-point approximation, running CAMB [61] repeatedly to
obtain the transfer functions at 5 different values of �bh

2

and�ch
2. The first derivative is then well approximated by

dXlðkÞ
d�

¼ X2
i¼�2

ciX
i
lðkÞ

12�
: (B1)

Here Xi
lðkÞ denotes the transfer function evaluated under

the transformation �b ! �bð1þ �Þ, �c ! �c ���b.
We find that the choice � ¼ 0:02 works well to evaluate

the first derivatives. We run convergence tests by doubling
and halving � and find that dXlðkÞ=d� has converged to
�5%, which is more than sufficient for our purposes. We
use values c0 ¼ 0, c�1 ¼ �8, and c�2 ¼ 
1 [97].
For the second derivatives, we use the 7-point numerical

approximation

d2XlðkÞ
d�2

¼ X3
i¼�3

ciX
i
lðkÞ

180�2
: (B2)

In this case, we find that the choice � ¼ 0:066 lies com-
fortably in the zone of convergence. The corresponding
coefficients are c0 ¼ �490, c�1 ¼ 270, c�2 ¼ �27,
and c�3 ¼ 2. We run convergence tests by doubling and
halving � and find that d2XlðkÞ=d�2 has converged to
�5%, which is accurate enough for the work presented
here. The resulting derivative power spectra, defined by
Eqs. (23), are shown in Figs. 8–10. All derivative power
spectra are computed using CAMB, with � ¼ 0. These are
then multiplied by a homogeneous reionization damping
envelope with mean optical depth � ’ 0:086, given by
expressions in Ref. [98]. This was done to isolate the
effects of patchy decoupling, screened by a homogeneous
optical depth at reionization (with zreion ’ 10:5), from addi-
tional (smaller) anisotropies induced at reionization.

APPENDIX C: HARMONIC EXPANSION OF CMB
TRANSFER FUNCTIONS

The most convenient way to generalize Eq. (2) to in-
clude terms / �2ðn̂Þ is to derive second-order corrections
to

fLM �
Z

dn̂Y�
LMðn̂Þfð�; n̂Þ: (C1)

Using the Taylor expansion in real space defined by Eq. (8)
and Eq. (C1), we obtain

fLM ¼ fð1ÞLM þ fð2ÞLM þ . . . ;

fð1ÞLM � �LM

dfð0Þ

d�
;

fð2ÞLM � 1

2

d2fð0Þ

d�2

X
L0M0;L00M00


L00M00
L0M0;LM�L0M0��

L00M00 ;

(C2)

where


L00M00
L0M0;LM � �L00M00

L0M0;LMK
L
L0L00 : (C3)
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