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We propose an underground experiment to detect the general relativistic effects due to the curvature of

space-time around the Earth (de Sitter effect) and to the rotation of the planet (dragging of the inertial

frames or Lense-Thirring effect). It is based on the comparison between the IERS value of the Earth

rotation vector and corresponding measurements obtained by a triaxial laser detector of rotation. The

proposed detector consists of six large ring lasers arranged along three orthogonal axes. In about two years

of data taking, the 1% sensitivity required for the measurement of the Lense-Thirring drag can be reached

with square rings of 6 m side, assuming a shot noise limited sensitivity (20 prad=s=
ffiffiffiffiffiffi
Hz

p
). The multigyros

system, composed of rings whose planes are perpendicular to one or the other of three orthogonal axes,

can be built in several ways. Here, we consider cubic and octahedral structures. It is shown that the

symmetries of the proposed configurations provide mathematical relations that can be used to ensure the

long term stability of the apparatus.
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I. INTRODUCTION

The general theory of relativity is the most satisfactory
description of gravitational phenomena. The theoretical
breakthrough came with Einstein’s geometrical represen-
tation of gravity: as different test masses fall in the same
way in a gravitational field, gravity must be a property of
space and time rather than of the masses themselves.

Until now, almost all successful tests of general relativ-
ity (Shapiro time delay [1], light deflection by the sun [2],
perihelion shift of the orbit of Mercury [3]) have been
probing the gravitational field of the Sun, without consid-
ering its proper rotation. However, general relativity
predicts that the stationary field of a rotating body is differ-
ent from the static field produced by the same nonrotating
mass. The difference is known as gravitomagnetism (GM)
and consists of a drag of space-time due to the mass
currents. The rotational frame-dragging effect is also
known as the Lense-Thirring (LT) [4] effect.

A direct experimental evidence of the existence of the
GM field has been obtained so far by Ciufolini [5] and by
Francis Everitt and the GP-B group [6]. The Lense-
Thirring effect, averaged over several orbits, has been
recently verified by analyzing the node orbital motion of
two laser ranged freely falling satellites (LAGEOS-1 and
LAGEOS-2) which orbit the Earth. In the measurement
presented in Ref. [5], the two LAGEOS satellites were used
to confirm the LT effect with an accuracy of the order of
10%. However, the launch of a third properly designed
satellite, LARES, will give the opportunity to measure the
LT effect with an accuracy of the order of 1% [7].

The possibility to detect Lense-Thirring with ring lasers
has been discussed in the past [8,9]. Recently, it has been
already pointed out that a multigyros system is able to test
locally the Lense-Thirring effect [10]: an array of six, 6 m
side, square ring lasers have enough sensitivity for this
purpose. The rings must have different orientation in space.
In the present paper we concentrate the attention on the
symmetries of the rings arranged on the faces of a cube or
along the edges of an octahedron, extracting the relevant
relations important for the diagnostics of the system. At the
end, we summarize and sketch the proposed experiment.
For completeness we must mention that an experiment of
the type we are planning and preparing could also be made,
in principle, using matter waves instead of light. This
possibility has been proved experimentally for various
types of particles such as electrons [11], neutrons [12],
Cooper pairs [13], calcium atoms [14], superfluid He3
[15], and superfluid He4 [16]. Cold atoms interferometry,
in particular, yields very high sensitivity and it is suitable
for space experiments because of the apparatus small size.
However, atoms interferometry experiments in space do
not provide an independent measurement of the Earth
angular velocity, are affected by the mass distribution of
the Earth, and test the average of the relativistic effect
rather than the local one. Eventually, the comparison

between in-space and on-ground measurements could be
very valuable.

II. DETECTION OF GRAVITOMAGNETIC
EFFECTS

Gravitomagnetism (GM) is a general relativistic phe-
nomenon related to the presence of mass currents in the
reference frame of a given observer. In the case of celestial
bodies, including the Earth, and excluding translational
motion with respect to the center of the body, gravitomag-
netic effects are due to the absolute rotation of the massive
source with respect to distant stars. When the Einstein
equations in vacuum are applied to this kind of symmetry
and are linearized (weak field approximation), GM is
accounted for by the analogue of a magnetic field of a
rotating spherical charge. In practice at the lowest approxi-
mation level, a dipolar GM field is obtained, with the
dimensions of an angular velocity. Its explicit form in a
nonrotating reference frame centered on the source (in our
case the Earth center) is (see e.g. [17])

B ¼ 2G

c2R3
½J� � 3ðJ� � urÞur�; (1)

where R � Rur is the position of the laboratory with
respect to the center of the Earth and J� is the angular
momentum of the Earth, whose modulus is of course given
by the product of the moment of inertia of the planet
multiplied by its angular velocity.
The effect produced by a field like (1) on a massive test

body moving with velocity v looks like the one produced
by a magnetic field on a moving charge: in fact, the
geodesic equation in weak field approximation reads

dv

dt
¼ Gþ v ^ B; (2)

where G ¼ �GM=R2ur is the Newtonian gravitational
field, so that the effect can be described in terms of
a gravitoelectromagnetic Lorentz force, where the
Newtonian gravitational field plays the role of the gravito-
electric field (GE).
Furthermore, the rotation of the source of the gravita-

tional field affects a gyroscope orbiting around it, in such a
way that it undergoes the so-called Lense-Thirring preces-
sion, or dragging of the inertial frames of which the gyro-
scope defines an axis [17,18]. This phenomenon shows up
also when one considers a freely falling body with local
zero angular momentum: it will be seen as rotating by a
distant observer at rest with the fixed stars [19].

A. Mechanical gyroscopes

Gravitomagnetic effects can in principle be measured
applying different methodologies. The one that has most
often been considered is focused on the behavior of a
gyroscope, that can be either in free fall (on board an
orbiting satellite) or attached to the rotating Earth. The
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axis of the gyroscope is affected in various ways by the
presence of a gravitational field. As for GM, a little me-
chanical gyroscope is the analogous of a small dipolar
magnet (a current loop), so that it behaves as magnetic
dipoles do when immersed in an external magnetic field.

When studying the motion around the Earth of a gyro-
scope whose spin vector is S, one is led to the formula
[3,17]

dS

dt
¼ �0 ^ S: (3)

In Appendix Awework out the explicit expression of�0 in
general relativity and, more in general, in metric theories
of gravity, using the parametrized post-Newtonian (PPN)
formalism [20]: we show that it is related to the gravito-
magnetic components g0i of the metric tensor and its
expression is given by [see Eqs. (A6)–(A10)]�0 ¼ �G þ
�B þ�W þ�T , so that we can distinguish four contri-
butions, namely, the geodetic term�G, the Lense-Thirring
term �B, the preferred frame term �W , and the Thomas
term�T . All terms in�0 are called relativistic precessions,
but properly speaking only the second is due to the intrinsic
gravitomagnetic field of the Earth, namely, it is �B ¼
� 1

2B, and manifests the Lense-Thirring drag.

Ciufolini [21] deduced the relativistic precession of the
whole orbital momentum of two LAGEOS satellites whose
plane of the orbit is dragged along by the rotating Earth.
Again on Eq. (3) was based the GP-B experiment, whose
core was four freely falling spherical gyroscopes carried by
a satellite in polar orbit around the Earth [6]. While time
goes on and the available data grow it is expected that the
Lense-Thirring drag will emerge from the behavior of the
unique (so far) double pulsar system [22].

B. Using light as a probe

A different experimental approach consists in using light
as a probe. In this case the main remark is that the propa-
gation of light in the gravitational field of a rotating body is
not symmetric. The coordinated time duration for a given
space trajectory in the same sense as the rotation of the
central source is different from the one obtained when
moving in the opposite direction. This asymmetry would,
for instance, be visible in the Shapiro time delay of elec-
tromagnetic signals passing by the Sun (or Jupiter) on
opposite sides of the rotation axis of the star (or the planet)
[23,24].

This property of the propagation of light is the onewhich
we wish to exploit in our Earth-bound experiment using a
set of ring lasers. In a terrestrial laboratory, light circulating
inside a laser cavity in opposite directions is forced, using
mirrors, to move along a closed path in space. What is
closed from the view point of the laboratory is not so for a
fixed-stars-bound observer, but the essential is that the two
directions are not equivalent and that the two times re-
quired for light to come back to the active region are

(slightly) different. As it happened already in the case of
the mechanical gyroscopes, here too the difference in the
two times of flight is made up of various contributions
depending on the rotation of the axes of the local reference
frame with respect to distant stars, on the fact that the local
gravitational (Newtonian) potential is not null, and of
course on the GM drag (which is our main interest).
What matters, however, is that the final proper time differ-
ence (a scalar quantity) is invariant: it does not depend on
the choice of the reference frame or of the coordinates.
Performing the calculation in linear approximation for

an instrument with its normal contained in the local meri-
dian plane (see the Appendix A details) we find

c�� ¼ 4A

c
��

�
cosð�þ �Þ � 2

GM

c2R
sin� sin�

þ GI�
c2R3

ð2 cos� cos�þ sin� sin�Þ
�
; (4)

where A is the area encircled by the light beams, � is the
angle between the local radial direction and the normal to
the plane of the instrument, measured in the meridian
plane, and � is the colatitude of the laboratory; �� is the
rotation rate of the Earth as measured in the local reference
frame (which includes the local gravitational time delay).
Equation (4) can also be written in terms of the flux of an

effective angular velocity � through the cross section of
the apparatus:

�� ¼ 4

c2
A ��; (5)

where A ¼ Aun is the area enclosed by the beams and
oriented according to its normal vector un. In particular, it
is � ¼ �� þ�0, and the term proportional to �� is the
purely kinematic Sagnac term, due to the rotation of
the Earth, while �0 ¼ �G þ�B þ�W þ�T encodes
the relativistic effects (see Appendix A).
For a ring laser in an Earth-bound laboratory, the geo-

detic and Lense-Thirring terms are both of order �10�9

with respect to the Sagnac term, while the Thomas term is
3 orders of magnitude smaller. As for the preferred frame
term, the best estimates [25,26] show that this effect is
about 2 orders of magnitude smaller than the geodetic and
Lense-Thirring terms. Consequently, to leading order, the
relativistic contribution to the rotation measured by the
ring laser turns out to be�0 ’ �G þ�B, which we aimed
at measuring in our experiment. In other words, the goal of
our experiment will be the estimate of �0 (see Fig. 1)
which embodies the gravitomagnetic effects in a terrestrial
laboratory.
In particular, the proposed experiment can also provide

high precision tests of metric theories of gravity which are
described in the framework of (PPN) formalism. In fact,
from Eqs. (A22) and (A23), we see that, on setting for the
rotating Earth J ¼ I���, we obtain
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�G ¼ �ð1þ �ÞGM
c2R

sin#��u#; (6)

�B ¼ � 1þ �þ �1

4

2

GI�
c2R3

½�� � 3ð�� � urÞur�; (7)

where �1 and � are PPN parameters (e.g. �1 ¼ 0 and
� ¼ 1 in general relativity) which account for the effect
of preferred reference frame and the amount of space
curvature produced by a unit rest mass, respectively.

As shown in Sec. VII B, from a high precision measure-
ment of the vector �0 in the meridian plane, we should be
able to place new constraints on the PPN parameters �1

and �.

III. THEORY OF THE MEASUREMENT:
COMBINING TOGETHER THE RESPONSE

OF SEVERAL RINGS

A. The response of a ring laser

A ring laser converts time differences into frequency
differences. In fact, since the emission is continuous, the
right-handed beam adjusts itself to give a standing wave
whose wavelength is an integer submultiple of the space
length of the loop P: c�þ ¼ P ¼ N�þ. The same happens
with the left-handed beam, but being the total time differ-
ent, also the wavelength of the corresponding standing
wave will be different: c�� ¼ N��. The two modes of

the ring can have different N, a situation usually called
‘‘split mode,’’ but the higher accuracy of the measurement
has been obtained so far with the two modes with equal N.
Considering the time of flight difference in terms of the
wavelengths of the two standing waves, we see that

c�� ¼ Nð�þ � ��Þ ¼ Nc
f� � fþ

f2
¼ P�

�f

c
: (8)

The ring-laser equation [27] relates the frequency split-
ting �f of the two optical beams inside the ring interfer-
ometer with the experienced rotation rate of its mirrors,

�f ¼ 4A

�P
un ��; (9)

where P is the perimeter and � is the laser wavelength. The
response R of a ring laser to the rotation rate�, in units of
rad= sec, is simply a rescaling of the frequency splitting by
the scale factor S � 4A

�P , i.e.,

R � �f=S ¼ un ��: (10)

The scale factor S plays a crucial role in the accuracy of
the measurement of � and to estimate the relativistic
effects the ratio 4A

�P must be known and kept at 10�10

accuracy level for months. The requirements to keep the
apparatus in the optimal working conditions will be dis-
cussed in Sec. IV.
Since the effective angular velocity as well as the grav-

itomagnetic one is of the order of 10�9��, angles between
vectors must be measured at the corresponding accuracy
level. Unfortunately, the absolute measurement of un in the
fixed stars reference system with the accuracy of nano-
radians can hardly be achieved. However, we can relax this
requirement by using M � 3 ring lasers oriented along
directions u� (� ¼ 1 . . .M), where not all u� lie in the
same plane. In fact, � can be completely measured by
means of its projections on at least three independent
directions (e.g., defining a tridimensional Cartesian sys-
tem) and the redundancies of the measurement can be used
as a monitor and control of the stability of the directions
u�. We further assume that ring lasers have identical
sensitivity and noise parameters. From an experimental
point of view, this can be easily satisfied by building the
devices with scale factors that differ less than %.
In order to simplify the sensitivity calculations of the

system, one can consider multiaxial configurations en-
dowed with symmetries. As all the ring-laser normals u�

are equivalent in space, symmetric configurations should
be more efficient in the rejection of spurious effects and in
the control and monitoring of the relative orientation of the
ring lasers. The natural choice is to take advantage of space
symmetries of regular polyhedra, setting one ring for each
plane parallel to their faces. If we do not consider the
degeneration between opposite faces, we have M ¼ 3 in
the case of the cube, four for tetrahedron and octahedron,
six for dodecahedron, and ten for icosahedron. There is

FIG. 1. The amplitude of the relativistic effects on the surface
of the Earth, according to the theory of general relativity, in units
of prad=s, as a function of the colatitude �. The continuous,
dashed, and dotted lines correspond to �0 ¼ �G þ�B pro-
jected along the directions: (i) parallel to �� (i.e. �0

k); (ii) ur
(local radial or zenithal direction); and (iii) u� (local North-
South direction), respectively. To evaluate the contribution to�0
from�G, we have projected�G along�� (continuous line plus
triangles) and u� (dotted lines plus squares). We note that the
gravitoelectric term has only the u� component and therefore
along the radial direction we have a pure gravito-magnetic term.
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a peculiar geometry withM ¼ 3, obtained by arranging the
rings along the edges of an octahedron, where the different
rings can be nested together, sharing 2 by 2 the same
mirrors. We will refer to it in the following by speaking
of ‘‘octahedral configuration.’’ TheM ¼ 3 is the minimum
number of rings necessary to reconstruct the rotational
vector, but a redundancy is very appropriate to enhance
statistics and to have control tests on the geometric
accuracy.

In general, by simple arguments, one can demonstrate
that, for regular polyhedra configuration,

XM
�¼1

u� ¼ 0 ðM> 3Þ (11)

and that

XM
�¼1

ð� � u�Þ2 ¼ M

3
j�j2 ðM � 3Þ: (12)

As a consequence, one can study linear and quadratic
combinations of ring-lasers responses R� which are invari-
ant under permutations of the ring laser labels �, i.e. L ¼P

�R� and Q ¼ P
�R

2
�. For nonsymmetric configurations

we can generalize their definition as L ¼ P
�L�R� and

Q ¼ P
�Q��R�R�, where L� and Q�� are suitable con-

stants which depend on u�. The interest in such linear or
quadratic forms relies on their behaviors in the presence of
noise fluctuations or variations of the geometry of the
configuration.

They also allow us to carry out analytical estimates of
the overall sensitivity of a triaxial system of ring laser to
relativistic effective rotation rates.

B. Requirements for the geometry of the configuration

The response of each ring laser can be conveniently
written as

R� ¼ � � ðu� þ �u�Þ þ "�; (13)

where �u� � �S�u� þ �#� ^ u� account for systematic
errors in the scale factors and orientations in space and "�
represents the additive noise that affects the rotation mea-
surement R�, that we assume averaged on the observation
time T ’ 1 day. We assume as well that "� are Gaussian
distributed random variables with zero mean and variance
�2

�. Modulus j�u�j ’ �S� and direction �#� ^ u� repre-

sent the deviations from regular polygon geometry in the
plane and from polyhedra geometry in the space, due to
scale factor fluctuations �S� and infinitesimal rotations
�#�, respectively. In what follows the crucial assumption
is that systematic errors (scale factors and relative align-
ment of u�) are negligible with respect to statistical errors,
i.e. j� � �u�j<�� or equivalently j�u�j<��=�, while
the dihedral angles arccosðu� � u�Þ can nearly approximate

a regular polyhedron configuration.

Redundancy of responses, if M> 3 rings are involved,
can be used to control systematic errors projected along the
direction of �. In fact, the rigidity of the configuration
imposes some linear kinematic constraints among different
estimates of the laboratory rotation. In general, any linear
combination of three responses R� gives an estimate of the
local rotation � and we can test the consistency among
different estimates by means of the ordinary least square
fit. A very simple linear constraint can be found for regular
polyhedral configurations

L ¼ XM
�¼1

R� (14)

and we will illustrate its statistical property as an example
of the power of the method.
From the definition of L immediately follows that it is

Gaussian distributed with zero mean and standard devia-

tion �L ¼ ffiffiffiffiffi
M

p
��. In addition, possible misalignments

�#� ^ u� or scale factor fluctuations �S�u� are amplified
by a factor of � in the mean value of L:

hLi ¼ XM
�¼1

� � �u� (15)

¼ �
XM
�¼1

ð�S�u� þ �#� ^ u�Þk; (16)

without affecting the corresponding variance �2
L. Thus, hLi

can be used as a ‘‘null constraint’’ which is minimumwhen
the configuration geometry is a regular polyhedron, and so
the overall mean error parallel to � can be monitored at

� ffiffiffiffiffi
M

p
��=� ’ 10�10 accuracy level.

C. Estimate of the parallel component of the
relativistic effective rotation vector

An estimate of �2 for symmetric configurations readily
follows from Eq. (12):

Q ¼ 3

M

XM
�¼1

R2
� (17)

¼ �2 þ 6

M

XM
�¼1

"�� � u� þ 3

M

XM
�¼1

"2�: (18)

Its mean value and standard deviation read (see
Appendix B)

hQi ¼ �2 þ 1
3�

2
� (19)

�Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18

M
�4

� þ 12

M
�2�2

�

s
: (20)

In addition, one can demonstrate that Q is noncentral 	2

distributed with M degrees of freedom and noncentrality
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parameter�2. In order to estimate the relativistic effective
rotation, we must subtract �� from the rotation rate esti-
mated in the laboratory. To this end we calculate the
difference � � ðQ��2�Þ that, in the limit of high signal
to noise ratio (SNR) (j�j=�� � 1), tends to be Gaussian
distributed with mean

h�i ’ 2���0
k (21)

and standard deviation

�� ’ ð2 ffiffiffi
3

p
=

ffiffiffiffiffi
M

p Þ����; (22)

where we have neglected terms of the order of ��=�. The
SNR ¼ h�i=�� of the parallel component of relativistic

effective rotation is increased by a factor of
ffiffiffiffiffiffiffiffiffiffi
M=3

p
with

respect to the sensitivity of each ring laser.
The advantage of this approach is that we compare

scalar quantities (moduli of rotation vectors) measured
with respect to the local and distant stars reference sys-
tems. Its drawback is the very poor sensitivity to the
perpendicular component �? of the relativistic effective
rotation. In fact, �2 ��2� ¼ 2�0 ��� þ j�0j2, and the
ratio between the second term (which is associated to
the perpendicular component as j�0j2 ¼ �02

k þ�02
?) and

the first term is �GM=c2R ’ 10�10.
It is worth noticing that statistical fluctuations of L

(control of geometry by redundancy) and Q (measure of
relativistic effects) are uncorrelated, and that they tend to
be independent in the limit of high SNR.

D. Estimate of the components of the relativistic
effective rotation vector

By arranging the response of ring lasers R� as M-tuples
in a M-dimension vector space R ¼ ðR1; R2; R3; . . . ; RMÞ,
we can easily define projection operators that allow the
estimate of local meridian plane M and also the direction
w of � in the physical space. Moreover, the norm of
projected random vectors are described by remarkably
simple statistics. According to the definition of the matrix
product we have R ¼ N�þ ", where N is a M	 3
matrix whose elements are N�i ¼ ðu�Þi and " ¼
ð"1; "2; "3; . . . ; "MÞ. Thus, the random vectors R can be
projected on the linear subspaces PM and QM of dimen-
sions 2 and M� 2, which represent, respectively, a plane
in the physical space and its complementary space. The
physical symmetry of the rotating Earth imposes that the
relativistic effective rotation vectors and�� lie in the same
plane, i.e. the meridian plane, and therefore the knowledge
of the orientation of this plane is crucial if we want to
measure not only the modulus but the whole vector.
We recall that a plane is defined as the set of the points
svþ tw, where s and t range over all real numbers, v and
w, are given orthogonal unit vectors in the plane.

The parallelism of v ^ w with the normal to the meri-
dian plane can be tested under the hypothesis that the

rotation signal is fully located in the PM subspace while
the QM subspace contains only noise. The test can be
easily performed over the norms of the two projections
EPðv;wÞ � kPv;wRk2 and EQðv;wÞ � kQv;wRk2, where
we have introduced the symbol kRk ¼ ðPM

�¼1 R
2
�Þ1=2 to

indicate the L-2 norm in the M-dimensional Euclidean
response space. The M	M projection matrices Pv;w and

Qv;w can be written explicitly as functions of the unit

vectors v and w

Pv;w ¼ NVðNVÞT (23)

Qv;w ¼ I�NVðNVÞT; (24)

where V is a 3	 2 matrix with columns v and w, and I is
the M	M identity matrix. As shown in Appendix B,
the probability distribution of EP is noncentral 	2 with
2 degrees of freedom and noncentrality parameter �2,
while EQ should be 	2 distributed with M-2 degrees of

freedom.
The best estimate of v and w is then obtained by

ðv̂; ŵÞ ¼ argmax
v;w

kPv;wRk2; (25)

where the maxu;w is taken over the unit sphere. The direc-

tion of the Earth rotation axis can be estimated as a
particular case of Eq. (10). In fact, the projectors Pw and
Qw can be obtained by substituting the matrix V for the
3	 1 matrixW with columns w. The difference lies in the
dimension of the corresponding subspaces, i.e., PW and
QW have dimension 1 and M-1, respectively. It is worth
noticing that the maximum of Eq. (25) can be computed by
an analytical formula both for the location of the meridian
plane and the direction of the Earth rotation axis. In fact, if
we introduce in the local reference frame the (local) spheri-
cal coordinate (R, �, and �) (we use capital letters to
avoid confusion with Sec. II) and parametrize the unit
vectors v and w with these angles, for instance w¼
ðcos�sin�;sin�sin�;cos�Þ and v¼ðcos�cos�;
sin�cos�;�sin�Þ, we have that the maximum of
kPv;wRk2 and kPwRk2 is achieved for

tan�̂ ¼
�
RTFR

RTHR

�
1=2

tan�̂ ¼
�
RTKR

RTJR

�
1=2

; (26)

where F, H, K, J are M	M symmetric matrices which
are functions of the u� alone.
In general, there are no analytical calculations for mean

and variance of v̂, ŵ and one must run Monte Carlo
simulations to get their estimates. However, in the limit
of high SNR EP and EQ tend to be Gaussian distributed, as

well as fluctuations of v̂ and ŵ around their mean values.

The same reasoning holds true also for the estimation of �̂

and �̂.
The validity of the proposed experimental configuration

has been checked by a numerical simulation over a period
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of one year of the six responses of the octahedral configu-
ration oriented as in Fig. 23 of Sec. VC. In order to
simplify the calculations we assume that the laboratory
colatitude is � ¼ 
=4 and that the normal to the plane of a
ring forms a 
=4 angle with respect to the Earth axis, and
another normal is orthogonal to the former and forms again
a 
=4 angle with the west-east direction. This configura-
tion is close to a possible experimental arrangement at the
Gran Sasso National Laboratories (LNGS) within a few
degrees. The directions of the unit vector u� in the local
reference frame are

u1 ¼ u4 ¼
�
1

2
;
1ffiffiffi
2

p ;
1

2

�

u2 ¼ u5 ¼
�
� 1

2
;
1ffiffiffi
2

p ;� 1

2

�

u3 ¼ u6 ¼
�
� 1ffiffiffi

2
p ; 0;

1ffiffiffi
2

p
�

(27)

and the rotation signal for the six rings are equal with-

in a factor
ffiffiffi
2

p
. We assume one mean sidereal day

TS ¼ 86 164:0989 s of integration and a noise standard
deviation �� ¼ 7	 10�2 prad=s. The variance �� is
extrapolated from present ‘‘G’’ sensitivity at 104 s and
scaling by a factor 5, due by the increase of the ring
size and the power of the laser of a factor 1.5 and 10,
respectively. The relativistic rotation contributions �0

r ¼
�2:8	 10�2 prad=s and �0

� ¼ �5:6	 10�2 prad=s have
been added to the Earth rotation vector��, as estimated by
IERS [28]. The component of relativistic effects parallel to

�� is �0
k ¼ ð�0

� þ�0
rÞ=

ffiffiffi
2

p ¼ 5:9	 10�2 prad=s. Using

Eq. (10) we calculated the responses of the six rings and
then we injected the Gaussian noise. In Fig. 2 we show
the histograms of TS�=ð2
Þ accumulated for 90 and
366 sidereal days. The corresponding mean values of
the parallel component of relativistic effects are �6:0	
10�2 prad=s and �6:2	 10�2 prad=s with standard

deviations 4:7	 10�3 prad=s and 2:6	 10�3 prad=s, re-
spectively. Thus, a �10% accuracy can be achieved in
three months by simply comparing the square modulus of
rotation vectors. In order to give a full estimate of the
vector �0, we have also explicitly calculated day by day

the angles �̂ and �̂ for describing the orientation of the
meridian plane and the direction of the Earth rotation
vector. The results are summarized in Figs. 3 and 4, where
we report the time evolution of these angles, and in Fig. 5,
where we show the corresponding annual polar motion.
By synchronizing the polar motion measured in the local

reference system with the polar motion measured by IERS
in the fixed star reference system, the two reference frames
will coincide within the accuracy of the measurement of�
and ��, say one part of 1010. As a final remark, we point
out that the full measurement of the vector�0 allows for us
the estimate of �0

? ’ 2	 10�2 prad=s with a standard

deviation of the same order of magnitude of the estimate
of �0

k. This represents an increase of the relativistic

FIG. 2. Histograms of the difference � between Q and �2�,
normalized with the mean sidereal day, collected for
three months (dark histogram) and one year (light histogram).

FIG. 4. Change of the angle � due to polar motion as mea-
sured by the ring-laser responses in one year. Note the large
variation of � which corresponds to a nearly complete preces-
sion cycle of the Earth axis in one year.
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1. 10 6
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FIG. 3 (color online). Change of the angle � due to polar
motion as measured by the ring-laser responses in one year.
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rotation signal of �30%. However, the estimate of �0 is
crucial to separate the geodetic from Lense-Thirring con-
tributions and/or to measure the PPN parameters �1 and �.

E. The Earth motion and feasibility of the experiment

Since our goal is the estimate of the Lense-Thirring
effect at few % accuracy, the independent measurement
of �� þ�REL, which represents the rotation of the labo-
ratory with respect to distant stars, must be determined to
10�10��. Because of tidal forces and to the exchange of
angular momentum between the solid Earth and geophysi-
cal fluids, the angular velocity of the Earth varies in time,
both in direction and modulus. Changes in modulus corre-
spond to a variation of the length of the day (LoD) of
few milliseconds with respect to atomic clocks. The direc-
tion of the rotation axis of the Earth varies with respect to
both the fixed stars and the Earth-fixed reference frames.
Nowadays, the best Earth rotation monitoring is provided
by the IERS 05C04 time series [28] which are routinely
obtained using the geodetic space techniques VLBI (very
long baseline interferometry), SLR (satellite laser rang-
ing), GPS (global positioning system), and DORIS
(Doppler orbitography and radiopositioning integrated by
satellite).

In Figs. 6 and 7 we report the length of the day (LoD)
and the pole position with the corresponding errors of the
last six years. It is worth noticing that the achieved preci-
sion is 0.001 ms in the LoD and 0:1 �arcsec in the pole
position.

Further improvements are expected in the next few years
and the overall errors in LoD and pole position should
decrease of a factor 10 that is crucial for a 1%measurement
of the relativistic rotation terms. However, the IERS 05C04
time series is already sufficient to get j��j with 3%
accuracy.

For what concerns the differential rotation of the labo-
ratory with respect to the rotation estimated by IERS, it is
expected to be sufficiently small to contribute to �� only

through ��k. However, �REL is still largely unknown due

to possible microrotations of the crust of the Earth. This is
one of the causes limiting the performances of G in
Wettzell: the Earth crust motion caused by atmospheric
changes. It is assumed that an underground facility is less
sensitive to this kind of noise sources. It is as well impor-
tant to keep the experiment close to VLBI stations. The
underground Gran Sasso Laboratories is placed halfway
between two relatively close VLBI stations, Medicina [29]
and Matera [30] which can provide estimates of the crustal
motion of the Adriatic plate [31]. A significant contribution
to �REL comes from the ‘‘diurnal polar motion’’ (periodic
motion of the Earth crust due to tides) and consists in
periodic changes of amplitude �10�7��. This effect has

FIG. 6. The change of the length of the day (LoD) over the past
six years from the IERS 05C04 time series. Notice that estimated
errors of LoD decreased in the past years to a level which
corresponds to 10�14 rad= sec , i.e. 0.1 ppb ��.
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FIG. 5 (color online). The estimated polar motion from the six
ring-laser responses.

FIG. 7. The change of the direction of the Earth rotation axis
(i.e. pole position) over the past six years from the IERS 05C04
time series. Estimated errors are also plotted.
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been already measured by large ring-laser gyroscopes [32],
and can be accurately modeled and then subtracted from
ring-laser responses.

We conclude that by means of available geodesics and
geophysics techniques, provided that the experiment is
located in an area with very low relative angular motion
(�REL), a suitable triaxial detector of rotation can in prin-
ciple detect �0 with % precision.

IV. THE ‘‘REAL APPARATUS’’, THE PRESENT
SENSITIVITY OF G IN WETTZELL

A. Sensor properties

A closer look at Eq. (9) reveals that there are three basic
effects one has to carefully account for. These are:

(i) scale factor stability (4A=�P)
(ii) orientation of the gyroscope with respect to the

instantaneous axis of rotation of the Earth
(iii) instantaneous rate of rotation change of the Earth—

Length of Day (LoD).

The scale factor for all practical purposes has to be held
constant to much better than 1 part in 1010. Otherwise the
frame-dragging parameter cannot be determined unambig-
uously. For G, the base of the gyroscope has been manu-
factured from Zerodur, a glass ceramic with a thermal
expansion coefficient of �< 5	 10�9=
C. Furthermore,
the instrument is located in a thermally insulated and
sealed environment with typical temperature variations of
less than 5 mK per day. However, because the underground
laboratory is only at a depth of 5 m, there is still a peak to
peak temperature variation of about 1
 per year, account-
ing for the change of seasons. Changes in the atmospheric
pressure also affect the dimensions of the ring-laser struc-
ture by changing the compression of the Zerodur block and
cannot be neglected. Hence, G is kept in a pressure stabi-
lized enclosure. A feedback system based on the determi-
nation of the current value of the optical frequency of the
lasing mode of one sense of propagation allows for active
control of the pressure inside the steel vessel such that an
overall geometric scale factor stability of better than 10�10

is routinely obtained. At the same time the design of the
instrument is made as symmetric as possible. So changes in
area and perimeter are compensated with a corresponding
change in wavelength as long as no shear forces are present
and the longitudinal mode index stays the same.

A typical eight day long measurement sequence of
rotation rate data from the G ring laser is shown in
Fig. 8. In order to demonstrate the obtained sensor sensi-
tivity, we have subtracted the mean Earth rotation rate from
the gyroscope data. The y axis gives the measured variation
of the rate of rotation, while the x axis shows the time
expressed in the form of the modified Julian date. Each
data point was taken by integrating over 30 min of mea-
surement data. There are several distinct signal contribu-
tions in the data, which come from known geophysical

effects. The most prominent signal is caused by diurnal
polar motion [33]. The polar motion data is superimposed
by a tilt signal caused by the semidiurnal and diurnal tides
of the solid Earth, distorting the otherwise sinusoidal diur-
nal frequencies slightly. At the Geodetic Observatory in
Wettzell, the tilt effects of the solid Earth tides can be as
large as 40 nrad in amplitude. In Fig. 8 the diurnal signal is
dominated by the polar motion [34]. Less evident in Fig. 8
are the effects from local tilt, which contains periodic
signals of tidal origin as well as nonperiodic signals. The
latter are nonperiodic and usually change slowly over
the run of several days. High resolution tiltmeters inside
the pressure stabilizing vessel of the G ring laser keep track
of these local effects and the data is corrected for gravita-
tional attraction (atmosphere, sun and moon) [33]. Large
nonperiodic local tilts occur most prominently after abun-
dant rainfall, indicating hydrological interactions with the
rock and soil beneath the ring-laser monument. Figure 9
shows the east component of three tiltmeters installed
(i) on a gravimeter pillar at the surface, (ii) in 6 m depth,
and (iii) in 30 m depth.
While the tiltmeter in 30 m depths clearly shows the

periodic signal of the solid earth tides, the tilt record of
the instruments near to the surface is dominated by large

FIG. 8 (color online). Approximately eight days of raw G data
taken with 30 minutes of integration time. One can clearly see
the contributions from diurnal polar motion, solid Earth tides,
and local tilt.

FIG. 9 (color online). Measurement of local tilts as a function
of depth in the Earth.
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nonperiodic signals hydrological, thermoelastic, and baro-
metric origin. Several investigations have shown that the
site and the installation depths of tiltmeters have a major
impact on environmental noise mainly coming from hy-
drology [35–38] has shown that even in 100 m depths
effects caused by hydrological changes are detectable,
but strongly reduced in comparison to a 50 m deep instal-
lation. First investigations related to topographic and tem-
perature induced effects were carried out by [39,40].
Detailed investigations using the finite-element method
have shown that these effects can amount to more than
10 nrad [41,42]), while the distance between the source and
the location of observation can be several hundred meters.
Additionally, recent work using the G ring-laser data re-
veals that effects caused by wind friction at the Earth
surface yields to high frequency rotations of large
amplitudes.

The large seasonal temperature effect on the G ring laser
as well as the substantial local tilt signals and the rather
high ambient noise level of our near soil surface structures
give reasonable hope of much better performances of a
ring-laser installation in a deep underground laboratory
such as the Gran Sasso Laboratories.

For the detection of fundamental physics signals, one
has to remove all known perturbation signals of the Earth
from the ring-laser time series. Furthermore, we have
applied 2 h of averaging of the data in order to reduce
the effect from short period perturbations. Figure 10 shows
an example. In Fig. 11 we show the current sensitivity
expressed in term of Allan deviation of the G, the expected
sensitivity of each ring laser at Gran Sasso Laboratories,
and the relevant geophysical signal.

In order to reduce the local orientation uncertainties,
which remain after local tilts measured with the high
resolution tiltmeters have been removed, averaging as in-
dicated above was applied to a series of 30 days of data

collection, including the period shown in Fig. 8. It can be
expected that a similar data set from the Gran Sasso
Laboratory would become substantially smoother, since
most of the perturbations, caused by ambient atmo-
sphere–topsoil interaction still contained in the data of
Fig. 10 would no longer exist in the deep underground
facility. Changing hydrologic conditions presumably caus-
ing small local rotation and temperature variations, atmos-
pheric pressure, and wind loading are among the sources
for the systematic signatures in the residual data.

V. CONFIGURATION OF
ATRIAXIAL DETECTOR

From now on, we will restrict our analysis to 24 m
perimeter rings, arranged in two configurations that are
of some experimental interest, i.e. six ring lasers rigidly
mounted on the faces of a cube, as shown in Fig. 12, and
three ring lasers oriented along the edges of an octahedron,
see Fig. 13. The cubic configuration requires 24 mirrors
forming six independent rings and the extension of the

FIG. 10 (color online). The rotation rate of the Earth measured
with the G ring laser as a function of time. Averaging over 2 h
was applied to a corrected data set, where all known geophysical
signals have been removed.

FIG. 11 (color online). Resolution and stability of G, com-
pared with Earth signals.

FIG. 12 (color online). Six rings arranged on the faces of a
cube, using the GEOSENSOR design, which has been success-
fully used so far for middle size rings, as our prototype G-Pisa.
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GEOSENSOR design is straightforward (see Sec. VC);
while the octahedral configuration require six mirrors only
to form three orthogonal rings. By itself the configuration
which uses a cube is redundant, each ring has a parallel
companion, which can be used for the study of systematics.
For the octahedron configuration the implementation of
the GEOSENSOR design needs further development.
Redundancy can be easily obtained constructing a second
octahedron with planes parallel to the other one. The two
structures should be built very close to each other, in order
to keep as much as possible the whole apparatus compact;
in this way six rings are available, analogously to the cube
configuration, see Fig. 14. This configuration has the ad-
vantage that there are constraints in the relative angle
between rings, since each mirror is in common between
two rings, and three linear Fabry-Pérot (FP) cavities are
available using the three diagonals of the rings. Those

linear cavities have the capability of monitoring the rela-
tive angles between different rings, and as well the length
of each diagonal.

A. Ring-laser sensitivity

The rotation sensitivity �2
� for noise fluctuations which

are dominated by laser shot noise over an integration time
T, reads

�2
� ¼ cP

4AQ

ffiffiffiffiffiffiffiffi
hf

WT

s
; (28)

whereQ is the quality factor of the optical cavity, f ¼ c=�
is the laser frequency, h is the Plank constant, andW is the
power of the laser [43]. The limiting sensitivity can be
conveniently calculated scaling the parameters of the
Wettzell G ring laser

�� ¼ 2:9	 10�13

�
P

16 m

��
16 m2

A

��
3	 1012

Q

�

	
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

20 nW

W

s �� ffiffiffiffiffiffiffiffiffiffiffi
105 s

T

s �
rad=s: (29)

In order to obtain in few weeks a 10% accuracy level in the
measurement of the relativistic effective rotation rates, we
must achieve the sensitivity goal of�� ¼ 7	 10�14 rad=s

(or equivalently a rotation noise level 20 prad= sec =Hz1=2

at a frequency of 1 day�1). From Eq. (29) we have that a
system of six rings with P ¼ 24 m, Q ¼ 3	 1012, and
W ¼ 200 nW can fulfill this requirement.

B. Expected performances of not
optimally oriented rings

We assume that the ring lasers are identical in the sense
described in Sec. III E and that the dihedral angles
arccosðu� � u�Þ are measured better than one part in 1010

in order to estimate � independently from the reference
frame. Note that only the stability of dihedral angles can be
monitored by means of the Earth signal itself only for short
times (few days), while their measurements and controls
must be performed independently in the laboratory. For
instance, assuming that the scale factors are controlled to
the 10�10 accuracy, the responses of two parallel rings are
statistically different from noise when their parallelism is
modified.
From an experimental point of view, to arrange in the

Cartesian planes several rings and keep the configuration
stable over the integration time T ’ 1 day is a demanding
task. However, we can relax such a demanding requirement
by means of data analysis procedures that account for
slightly nonorthogonal dihedral angles.
For instance, we can use the measured dihedral angles to

estimate directly�. In fact, we can substitute the quadratic
combination of ring-laser responses in Eq. (17) with the
equivalent bilinear combination,

FIG. 14 (color online). Six rings, two by two parallel, with
mirrors on the vertices of two octahedra, constructed very close
one to the other in order to reduce the dimension of the
apparatus.

FIG. 13 (color online). Three rings are formed using six mir-
rors located on the vertices of an octahedron.
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Q ¼ XM
�¼1;�¼1

Q��R�R�; (30)

where Q�� are the elements of the M	M matrix Q ¼
NðNNTÞ�2NT . The statistics of Q is no longer noncentral
	2; however, we can easily compute (see Appendix B for
details) its mean

hQi ¼ j�j2 þM�2
� (31)

and variance

�2
Q ¼ 2�4

�

X
��

Q2
��

þ 4�2
��

2
X
��

Q2
��
uk�uk�: (32)

In the limit of high SNR, fluctuations of Q tend to be
Gaussian distributed, and so we recover the results in
Eq. (22) for the overall sensitivity of the system. If we
start with dihedral angle close to 
=2 (say 1 part in 105),
then sensitivity loss is very small since it is of the same
order.

C. Guidelines of the experimental apparatus

The best performing ring, so far, is G which is a four
mirrors ring. This is one of the reasons why the present
scheme uses a square ring geometry. In principle, a trian-
gular ring, with three mirrors could be preferable since the
three mirrors are always inside a plane, and the losses will
be minimized as well, reducing the number of mirrors.
It could be advantageous in principle, but a triangular
ring is less sensitive. For instance, let us compare the
performance of two rings inscribed in a circle of radius
r; for a regular polygon with different number of sides N,

the area is A ¼ N r2

2 sinð2
N Þ and the perimeter is P ¼
2Nr sinð
NÞ; it is straightforward to demonstrate that the

triangular ring has 0.7 times the signal than the square
one, which is equivalent to say that the triangular ring
needs 2 times more time to reach the same level of accu-
racy as the square one.

The ring-laser response is proportional to the scale
factor ‘‘S.’’ For a perfect square ring this proportionality
factor is equivalent to N, the number of wavelength inside
the ring: when the length of the ring changes, because of a
change in the temperature, the laser changes its wavelength
in order to keep N constant. This is true as long as the
perimeter change is below one wavelength, 632 nm in our
case, and in this condition the gain factor of the instrument
guarantees a very high accuracy of the measurement. For
example, if the laboratory has �T ¼ 1
 temperature ex-
cursion, and the ring perimeter is 36 m, in order to guar-
antee the operation of the ring laser with a fixed number of
wavelengths N, it is necessary to realize the whole appa-
ratus using materials with temperature expansion coeffi-
cient of the order of 10�8 K�1. This is the concept used for
G inWettzell: a structure realized with material as Zerodur,
with a design which can be defined monolithic, i.e. relative

motions of the mirrors are not allowed. G has a very high
stability, but is rather expensive, and not very flexible with
regards to changing the mirrors and aligning the laser
cavity. Moreover, the extension of this design to a large
array of rings seems rather difficult. Later on, a more
flexible and less expensive design has been realized, called
GEOSENSOR, which so far has been employed especially
for smaller size rings. This design allows a very good
relative alignment of the mirrors, it is relatively easy to
change mirrors and tools to move each mirror along differ-
ent degrees of freedom have been implemented. So far
these kinds of instruments have been done in steel.
Figure 15 shows a drawing of G-Pisa, our prototype. The
optical cavity vacuum chamber has a stainless steel modu-
lar structure: four towers, located at the corners of the
square and containing the mirrors holders inside, are con-
nected by pipes, in order to form a ring vacuum chamber
with a total volume of about 5	 10�3 m3. The mirrors are
rigidly fixed to the tower. The cavity alignment can be
adjusted by moving the towers with respect to the slab
through a lever system that allows 2 degrees of freedom of
movements. No window delimits the active region and the
vacuum chamber is entirely filled with a mixture of He and
a 50% isotopic mixture of 20Ne and 22Ne. The total pres-
sure of the gas mixture is set to 560 Pa with a partial
pressure of neon of 20 Pa. The active region is a plasma
produced in a capillary Pyrex tube inserted at the middle of
one of the ring sides, by a radio frequency capacitively
coupled discharge. In a nonmonolithic device, temperature
changes could interrupt the continuous operation, and the
perimeter is actively controlled by acting on the mirrors
and using as reference a stabilized laser; very highly sta-
bilized lasers are commercially available, for instance
wavelength stabilization at the level of 2:5	 1011 using
iodine line can be obtained. G-Pisa is kept in continuous
laser operation through a perimeter stabilization servo
system which acts along the diagonal direction, for two

FIG. 15 (color online). Drawing of G-Pisa, based on the
GEOSENSOR design.
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oppositely placed mirrors, through piezoelectric actuators
[44].

The GEOSENSOR design has other advantages as well:
the mirrors are under vacuum and are not affected by the
outside pressure changes, they can be very easily aligned
and the cost is pretty much reduced compared with the
monolithic design. The experience of G-Pisa has shown so
far that it can work with different orientations. In fact
G-Pisa has worked both horizontally and vertically ori-
ented. It is in steel, inside the thermally stabilized room in
the central area of Virgo, in order to improve thermal
stability, it has been mounted on top of a granite table
(thermal expansion coefficient about 5	 10�6 m=mK). To
find the guidelines of the mechanical project, we have used
a simple program which consists in considering the ring as
four points (the light spots on the mirrors) which can be
moved from the ideal position, both inside the plane or
outside the plane. The model takes into account thermal
expansion and the perimeter is kept constant by acting
diagonally on pairs of mirrors; the use of two mirrors
or four mirrors for the feedback correction have been
investigated; the thermal excursion is considered of 1 K.
The scale factor S in presence of misalignments is com-
pared with S0 (scale factor at the optimal configuration);

this comparison is expressed as Macc ¼ S0�S
S0

, which gives

the accuracy limit induced by misalignments. The required
level of accuracy of 1 part of 1010 is Macc ¼ 10�10.
Figure 16 shows Macc for a rectangular ring, with sides
6 m and 6.6 m, in function of a misalignment of one of the
four mirrors.

Figure 16 clearly shows that the gain factor changes a lot
with a small change of mirror positions. The situation
strongly improves by considering a perfect square ring.
In fact, for a closed figure with a fixed number of sides, the

area over perimeter ratio has a maximumwhen the polygon
is a regular one, as, for example, a ‘‘perfect’’ square ring.
Figures 17 and 18 show Macc with 100 �m construction
precision and two possible choices of the thermal expan-
sion coefficient. For instance, let us assume that each
mirror position is in the ideal position within a quantity
� which depends on the precision of the construction.
Figure 19 shows Macc when three out of the four mirrors
are positioned with an error; 10 000 points have been
evaluated pseudorandomly distributed between �50 �m
along each coordinate. In summary, if the thermal excur-
sion is 1 K, the position of the mirrors is an ideal square
within �50 �m, the support has a thermal expansion
coefficient below 7	 10�7 K�1,Macc remains in the range
necessary for the needed accuracy using four or two mir-
rors active control of the perimeter.

FIG. 16 (color online). Macc, for a rectangular ring, with sides
6	 6:6 m, in function of a misalignment of one of the four
mirrors with respect to the ideal position, the perimeter control
acts on four mirrors, maximum thermal excursion of 1 K and the
support of the GEOSENSOR has thermal expansion coefficient
of 7	 10�6 K�1 (granite).
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granite and 1 degree themperature change

FIG. 17 (color online). Macc in function of a misalignment of
one of the four mirrors with respect to the ideal position, the
perimeter control acts on four (thick line) or two (dashed line)
mirrors, maximum thermal excursion of 1 Kand the material has
7	 10�6 m=mK (granite).
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FIG. 18 (color online). Same as Fig. 17, but with expansion
coefficient 10 times lower.
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Misalignments which bring the light spots outside the
plane of the ring do not have an appreciable effect on the
gain factor, but they change the orientation of the area
vector u�; in this case the effect for Macc depends on the
relative angle between the ring and the Earth rotational
axis. Figures 20 and 21 show how the accuracy changes for
two different ring orientations: parallel to the axis of the

Earth and at 45
 degrees, respectively. The first is almost
insensitive, while the other is sensitive to nanometric
misalignments.
Figure 22 shows Macc for a nm vertical misalignment of

one of the rings in function of the angle with respect to the
Earth rotational axis.
In summary, the gain factor of each ring can be kept

constant at the level of 1 part in 1010, if the positions of the
mirrors are constructed and kept within �50 �m error
close to the ideal square ring; the relative position between
mirrors can be rigidly constrained with granite, superinvar
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FIG. 19 (color online). Histogram ofMacc when the position of
three mirrors are within �50 �m close to the ideal position,
10 000 points have been evaluated by randomly extracting the
position error (� 50 �m). The thermal expansion coefficient is
7	 10�7 K�1, thermal excursion 1 K, top histogram shows the
case with four mirrors control of the perimeter, bottom curve
with two mirrors control.
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FIG. 21 (color online). Accuracy change in percentage for
vertical misalignments and area vector close to 45 degrees
with respect to the Earth rotational axis. The ring geometry is
not perfect in the plane, there is a misalignment of 100 �m, a
maximum temperature change of 1 K, and the thermal expansion
coefficient is 7	 10�6 m=m=K.
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Relative accuracy of the Earth angular rotation
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FIG. 22 (color online). Relative limit of the accuracy in the
measurement of the Earth angular rotation induced by a nm
change in the position of one of the mirrors with respect to its
original position, in function of angle with the Earth rotation
axis. The area vector of the ring lays in the meridian plane. The
accuracy loss is zero when the Earth axis and the area vector are
parallel, and is very high in the orthogonal alignment.
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FIG. 20 (color online). Accuracy change in percentage for
vertical misalignments and area vector close to the parallel
alignment to the Earth rotational axis. The ring geometry is
not perfect in the plane, there is a misalignment of 100 �m, a
maximum temperature change of 1 K, and the thermal expansion
coefficient is 7	 10�6 m=m=K.
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or similar low thermal expansion coefficient spacers, it is
preferable to use all four mirrors for the perimeter active
stabilization, but two mirrors control could be acceptable
as well if the structure has thermal coefficient better than
granite. It is necessary to constantly monitor the relative
angle between rings with nrad precision (only the relative
alignment matters). This can be accomplished looking at
the modal structure of the FP cavities formed along the
diagonals. Moreover, the orientation of each ring with
respect to the Earth rotation axis should be such as to avoid
alignment too sensitive to the relative angle (relative angle
with the Earth rotation axis below 60
). Using the Earth
angular velocity rotation, which is perfectly stable for a
few days, the whole apparatus can be calibrated at the
beginning; the relative angle, or the area of each ring could
be not perfectly planar or exactly 90
, but it is important to
monitor the geometry of the structure during the whole
measurement time (years). The mirror holders play an
important role, it can be advantageous to build them in
Zerodur or similar material, in order to avoid displace-
ments out of the plane. The mirror holders should be
designed in order to provide the tools to align the cavities;
in principle, each mirror should have 5 degrees of freedom:
three translations and two tilts, the rotation around the axis
orthogonal to the mirror itself does not play a role; but
since the mirrors are spherical only three motions are
fundamental: we may have one translation along the di-
agonal and two mirrors tilts or three translations.

Let us consider now an octahedral geometry, containing
the three rings.

Figure 22 shows that the relative angle between the
different rings must be monitored at the level of nrad,
and that it should be avoided to put one of the rings with
an angle larger than 60
 with respect the Earth rotation
axis. We have done the exercise to fit the octahedron, with
rings of 24 m perimeter, inside node B of LNGS, consid-
ering that this node is 8 m tall, and imposing the constraints
discussed in Fig. 22. The exercise is done with the octahe-
dron since it needs more space. Considering that the lati-
tude of LNGS is 42
 2700N two configurations are given: to
have the octahedron straight up (8.4 m tall) or laying on one
side, one ring is, respectively, horizontally or vertically
oriented and the other two symmetrically positioned with
respect to the meridian plane. Let us consider the maxi-
mum size 9 m: 8.48 m, the diagonal of the octahedron, plus
0.6 m necessary to hold mirrors and optics in general
necessary for the readout. This octahedron can be con-
tained inside each of the big halls of LNGS, in both
orientations, but inside node B, which is the most isolated
room of LNGS, see Figs. 23 and 24, the only possibility is
the shorter configuration, with the longer side parallel to
the floor.

So, the octahedron, with rings of 24 m perimeter, can be
contained inside node B, where the ceiling is 8 m tall, while
for node C the structure should be scaled, probably no

FIG. 23. Plan of LNGS laboratory close to node B.

FIG. 24 (color online). The ring-laser system inside node B
of LNGS, side view showing the passage between the two
entrances.

FIG. 25 (color online). The octahedron inside node B.
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more than 20 m perimeter can be contained inside node C,
since the ceiling there is 6 m tall. Figure 25 shows the
octahedron inside node B.

VI. DIAGNOSTICS OF DIHEDRAL
ANGLES AND SCALE FACTORS

To reduce the influence of systematics in long-term
measurements, the control of the geometrical stability of
the ring-laser system is of paramount importance. In par-
ticular, it is crucial to monitor the deviations from planarity
of each ring laser and their mutual orientations.

A square ring consists of four spherical mirrors with the
same curvature radius R, placed at the corners. Square
geometry guarantees that opposite mirrors are parallel so
that they form two extra linear Fabry-Pérot cavities (see
Fig. 26). As a consequence, each square ring is made of
three optical resonators: the ring itself and two linear ones
oriented along the diagonals. These latter can be used to
monitor the geometrical stability of the whole ring system.
Deviations from a square geometry result in tilting and/or
displacements of the diagonal vectors, which in turn
change the cavity eigenmodes.

A linear symmetric FP cavity with spherical mirrors in
zM ¼ � 1

2d ¼ � 1ffiffi
2

p L (L being the square ring arm) and

centers on the z axis, supports the Gaussian modes

E‘;mðx; y; zÞ ¼ 1

wcðzÞH‘

� ffiffiffi
2

p
x

wcðzÞ
�
Hm

� ffiffiffi
2

p
y

wcðzÞ
�

	 exp

�
�ik

x2 þ y2

2qcðzÞ � ikzþ ið‘þmþ 1Þ

	 arctan

�
2z

b

��
; (33)

where qcðzÞ ¼ z� ib ¼ ð 1
RcðzÞ � i �


w2
cðzÞÞ�1 and b ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dð2R� dÞp
are the complex curvature of the Gaussian

beam and the confocal parameter, respectively; here the
curvature radius RcðzÞ and the spot- size wcðzÞ read

RcðzÞ ¼ d2 � 2dR� 4z2

4z

w2
cðzÞ ¼ �




4z2 þ 2dR� d2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dð2R� dÞp :

The eigenmodes E‘;mðx; y; zÞ form a complete set which

can be used for representing a generic field confined be-
tween the two generally misaligned mirrors of the cavity,

Eðx; y; zÞ ¼ X
‘;m

C‘;mE‘;mðx; y; zÞ;

where

C‘m ¼
Z

dx
Z

dyEinðx; yÞE‘;mðx; y; zMÞ

and Einðx; yÞ is the beam illuminating the input mirror M1.
If we suppose the mirror tilted by�x and�y and displaced

by X and Y with respect to cavity axis ẑ, we have

Einðx; yÞ / e�ikðfðx�XÞ2=½2qcðzMÞ�gþ�xxþfðy�YÞ2=½2qcðzMÞ�gþ�yyÞ:

As an example, the relative intensities jC‘mj2=jC00j2 for
the first modes ‘þm ¼ 0; 1; 2 and X ¼ Y ¼ 0 are re-
ported in Table I.
It is clear that the cavity axes misalignment can be

detected by looking at the intensity pattern of the beam
transmitted through the output mirrorM2. A modal decom-
position of such a pattern gives a suitable set of coefficients
jC‘mj2 which can be used for estimating the position and
angular misalignment of the cavity with respect to the
reference beam Einðx; yÞ.
Supposing that at the beginning (t ¼ 0) the cavity ex-

ternal laser is perfectly aligned to a symmetric cavity (if the
two mirrors show equal transmittivity then the cavity trans-
mission is 1) so that all the incoming power Pin is coupled
to the TEM00 mode. The measurement procedure we have
devised is a tunable laser, showing a linewidth narrower
than the cavity linewidth, tuned over a cavity FSR in a time

interval �t so that each mode is spanned in a time � ¼ �t
F ,

where F is the cavity finesse. The number of photons in
the ‘m mode are given by (we are now assuming a rect-
angular line shape instead of a Lorentzian profile)

n‘m ¼ k
Pin

hv
�jC‘mj2:

This number of photons must be higher than the noise
equivalent number of photons hitting the detector in the
same time interval. The noise equivalent power (NEP)

in W=
ffiffiffiffiffiffi
Hz

p
, is connected to the equivalent number of

photons by

nNEP ¼ NEP

h�

ffiffiffiffi
B

p


�;

FIG. 26 (color online). In a square ring configuration passive
Fabry-Pérot cavities are formed along the square diagonals
(dashed line in the sketch). In the case of an octahedron each
of these three passive cavities is shared by two rings.
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where  and B are the quantum efficiency and the detec-
tion bandwidth, respectively.

To overcome the photon noise, we have to satisfy the
inequality

nNEP
n‘m

¼ nNEP
n00

jC00j2
jC‘mj2

< 1:

In particular, looking at the C01 coefficient we have

n00 >
1

5:16	 107�2

NEP

h�

ffiffiffiffi
B

p


�;

further, by assuming n00 ’ Pin

hv � we obtain

Pin >
NEP

ffiffiffiffi
B

p
5:16	 107�2

:

For typical silicon detectors NEP� 10�14W=
ffiffiffiffiffiffi
Hz

p
,

B� 106 Hz, � 0:9, so that

Pin > 2:2	 10�19��2:

For a tilt sensitivity of�� 10�9 the power required at the
input is

Pin > 220 mW:

VII. MORE ABOUT THE IMPORTANCE
OF THIS MEASUREMENT

A. Post-Newtonian parameters

The proposed experimental apparatus is well suited for
performing an optical test of the metric theory of gravita-
tion. We start from the statement that the vector�0 should
be entirely contained in the meridian plane if the preferred
frames effect, determined by W [see Eq. (A9)], can be
neglected. Indeed the currently available best estimates
[20] suggest that this effect is about 2 orders of magnitude
smaller than the geodetic and Lense-Thirring contribu-
tions. As a consequence, we expect that the measured
components of �0 outside the meridian plane should be
compatible with noise. In this case, our results could be
used to obtain new constraints, independent from the avail-
able ones, on the preferred frame parameters. In addition,
we can write the PPN parameters �1 and � as a function of
the ur and u� components of �0,

�1 ¼ ð�4�̂0
� csc�� 8�̂0

r sec��
�� 1 ¼ ð�̂0

� csc�� �̂0
r sec�=2Þ � 2;

(34)

where �̂0
r;� � �0

r;�=w and w is the very precisely

measured constant w � 2
GM=ðc2RTSÞ ’ 5:074 779 8	
10�14 rad= sec ; here we have used GM ¼
3:986 004 418	 1014 m3=s2, R ¼ 6:378 137	 106 m and
TS ¼ 86 164:0989 s. Assuming one year of data taking
with the same ring-laser parameters used for the simula-
tions in Sec. III D we have that the standard deviation of

�̂0
� and �̂0

r is �̂�r;�
’ 0:03, and therefore upper limits of

some interest can be put on �1 and � at the Gran Sasso
colatitude � ’ 
=4.

B. Interdisciplinary: Geodesy and geophysics

The Earth rotation rate and the orientation of the rota-
tional axis of the Earth in space are the linking quantities
between the terrestrial (ITRF) and the celestial (ICRF)
reference frames. Currently a set of quasars, forming an
external set of markers, provide the only way of determin-
ing the rotational velocity and the variations of the orien-
tation of the rotational axis of the Earth with sufficient
accuracy. As already mentioned, 10 �s for the measure-
ment of length of day (LoD) and 0.1 milliarcsecond (mas)
for the pole position are routinely achieved by a network of
VLBI radio telescopes as one of the services (IERS) of the
International Association of Geodesy. The operation of
such a network requires expensive equipment and a lot of
maintenance effort. Huge amounts of data are recorded in
each measurement session, which require physical trans-
port over large distances for the correlation in the analysis
centers. Data latency and the fact that there is no continu-
ous measurement coverage are suggesting the investigation
of alternative methods for the precise estimation of the
Earth rotation. Furthermore, it is desirable to develop an
independent measurement technique, in order to identify
intratechnique biases if they exist. Ring lasers are possible
candidates for such an alternative measurement technique.
They measure the earth rotation locally and within much
shorter time intervals. Such gyros are widely used in air-
craft navigation and can measure rotations absolute, i.e.
independent of an external reference frame. Therefore also
local contributions to the Earth rotation are contained in
the measurements. The effects of Earth tides, strain, crust

TABLE I. Power coupled to the first cavity higher modes (‘þm ¼ 0; 1; 2) as a fraction of the
external laser power for qc ¼ qx ¼ qy and X ¼ Y ¼ 0. The values are obtained for a ratio

between the cavity length and the mirror radius of curvature of 1.5.

jC‘mj2=jC00j2 ‘ ¼ 0 ‘ ¼ 1 ‘ ¼ 2

m ¼ 0 1 5:16	 107�2
x 1:33	 1015�4

x

m ¼ 1 5:16	 107�2
y 2:66	 1015�2

x�
2
y

m ¼ 2 1:33	 1015�4
y
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deformation, seismic events, and polar motion are con-
tained in the ring-laser measurements due to their contri-
bution to earth rotation or due to variations in the
orientation of the respective ring laser. However, the de-
mands on such instruments are extremely high and cannot
be met by existing commercial devices. They can be
summarized as:

(i) sensitivity to rotation 0:01 prad=s at about 1 h of
integration

(ii) sensor stability of 1 part in 1010 over several months
to years (Chandler wobble)

(iii) resolution in sensor orientation� 1 nrad. This cor-
responds to polar motion of around 1 cm at the pole.

This means that a reasonable improvement in sensor sen-
sitivity and stability is still required in order to make ring
lasers viable tools to be applied to space geodesy. The
design of the G ring laser is one way of approaching these
demands and it is not too far away from reaching this goal
[45,46]. Operating several such ring-laser gyroscopes in
geophysical independent regions simultaneously offers a
unique possibility to distinguish global from local (mon-
umentation related) signal contributions through their in-
dependent data streams.

VIII. DISCUSSIONS AND CONCLUSIONS

The feasibility of the experiment for the measurement of
relativistic effective rotation rates appears to rest only on a
triaxial dynamical sensor of local rotation of enough sensi-
tivity. Despite the fact that large ring lasers as G are very
stable platforms and with the provision of tight feedback
systems to stabilize the scale factor (cold cavity, as well as
the active cavity), currently ring-laser gyroscopes are not
able to determine the DC part of the Earth rotation rate with
a sensitivity compatible with the requirements for detection
of the Lense-Thirring effect. While the contribution of the
varying Earth rotation itself presumably can be removed
with sufficient accuracy from the C04 series of VLBI mea-
surements, there remains the problem of determining the
actual null-shift offsets from the laser functions in the ring-
laser gyroscope. Since the gravitomagnetic effect is small
and constant, a good discrimination against laser biases,
such as, for example, ‘‘Fresnel drag’’ inside the laser cavity
must be achieved. Therefore it will be advantageous to
locally add one or several ring-laser cavities in addition to
the described structures for sufficient redundancy.

Moreover, even if not strictly necessary for getting rid of
all the systematics, it would be helpful to compare data
taken at distant stations for having a more precise discrimi-
nation of local effects from regional and global changes. In
particular, we wish to operate the G ring-laser structure in
parallel to the here proposed one. Possibly a second large
ring laser located at the Cashmere facility in Christchurch,
New Zealand, will be useful on this respect provided that it
can be run with sufficient resolution and stability.

APPENDIX A: RING-LASER MEASUREMENTS
IN THE LABORATORY FRAME

In this Appendix we evaluate the response to the gravi-
tational field of a ring laser in an Earth-bound laboratory
and, to know the space-time metric in the laboratory frame
we shall use the construction of the ‘‘proper reference
frame’’ as described in Refs. [3,17].
As we discussed in Sec. III, a ring laser converts a time

difference into a frequency difference [see e.g. Eq. (8)].
It is possible to show that (see e.g. [47]) in a stationary
metric in the form [48] g�� ¼ g��ðxiÞ an observer at rest

at xi ¼ xi0 measures the proper-time difference �� ¼
�þ � �� between the right-handed beam propagation
time (�þ) and the left-handed one (��):

�� ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðxi0Þ

q I
S

g0i
g00

dsi ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðxi0Þ

q I
S
H � ds;

(A1)

where S is the spatial trajectory of the beams, whose
tangent vector is ds, and we set Hi ¼ g0i

g00
.

In order to evaluate the proper-time difference (A1), we
need to know the space-time metric in our laboratory, that
is to say the gravitational field nearby the worldline of the
observer which performs measurements with the ring laser.
To this end, we consider an observer in arbitrary motion in
a given background space-time, and write the correspond-
ing local metric in a neighborhood of its worldline (see
e.g. [3]):

gð0Þð0Þ ¼ 1þ 2A � xþOðx2Þ; (A2)

gð0ÞðiÞ ¼ �ðiÞðkÞxðkÞ þOðx2Þ; (A3)

gðiÞðjÞ ¼ ðiÞðjÞ þOðx2Þ: (A4)

It is worth pointing out that Eqs. (A2)–(A4) hold only near
the worldline of the observer, where quadratic displace-
ment terms are negligible. Here we suppose that the ob-
server carries an orthonormal tetrad (parentheses refer to
tetrad indices) eð�Þ, whose four-vector eð0Þ coincides with
his four-velocity U, while the four-vectors eðiÞ define the

basis of the spatial vectors in the tangent space along its
worldline. By construction we have eð�Þeð�Þ ¼ ð�Þð�Þ,
where ð�Þð�Þ is the Minkowski tensor. The metric compo-

nents (A2)–(A4) are expressed in coordinates that are
associated to the given tetrad, namely, the space coordi-

nates xðiÞ and the observer’s proper time xð0Þ. In the above
equations, A is the spatial projection of the observer’s
4-acceleration, while the tensor �ðiÞðkÞ is related to the

parallel transport of the basis 4-vectors along the observ-

er’s worldline: rUeð�Þ ¼ �eð�Þ�ð�Þ
ð�Þ. In particular, if

�ðiÞðjÞ were zero, the tetrad would be Fermi-Walker trans-

ported. Let us remark that the metric (A2)–(A4) is

Minkowskian along the observer’s worldline (xðiÞ ¼ 0); it
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is everywhere flat iff A ¼ 0, i.e. the observer is in geo-
desic motion and the tetrad is nonrotating (i.e. it does not
rotate with respect to an inertial-guidance gyroscope). In
the latter case, the first corrections to the flat space-time
metric are Oðx2Þ [3].

In order to explicitly write the local metric, which
through its gravitomagnetic (g0i) and gravitoelectric (g00)
components enables us to evaluate the proper-time differ-
ence (A1), we must choose a suitable tetrad by taking into
account the motion of the Earth-bound laboratory in the
background space-time metric. To this end, we consider
the following PPN background metric which describes the
gravitational field of the rotating Earth (see e.g. [20]):

ds2¼ð1�2UðRÞÞdT2�ð1þ2�UðRÞÞ�ijdX
idXj

þ2

�ð1þ�þ�1=4Þ
R3

ðJ�^RÞi��1UðRÞWi

�
dXidT;

(A5)

where�UðRÞ is the Newtonian potential, J� is the angular
momentum of the Earth,Wi is the velocity of the reference
frame in which the Earth is at rest with respect to mean
rest-frame of the Universe; � and �1 are post-Newtonian
parameters that measure, respectively, the effect of spatial
curvature and the effect of preferred frames. The back-
ground metric (A5) is referred to an Earth-fixed inertial
(ECI) frame, where Cartesian geocentric coordinates are

used, such that R is the position vector and R ¼:
ffiffiffiffiffiffiffiffiffiffiffiffiP

iX
2
i

q
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 þ Y2 þ Z2
p

. Then, we choose a laboratory tetrad
which is related to the background coordinate basis of
(A5) by a pure Lorentz boost, together with a renormal-
ization of the basis vectors: in other words the local labo-
ratory axes have the same orientations as those in the
background ECI frame, and they could be physically real-
ized by three orthonormal telescopes, always pointing
toward the same distant stars.

In this case, one can show that the gravitomagnetic
contribution in the local metric reads [3,17,49,50]

�ðiÞðkÞxðkÞ ¼ �ð�00 ^ xÞðiÞ, where the total relativistic con-
tribution �0 is the sum of four terms, with the dimensions
of angular rotation rates

� 0 ¼ �G þ�B þ�W þ�T (A6)

defined by

�G ¼ �ð1þ �ÞrUðRÞ ^ V; (A7)

�B ¼ � 1þ �þ �1=4

2

�
J�
R3

� 3J� �R
R5

R

�
; (A8)

�W ¼ �1
1
4rUðRÞ ^W; (A9)

� T ¼ � 1

2
V ^ dV

dT
: (A10)

The vector �0 represents the precession rate that an
inertial-guidance gyroscope, comoving with the labora-
tory, would have with respect to the ideal laboratory spatial
axes (see e.g. [3,17]) which are always oriented as those of
the ECI frame; if the spin vector of the gyroscope is S, its
precession is hence defined by

dS

dt
¼ �0 ^ S: (A11)

Differently speaking, we may say that the local spatial
basis vectors are not Fermi-Walker transported along the
laboratory worldline. In particular, the total precession rate
is made of four contributions: (i) the geodetic or de Sitter
precession�G is due to the motion of the laboratory in the
curved space-time around the Earth; (ii) the Lense-Thirring
precession �B is due to the angular momentum of the
Earth; (iii) �W is due to the preferred frames effect; and
(iv) the Thomas precession �T is related to the angular
defect due to the Lorentz boost.
It is worth noticing that for a laboratory bounded to the

Earth

A ’ dV

dT
� rUðRÞ; (A12)

and the acceleration A cannot be eliminated. Taking into
account Eq. (A12) and substituting in Eqs. (A7) and (A10)
it is possible to write the two precessions in the form

�G ¼ �ð12 þ �ÞrUðRÞ ^ V; (A13)

and

�T ¼ 1
2A ^ V: (A14)

In particular, for a geodetic motion (e.g. a free fall satellite)
A � 0 and Eq. (A13) gives the geodetic precession for a
gyroscope in free fall, while Thomas precession (A14) is
zero: strictly speaking, it is just in this case that �G

describes a geodetic effect, however the term can be also
referred to the precession due to the Newtonian field of the
source.
All terms in (A7)–(A10) must be evaluated along the

laboratory worldline (hence, they are constant in the local
frame), whose position and velocity in the background
frame are R and V, respectively. However, if we consider
an actual laboratory fixed on the Earth surface, the spatial
axes of the corresponding tetrad rotate with respect to the
coordinate basis of the metric (A5), and we must take into
account in the gravitomagnetic term (A3) the contribution
of the additional rotation vector��, which corresponds to
the Earth rotation rate, as measured in the local frame [51].
As a consequence, it is possible to show that, up to linear

displacements from the worldline, the relevant local grav-
itomagnetic potential turns out to be

gð0ÞðiÞ ¼ ð� ^ xÞðiÞ; (A15)
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where � ¼ ��� ��0, while the gravitoelectric gð0Þð0Þ
one remains the same.

Now, we are able to evaluate the proper-time difference

�� ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðxi0Þ

q I
S
H � ds: (A16)

Without loss of generality, we suppose that the observer is
at rest in the origin of the coordinates, so that, according to
(A2), g00ðxi0Þ ¼ 1. As a consequence, we have

�� ¼ �2
I
S

ð� ^ xÞ
ð1þ 2A � xÞ � ds: (A17)

Now, on taking into account the expression of the accel-
eration of the laboratory frame (A12) and evaluating the
magnitude of the various terms, the leading contribution to
(A17) can be written, applying Stokes theorem

�� ¼ �2
Z
A
½r ^ ð� ^ xÞ� � dA; (A18)

where A ¼ Aun is the area enclosed by the beams and
oriented according to its normal vector un. On evaluating
the curl, taking into account that � is constant, we even-
tually obtain

�� ¼ �4
Z
A
� � dA ¼ �4� �A: (A19)

On substituting� ¼ ��� ��0 in (A19), we see that the
proper-time delay can be written in the form

�� ¼ 4�� �Aþ 4�0 �A; (A20)

where 4�� �A is the purely kinematic Sagnac term, due to
the rotation of the Earth, while 4�0 �A is the gravitational
correction due to the contributions (A7)–(A10).

According to Sec. III A, from Eq. (A19), it is then
possible to write the ring-laser equation in the form

�f ¼ 4A

�P
un ��: (A21)

To further clarify Eqs. (A7)–(A10) it is useful to use an
orthonormal spherical basis ur, u# , u’ in the ECI frame,

such that the # ¼ 
=2 plane coincides with the equatorial
plane. As a consequence, the position vector of the labo-
ratory with respect to the center of the Earth is R ¼ Rur
and the kinematic constraint V ¼ �� ^R holds, i.e. V ¼
��R sin�u’.

Thus, the components of �0 in physical units read

�G ¼ �ð1þ �ÞGM
c2R

sin#��u#; (A22)

�B ¼ � 1þ �þ �1=4

2

G

c2R3
½J� � 3ðJ� � urÞur�; (A23)

�W ¼ ��1

4

GM

c2R2
ur ^W; (A24)

� T ¼ � 1

2c2
�2�R2sin2#��: (A25)

Moreover, we assume the general relativistic values of the
PPN parameters, � ¼ 1, �1 ¼ 0, and use for the
Newtonian potential of the Earth its monopole approxima-
tion, i.e. UðRÞ ¼ GM=R. Thus, the components (A22) and
(A23) read

�G ¼ �2
GM

c2R
sin#��u#; (A26)

�B ¼ � G

c2R3
½J� � 3ðJ� � urÞur�; (A27)

�W ¼ 0; (A28)

�T ¼ � 1

2c2
�2�R2sin2#��; (A29)

and, to leading order, the total rotation rate which enters
Eq. (A20) is

� ¼ ��� þ 2
GM

c2R
sin#��u�

þ G

c2R3
½J� � 3ðJ� � urÞur�: (A30)

If we denote by � the angle between the radial direction
ur and the normal vector un, on setting un ¼ cos�ur þ
sin�u� in (A20), and using (A30), we may express the
proper-time delay in the form

�� ¼ 4A

c2

�
�� cosð�þ �Þ � 2

GM

c2R
�� sin� sin�

þ GI�
c2R3

��ð2 cos� cos�þ sin� sin�Þ
�
; (A31)

where we have written J� ¼ I���, in terms of the I�, the
moment of inertia of the Earth.

APPENDIX B: PROBABILITY DISTRIBUTION
OF QUADRATIC FORMS

The statistics of quadratic forms of Gaussian random
vectors x are well known in the literature. In particular, if x
is a multivariate Gaussian random vector with mean s and
covariance matrix �, the mean and the variance of a
quadratic form Q ¼ xTQx are given by

hQi � hxTQxi ¼ TrðQ�Þ þ sTQs

�2
Q � hðxTQxÞ2i � hQi2 ¼ 2TrðQ�Q�Þ þ 4sTQ�Qs;

(B1)

where Q is a square symmetric matrix, T and Tr are the
transpose and trace operators, respectively. The statistics of
Q in general is not known, unless Q� is an idempotent
matrix [52]. In the case were x represents the response of
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ring lasers in a regular polyhedral configuration Q ¼ I,
with no common noise source and the same sensitivity
� ¼ �2I, where I is the identity matrix, the above for-
mulas greatly simplify

hQi ¼ M�2 þ E (B2)

�2
Q ¼ 2M�4 þ 4E�2; (B3)

where E ¼ sts ¼ ksk2 is the signal energy. In this case also
the statistics of Q readily follows. In fact, starting from its
definition we have

PQðQÞ �
Z

PðxÞ�ðQ� xTxÞdx; (B4)

where PðxÞ ¼ exp½ðx� sÞTðx� sÞ=ð2�2Þ�=ð2
�2ÞM=2 is
the Gaussian probability density of one sample of the
random vector x. We can use the integral representation
of the Dirac’s � function

�ðQ� xTxÞ ¼
Z þ1

�1
ei!ðQ�xTxÞd! (B5)

and write

PQðQÞ ¼
Z þ1

�1
d!ei!Q 1

ð2
�2ÞM=2

	
Z

exp

�
i!xTx� 1

2�2
ðx� sÞTðx� sÞ

�
dx:

By rearranging the exponent, the last integral can be recast
as a M-dimensional Gaussian integral and calculated
explicitly,

1

ð2
�2ÞM=2

Z
exp

��
i!� 1

2�2

�
xTxþ 1

�2
sTx� E

�2

�
dx

¼ exp½i!�2E=ð1� 2i!�2Þ�
ð1� 2i!�2ÞM=2

; (B6)

where in the last expression one recognizes the moment
generating functions of noncentral 	2 distributions withM
degrees of freedom and noncentrality parameter E. The
probability density function of Q can be found using the
tables of Fourier transform pairs,

PQðQÞ ¼
Z þ1

�1
d!ei!Q

�
exp½i!�2E=ð1� 2i!�2Þ�

ð1� 2i!�2ÞM=2

�

¼ 1

2
exp½�ðQþ EÞ=ð2�2Þ�

	
�
Q

E

�ððM�2Þ=ð4ÞÞ
IM=2�1ð

ffiffiffiffiffiffiffiffi
QE

p
=�2ÞÞ;

where IkðxÞ are the modified Bessel functions of order k.

APPENDIX C: PROBABILITY DISTRIBUTION
OF PROJECTORS

The norm of complementary projection operators P and
Q acting on Gaussian random vectors x are described by
remarkably simple statistics. In fact, starting from the
definition of EP ¼ kPxk2 and EQ ¼ kQxk2 we have that

the joint probability density PðEP; EQÞ reads

PðEP; EQÞ ¼
Z

PðxÞ�ðEP � xTPxÞ�ðEQ � xTQxÞdx;
(C1)

where PðxÞ is the probability density of one sample of the
random vector x. The two Dirac � functions can be written
using their Fourier transforms,

PðEP; EQÞ ¼
Z

PðxÞe½uEPþvEQ�xT ðuPþvQÞx�dudvdx;

(C2)

where the integrals in du and dv are performed along the
imaginary axis (i.e. u ¼ i!1 and v ¼ i!2 are purely
imaginary complex numbers). Now assume the noise is
Gaussian distributed, uncorrelated between different de-
tectors, and with identical variance �2 in every detector,
namely,

PðxÞ ¼ 1

ð2
�2ÞðM=2Þ exp
�
� 1

2�2
ðx� sÞTðx� sÞ

�
; (C3)

where s � ð� � u1; . . .� � uMÞ is the rotation signal in
vectorial form. Then

PðEP; EQÞ ¼
�
�




�ðM=2Þ Z
exp½��ðx� sÞTðx� sÞ�

	 exp½�xTðuP þ vQÞx�dx � euEPevEQdudv;

(C4)

where � ¼ 1=2�2
�. Writing x as sþ " and switching the

integration variable to " yields

PðEP;EQÞ¼
�
�




�ðM=2ÞZ
exp½�nTð�IþuPþvQÞn

�2nTðuPþvQÞs�d"
	exp½�sTðuPþvQÞs�euEPevEQdudv: (C5)

The integration in dn can be done by noting that it is a
standard M-dimensional Gaussian integral with the linear
term, and in general, for any M	M symmetric matrix A
and M-vector b,

Z
exp

�
�nTAnþ bTnÞdn ¼ 
M=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðAÞp exp

�
bTA�1b

4

�
:

(C6)

In our case,

A ¼ �Iþ uP þ vQ b ¼ 2ðuPþ vQÞs: (C7)
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Now we exploit the properties of P and Q. Using their
complementarity, we can write

A ¼ ð�þ uÞP þ ð�þ vÞQ (C8)

and from the fact that they are orthogonal and idempotent
we also have

A�1 ¼ ð�þ uÞ�1P þ ð�þ vÞ�1Q; (C9)

hence,

b TA�1b ¼ 4

�
u2

�þ u
sTPsþ v2

�þ v
sTQs

�
: (C10)

Furthermore, as P and Q are projection matrices, their
eigenvalues are f0; 1g with multiplicities, respectively,
fM� 2; 2g for P and f2;M� 2g for Q. Then, writing A
in diagonal form is trivial and leads to

detðAÞ ¼ ð�þ uÞ2ð�þ vÞM�2; (C11)

determinants being independent from the basis. By using
(C10) and (C11) in (C6), one can see that the Gaussian
integral splits into the product of factors involving either u
or v. By further substituting in (C6), the remaining inte-
grals separate and the probability density remarkably
factorizes as

PðEP; EQÞ ¼ PðEPÞPðEQÞ (C12)

with

PðEPÞ ¼
Z 1

1þ 2�2u
exp

� �spu

1þ 2�2u

�
euEPdu

PðEQÞ ¼
Z �

1

1þ 2�2v

�ððMÞ=ð2ÞÞ�1
exp

� �sqv

1þ 2�2v

�
evEQdv

(C13)

and sp ¼ sTPs, sq ¼ sTQs. The transformed functions are

the moment generating functions of two noncentral 	2

distributions, with 2 and M� 2 degrees of freedom, re-
spectively, and whose noncentrality parameters are sTPs
and sTQs, respectively. Thus,

PðEPÞ ¼ 1

2
exp

�
�EP þ sp

2�2

�
I0

� ffiffiffiffiffiffiffiffiffiffiffi
EPsp

p
�2

�

PðEQÞ ¼ 1

2
exp

�
�EQ þ sq

2�2

��
EQ

sq

�ððMÞ=ð4ÞÞ�1

	 IððMÞ=ð2ÞÞ�2

� ffiffiffiffiffiffiffiffiffiffiffi
EQsq

p
�2

�
; (C14)

where InðxÞ is the modified Bessel function of the first kind.
Some interesting conclusions can be drawn about the
virtual channels EP and EQ, which make them interesting

for the identification of meridian plane and the estimate
of �.
(1) EP is distributed as a noncentral 	2 with 2 degrees

of freedom and noncentrality parameter equal to
sTPs, i.e. the magnitude of the signal projection in
the P subspace.

(2) EQ is distributed as a noncentral 	2 with M� 2
degrees of freedom and noncentrality parameter
equal to sTQs, i.e. the magnitude of the signal
projection in the Q subspace.

(3) EP and EQ are statistically independent processes.

(4) In the limit of high SNR, EP and EQ are Gaussian

distributed with means hEPi ¼ sTPs, hEQi ¼ sTQs
and variances �2

EP
¼ 4�2

�s
TPs, �2

EQ
¼ðM�2Þ

�2
�s

TQs, respectively.
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