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Student-¢ based filter for robust signal detection
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The search for gravitational-wave signals in detector data is often hampered by the fact that many data
analysis methods are based on the theory of stationary Gaussian noise, while actual measurement data
frequently exhibit clear departures from these assumptions. Deriving methods from models more closely
reflecting the data’s properties promises to yield more sensitive procedures. The commonly used matched
filter is such a detection method that may be derived via a Gaussian model. In this paper we propose
a generalized matched-filtering technique based on a Student-t distribution that is able to account for
heavier-tailed noise and is robust against outliers in the data. On the technical side, it generalizes the
matched filter’s least-squares method to an iterative, or adaptive, variation. In a simplified Monte Carlo
study we show that when applied to simulated signals buried in actual interferometer noise it leads to a
higher detection rate than the usual (““Gaussian™) matched filter.
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L. INTRODUCTION

Since the existence of gravitational radiation was estab-
lished as a consequence from general relativity theory, a
great amount of effort has gone into the development of
instruments and methods to detect gravitational waves
directly [1,2]. Gravitational waves (GWs) are notoriously
weak compared to the sources of noise in today’s ground-
based gravitational-wave detectors, and so it takes both
extraordinarily sensitive instruments as well as sophisti-
cated data analysis techniques to measure them. The output
of an interferometric GW detector is essentially a time
series of nonwhite noise, and—potentially—a superim-
posed signal whose exact waveform is determined by
several parameters. Data analysis aiming for GW detection
hence requires filtering of time-series data for rare, weak
signals that are often of a known, parametrized shape.
Many commonly used approaches are based on matched
filtering the data. The matched filter may be derived as a
maximum-likelihood (ML) detection method in the frame-
work of a Gaussian noise model, but more generally will
actually be a ML procedure for a wider class of models.
While the method works remarkably well and is able to
discriminate weak signals from the noise, it commonly
runs into problems due to non-Gaussian or nonstationary
behavior of the actual instrument noise. For example, the
matched filter often is sensitive to outliers or loud transient
noise events in the data, which, although showing little
similarity with the signal sought for, also do not look like
plain noise either. A lot of effort needs to go into identify-
ing such false alarms.

We propose a more robust procedure that is based on a
Student-r distribution for the noise, as introduced in
Ref. [3]. Several motivations may be used for introducing
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the Student-# model; most obviously it exhibits “heavier
tails” and nonspherical probability density contours, al-
lowing one to accommodate outliers in the noise.
Alternatively, the model may also be seen as incorporating
imperfect prior knowledge of the noise spectrum, either
because it is only estimated to limited accuracy, or because
it is varying over time. Models of this kind are commonly
used for robust parameter estimation, but, as we will show
in the following, the model also exhibits a better perform-
ance for detection purposes when the assumption of sta-
tionary Gaussian noise is violated. We expect the proposed
filtering method to be useful in other signal-processing
contexts as well.

In Sec. II we will first derive the usual matched filter
from a Gaussian noise model. In Sec. III we introduce the
Student-r model, elaborate on the motivation for its use as
well as point out the differences from the Gaussian model,
and derive the analogous filtering procedure. In Sec. IV we
report on a case study using real detector data and simu-
lated signals to show that here the Student-7 based filter
indeed yields a better detection rate. We close with some
concluding remarks.

II. GAUSSIAN MATCHED FILTERING
A. General

A matched filter may be derived in different ways, for
example, based on considerations of the residual sum-of-
squares (or power) decomposition, without reference to a
more specific noise model [4]; however, here we will
concentrate on a derivation via the assumption of station-
ary Gaussian noise and the Whittle likelihood. This will
allow us to easily generalize the usual matched-filtering
method to the case of Student-r distributed noise in the
following. It is important though to keep in mind that
the matched filter is not necessarily connected to the
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assumption of Gaussian noise. When we say “Gaussian
matched filter,” this is meant to refer to its derivation and
interpretation in the Gaussian context.

B. The Gaussian noise model

In order to implement the assumption of stationary,
Gaussian noise residuals, the Whittle likelihood approxi-
mation is commonly utilized [3,5,6]. In the Whittle ap-
proximation, signal and noise time series are treated in
their Fourier-domain representation. The explicit assump-
tion being made on the noise n(z) is that its discrete Fourier
transform 7i(f) is independently Gaussian distributed with
zero mean and variance proportional to the power spectral
density (PSD),

Var (Re(3(f,)) = VarlIm(i(£,) = - $i(7). (1)

where f is the jth Fourier frequency, S;(f;) is the corre-
sponding one-sided power spectral density, and j =
0, ..., N/2 indexes the Fourier frequency bins. An explicit
definition of the Fourier transform conventions used here is
given in the Appendix.

For some measured data d(r) one then commonly as-
sumes a parametrized signal s,(¢) with parameter vector 6
and additive Gaussian noise with a known one-sided power
spectral density S;(f),

dit) =s,(0) +n(t) & d(f) =35, +ilf) (@

(i.e., additivity holds in both time and Fourier domains).
The corresponding likelihood function then is given by
1

o
p(d|6) = exp(— EZ%) 5
J 4A, J

[3].

C. Likelihood maximization
1. ML detection and the profile likelihood

If there were no unknown signal parameters to the signal
model (like time-of-arrival, amplitude, phase, ...), then,
according to the Neyman-Pearson lemma [7], the optimal
detection statistic would be the likelihood ratio between
the “signal” and “no-signal” models. Once there are
unknowns in the signal model, a common approach is to
use a generalized Neyman-Pearson test statistic, that is, the
maximized likelihood ratio, where maximization is carried
out over the unknown parameters [7]. While this is in
general not an optimal detection statistic, this ad hoc
approach is often efficient and effective. Such a maximum
likelihood detection approach is closely related to ML
estimation, as either way the parameter values maximizing
the likelihood will need to be derived. In case of a Gaussian
noise model as in (3), maximization of the likelihood
is equivalent to minimizing a weighted sum-of-squares,
i.e., a weighted least-squares approach.
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It should be noted that in a Bayesian reasoning frame-
work, the detection problem would be approached via the
marginal likelihood rather than the maximized likelihood
[8,9]. The marginal likelihood is the expectation of the
likelihood function with respect to the prior distribution,
and both marginal and maximized likelihood may be
equivalent for a certain choice of the prior distribution.
One can show the marginal likelihood to be optimal for any
particular choice of prior distribution, while the maximized
likelihood in general is not (see e.g. [10,11]). Maximi-
zation of the likelihood on the other hand is commonly
much easier computationally.

As will be seen in the following, it is often convenient to
divide the parameter vector into subsets, as it may be
possible to analytically maximize the likelihood for fixed
values of some parameters over the remaining parameters.
This maximized conditional likelihood as a function of a
subset of parameters is also called the profile likelihood.
If a profile likelihood is given, likelihood maximization
may be reduced to maximizing over the remaining lower-
dimensional parameter subspace. As an example, consider
a signal having three free parameters: amplitude, phase,
and time of arrival. If likelihood maximization can be done
analytically over amplitude and phase for any given arrival
time, this results in a profile likelihood that is a function
of time. The likelihood’s overall maximum then may be
computed via a numerical brute-force search of the profile
likelihood over the time parameter.

2. Why care about linear models?

In signal processing in general, and in GW data analysis
in particular, the signals of interest are commonly parame-
trized (among other additional parameters) in terms of an
amplitude and a phase parameter. Consider for example a
simple sinusoidal signal of the form

S, (1) = AsinQmft + ¢), 4

= B¢ sin27wft) + B, cosmfe), (5)

which instead of amplitude A and phase ¢ may equiva-
lently be parametrized in terms of sine- and cosine-
amplitudes B, and SB.. Other examples of signal models
given in terms of linear combinations are the singular value
decomposition approach used e.g. in [12,13] or the trans-
formation of antennae pattern effects into four amplitude
parameters in the derivation of the F-statistic [14]. A linear
model formulation will turn out convenient in the follow-
ing, as a linear (or conditionally linear) model will allow
us to perform (conditional) likelihood maximization
analytically.

3. The general linear model

Consider a linear model for the data, i.e.,

y=XB+te (6)
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where y is an N-dimensional data vector, X is an (N X k)-
matrix, 3 is a k-dimensional parameter vector, and € is an
N-dimensional vector of error terms. The errors € are
assumed to be Gaussian distributed with mean zero and
some covariance matrix ..

In the above signal-processing context, y and € are the
N-dimensional vectors of rearranged real and imaginary
parts of Fourier-domain data (d) and noise (71), the signal s,
is given by a linear combination of the columns of a matrix
X according to the parameter vector (3, and the noise
covariance 2 is a diagonal matrix defined through (1).

The Gaussian likelihood function is characterized by

pyIB) = —(y — XB)2" 'y — XB). (7

In the linear model, the likelihood may be maximized
analytically, and the ML estimator for the unknown pa-
rameter vector 3 is given by

B=X371X)"1X'3 7y 8)

[8,15].

In the models of concern here, estimation is simplified
by the fact that the noise covariance 2. is a diagonal matrix
(1) so that its inverse again is diagonal. In addition, here we
add the common assumption that the vectors spanning the
signal manifold, the columns of X, are orthogonal. A non-
orthogonal basis X would complicate the procedure
slightly; see e.g. [14]. Under these conditions, the pivotal
quantities for ML estimation and detection are

1 o XijYi
bj=X-/,j2_y=Z? and 9)
i=1 Yi
N 2.
— -1 — ij
i= i

i.e., the quadratic forms, or inner products, involving the
Jjth basis vector (jth column of X) with the data vector y,
and with itself. The elements of the parameter vector’s MLL
estimate ﬁ are then given by

N b
Bi=- (11

Cj

the maximized likelihood ratio vs the no-signal model is
given by

k p2
22—f (12)

k
Z—{X.,,. (13)

HM
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4. The detection statistic and its distribution
We define the statistic

e

N XijYiy2
llo]')

=2 X log

<Z((yT|I(3B))) (14)

1 1 _2’
[see also (12)], which, under the null hypothesis of the data
y being purely noise, is y? distributed with k degrees of
freedom. Under the signal hypothesis, when a signal sg« =

X B* is present in the data, the corresponding figure eval-
uated at the true parameter values 3%,

(16
210201 ) ) (4

will be Gaussian distributed with mean @* and variance
402, where

0 — S (Xjo Bixy)? _ i (XB*)?

16

i=1 o < Ele] (10

= (XB*)21(XBY) a7

is the true signal’s signal-to-noise ratio (SNR).

Consequently, for a signal of given SNR 02, the expected
logarithmic likelihood ratio evaluated at the true parame-

ters is E[log(p(’l'g*))] =102, while the likelihood ratio

(v10)
L (flﬁ))) follows a log-normal distribution with median

exp(} 0?) and expectation E[22 (? ||Bo ))] = exp(0?). The maxi-

mized likelihood ratio will be larger than that; the statistic
H,, follows a noncentral y3(0?) distribution with noncen-
trality parameter @2, its expectation is 0> + k, so that

E[lo g(”((yllg)))] = 3(@* + k). Note that the GW and signal-

processing literature is sometimes confusing, as both @2
and Hy, or their square roots, are commonly referred to as
the SNR.

In common signal detection problems, the signal model
is usually only partially linear, as suggested in Sec. I1C 2,
so that analytical maximization over the ‘“linear” parame-
ters only yields a maximized conditional likelihood, or
profile likelihood. The statistic H; then is proportional to
the profile likelihood, and (since the likelihood under the

“noise only” null hypothesis, p(y|0), is a constant) con-
stitutes a generalized Neyman-Pearson test statistic. This
statistic, or its maximum over additional parameters, is
commonly referred to as a detection statistic, as it is used
to find the signal fitting the data best, and to determine its
significance. The detection statistic’s distributions under
null and alternative hypotheses as stated above only apply
for a single (conditional) likelihood maximization, i.e., for
a given data set y and a given model matrix X. When
maximizing the profile likelihood over additional parame-
ters (or pieces of data), the testing problem turns into
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a multiple testing problem, and the statistic’s distribution

will be an extreme value statistic [7,16]. Since the particu-

lar statistic H; only comes up in the context of the

Gaussian model, we will in the following be mostly refer-

ring to the more universal corresponding likelihood ratio
013

rOIB) — 1
figure o) exp(; Hy).

D. Common implementation and terminology

In the GW data analysis literature, likelihoods and
matched filters are commonly expressed in terms of the
inner product {a, b) of real-valued functions (signal tem-
plates or data) a and b, technically defined in terms of
analytical Fourier transforms,

_ [~ anbuy
(a, b> = ’[_mwd‘f (18)

[6,14], which in practice is implemented (analogously
to the Whittle likelihood) in terms of discrete Fourier
transforms,

N2ATRe(a(f)Re(b(f;)) + Im(@(f )Im(b(f;))]
= N J L ! ’
(@h)=23, 517 |

19)

In terms of the linear models discussed in the previous
section, this is equivalent to a quadratic form

as b (20)

as in Egs. (9) and (10) above. Note that especially in the
context of the Student-# model discussed below, expression
(18) may be hard to motivate, as it is continuous in fre-
quency, but the corresponding discrete expression (19)
may readily be related to expressions derived above. In
this terminology, the signal-to-noise ratio of a signal s,
(16) turns out as

|§0(f')|2
2= 50T — sy, o), 21
(% ; 4[XIS](fj) <S0 S9> ( )

the correlation of some data d with a template s, [as in (9)]
simplifies to

[Re(d(f;)Re(5,(f))) + Im(d(f;)Im(5,(f)))]
2. 57,
J 4A, S (fl)
= 2<d: s0>7 (22)

the likelihood ratio of some signal template s for given data
dis

ld(f;)—5a(f))I?
pldlse)\ _ ZiT sG)
RS PTY A T (23)
250

= 2d, s9) — (S¢, Sg) (24)
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[3,6,14], and the maximized likelihood ratio for a sig-
nal that is a linear combination of waveforms [d =
2.;B;s; + n, see also (12)] then is

<d: Sj>2
7 <Sj: Sj>.

<p(d|l§)) _ 25)

og =
p(d|0)

An implementation of a matched filter in the GW con-
text is concisely described e.g. in [17,18]. The signal
searched for is a “chirping” binary inspiral waveform of
increasing frequency and amplitude, which is character-
ized by five parameters, namely, two mass parameters
determining the phase/amplitude evolution, and amplitude,
phase, and arrival time. The signal waveform s for given
mass parameters ¥ = (m,, m,) is [in analogy to (4)] given
in terms of sine and cosine components s g and s g,

Sﬁ(t) = ﬁsss,ﬁ(t - tO) + Bcsc,ﬁ(t - tO) (26)

[17], where B¢ and 3. are determined by the orbital phase
and orientation of the binary system, and 7, defines the
signal arrival time. The sine and cosine waveforms here
constitute the signal manifold’s orthogonal ‘‘basis vec-
tors.” The actual matched-filter detection statistic is de-

fined as p(ry) = +/X5(1y)* + X(1,)?, where

&(f)(gs/cﬁ‘(f))* eXP(_Zﬂ'iffo)

Xeto) 5,070

af @7

[17], and where the exponential term does the time shifting
of data and template against each other. For any given time
shift 7, this filter corresponds to (the square root of) the
detection statistic H; above (14). Computing the matched
filter (27) across time points 7, yields the profile likelihood,
the conditional likelihood (conditional on time #, and
waveforms s g, S 9) maximized over phase and ampli-
tude. The ‘““overall” maximum likelihood then is deter-
mined via a brute-force search over 7, and over additional
alternative signal waveforms corresponding to different
mass parameters . Note that the search over arrival time
to in (27) may be efficiently implemented via another
Fourier transform [18]. The matched-filtering algorithm
is also described in more detail in Appendix A 3.

In order to claim the detection of a signal, one needs to
determine a threshold for the detection statistic (the maxi-
mized likelihood), with respect to some prespecified false
alarm rate. The detection statistic’s distributions derived in
Sec. I1 C4 are likely not to be of much practical relevance,
due to common non-Gaussian or nonstationary features in
the data. Critical values for the detection statistic instead
are commonly computed using bootstrapping methods (see
e.g. [19,20]).
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III. THE STUDENT-¢ FILTER
A. The Student-¢ noise model

The Student-f model for time series analysis was intro-
duced in [3] as a generalization of the commonly used
Gaussian model described in the previous section. The
Student-¢ distribution has an additional degrees-of-freedom
parameter, essentially controlling the distribution’s heavy-
tailedness, i.e., the allowance for large outliers. The
Student-# likelihood function is given by

1 1d(f;) — §0(fj)|2)—(uj+z)/z

de)«TT(1+— 28
p(d|0) U( S0 (28)

_ out2 1 |C?(f]) = 5o(f)I?
= exp( ; 5 10g[1 + —j —4%51(}”,-) ])

(29)

[3]. According to this model, the residuals [Re(7i(f})),
Im(7i(f;))] within each Fourier frequency bin j follow a

bivariate Student-t distribution [8] with location u = 6

scale matrix
N (S(f) 0 )
* 4A,( 0 Sifp)

degrees of freedom v; >0, and implicit dimension 2.
This implies that (i) residuals in different frequency bins
are independent; (ii) residuals within the same bin are
uncorrelated, but dependent; and (iii) the marginal distri-
bution of each individual residual is a Student-¢ distribu-
tion with scale proportional to S;(f;) and degrees of
freedom »;. Decreasing values of the degrees-of-freedom
parameters v; imply a heavier-tailed distribution, and in
the limit of »; — oo the model again reduces to the
Gaussian model.

Besides simply constituting a heavier-tailed noise
model, the Student-r model arises as a generalization of
the Gaussian model when the power spectral density S(f)
is treated as uncertain, where the degrees-of-freedom pa-
rameter v; denotes the (prior) precision [3]. So the model is
not only applicable in contexts where the noise itself is in
fact ¢ distributed, but also in cases where it is Gaussian, but
the noise spectrum is a priori only known to a certain
accuracy. Alternatively, the same model would result
when the noise spectrum itself was assumed to be ran-
domly deviating from the scale parameter S, (f), according
to a x? distribution, e.g. because it is only estimated with
some uncertainty, which in fact resembles the original
motivation for introducing Student’s ¢ distribution in the
context of the ¢ test and related procedures [7,21]. Both
randomness or uncertainty of the noise PSD technically
lead to the same likelihood expression here [3]. In general,
the interpretation of the scale parameter S,(f) in the
contexts of the Gaussian and the Student-# model is not
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necessarily exactly the same. For the Gaussian model, it
may be defined via the expected power S(f;) =

E[2%|ﬁ(f j)lz], while for the Student-r model this only
holds in the limiting case of great certainty (v — 00).
Within the Student-# model, the S(f) term specifies the
scale of the uncertain PSD parameter and the expected
power is in fact given by E[Z%Iﬁ(fj)lz] = %Sl(fj).
The choice of the degrees-of-freedom paraméter v as
well as the spectrum parameter S;(f;) may be approached
in different ways and may, for the filtering purpose, even-
tually be considered a matter of tuning [3]. In the example
in Sec. IV below, we simply kept the scale parameter
Si(f;) to be the estimated noise spectrum as in the
Gaussian case, and fitted a common degrees-of-freedom
parameter v; = v for all frequency bins to the empirical
data.

B. Comparison to the Gaussian model

When comparing to the Gaussian distribution, first of all
the Student-r distribution exhibits heavier tails, i.e., the
probability for obtaining “large” values (relative to the
distribution’s scale) is much greater. While the density
functions are very similar within the range of u * 20,
where the bulk of probability is concentrated, the densities’
ratio will grow indefinitely toward the distributions’ tails
(see Fig. 1). The degrees-of-freedom parameter v controls
the distribution’s heavy-tailedness; a setting of v =1
yields the “pathological” Cauchy distribution, for v > 2
the variance is finite, and in the limit of » — oo it again
approaches the Gaussian distribution.

Another discriminating feature is the shape of the den-
sity contours. While a Gaussian density will always have
elliptical contours, the Student-7 distribution is different in
that its contours are rather diamond-shaped, with elonga-
tions pointing along the principal axes (see Fig. 1). This
way the Student-r model does not only allow for larger
outliers, but it also considers outliers more likely to occur
only in individual variables rather than jointly in all vari-
ables. Note that this latter effect follows from the fact the
different frequency bins are stochastically independent
and not merely uncorrelated [22,23]. Since the two (real
and imaginary) residuals within each Fourier frequency
bin follow a joint, bivariate, ¢ distribution, the density
contours within bins will still be spherical—otherwise a
strange phase/amplitude dependence would be implied for
the Fourier-domain model. The effect of independent
Student-¢ variables only comes to bear between frequency
bins.

An important difference to note between the Gaussian
and Student- model is that the least-squares fitting that
results from the Gaussian model will actually be a ML
procedure for any model within the wider class of “ellip-
tically symmetric”” models for the noise residuals (includ-
ing e.g. a Student- model with merely uncorrelated, but
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Density functions of Gaussian and Student-7 distributions. The left panel shows univariate densities on the logarithmic scale.

The right panel shows density contours of the joint distribution of two independent Gaussian random variables in contrast with two
independent Student-¢ distributed variables of the same location (u) and scale (o). The two Student-7 variables have differing degrees
of freedom; the one corresponding to the x axis has » = 3, while the one along the y axis has v = 10.

not independent residuals) [22,23]. The Student- model
described here hence advances into a fundamentally differ-
ent class of models.

Student-¢ or similar models are commonly used in pa-
rameter estimation contexts as robust alternatives to the
Gaussian model that are less sensitive to outliers in the data
[24-27]. Such models may be motivated in a “‘top-down”
manner by the observation that the data do not actually fit
the Gaussianity assumption, or also in a ““bottom-up” way
by pointing out that the resulting least-squares procedures
are very sensitive to occasional outliers in the data. In the
spirit of the latter viewpoint, the concept of M estimation
was introduced, which aims at “fixing” outlier-sensitive
least-squares procedures by replacing them by more robust
statistics corresponding to more favorable influence func-
tions [28,29]. Similar approaches, namely, down-
weighting or ignorance of outliers in the data, have been
proposed in the context of gravitational-wave detection
before [30,31], and the Student-¢ assumption may in fact
be considered a special case of M estimation [26,27].

Another fix that is commonly applied in GW data analy-
sis is the x? veto [32], which is a figure computed along
with a detection statistic that is supposed to discriminate
actual signals from noise bursts. Such noise events may
show little similarity with the signal template, but may
often, due to non-negligible correlation with the template
and very large power, still seem to indicate the presence of
a signal. The y? veto then essentially checks for excess
power that is inconsistent with the shape of the signals
aimed for and that way will rule out such alleged detec-
tions. The consideration of excess residual power is also
implicitly happening in the Student-r model. From the
different likelihood formulations (3) and (29) one can write
down the corresponding likelihood ratios for some data d
and a signal template sy,

o (p(dl?, Gauss))
p(d|0, Gauss)
_ Zl( |67(f])|2 _ |d~(f]) — 55(f)I
—2 %Sl(fj) %Sl(fj)

), (30)

o (p(dlﬁ, Student))
p(d|0, Student)

1 lag)p 31)
:zvj+210 1+Vj&s](fj)
"I R PR
/ vj %S](fj)

In both of the above cases the likelihood ratio is a function

AU e “residual .
man € residual power

1.e., the data’s normalized sum-of-squares in

of the “data power”
ld(f)—3o(f)I?

(N/4A)S (f)) °
each frequency bin j before and after subtracting the signal
sg. For the Gaussian case, a “‘data power” of 10 and a
“residual power” of 1 in the jth bin would have the same
effect on the likelihood ratio as if the numbers were, say,
1010 and 1001 instead; the only relevant figure is their
difference. In the Student-r model, the latter case would
lead to a lower likelihood ratio; here not only the amount
by which the signal s, is able to reduce the sum-of-squares
is relevant, but so is its magnitude relative to the remaining
residual term. The additional feature of the ML fit that is
intrinsically considered in the Student-¢ likelihood ratio
(31) is essentially the corresponding coefficient of deter-
mination (R?) [15]. As will become obvious in the follow-
ing, when the actual implementation is described, the
generalization to the Student-f model will on the technical
side essentially replace the least-squares procedure by an
adaptive version. The adaptation step again ensures that
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excess residual noise power will downweight the supposed
significance of a signal.

C. Likelihood maximization: the EM algorithm

While likelihood maximization in the Gaussian model
boils down to least-squares fitting, the maximization step is
not quite as simple for the Student-# model. However, due
to the structure of the problem, the expectation-
maximization (EM) algorithm may be used to efficiently
maximize the likelihood function [8,33]. In order to apply
the EM algorithm, the likelihood expression needs to be
reformulated. The Student-¢ likelihood may be viewed as a
marginal likelihood, averaging out a set of unknown vari-
ance parameters ¢ [3]. Each of the variance parameters
0']2- then corresponds to the power spectral density at the jth
Fourier frequency bin. The EM algorithm’s details as
applied to the present problem are derived in detail in
Appendix A 2. It turns out that maximization of the
Student-# likelihood may be done in an iterative manner,
where each iteration again requires a weighted least-
squares fit as in the Gaussian matched filter. The EM
algorithm requires a starting value 6, for the signal pa-
rameters. Given 6, the expression

1

ld(f ) —54(f))I?
E00)=—3% g
’ ZZ%A, V,/-(—251(fj) + VjiZZTAtld(fj) N §go(fj)|2)

(32)

is maximized with respect to the parameter vector §. The
parameter value maximizing the above expression then
constitutes the new 6, value, for which the expression
again is maximized, and so forth. The resulting sequence
of parameter values then converges to the maximum like-
lihood estimate [8].

Maximizing the above expression (32) again amounts to
a weighted least-squares fit, exactly as in the case of the
Gaussian matched filter [see also the corresponding like-
lihood expression (3)]. The Student-¢ filter will therefore
generalize the Gaussian matched filter by replacing the
least-squares procedure by an iterative, or adaptive, least-
squares fit. Note that the denominator in (32) simply is a
weighted average of the noise spectrum [as in (3)] and the
previous iteration’s residual noise power, where the
degrees-of-freedom parameter » defines the relative
weighting. Instead of the “plain” weighted least-squares
match that is done in the Gaussian filter, the EM iterations
adapt the weights [the denominator in (32), which in the
Gaussian model was the a priori known, fixed noise spec-
trum] to the residual noise power as found in the data, and
the level of adaptation is regulated by the degrees-of-
freedom parameter ».

The (ML) detection statistic does not follow a simple
distributional form as in the Gaussian model, but in the
example below one can already see that both statistics still
behave similarly. The generalized likelihood ratio statistic
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will, by Wilks’ theorem, in fact still approximately follow a
x? distribution [7,34].

D. The filter implementation

As for the Gaussian matched filter, the aim again is to
maximize the likelihood (29), i.e., find best-fitting parame-
ter values  in parameter space. Again, it is advantageous if
the signal model can (at least partly) be formulated as a
linear model.

There are two obvious points in the matched-filtering
procedure at which one could insert the EM iterations in
order to generalize it to the Student-f case: either at the
level of each (originally analytical) maximization over
linear model coefficients (usually corresponding to ampli-
tude and phase), or at a higher level, iterating over linear
coefficients as well as the signal arrival time parameter. It
is not obvious whether one implementation is more sensi-
tive than the other, but there definitely are differences in the
implied computational costs. Both approaches are de-
scribed and discussed in more detail in Appendix A 3.
An implementation of the latter algorithm, together with
the analogous matched filter, is available in [35]. In case of
a brute-force search over additional signal parameters
(i.e., a “template bank’”), one could in fact consider mov-
ing the EM level yet another stage higher.

As a starting parameter value (6,) for the algorithm, one
could, for example, use the null vector or an initial least-
squares fit. As a stopping criterion, one could terminate the
algorithm once the improvement in logarithmic likelihood
from the previous iteration falls below some threshold, or
when some maximum number of iterations is reached.
Note that—unlike for the Gaussian linear least-squares
fit—the (conditional) likelihood might actually be multi-
modal [36], so that different starting values might lead to
different results. It is not obvious whether this occurs
frequently in practice, or rather requires particularly rare
pathological circumstances; however, it does not appear to
pose a problem in the example below.

IV. FILTERING EXPERIMENT ON ACTUAL DATA
A. General

Besides any theoretical or heuristic arguments why a
Student-¢ based filter may improve detection, the figure
of eventual relevance is going to be the resulting im-
provement in detection efficiency when applied to actual
data—keeping in mind the additional complication and
computational cost. In the following, we will demonstrate
the filter’s performance in a minimalistic, yet realistic toy
problem. To that end, we will set up a filter for a certain
kind of parametrized signal, and then test it against a
conventional matched filter using injections of simulated
signals. For the additive noise, we will use both simulated
Gaussian noise as well as actual gravitational-wave detec-
tor instrument noise. Detection efficiency is going to be
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measured via the receiver operating characteristic
(ROC) curve, allowing one to compare detection probabil-
ities for given false alarm probabilities, or vice
versa.

In order to make the example realistic, we require a
nontrivial signal waveform to be searched for; in particular,
the waveform should not be monochromatic, but should
instead span a wider range of Fourier frequencies. There
should be parameters to be maximized over analytically as
well as numerically, and we should use noise that is non-
Gaussian or nonstationary. The example described in the
following mimics the setup of a search for binary inspiral
signals in interferometric gravitational-wave detector data
(see e.g. [17]). The noise data are taken from an actual
detector, and, for comparison, a second data set of simu-
lated, Gaussian noise of a realistic noise spectrum is used
in parallel. The “search” being performed however is
much simplified and not intended to be exhaustive or to
span an astrophysically sensible parameter range.

B. The data

The data used in the following examples are going to be
either simulated Gaussian noise with a power spectral
density corresponding to LIGO’s initial design sensitivity
[37], or real instrument noise from LIGO’s Livingston
interferometer, taken during LIGO’s fifth science run
(“‘S5”) in late 2005 [38]. The data will be considered in
chunks of 8 sec length, downsampled to a sampling rate of
1024 Hz, and windowed using a Tukey window tapering
10% of the data (5% at each end). The noise’s power
spectral density S,(f) is estimated essentially using
Welch’s method [39], by considering the empirical power
in the 32 preceding data segments, and taking the median
as a robust estimator. The figures shown in the following
are each based on 100000 such data chunks.

The signal waveform searched for here is taken to be a
binary inspiral waveform approximated to the 2.0 post-
Newtonian order [40]. The same waveform family is
used for both injections as well as in the detection stage,
and it has five free parameters: chirp mass (m,), mass ratio
(m), coalescence time (t.), coalescence phase (¢,.), and
amplitude (A). The signal waveforms injected into the data
were all done at the same mass parameters (m,. = 4.5,
n = 0.25), and the amplitude is set such that the sig-
nal’s SNR (as computed based on the current PSD esti-

mate) is @ = v/o7 = 5.257 so that E[log(228)] = } 02 =

log(10°) and E[”(zlﬁ)))] = exp(p?) = 1012

Sec. [IC4). Each 8-sec chunk of data is eventually ana-
lyzed twice, with and without a signal injection.

(see also

C. Setting the degrees-of-freedom parameter

In order to determine a suitable degrees-of-freedom
parameter v for the Student-# model, we considered the
tail behavior of the noise. If the Gaussian (Whittle) model
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was accurate, then the normalized Fourier-domain noise
power at the jth frequency bin,

l7(f )l

T—, 33
S50 Gy

being the square root of the sum of two independent
standard Gaussian random variables (see Sec. II1 B), should
follow a Rayleigh distribution. The residuals’ normaliza-
tion here is done—in analogy to the computations done in
an actual search—via the estimated noise spectrum, as
described in the previous subsection. We are only consid-
ering the binned noise power here (and not the individual
real and imaginary components) as this is the relevant
figure entering both the Gaussian as well as the Student-¢
likelihoods (3) and (29)—(31). Under the Student-r model,
instead of being Rayleigh distributed, the power (33)
would instead follow a similar, more heavy-tailed distri-
bution. We will refer to the Student-¢ power’s distribution
as the “Student-Rayleigh” distribution here; more details
on this distribution’s particular form are given in
Appendix A 4.

We investigated the empirical distribution of actual
noise residuals, for both simulated and actual instrumental
data. For the simulated data, this will account for effects of
finite sample size, windowing and PSD estimation, and for
actual data it will in addition give some insight into the
effects of realistic nonstationarities or non-Gaussianities in
actual measurement noise. The noise samples are based on
the residuals from 200 8-sec noise realizations of either
simulated Gaussian noise, or actual instrument noise from
LIGO’s Livingston interferometer. The residuals (33) are
each normalized via a PSD estimate from 32 preceding
noise samples, as described in the previous section, yield-
ing a total of 800000 residuals. The data used here did
not overlap with the data used in the following detection
experiment.

Figure 2 shows quantile-quantile plots (Q-Q plots) illus-
trating how well the models fit the actual data. The axes
indicate theoretical (Rayleigh or Student-Rayleigh) quan-
tiles, and the empirical quantiles as found in the data. If a
model fits the data well, both theoretical and empirical
quantiles should coincide, so that the quantiles follow a
straight, diagonal line. A mismatch between model and
data results in a differently shaped curve; in particular, if
the data are more heavy-tailed than predicted by the model,
the curve will show an upward bend [41].

One can see that the actual data exhibit heavier tails in
both cases of simulated, Gaussian noise as well as the
instrument noise. In the case of Gaussian noise this is
due to the estimation uncertainty in the noise spectrum.
If we had been using the mean instead of the median to
estimate the noise PSD, then the distribution of normalized
noise residuals should be exactly Student-r with degrees of
freedom equal to twice the number of noise samples aver-
aged over (here, 32 X2 = 64) [7,21]. For the median
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FIG. 2. Quantile-quantile plots (Q-Q plots) of the empirically found normalized residual noise power (33) versus its theoretical
values assuming Gaussian and Student-# models. The marks indicate particular quantiles corresponding to powers of 10 in tail
probability. The 10 largest empirical samples are shown as individual dots; the remaining quantiles are connected by a line.

estimation method, this is only approximately true, but
apparently still roughly accurate; a maximum-likelihood
fit for v suggests a value of v = 40 here. For the case of
Gaussian data, the mismatch between assumed and ob-
served quantiles is minimal anyway.

For the real interferometer noise, the discrepancy be-
tween Gaussian model and actual data is more dramatic; in
the distribution’s tails, the empirical quantiles are signifi-
cantly larger than the assumed quantiles. For example,
according to the Gaussian model, 99.99% of the samples
should be = 4.3, while empirically the 99.99% quantile
lies at 8.1 for actual instrument noise (see the right panel of
Fig. 2). A Student-t model seems to fit the data better,
especially in the distributions’ tails, although discrepancies
in the extreme outliers are still large. Trying to estimate the
degrees-of-freedom parameter v from different subsets of
the empirical data yields ML estimates roughly in the
range from 5 to 50; in the following we simply fixed the
parameter at » = 10 for the simulations involving actual
data. A value of >40 would not seem to make sense here
(even if the data were perfectly Gaussian) and in the
simulation results below we found that detection perform-
ance seemed to depend only weakly on » as long as it was
roughly in the range 5-20. While the Student-# distribution
does not fit the data perfectly, it seems to fit better than the
Gaussian model. Instead of only fitting the degrees-of-
freedom parameter, one could actually in addition also
adapt the ¢ distribution’s scale to the data (see also
Sec. IIT A or [3]).

D. Filtering setup

For each piece of data, the likelihood ratio is maximized
over phase and amplitude for given combinations of
time and mass parameter values, where the evaluated

time points were 7, € {6.50, 6.55, ...,7.50} and the con-
sidered masses were n = 0.25, m, € {3.0,3.1, ..., 6.0}.
The injected signal’s parameter values always were among
the grid points maximized over, so that signal/template
mismatch considerations are not of concern here. On
the technical side, this is implemented in a loop over
template waveforms (corresponding to different mass pa-
rameters) and time points. At each mass/time combination,
computation of the conditionally maximized Gaussian
likelihood ratio amounts to computing an inner product/
quadratic form (see Sec. II C), while maximizing the con-
ditional Student-¢ likelihood requires iterating over several
such least-squares fits within the EM algorithm (see
Sec. III C). The EM iterations were terminated whenever
the improvement in logarithmic likelihood over the pre-
vious iteration fell below 107, In this example setting, this
lead to an average number of four EM iterations for each
conditional likelihood maximization in both noise scenar-
i0s. The eventual maximized likelihood then is given by
the overall maximum over the conditional maxima, and as
the detection statistic we use the maximized likelihood

- pdld)
ratio FPTR

described in Appendix A 3 d.

The algorithm used was essentially the one

E. Simulation results

Figure 3 shows resulting detection statistic values (maxi-
mized likelihood ratios) under the Gaussian and the
Student-¢# models both when a signal is injected as well
as when he data are noise only. The signal injections here
were all done at the same amplitude relative to the noise
spectrum (SNR @ = 5.257). In general, both detection
statistics are very similar; the Student-¢ likelihood ratio
tends to turn out slightly lower than the Gaussian one, in
particular, in the case of real interferometer noise.
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FIG. 3. Detection statistics (maximized likelihood ratios) based on Gaussian and Student-f models for simulated Gaussian data (left
panel) and actual interferometer noise (right panel). Injections were of SNR ¢ = 5.257.

The question of to what extent these differences affect
the ability to discriminate signals from noise will be ap-
proached by considering the receiver operating character-
istic curves. ROC curves are based on the detection
statistics’ (here, empirical) distributions. Placing different
detection thresholds on a detection statistic yields a corre-
sponding false alarm probability (based on the distribution
under the noise-only hypothesis) as well as a detection
probability (based on the distribution under the particular
signal hypothesis). The ROC curve illustrates these combi-
nations over varying threshold values [42].

Figure 4 shows ROC curves for the Gaussian and the
Student-z filter for both noise cases. In the case of simu-
lated Gaussian noise, both detection statistics perform

1.0

Gaussian noise

P(detection)
0.7 08

0.6

0.5

—— Gaussian matched filter
—— Student-t filter

0.4

T T T T T T T T 1
0.002 0.010 0.050 0.200 1.000

P(false alarm)

almost identically. For real instrument noise on the other
hand, the Student-¢ model is able to provide a significantly
greater detection probability especially at low false-alarm
probabilities. A remarkable feature of the ROC curves for
instrumental noise is that for very low false alarm proba-
bilities both filters eventually perform as poorly as mere
guessing. The Student-¢ filter is able to sustain its discrimi-
nating power for lower false alarm rates, though. This
effect is connected to the frequency of noise outliers
(“glitches’”) in the data, leading to very large detection
statistic values even in the absence of a signal. Figure 5
shows the corresponding detection thresholds as a function
of false-alarm probabilities. The point where the detection
threshold reaches the injected signals’” SNR is where the

o
o
o I
- Instrument noise
o /
8 | /
c /
| [
< /
s B [
S 27 |
o o |
° |
o |
o | |
o
S |
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/
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FIG. 4. ROC curves for the Gaussian and the Student-7 detection statistics in both data scenarios. The shaded area marks the region
where any sensible detection statistic (one that is not worse than mere guessing) should lie.
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FIG. 5. Detection thresholds on the maximized likelihood ratio
(the detection statistic), corresponding to certain false-alarm
probabilities. These thresholds are based on the detection statis-
tic’s distribution in the absence of a signal. The horizontal line
indicates the injected signals’ SNR (see also Fig. 4).

corresponding detection probability is = 50%. One can see
that, due to the heavy-tailed distribution of detection sta-
tistics in the case of actual instrument noise, the detection
threshold necessary for low false-alarm probabilities very
quickly grows beyond values that could obviously be
attributed to be due to the signal injections considered
here; the rate of noise transients of “SNR” greater than
the injections’” SNR exceeds the false alarm rate (in a
realistic search, some of these might actually be vetoed
beforehand). This effect is very obvious here also because
signal injections were done only at a single SNR, but it will
of course persist for other SNR distributions—assuming
other SNR distributions for injections will affect the de-
tection probability, but not the detection threshold, i.e., the
detection procedure itself.

The exact relative performance of both methods of
course depends on the details of the particular detection
problem, the kind of signal searched for, the parameter
space, noise characteristics, data conditioning, and tuning
parameters. The ROC curves shown above are based on a
particular, artificial signal population, but their general
features persist in a number of additional simulations not
shown here, for a range of degrees-of-freedom settings,
injection SNRs, data from a different instrument, and data
from a different time period.

V. CONCLUSIONS

We introduced a generalization of the matched filter that
is commonly applied in signal detection problems. The
Student-z filter is derived as a maximum-likelihood detec-
tion method that is based on a Student-z distribution for the
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noise, rather than a Gaussian distribution, which would
again yield the common matched filter instead. On the
technical side, it generalizes a least-squares method to an
adaptive variety. While a Gaussian matched filter is cer-
tainly appropriate when the assumption of stationary
Gaussian noise and a known spectrum is met, there are
several ways to motivate the Student-¢ filter as a robust
alternative when these assumptions are violated (i) theo-
retically: the Student-f model allows for uncertainty in the
PSD, heavier-tailed noise and outliers; (ii) heuristically:
the resulting adaptive least-squares method is less outlier-
sensitive; or (iii) pragmatically: the filter may turn out
more effective in practice, as in the realistic example
shown above. Besides that, being a generalization of the
(Gaussian) matched filter, it should generally be able to
perform as well or better. The question of course is whether
the gain in detection efficiency is worth the additional
implementation, tuning, and computational effort. The
difference in computational cost for deriving both detec-
tion statistics suggests that a combined, hierarchical search
strategy may also be worth considering.

In the example shown above, the Student-r model’s
degrees-of-freedom parameter was treated as a single con-
stant. In the context of gravitational-wave interferometric
data, this is an oversimplification; a study of actual instru-
ment noise shows that the Fourier-domain data’s tail
behavior clearly depends on the frequency [43,44].
Accounting for this effect in an actual search by fitting
individual »; parameters for different frequency ranges
may yield a significant improvement. It may also make
sense to specify the degrees-of-freedom parameter depen-
dent on additional information, like e.g. the data quality
category [45].

It will be interesting to study the Student-7 filter’s per-
formance in a realistic search for gravitational-wave sig-
nals, in conjunction with the existing infrastructure (data
quality flags, additional vetoes, etc.) and in comparison
with the conventional matched filter [18,19]. We are also
investigating the use of the Student-# model in the context
of Bayesian model selection [46]. Here it may again yield a
more robust discriminator for actual signals against noise;
on the computational side this problem is based on inte-
gration of the likelihood, rather than maximization, and we
do not expect a difference in computational cost between
Gaussian and Student- models. We expect the Student-7
filtering procedure to be also useful in many other signal-
processing contexts, wherever robustness or uncertainty in
the power spectrum is an issue.
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APPENDIX: A

1. Discrete Fourier transform

The Fourier transform convention used in this paper is
specified below; it is defined for a real-valued function 4 of
time ¢, sampled at N discrete time points, at a sampling rate
of AL,’ and it maps from

{h() €R:t=0A,2A,...,(N—1A} (A1)
to a function of frequency f
{hW(f)EC: f=0A;2Ap...,(N= DA}, (A2)
where Ay = gi-and
N-1
h(f) =D h(jA,) exp(—2mijA,f) (A3)

j=0

[3].
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2. Applying the EM algorithm

a. Preliminaries

The expectation-maximization algorithm is required
for maximizing the Student-¢ likelihood; see Sec. IIC.
What is desired is the maximum of the marginal likelihood
p(d|0), which is equivalent to the marginal density p(0|d)
when assuming a uniform prior distribution on 6. What is
required in order to apply the EM algorithm are expres-
sions involving the marginalized 012- parameters, namely,
the conditional distribution P(6?|6, d) and the joint density
p(6, 3%|d). The EM algorithm will then iteratively max-
imize the likelihood function by performing alternating
“expectation” and ‘‘maximization” steps [8,33].

The conditional posterior distribution P(a’?lﬁ, d) of the
Jjth variance parameter a’? for given data and signal s, is a
scaled inverse y” distribution,

viSi(f)); + 451d(f;) — 5o(f)

Inv -X2(Vj +2, ) (A4)

[3] with probability density function

flo3) = ()2

Xﬁd_%&uﬁ+4%uuﬂ—gum3

2
20'j

(A5)

[3].

The conditional distribution of the data d for given
variances &2 and signal parameters 6, P(y|6, 6?), is
Gaussian [3], and the variance parameters’ prior, P(G?),
again was Inv-y? [3]. The joint conditional density of 6
and 2 for given data d is given by

log(p(6, o*ly)) = log(p(y16, o*) X p(6, 02)) (A6)

4341d(f;) — 5o(f )2 v v:S,(f)

o — 2 N J J _ ] 2 J J
§<log(a']) + 202 ) ;((1 + z)log(a']) + "2 ) (A7)

L ﬂ Vjsl(fj) + 4%|d~(fj) - E(}(fj)lz
= ;((2 + 2)1Og(0']2-) + 20_12 ) (A8)
[3].
b. The E step

For the EM algorithm’s expectation step, one needs to evaluate the conditional posterior expectation
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E b(o219=0,y [102(p(6, 0[y))] = flog(p(ﬁ, a?1y)p(a?10 = 6y, y)do?

as a function of @ for some given 6, [8]. Here

f log(p(60, 7213) p(a210 = 65, y)do?
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(A9)

(A10)

o —; f((z - %) log(o?) + vi$1(f)) + 45 1d(f) ~ ga(fj)|2)

2
20'j

% ((0.2)—(2+(V,/2)) exp<Vj51(fj) + 4% |3(fj) - 590(fj)|2)>d0’5

207

] _24%@(]‘) CsP § j%((UZ)—(H(’G/Z)) exp(VjS](fj) + 4%|c?(fj) - §ao(fj)|2>)da2.
. 2 /

J

()*\)

(A11)

= ? (A12)

r

N\

A5 s

where /L<(0.2)—(2+(vj/2)) exp(ijl(fj) + 4N|d(fj) S90(fj)|2
2
loa

J

since the term marked by the asterisk (*) is the density function of an Inv-x*(»; + 2,

distribution, so that

f log(p(B, aIy)p(a?1B = By, y)do? = — %Z ;

1
:_EZN -

7 G 1) + 52 A () = 50, (F)P)

c. The M step

In the EM algorithm’s maximization step, the above
expectation (6, #) (A15) needs to be maximized with
respect to the parameter 6. The parameter value maximiz-
ing the expectation then constitutes the next iteration’s
“new’ 6, value, for which then the expectation again is
maximized, and so forth [8]. As one can see from expres-
sion (Al5), maximization of the expectation again
amounts to minimizing weighted least-squares, as in the
Gaussian matched filter described above.

3. Pseudocode matched and Student-¢ filters
a. Preliminaries

This section sketches actual implementations of
Student-# and (Gaussian) matched filters in comparison.
In the following, we will use essentially the same conven-
tions as before; we will be considering a time series d of
length N, sampled at a sampling interval of A,. The signal
waveform here is assumed to be a linear combination of a
sine and a cosine component (s 9, S¢ ¢), it has an associated

+2
k )) ot = - (A1}
20 viSi(f;) + 45 1d(f;) — 55, (f))]
Vjsl(fj)ﬂ%'iﬁ”f VD=5 UDE) brobability
A g o~

45Hd(f) — 3o(f)I? (Al4)

7 ,,_/.—izsl(fj) + ,,j]+2 @3¢ 1d(f;) = 54,(f )1

ld(f;) — 50(f)I

() = 5o/, =: &6y, 0). (A15)

arrival time parameter, and possibly additional parameters
6 [as in (26)]. Additional waveform parameters (other than
amplitude, phase, and time) are then commonly treated by
running several matched filters corresponding to different
values of 8. The generalization to the case of more than two
linear signal components should be straightforward. The
profile likelihood will be evaluated along a discrete grid of
time points 7; (i = 1, ..., m), where the special case of
7, = iA, and m = N is of particular interest. The filter’s
output each time is a single number, the maximized
(logarithmic) likelihood ratio of signal vs no-signal mod-
els. We will be making use of the inner product/quadratic
form notation {a, b; S) as defined in (19). Implementations
of the algorithms sketched in Sec. A 3 ¢ and A 3 e are also
provided in [35].

b. The Gaussian matched filter: general implementation

The first algorithm (Table I) is a “‘naive” matched-filter
implementation that maximizes the likelihood (-ratio) over
a given grid of m time points (7). The algorithm mainly
consists of a loop over time points, where for each time
point the (conditional) likelihood is maximized over
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TABLE 1. Matched filter, general implementation.

norms = <ss,0v 85,05 S1>
normC = {Scg, Sc.05 S1)
for (i = 1, ..., m) do//loop over time points:
for j=0,..., N/2) dol//time shift the data:
5: dy = d; X exp2mif;7;)
end for
prods = (sgg, d';S))
prodC = (5.4, d'; Sy)
/lcompute log-likelihood ratiolprofile likelihood:
10:  maxLLR[i] = (prods)?/norms + (prodcC)?/normC
end for
return max(maxLLR)

amplitude and phase. In order to match signal and data for
a certain signal arrival time, the data d are time shifted
against the signal waveforms s, .. The eventual result is the
profile likelihood evaluated at the specified time points, the
maximum of which then constitutes the generalized like-
lihood ratio detection statistic that is returned.

¢. The Gaussian matched filter: efficient implementation

If the time points to be maximized over are taken to be
the same as the data time series’ points (7; = iA, i =
1,...,m = N), then the matched-filtering procedure may
be implemented much more efficiently. The algorithm
shown in Table II will give identical results to the previous,
but it is more efficient as it takes advantage of a Fourier
transform to essentially maximize over amplitude, phase,
and time simultaneously (see also Sec. IID). In practice,
one may want to restrict the profile likelihood maximiza-
tion (line 13) to the subset of sensible time shifts that do not
“wrap”’ the signal circularly around the data’s end points.
Instead of a Fourier transform, one could also implement
an inverse Fourier transform and would then also not need
to time-reverse the result’s indices (line 11).

TABLE II. Matched filter, efficient implementation.

norms = <Ss,ar 85,605 S])
normC = (s, Sc.95S1)
for (j =0,...,(N — 1)) do//correlate data and signals:
corg[j +1]= d; X 850,/S1(f))
5: corClj + 1] =d; X 5.,,/5:1(f))
end for
/lapply Fourier transforms:
FTS = DFT(corS)
FTC = DFT(corC)
10: for (i = 1, ..., N) do//profile likelihood (-ratio):
maset LA[1] = (3PS - Ry
end for

return max(maxLLR)
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d. The Student-t filter: general implementation

This algorithm (see Table III) again is a ‘“‘general”
version of the Student-t filter, analogous to the general
matched filter (Sec. A 3 b), where the set of time points
7 is not restricted. The EM algorithm here is applied at the
level of each single amplitude/phase maximization condi-
tional on some time shift 7;. The EM component requires
the specification of a threshold A, on the improvement in
logarithmic maximized likelihood ratio (e.g. 107%), and a
threshold k,,, on the number of EM iterations (e.g. 100).
The Student-¢ likelihood function

v, +2 1|57
p(x, Sy, v) = exp(— : log[l + - ])

[see also (29)] only needs to be computed up to a propor-
tionality constant here, as only the likelihood ratio is of
eventual interest.

e. The Student-t filter: efficient implementation

The Student-¢ filter also may be implemented more
efficiently in case the signal arrival times to maximize
over are taken to be the time points of the original time
series (7;, =iA,i=1,...,m= N, as in Sec. A 3 c¢).
This implementation (Table IV) then requires one to
move the level at which the EM algorithm is applied

TABLE III.  Student- filter, general implementation.

LLO = log(p(d, S;, v))/llog-likelihood noise-only model
for (i = 1, ..., m) do//loop over time points:
for (j =0,..., N/2) do//time shift the data:
di = d; X expQ2mif;T))
5: end for
/I[EM-iterations:
k=1, Az = 1; LLRprev = 0; §7 = §,
while (A;;x > A,.) and (k =< k,,,) do
norms = (84, S50 57)
10: normC = (s g, S0 ST)
prods = sy, d'; ST)
prodC = (s.q, d'; ST)
B, = prods/norms
B. = prodC/normC
15: A=d — (BSSS,(; + Bcsc,g)//vector of noise residuals
LL1 = log(p(#, S;, v))/llog-likelihood signal model
LLR = LL1 — LLO0//log-likelihood ratio
A;;r = LLR — LLRprev
LLRprev = LLR

20: for (j =0,...,N/2)/ladapt the spectrum:
ST = i) + 57 P
end for
k=k+1
end while
25: maxLLR[i] = LLR//profile likelihood (-ratio)
end for

return max(maxLLR)
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TABLE IV. Student-¢ filter, efficient implementation.

LLO = log(p(d, S;, v))/llog-likelihood noise-only model
/[EM-iterations:
k=1; Az = 1; LLRprev = 0; ST = §;
while (A;;z > A,.) and (k = k,,,) do
5: /lthe plain matched filter:
normsS = (s,g, S50 57)
normC = (s g, S¢.9: ST)
for j=0,...,(N—1)) do
cors[j+ 1] = cz, X S:H‘j/ST(fj)
10: corC[j + 1] =d; X §:y,,yj/S’f(fj)
end for
FTS = DFT(corS)
FTC = DFT(corC)
for i=1,...,N) do
Is maseLL[1] = (WP o ey
end for
llend of plain matched filter
/IDetermine best-fitting template, residuals, etc.:
Imax = arg max; maxLLR[{]

20: for (j=0,..., N/2) do//time shift the data:
dy = d; X expQmif;7; )
end for

prodsS = (sy4, d'; ST)
prodC = (s.q, d'; ST)
25: Bs = prods/norms
B. = prodC/normC
i =d — (Bgssg + Beseg)lIvector of noise residuals
LL1 = log(p(a, S;, v))/llog-likelihood signal model
LLR = LL1 — LLO0//log-likelihood ratio
30: A;;r = LLR — LLRprev
LLRprev = LLR
for (j =0,..., N/2) do//adapt the spectrum:
ST =5 i) + 33 Il
end for
35: k=k+1
end while
return LLR

from the conditional maximization over amplitude and
phase to the joint amplitude/phase/time maximization;
effectively this implementation iteratively runs several
matched filters (see lines 6-16) while adapting the noise
spectrum in between. It is unclear whether or how the level
at which the EM algorithm is applied affects the results; as
noted in Sec. III D, the likelihood may be multimodal and
different implementations might end up with differing
maximization results, but whether this actually poses a
problem in practice is not obvious. Computationally, this
latter implementation should be much easier, though.
Another difference to note is that while the matched filter
allows us to return the profile likelihood as a function of
time (the SNR time series), only the Student-¢ filter imple-
mentation from Sec. A 3 d is able to provide this, while the
more efficient implementation will only return the overall
maximum.
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4. The Student-Rayleigh distribution

a. Relation to the F distribution

The noise power’s probability distribution under the
Student-¢# model [see (33), Sec. IV C] may be related to
Snedecor’s F distribution. First, real and imaginary parts of
the jth element of the discretely Fourier-transformed vec-
tor n follow a multivariate (bivariate) Student-¢ distribu-
tion (see Sec. [II A). Let A and B be independent Gaussian
random variables with zero mean and standard deviation o
Furthermore, let C be a y? distributed random variable
with v degrees of freedom. Then the random vector

()= 7z=(s)

Y C/v B

follows a bivariate Student-¢ distribution with a diagonal
covariance matrix, exactly like the real and imaginary

components of 7i(f;) [8]. The root-mean-square figure
corresponding to the power then may be written as

A\2 B\2
VX2 + ¥ = Jzﬁw = V262D, (Al6)
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FIG. 6. Probability density functions of Student-Rayleigh
distributions for varying degrees of freedom » and fixed scale
o2 = 1. For v = oo, the distribution corresponds to the usual
(“Gaussian’”) Rayleigh distribution.
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where the random variable D, being a ratio of y? distrib-
uted random variables that are normalized by their respec-
tive degrees-of-freedom, follows an F(2, v) distribution
with 2 and v degrees of freedom [7].

b. Probability density function, efc.

In the Gaussian noise model (see Sec. II B), the noise
power at the jth frequency bin, |7i(f;)|, follows a Rayleigh
distribution with probability density function

X x2
frxlo) = pi3 exp(— F)’ (A17)

where the scale parameter o is given as o = 1[4%, Si(f))-

The analogue Student-Rayleigh probability distribution
in the Student-f noise model (see Sec. III A) is defined
through its density function

X

2
fSR(X|0', v) = %fF(Z,V)<—);

5o (A18)
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where fr(,,)(+) is the probability density function of an
F(2, v) distribution with 2 and » degrees of freedom.
Similarly, the cumulative distribution function and quantile
function are given by

2
Fsp(xlo, v) = Frp,) (%) and (A19)
Os(plo, v) = 4202 Qr.1(p), (A20)

where Frg,)(-) and Qpp,)(-) are the F distribution’s
cumulative distribution function and quantile function.
Figure 6 illustrates probability density functions of
Student-Rayleigh probability distributions for varying de-
grees of freedom ». For v = oo, the distribution corre-
sponds to the usual (“Gaussian’) Rayleigh distribution.
Note, in particular, the differing tail behavior (analogous to
Fig. 1) that is apparent especially in the logarithmic plot.
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