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Grenoble, France

23Observatorio Pierre Auger and Comisión Nacional de Energı́a Atómica, Malargüe, Argentina
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74INFN, Laboratori Nazionali del Gran Sasso, Assergi (L’Aquila), Italy

75Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil
76Palacky University, RCPTM, Olomouc, Czech Republic

77Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague, Czech Republic
78Louisiana State University, Baton Rouge, Louisiana, USA

79Universität Hamburg, Hamburg, Germany
80Universidade Federal do ABC, Santo André, SP, Brazil
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Rosario, Argentina
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The Surface Detector of the Pierre Auger Observatory is sensitive to neutrinos of all flavors above

0.1 EeV. These interact through charged and neutral currents in the atmosphere giving rise to extensive air

showers. When interacting deeply in the atmosphere at nearly horizontal incidence, neutrinos can be

distinguished from regular hadronic cosmic rays by the broad time structure of their shower signals in the

water-Cherenkov detectors. In this paper we present for the first time an analysis based on down-going

neutrinos. We describe the search procedure, the possible sources of background, the method to compute

the exposure and the associated systematic uncertainties. No candidate neutrinos have been found in data

collected from 1 January 2004 to 31 May 2010. Assuming an E�2 differential energy spectrum the limit on

the single-flavor neutrino is E2dN=dE < 1:74� 10�7GeVcm�2s�1sr�1 at 90% C.L. in the energy range

1� 1017eV<E< 1� 1020eV.

DOI: 10.1103/PhysRevD.84.122005 PACS numbers: 95.55.Vj, 95.85.Ry, 98.70.Sa

INTRODUCTION

Neutrinos play a key role in the understanding of the
origin of ultra-high-energy cosmic rays (UHECRs). Their
observation should open a new window to the Universe
since they can give information on regions that are other-
wise hidden by large amounts of matter in the field of view.
Moreover, neutrinos are not deviated by magnetic fields
and would point back to their sources.

In the EeV range, neutrinos are expected to be produced
in the same sources where UHECRs are thought to be
accelerated, as well as during the propagation of
UHECRs through the cosmic microwave background
(CMB) radiation [1]. The latter are called cosmogenic
neutrinos and their presence is expected if the UHECRs
above the spectral cutoff reported in [2] contain a signifi-
cant fraction of protons [3–8].

There are many current programs to search for high-
energy neutrinos with dedicated experiments [9–11].
Although the primary goal of the Pierre Auger
Observatory Surface (SD) and Fluorescence Detectors
(FD) is to detect UHECRs, UHE neutrinos (UHE�s)
can also be identified and limits to the diffuse flux of
UHE�s in the EeV range and above have been set using
earlier Auger data [12–14]. Earth-skimming � neutrinos
are expected to be observed through the detection of

showers induced by the decay of emerging � leptons
which are created by �� interactions in the Earth [15].
Using this mechanism for data collected from January 1,
2004 until April 30, 2008, an upper limit was set:
E2
�dN��=dE� < 6þ3

�3 � 10�8GeVcm�2s�1sr�1 at 90% CL

for each neutrino flavor [16]. The SD of the Pierre Auger
Observatory has also been shown to be sensitive to
‘‘down-going’’ neutrinos of all flavors interacting in the
atmosphere or in the mountains surrounding the SD, and
inducing a shower close to the ground [14,17,18]. In this
paper, we present an analysis based on down-going neu-
trinos and place a competitive limit on the all-flavor
diffuse neutrino flux using data from January 1, 2004
until May 31, 2010.
The main challenge in detecting UHE neutrinos with the

Pierre Auger Observatory is to identify a neutrino-induced
shower in the background of showers initiated by
UHECRs, possibly protons or heavy nuclei [19] and, in a
much smaller proportion, even photons [20].
The identification of �-induced showers is illustrated in

Fig. 1. If the incidence is nearly horizontal, ‘‘old’’ showers
induced in the upper atmosphere by protons, nuclei, or
photons have a thin and flat front at ground level, contain-
ing only high-energy muons and their radiative and decay
products, concentrated within a few tens of nanoseconds.

FIG. 1 (color online). Pictorial representation of the different types of showers induced by protons, heavy nuclei, and ‘‘down-going’’
(DG) as well as ‘‘Earth-skimming’’ (ES) neutrinos. The search for down-going showers initiated deep in the atmosphere is the subject
of this work.
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On the other hand, ‘‘young’’ showers, induced by neutrinos
at a low altitude, have a thick, curved front with a signifi-
cant electromagnetic component spread in time over
hundreds of nanoseconds, specially in their earlier part
that traverses less atmosphere. In this work, to obtain an
unambiguous identification of neutrinos, we select showers
with zenith angle � > 75� and we apply criteria to ensure a
deep interaction. Using less inclined showers is in principle
possible, but will require a better control of the various
sources of background.

The method was tuned using data taken at the SD in the
period from January 1, 2004 until October 31, 2007. A
blind scan over the data collected in the remaining period,
i.e., from November 1, 2007 until May 31, 2010 reveals no
candidates and we place a stringent limit on the diffuse flux
of UHE neutrinos.

For that purpose, we calculate the probability for a
shower, produced deeply in the atmosphere, to trigger the
SD and to be identified as a neutrino candidate. This
probability depends on the neutrino flavor and type of
interaction—charged current (CC) or neutral current
(NC)—and is also a function of neutrino energy E�, inci-
dent zenith angle �, and atmospheric interaction depth.
From these identification probabilities, we calculate the
exposure of the SD to deep inclined neutrino showers.
We give an estimate of the systematic uncertainties on
the diffuse neutrino flux limit, and discuss the impli-
cations of our observations for models of UHE neutrino
production.

THE PIERRE AUGER OBSERVATORY

The Pierre Auger Observatory is a hybrid detector lo-
cated in Malargüe, Mendoza, Argentina [21]. It consists of
an array of particle detectors [22] and a set of fluorescence
telescopes [23] at four sites that provide a unique cross
calibration capability.

The SD is spread over a surface of �3000 km2 at an
altitude of �1400 m above sea level. This corresponds to
an average vertical atmospheric depth above ground of
Xground ¼ 880 g cm�2. The slant depthD is the total gram-

mage traversed by a shower measured from ground in the
direction of the incoming primary particle. In the flat-Earth
approximation, D ¼ ðXground � XintÞ= cos�, where Xint is

the interaction depth and � the zenith angle. For very
inclined showers, the curvature of the atmosphere is taken
into account.

The four fluorescence sites are located at the perimeter
of the surface array viewing the atmosphere above it [23].
In this work, only data collected with the SD of the Pierre
Auger Observatory are used to search for down-going
neutrinos.

The Surface Detector

Since the beginning of its operation for physics analysis,
in January 2004, the SD array has grown steadily and it has

been recording an increasing amount of data. It consists of
�1660 detector units (water-Cherenkov stations) regularly
spaced in a triangular grid of side 1.5 km. Each detector
unit is a cylindrical polyethylene tank of 3.6 m diameter
and 1.2 m height containing 12 000 liters of purified water.
The top surface has three photomultiplier tubes (PMTs) in
optical contact with the water in the tank. The PMT signals
are sampled by flash analog digital converters (FADC) with
a frequency of 40 MHz. Each surface detector is regularly
monitored and calibrated in units of vertical equivalent
muons (VEM) corresponding to the signal produced by a
� traversing the tank vertically and through its center [24].
The surface stations transmit information by radio links to
the Central Data Acquisition System (CDAS) located in
Malargüe. The PMTs, local processor, GPS receiver, and
the radio system are powered by batteries regulated by
solar panels. Once installed, the local stations work con-
tinuously without external intervention.

The trigger

A local trigger selects signals, either with a high peak
value, or with a long duration. The second condition favors
stations hit in the early stage of the shower development
(moderately inclined or deeply induced showers). The
global trigger requires either 4 stations satisfying one of
the conditions, or 3 stations satisfying the second one, in a
compact configuration (see [25] for more details).
With the complete array, the global trigger rate is about

two events per minute, one half being actual shower events
with median energy of 3� 1017 eV.

SIMULATION OF NEUTRINO INTERACTIONS,
INDUCED SHOWERS AND THE RESPONSE OF

THE SURFACE DETECTOR.

Monte Carlo simulations of neutrino-induced showers
are used to establish identification criteria and to compute
the acceptance of the SD to UHE�s. The whole simulation
chain is divided in three stages:
(1) High-energy processes:

(i) The �-nucleon interaction is simulated with
HERWIG [26].

(ii) In the case of �� CC interactions, the � lepton
propagation is simulated with a dedicated code
and its decay (when necessary) with TAUOLA

[27].
(2) The shower development in the atmosphere is pro-

cessed by AIRES [28].
(3) The Surface Detector simulation is performed with

the Offline software [29].
In the next subsections, we discuss each stage in detail.

Neutrino interaction

HERWIG is a general-purpose event generator for high-

energy processes, with particular emphasis on the detailed
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simulation of QCD parton showers. Here it is used to
compute the fraction of the primary energy that goes into
the hadronic vertex and to provide the secondary particles
produced for both charged (CC) and neutral current (NC)
interactions (see Fig. 2 for a summary of all the channels
considered in this work).

The energy carried by the hadronic jet is always con-
verted into a shower which could be seen by the SD. In
addition, the energy of the lepton produced in a CC inter-
action may be totally or partially visible. An electron is
promptly converted into an electromagnetic shower. A � at
EeVenergies has a decay length of�50 km and may decay
before reaching the ground producing a secondary shower
that can be detected (so called ‘‘double-bang’’ event). On
the other hand, it is very unlikely that a high-energy muon
will produce a detectable shower, so its interaction and/or
decay are not simulated. For all channels and neutrino
flavors, a set of primary � interactions is constructed
from a grid of incoming neutrino energies, zenith angles
and interaction depths. In ‘‘double-bang’’ events, the decay
products of the � lepton are generated by TAUOLA. The
energies and momenta of the secondary particles are then
injected into the program AIRES to generate the atmos-
pheric cascade.

Down-going neutrinos interacting in the mountains

In addition to the interactions in the atmosphere, we also
take into account the possibility of � neutrino interactions
within the mountains around the Pierre Auger Observatory
(mainly the Andes located to the northwest of the array),
producing a hadronic jet and a � lepton. The hadronic or
electromagnetic showers produced by neutrinos of any
flavor are absorbed either in the rock itself, or in the few
ten kilometers of atmosphere between the mountains and
the Auger array, and may be neglected. So only showers
induced by the decay of the �s may be seen. In other terms,
this process is exactly equivalent to the ‘‘Earth-skimming’’
mechanism, but it is included in this study because such
showers are going downwards.

The topography surrounding the SD of the Auger
Observatory is accounted for using a digital elevation
map [30]. For the Auger site, the line of sight intercepting
the mountains corresponds only to zenith angles very close

to the horizon (� > 89�). Even though the solid angle is
much smaller than for showers with � > 75�, this mecha-
nism is still relevant because mountains are much more
massive. It is simulated in the same way as the ‘‘double-
bang’’ process, accounting in addition for energy loss of
the � lepton in the rock [31].

Detector simulation

To avoid excessively long computing times, AIRES uses
the standard thinning procedure [32] consisting in follow-
ing only some branches in the tree of interactions in the
atmosphere. Weights are attributed to the surviving
branches, obtaining a representative set of particles at
any stage, especially at ground level. The first step in the
detector response simulation is to regenerate a fair sample
of the particles expected in each station from the thinned
output of AIRES. This unthinning procedure is detailed in
[33]. Each particle reaching a surface detector station is
injected in the station, and the amount of Cherenkov light
produced in water calculated with GEANT4 [34]. The FADC

traces of the PMT signals are simulated using the Offline
framework [29]. The total signal due to the particles enter-
ing the station, as well as several quantities characterizing
the FADC trace which will be relevant for neutrino iden-
tification (see below) are then calculated. The local and
global trigger conditions are applied in the same way as for
real data.

INCLINED EVENT SELECTION AND
RECONSTRUCTION

Events occurring during periods of data acquisition in-
stabilities [25] are excluded. After a ‘‘trace cleaning’’
procedure removing the accidental signals (mainly atmos-
pheric muons), the start times of the signals in the stations
are requested to be compatible with a plane shower front
moving at speed c. If this condition is not fulfilled using all
stations included in the global trigger, an iterative proce-
dure removes stations until a satisfactory configuration is
found with at least four stations. Otherwise the event is
rejected. The angle between a vertical axis and the perpen-
dicular direction to this plane is the reconstructed zenith
angle �rec of the shower. Nearly horizontal showers are

FIG. 2. Different types of atmospheric showers induced by neutrinos.
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selected by requiring �rec > 75�. In some cases a non-
inclined event, produced by detector fluctuations or two
independent showers arriving close in time (less that
60 ns), may be incorrectly reconstructed as inclined. To
remove these events, we also compute the apparent speed
of propagation of the trigger between every pair of stations
(Vij) and the average speed of the event (hVi), as in [16].

Genuine inclined showers have a ‘‘footprint’’ (configura-
tion of the stations) elongated in the direction of arrival
(left-hand panel of Fig. 3). The apparent speed of
propagation of the signal, along the major axis of the
footprint, is concentrated around the speed of light c.

Under the plane front approximation, the zenith angle is
’ arcsinðc=hViÞ. In Fig. 4, we show the distribution of hVi
for events with �rec > 75� acquired between January 1,
2004 and October 31, 2007. The shaded region corresponds
to misreconstructed or low quality events (see right-hand
panel of Fig. 3 for an example). To remove these events, we
optimized a set of quality cuts using a MC sample of 5000
regular inclined showers initiated by hadrons near the top

of the atmosphere: hVi is required to be less than
0:313 mns�1, with a relative spread smaller than 0.08%.
Also, the ‘‘footprint’’ is required to be elongated: L=W >
3, where L andW are the length and the width (eigenvalues
of the inertia tensor, as defined in [16]). These cuts reject
only 10% of genuine inclined showers.
For events where all stations are aligned along one of the

directions of the array, �rec cannot be computed and we
rely on the average speed of the event, hVi. These ‘‘inline’’
events are of great importance since the Monte Carlo
simulations show that low energy neutrinos (& 1018 eV)
typically present this type of configuration in the SD.
There is an additional requirement for events constituted

by an inline event plus a nonaligned station (a nonaligned
event that would become inline by removing just one
station). This kind of spatial configuration is particularly
prone to bad reconstruction if the nonaligned station was
triggered by accidental muons not belonging to the shower
front. To avoid this problem, we also reconstruct the inline
event obtained by the removal of the nonaligned station
and require it to have mean ground speed compatible with a
zenith angle larger than 75�.

IDENTIFICATION OF NEUTRINO CANDIDATES

For this analysis, the whole data period (January 1, 2004–
May 31, 2010), was divided into two separate samples.
Selected events recorded between January 1, 2004 and
October 31, 2007 (equivalent to �1:4 yr of a complete SD
array working continuously) constitute the ‘‘training’’ sam-
ple, used to develop and optimize the neutrino identification
algorithms. Data collected between November 1, 2007 and
May 31, 2010 (equivalent to �2 yr of the full array),
constitute the ‘‘search’’ sample. These latter events were
not processed before the final tuning of the algorithms
defining the neutrino identification criteria.

FIG. 3 (color online). Left panel: Event produced by a nearly horizontal shower (�rec ¼ 80�). The footprint (ellipse) is elongated
along the reconstructed direction of arrival (arrow). Right panel: a noninclined event with �rec ¼ 79�. The major axis of the footprint
and the reconstructed direction of arrival do not point in the same direction. Close inspection of the event suggests that stations 3 and 5
are accidental and corrupt the reconstruction. The numbers indicate the triggering order of the stations.

FIG. 4. Distribution of the mean ground speed of the signal for
events with �rec > 75� acquired between January 1, 2004 and
October 31, 2007.
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Discrimination of neutrinos from hadronic showers

Neutrinos, unlike protons and heavier nuclei, can gen-
erate showers initiated deeply into the atmosphere. The
main signature of these deep showers in the SD is a
significant electromagnetic (EM) component spread in
time over hundreds of nanoseconds, especially in the re-
gion on the ground at which the shower arrives earlier (see
Fig. 5). On the other hand, hadron-induced showers start
high in the atmosphere, their electromagnetic component is
fully absorbed and only high-energy muons and their
radiative and decay products reach the surface, concen-
trated within a few tens of nanoseconds.

We identify stations reached by wide EM-rich shower
fronts via their Area-over-Peak ratio (AoP), defined as the
ratio of the integral of the FADC trace to its peak value,
normalized to 1 for the average signal produced by a single
muon. In background horizontal showers, the muons and
their electromagnetic products are concentrated within a
short time interval, so their AoP is close to 1. In the first
stations hit by a deep inclined shower, it is typically
between 3 and 5 (see left-hand panel of Fig. 6).

To quantify the distinctive features of hadronic and
deeply penetrating showers induced by neutrinos at large
zenith angle, improve the separation between the samples
and enhance the efficiency, while keeping a simple physi-
cal interpretation of the identification process, we choose a
multivariate technique known as the Fisher discriminant
method [35]. To tune it, we used as a ‘‘signal’’ sample,
the Monte Carlo simulations—exclusively composed of
neutrino-induced showers—and as ‘‘background,’’ the
training sample introduced above—overwhelmingly, if
not totally, constituted of nucleonic showers. We use real
data to train the Fisher discrimination method, instead of
simulations of hadronic showers, for two main reasons: the
composition of the primary flux is not known, and, more-
over, the interaction models used to simulate hadronic
showers may bias some features of the tail of the distribu-
tions of the observables used in this analysis. Also, the
detector simulation may not account for all possible detec-
tor defects or fluctuations that may contribute to the back-
ground to ultra-high-energy neutrinos, while the real data
contain all of them, including those which are not well
known, or even not yet diagnosed. Note that, since we
apply a statistical method for the discrimination, the use
of real data as a background sample does not imply that we
assume it contains no neutrinos, but just that, if any, they
constitute a small fraction of the total recorded events.
After training the Fisher method, a good discrimination

is found when using the following ten variables [14]: the
AoP of the four earliest triggered stations in each event,
their squares, their product, and a global early-late asym-
metry parameter of the event. We include the square of the
AoP because when the distribution of the input variables is
not Gaussian, the addition of a nonlinear combination of
them improves the discrimination power [36]. The product
of the AoP of the earliest four stations in the event aims at
minimizing the relative weight of an accidentally large
AoP produced, for instance, by a single muon which
does not belong to the shower front arriving at a station
before or after the shower itself. This variable is also a very
good discriminator as shown in the right-hand panel of
Fig. 6. The early-late asymmetry parameter is a global

)
1

(AoP
10

Log

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

E
ve

n
ts

-410

-310

-210

-110

1

 simulationsνMC

Training data

)4 AOP×3 AOP×2 AOP×
1

(AOP
10

Log

0 0.5 1 1.5 2 2.5 3

E
ve

n
ts

-410

-310

-210

-110

1

 simulationsνMC

Training data

FIG. 6. Distributions of the AoP of the earliest station (left) and the product of the first four AoP (right) in background (real events in
the training sample) and simulated �e CC events. There is a clear separation between both samples indicating that the AoP of the early
stations is a good discrimination observable to be used in the Fisher method. See text for more details.

FIG. 5. Upper panel: sketch of an inclined shower induced by a
hadron interacting high in the atmosphere. The EM component is
absorbed and only the muons reach the detector. Lower panel:
deep inclined shower. Its early region has a significant EM
component at the detector level.
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observable of the event defined as the difference between
the mean AoP of the earliest and latest stations in the event.
We have checked in simulations that neutrino-induced
events typically have an asymmetry parameter larger than
proton or nucleus-induced showers [14]. Finally, the addi-
tion of other observables characterizing the time spread of
the signals, such as the rise-time (between 10% and 50% of
the integrated signal) or the fall-time (between 50% and
90% ), or including local observables of the stations that
trigger last in the event, do not bring about significant
improvements in the discrimination.

As the shower front is broader at larger distance from the
core for both young and old showers, the discrimination is
better when splitting the samples according to the multi-

plicity N (number of selected stations). A Fisher discrimi-
nant was built separately for 4 � N � 6, 7 � N � 11,
and N � 12. The left-hand panel of Fig. 7 shows the
excellent separation achieved for events in each of the 3
subsamples.
Once the Fisher discriminant F is defined, one has to

choose a threshold value that separates neutrino candidates
from regular hadronic showers. Because the predictions of
the neutrino detection rates are very low, we want to keep
the expected rate of background events incorrectly classi-
fied as neutrinos well below any detectable signal: in
practice, we wish it to be less than one event for each
multiplicity subsample within the expected 20 yr lifetime
of the Auger Observatory.
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FIG. 7. Left panel: distribution of the Fisher discriminant (see text for details) for events with station multiplicity 4 � N � 6 (top),
7 � N � 11 (middle), 12 � N (bottom). Real data in the training period (January 1, 2004–October 31, 2007) describe the nucleonic
background, while Monte Carlo simulated down-going neutrinos correspond to the signal. The vertical lines indicate the cut in the
Fisher value that needs to be placed to have less than 1 event in each period of time (1 yr, 20 yr, 100 yr). Right panel: fit of an
exponential function to the distribution of the Fisher discriminant F for the training data over the ½1�; 3�� interval. The predicted
(Pred.), see text, and actual (Real) number of events are given for each of the test zones (½3�; 4��, ½4�; 5��, ½5�; 6��, and ½6�; 7��).
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The training period was used to produce a reasonable
prediction of the background. We observe that the tail of
the background distribution of F is consistent with an
exponential shape. In this way, we produced a fit to the
distribution of F for the training data in the ½1�; 3��
region, where � is the RMS of the training sample. This
procedure is illustrated in Fig. 7. We then extrapolated it to
find the cuts corresponding to 1 event per 1 yr, 20 yr, or
100 yr on the full array. The validity of the extrapolation is
not guaranteed, but some physical arguments support an
exponential tail, such as the fact that showers produced by
nuclei or protons (or even photons) have a distribution of
Xmax that shows an exponential shape, dictated by the
distribution of the primary interaction. The exponential
model may be checked below the cut by comparing the
actual number of events observed in the ½3�; 4��,
½4�; 5��, ½5�; 6��, and ½6�; 7�� regions, to the number
of events predicted by extrapolating the fit done in the
½1�; 3�� region. The values are in good agreement as
shown in Fig. 7. For our search sample (equivalent to
2 yr of full detector data) we have an estimated background
of 0.1 events for each multiplicity class that add up to a
total of 0.3 events with a statistical uncertainty of 30%. As
we do not have at present a robust estimation of the
background systematics, we take a conservative approach
and do not use this value to improve our flux upper limit.

As can be seen in Fig. 7, the identification cuts reject a
small fraction of the neutrino events. Consequently, its
choice has only a small impact on the neutrino identifica-
tion efficiency. The neutrino-induced showers rejected by
these cuts are those interacting far from the ground and
similar to nucleonic-induced showers.

IDENTIFICATION EFFICIENCIES
AND EXPOSURE

During the data taking, the array was growing and had
sporadic local inefficiencies. Simulations of deep inclined
neutrino showers indicate that besides an elongated pattern
on the ground they have a large longitudinal uncertainty on
the core position. For these reasons, we cannot apply (as
done in the case of vertical showers [25]) a geometrical
method relying on the estimated position of the shower
core within a triangle or hexagon of active stations at each
time. Moreover, a shower can trigger the surface detector
even if the core falls outside the array. Besides, for deep
inclined showers the trigger and identification efficiencies
depend not only on the shower energy and zenith angle but
also on the depth of the first interaction. For these reasons,
a specific procedure was designed to compute the time-
dependent acceptance and the integrated exposure.

The instantaneous status of the array is obtained from
the trigger counting files, which respond to the modifica-
tions of the array configuration at every second. To avoid
having to cope with an enormous number of configura-
tions, we approximate the calculation of the aperture by

subdividing the search period in three-day intervals, and
we select a reference array configuration to represent each.
Once this is done, we calculate the neutrino identification
efficiencies and the aperture assuming that the array
remains unchanged during each three-day interval.
Each reference configuration was chosen so that this
approximation, if wrong, underestimates the exposure by
a small amount (� 1%).
MC-generated neutrino showers produced by AIRES

were randomly distributed over an extended circular area
around the array, such that a shower with a core falling
outside this area has no chance to trigger the array. For each
three-day configuration, the FADC traces of the active
Cherenkov stations were simulated, the local and global
trigger conditions were applied, and the events were pro-
cessed through the same reconstruction and identification
algorithms as the data (Sec. V).
Figure 8 shows an example of a shower that would be a

neutrino candidate in an ideal array, placed at four random
positions on the circular surface defined above. Two of the
realizations are effectively recognized as neutrino events in
the real array for that particular layout. The other two are
either not seen, or not identified as neutrinos.

FIG. 8. An example of the result of placing the same deeply
penetrating neutrino-induced shower at 4 different positions in
an actual array configuration (shaded area) corresponding to
October 27, 2007. The arrows indicate the azimuthal arrival
direction of the shower, the dots represent the infinite ideal array
and the circumference the extended area (see text). Solid sym-
bols—either circles or squares—correspond to triggered stations
of the simulated shower that are also on the actual array. Open
symbols are stations that are not in the real array. Shower 1 is
completely contained and identified as a neutrino. Shower 2 falls
entirely outside the real array and it does not trigger the array.
Although shower 3 triggers the array, it is not identified as a
neutrino because the earliest three stations are not in the real
array. Shower 4 loses some stations but keeps the earliest which
are enough to identify the event as a neutrino.
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Figure 9 shows the efficiency (fraction of events which
pass all steps) as a function of interaction depth in the
atmosphere for neutrinos of E� ¼ 1018 eVand � ¼ 80�, in
an ‘‘ideal’’ array without holes nor edges. There is essen-
tially a plateau between a minimal depth (needed for the

�-induced shower to reach a sufficient lateral expansion)
and a maximal one (such that the electromagnetic compo-
nent is almost extinguished at ground level) . Below and
above this plateau, the efficiency drops rapidly to zero. In
other words, for a given channel and given values of � and
E�, there is a slice of atmosphere above the array where the
interactions are detected and distinguished: the matter
contained in this volume will be referred to as the ‘‘mass
aperture’’ in the following.
For each three-day period, we compute the effective area

defined as the integral of the efficiency over core position:

AeffðE�; �;D; tÞ ¼
Z

"ð ~r; E�; �;D; tÞdA: (1)

The effective mass aperture MeffðE�; tÞ is obtained by
integrating over the injection depth D and the solid angle:

MeffðE�;tÞ¼2�
ZZ

sin�cos�AeffðE�;�;D;tÞd�dD: (2)

To compute this integral, we perform a spline interpolation
on the finite three-dimensional mesh, where Aeff is deter-
mined. The total mass aperture is then obtained summing
MeffðE�; tÞ over different configurations corresponding to a
certain period of time. It is defined independently of the
�-nucleon cross section.
A combined exposure can be obtained by a summation

over the search period:

E ðE�Þ ¼
X
i

½!i�iðE�Þ
Z Mi

effðE�; tÞ
m

dt�: (3)

The sum runs over the three neutrino flavors (with fractions
!i) and the CC and NC interactions; m is the mass of a
nucleon. Here we assume a full �� $ �� mixing, leading

to !i ¼ 1 for the three flavors.
We use the �-nucleon cross section given in [37] (CSS

hereafter) to compute the reference exposure of our search
period. It is shown in Fig. 10 as a function of neutrino
energy. In Table I, we also give the mass aperture inte-
grated in time for all the considered channels, allowing the
reader to compute the exposure using different cross-
sections or flux models.
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FIG. 9. Example of trigger and identification efficiency as a
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Notice that the Fisher discriminant neutrino selection actually
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TABLE I. Effective mass aperture integrated over time for the search period (November 1,
2007 to May 31, 2010) for down-going neutrinos of the Pierre Auger Surface Detector [in units
of (g sr s)].

logE=eV �e CC �� CC �� CC �x NC �� Mount.

16:75 4:35 � 1021 5:27 � 1020 1:82 � 1021 2:11 � 1020 -

17 1:27 � 1022 3:16 � 1021 1:09 � 1022 1:26 � 1021 -

17:5 7:94 � 1022 2:34 � 1022 6:02 � 1022 9:37 � 1021 1:98 � 1022
18 2:17 � 1023 8:01 � 1022 1:77 � 1023 3:20 � 1022 1:21 � 1023
18:5 3:95 � 1023 1:71 � 1023 2:84 � 1023 6:84 � 1022 2:51 � 1023
19 5:44 � 1023 2:56 � 1023 3:58 � 1023 1:03 � 1023 3:13 � 1023
19:5 6:32 � 1023 2:99 � 1023 4:36 � 1023 1:20 � 1023 3:06 � 1023
20 7:29 � 1023 3:45 � 1023 5:19 � 1023 1:38 � 1023 2:82 � 1023
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SYSTEMATIC UNCERTAINTIES

The calculation of the mass aperture of the Auger
Observatory for neutrino showers requires the input of
several ingredients which we have selected from amongst
conventionally used options. Some of these choices are
directly related to the Monte Carlo simulation of the show-
ers, i.e., generator of the first neutrino interaction, parton
distribution function (PDF), air shower development, and
hadronic model. Others have to do with the precision of our
knowledge of the topography of the mountains surrounding
the observatory, and some come from the limitations on the
theoretical models estimating, for instance, the interaction
cross section or the � energy loss at high energies. By
adding linearly all these contributions, our estimate of

the total systematic uncertainty on the exposure amounts
to +22%–46%.
In the following subsections, we discuss in detail the

dependence of the exposure on each of the above men-
tioned choices by modifying the different ingredients one
by one.

Monte Carlo simulation of the shower

The reference Monte Carlo neutrino sample was pro-
duced with HERWIG 6.5.10 [26] as interaction generator in
combination with the CTEQ06m [38] parton distribution
functions, AIRES 2.8 as shower simulator (thinning value
of 10�6) and QGSJETII.03 [39] as hadronic model.
In order to assess the influence of this particular choice

of models on the detector aperture, independent sets of CC
�e showers were generated at 1 EeV and 80� using differ-
ent combinations of several interaction generators, PDFs,
shower simulators, thinning values, and hadronic models.
We chose this particular energy and angle bin because it is
the one that contributes the most to the limit.
In Fig. 11, we show, as an example, the detection effi-

ciency as a function of the slant depth when using our
reference options (HERWIG) and when changing only the
interaction generator (PYTHIA). Since the shapes of the
neutrino-selection efficiency curves remain similar, we
can estimate the effect of changing the interaction genera-
tor by computing the integral of the curves and reporting
the relative difference (RD) between them. The same
procedure is applied to estimate the effect of changing
other ingredients of the simulation. A summary of this
RD is given in Table II.
We observe that the changes in interaction generator,

PDF, shower simulator, and hadronic model brought about
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FIG. 11. Identification efficiency as function of the slant depth
for systematic uncertainties studies. Comparison between inter-
action generators (HERWIG and PYTHIA). The rest of the
Monte Carlo input parameters remain the same.

TABLE II. Summary of the relative differences (RD) between the reference calculation of the
exposure and the calculations done changing one of the ingredients of the Monte Carlo
simulations at a time. The RD were obtained for zenith angle � ¼ 80� and energy
E ¼ 1 EeV unless otherwise stated. The statistical uncertainty of all the relative differences is
	4%.

Parameter Reference Modification RD

(A) (B)

R
B�

R
A

ð
R
Bþ

R
AÞ=2

Interaction generator HERWIG PYTHIA [40] -7%

HERWIG++ [41] -7%

PDF (gen. level) CTEQ06m MSTW [42] -7%

Shower Simulator AIRES CORSIKA 6.9 [43] -17%

Hadronic Model QGSJETII QGSJETI [44] +2%

SIBYLL [45] -2%

SIBYLL (E=0.3 EeV) -1%

SIBYLL (E=3 EeV) -2%

SIBYLL (�=85�) 0%

SIBYLL (�=89�) +4%

Thinning 10�6 10�7 +7%
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a decrease of the estimated aperture, with the choice of the
shower simulation being the dominating effect. On the
other hand, an improvement of the relative thinning level
causes the opposite effect. Although we cannot recompute
the aperture for all possible alternatives of the relevant
ingredients, the relative differences reported in Table II
serve as an estimate of the systematic dependence of our
result on the simulation options. For each category of
potential systematic effects in Table II, we take the maxi-
mum observed RD as an estimate of the corresponding
systematic uncertainty. A total systematic uncertainty of
+9%–33% on the exposure is obtained by linear addition of
the maximum positive and negative deviations.

�-nucleon cross sections and � energy loss

We adopted the uncertainty in the �-nucleon cross sec-
tion as calculated in [37]. It translates into a 	7% uncer-
tainty in the total exposure. In any case, as mentioned
above, Table I shows the Auger mass aperture for down-
going neutrinos which does not depend on the � cross
section; hence the expected neutrino event rate (and neu-
trino flux limit) can be computed as necessary for other
models and values of the � cross section (see, e.g., [46,47]).

Topography

As explained in Sec. III B, the actual topography sur-
rounding the observatory has been taken into account by
detailed Monte Carlo simulations which include digital
elevation maps. In principle, uncertainties due to different
tau energy loss models should not be important for down-
going neutrinos, but, due to the fact that the Pierre Auger
Observatory is close to the Andes, a non-negligible con-
tribution to the event rate from down-going � neutrinos
interacting in the mountains and producing a � lepton is
expected (see Table III). The systematic error on the total
reference exposure due to this channel amounts to 	6%,
dominated by the uncertainties on the cross section and
energy loss models.

RESULTS AND DISCUSSION

In this section, we present the calculation of the upper
limit to the diffuse flux of UHE�s and compare our results

to some selected model predictions and discuss the
implications.

Upper limit on the diffuse neutrino flux

Once the multivariate algorithms and selection cuts
defining a neutrino candidate were studied and tuned
with the Monte Carlo simulations and the training data
sample, we applied them to the search data sample. We first
tested the compatibility between the shapes of the tails of
the Fisher distributions during training and search periods
by using an unbinned Kolmogorov hypothesis test, and

TABLE III. Expected fractions of neutrinos in the selected
sample according to their flavor and interaction channel (CC and
NC). These fractions are derived assuming that electron, muon,
and � neutrinos are in the same proportion in the diffuse flux.

Channel CC NC Total

e 33% 5% 38%

� 13% 5% 18%

� air 24% 5% 29%

� mountains 15% 15%

Total 85% 15% 100%
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FIG. 12. Fisher distribution of the search sample (November 1,
2007–May 10, 2010) for events with multiplicity 4 � N � 6
(top), 7 � N � 11 (middle), 12 � N (bottom). No neutrino
candidates are found.
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found them to be in agreement with p-values of 0.37, 0.16,
and 0.17 for the small, medium, and large multiplicity
classes, respectively.

We found no candidate events in the search period (see
Fig. 12). The highest test zone with events in the Fisher
distribution of the search sample is the 6–7 sigma region. It
has only one event and we expected 2.2 from the exponen-
tial fit to the test sample.

The expected number of events from a diffuse flux of
neutrinos in a given energy range is given by

Nexpected ¼
Z Emax

Emin

�ðE�ÞEðE�ÞdE�; (4)

where EðE�Þ is our reference exposure [Eq. (2) and Fig. 10].
The upper limit is derived for a differential neutrino flux
�ðE�Þ ¼ k � E�2

� . Also, we assume that due to neutrino
oscillations the diffuse flux is composed of electron,
muon, and � neutrinos in the same proportion. We expect
less than one background event after the neutrino-selection
procedure is applied to the data sample corresponding to the
reference exposure (see Sec. 5). Given the uncertainties of
this estimate, the number of background events will be
assumed to be zero, which results in a more conservative
upper limit. A semi-Bayesian extension [48] of the
Feldman–Cousins approach [49] is used to include the
uncertainty in the exposure, giving an upper limit at 90%
CL on the integrated flux of diffuse neutrinos of

k < 1:74� 10�7GeVcm�2s�1sr�1: (5)

The effect of including the systematics fromMC,�-nucleon
cross sections and � energy loss is to increase the limit by
15%. The limit is quoted for a single neutrino flavor. The
relative importance of each neutrino flavor in the determi-
nation of the upper limit can be derived from Table III,
which gives the expected fractions of neutrinos in the
selected sample according to their flavor and interaction

channel. The largest contribution comes from �e CC. The
second largest is�� CC, due to double-bang interactions and
the large average fraction of energy going into the shower in
the decay of the � lepton. Our result together with other
experimental limits [50] is shown in Fig. 13.
Another usual way of presenting the upper bound is in

the less-model-dependent differential form. It assumes that
the diffuse neutrino flux behaves as �1=E2 within energy
bins of unity width on a natural logarithmic scale, and is
given by 2:44=EðE�ÞE� accounting for statistical uncer-
tainties only and assuming no background [51]. The dif-
ferential limit obtained including systematic uncertainties
is shown in Fig. 14, together with our previous result on
up-going �� [13] and two theoretical predictions for cos-
mogenic neutrinos [6,7]. We observe that we achieve
maximum sensitivity in the 0.3–10 EeV energy range.

Model predictions

There is a wide variety of models predicting fluxes of
neutrinos with energies in the EeV range [1]. They are
usually separated into three groups: cosmogenic neutrinos,
e.g., [6,7], neutrinos produced in accelerating sources, e.g.,
[52,53], and neutrinos of exotic origin, e.g., [52]. In all
these models, there are parameters with unknown values
which can change the spectral shape and strength of the
flux. In Table IV, we give the event rates after folding these
fluxes with our reference exposure.
Current theoretical flux predictions for cosmogenic neu-

trinos [6,7] seem to be out of reach of our present sensi-
tivity. Concerning neutrinos produced in accelerating
sources there are popular models [53,54] which predict
event rates which could be detected in the next few years.
Regarding exotic models [52], TD-Necklaces will be
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within our sensitivity range in one or two years, while
Z-Burst models are already strongly disfavored. Note that
all such ‘‘top down’’ models are also tightly constrained by
the limits of the Pierre Auger Observatory on the photon
fraction in UHECR [20].

ACKNOWLEDGMENTS

The successful installation, commissioning and opera-
tion of the Pierre Auger Observatory would not have been
possible without the strong commitment and effort from the
technical and administrative staff in Malargüe. We are very
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