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With a launch planned in March 2013, the ESA Gaia mission will scan the whole sky several times

during its operational five years. It will provide highly accurate astrometric observations of celestial

bodies (at the sub-milli-arcsecond level) not exclusively beyond the Solar System, since about 250 000

asteroids will be observed. Gaia will thus give us the opportunity of performing various valuable tests of

fundamental physics by assessing global parameters from the dynamics of minor planets; in this paper, we

evaluated its performance from realistic simulated data and a variance analysis carried out from the

observation residuals on a data model linearized with respect to the initial position and velocity of each

asteroid and the set of global parameters. Currently, the most relevant fits turn out to be for the

PPN parameter � (�� � 1:4� 10�3), the temporal variation of the gravitational constant _G=G (� _G=G �
3:2� 10�12 yr�1), the Nordtvedt parameter � (�� � 2:4� 10�3) and the Gm of Jupiter (�Gmj

�
2:9� 10�15 au3 d�2), which show a low level of correlation. The underestimated astrometric precision

used in the simulations and the possibility to combine Gaia data with future accurate ground-based

observations foreshadow more accurate determinations.
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I. INTRODUCTION

The ESA second-generation astrometric mission Gaia
[1], due for a launch in March 2013, will make a new
breakthrough in astrometry by performing observations at
the sub-milli-arcsecond. In the scope of the solar system,
the satellite will observe about 250 000 minor planets
down to V magnitude 20 with a precision ranging from a
few milli-arcsecond (mas) to about a hundred micro-
arcseconds (�as). Furthermore, the positions of about
1� 109 stars, accurate to a few hundred �as at the limit-
ing magnitude of 20, will be compiled in the Gaia cata-
logue, and will drastically improve the astrometric
reduction of ground-based observations, which depends
heavily on the accuracy and completeness of stellar cata-
logues. Thus, Gaia will boost our knowledge of dynamics
of the solar system, and will bring new perspectives in
performing clean tests of fundamental physics from aster-
oid motion analysis.

Using asteroid motions to check properties of general
relativity (GR) is not a recent idea: in 1953, Gilvarry [2]
suggested to base an observational test of the relativistic
perihelion precession on high-eccentric minor planets, and,
in particular, (1566) Icarus [3], discovered four years be-
fore. This idea was concretized several times [4–7] by
estimating a relativity parameter that takes the value one
in GR. The best measurements were achieved to a preci-
sion of a few percent. The orbital diversity of asteroids has
the noticeable advantage of allowing us to disentangle, in
many cases, the different origins of certain effects on their
motion: in 1965, Dicke [8] had already recognized that
asteroids with large inclinations and various semimajor
axes enabled us to distinguish between the relativistic

perihelion shift and the possible effects due to the solar
oblateness. The huge number of minor planets expected to
be very accurately observed by Gaia will offer us the
opportunity to extend the applications based on asteroid
motion analysis in testing various aspects of general rela-
tivity; at present, they cannot compete with the best experi-
ments, such as those from lunar laser ranging (LLR) or
planetary ephemerides, on account of the current level of
observational accuracy.
In this paper, we focus our attention on the possibility

from future Gaia asteroid observations to derive the dy-
namic solar quadrupole J�2 , the linear time-variation of the
gravitational constant _G=G, the relativistic parameters �
and � in the parametrized post-Newtonian (PPN) formal-
ism, and the Nordtvedt parameter �. A value of � different
from zero would import an inequality between the inertial
and gravitational mass, and so, a violation of the Strong
Equivalence Principle (SEP)—one of the most important
consequences of General Relativity (GR) suggested by
the solutions of the Einstein field equations. In 1968,
Nordtvedt [9] predicted that Trojan asteroids would be par-
ticularly sensitive to such a deviation from GR (shift of one
arcsecond for � ¼ 1 towards Jupiter, for the Lagrange
points, L4 and L5, that they orbit), and the idea was taken
up by Orellana and Vucetich [10,11]. However, both the
lack of observations and their low precision precluded
them from performing a satisfactory test; the standard
deviation was about �0:5. Contrary to what was done
before, all the asteroids expected to be observed by Gaia
are considered in the estimation process of �.
After describing the observations of minor planets by

Gaia in Sec. II and the method used to fit the global
parameters in Sec. III, we will provide, for each parameter,
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an overview of our current knowledge and the dynamical
modeling necessary for their estimation in Sec. IV.
In Sec. V, we present the expected precisions for each
parameter from a variance analysis based on realistic si-
mulated data—time sequences and geometry of the obser-
vations and astrometric precision specific to the satellite.
Supplementary information is provided about the most
significant asteroids. Finally, a general summary of the
results is given in Sec. VI, followed by the perspectives.

II. THE OBSERVATIONS OF MINOR
PLANETS WITH GAIA

In March 2013, a Soyuz rocket will lift off from
Baikonur with the Gaia satellite on board. One month later,
the spacecraft will be inserted into its intended Lissajous
orbit around the Lagrange point Earth-Sun L2. It will
deploy its solar panels and start to operate a continuous
scan of the sky for five years. The survey from two tele-
scopes and ruled by a complex scanning lawwill enable the
satellite to perform the astrometric, photometric, and spec-
troscopic observations of more than 1� 109 objects, stars
forming the majority. A complete description of the mis-
sion can be read in Mignard et al. [1].

A large number of solar-system objects will be also
observed: a systematic exploration of the Gaia transit times
for the 542 684 asteroids listed in the ASTORB catalog of
Bowell [12] in February 2011 with their orbital elements
and absolute magnitudes—necessary to apply the filter to
the apparent magnitude—was performed from the first
of April 2013, over a period of five years. More than
5:8� 106 observations were thus found for a total of
241 471 asteroids.

Their distribution according to the number of Gaia ob-
servations in Table I shows that about 40% of them will be
observed more than 20 times; Gaia will be very likely to

measure the positions of a couple thousand near-Earth
asteroids (new detections are expected), which are known
to be valuable targets to estimate the dynamic solar oblate-
ness J�2 , or the PPN parameters � and �. Regarding Jovian
Trojans, approximately 28% of known objects will be
observed; their interest in measuring the Nordtvedt effect
� will be, thus, assessed in the framework of such a
mission like Gaia (highly accurate measurements over a
short time).
In addition to the wealth of asteroid observations, Gaia is

going to bring astrometry to the matchless sub-milli-
arcsecond level. The positions will be given in longitude
� and latitude � on a reference great circle (RGC) com-
puted from the mean positions of instantaneous scanning
circles over one period; as the across-scan (AC) coordi-
nates will be derived with a much lower accuracy than in
the along-scan (AL) direction, the latter, solely, will be
considered in variance analysis. The AL astrometric pre-
cision �� is plotted in Fig. 1 as a function of the apparent
magnitude of the asteroid. Nevertheless, another parameter
has been taken into account: the apparent velocity impacts
the centroid error measurement, and so, two cases were
defined according to whether or not the AL apparent
velocity is smaller than 33,3 mas/s (the largest value found
from a very huge sample of main-belt asteroids).
The positional error in Fig. 1 is, however, likely under-

estimated: the nominal error used to define the Gaia pre-
cision is only for one row of CCDs, but nine will form the
focal plane of the Gaia telescopes devoted to astrometry.
Thus, the asteroid position could be derived from signals
collected by several rows, ten in the optimal case if one
also considers the row of CCDs for the object detection.
Therefore, the formal precision presently estimated might
actually be smaller by a factor of 3. More detailed explan-
ations can be read in Mouret and Mignard [13].

TABLE I. Frequency of the future asteroid observations by Gaia. Several groups of minor
planets are identified: near-Earth asteroids (NEAs), main-belt asteroids (MBAs), Hilda asteroids,
Jovian Trojans, Centaurs, trans-Neptunian objects (TNOs).

Number of

observations n NEAs MBAs Hildas Trojans Centaurs TNOs Remainders Total

n < 10 1093 88 065 495 269 5 1 7263 97 191

10 � n < 20 307 41 973 225 170 - - 4007 46 682

20 � n < 30 124 23 025 124 103 4 1 2184 25 565

30 � n < 40 103 16 637 63 87 - - 1309 18 199

40 � n < 50 33 14 633 80 87 4 2 754 15 593

50 � n < 60 25 12 929 66 199 2 2 624 13 847

60 � n < 70 26 9429 50 190 1 4 537 10 237

70 � n < 80 16 6265 31 133 1 4 387 6837

80 � n < 90 5 3698 26 58 1 1 202 3991

90 � n < 100 6 1776 6 44 1 - 105 1938

n > 100 7 1260 8 22 - 1 93 1391

Total 1745 219 690 1174 1362 19 16 17 465 241; 471
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III. THE METHOD OF ESTIMATING
GLOBAL PARAMETERS

Using realistic simulated data, we performed a vari-
ance analysis for the position and velocity vectors uk

0 ¼
ðxk0; yk0; zk0; _xk0; _yk0; _zk0) of each asteroid k and a set of global

parameters C0 itemized in Section IV at the initial epoch
T0 ¼ JD2457251:375 (16th of August 2015) when half the
satellite operational time will pass by.

A linear least-square problem is considered to fit the
unknown parameters on the observation residuals,

W1=2ðO�CÞ ¼ W1=2A
�u0

�C0

 !
)

�u0

�C0

 !
¼ ðAtWAÞ�1AtWðO�CÞ

(1)

where (O�C) are the observed and computed positions in
Gaia longitude �. The corrections to the initial state vector
ðu0;C0Þ are (�u0; �C0) with u0 ¼ ðu1

0;u
2
0; . . . ;u

n
0Þ, n

being the total number of asteroids.
The weighting matrix W is defined by

W ¼
. .
.

0

��2
k;i

0 . .
.

0
BBBBB@

1
CCCCCA:

Here, �k;i is the error on the position of the kth asteroid at

the ith simulated observation date, which is derived from
the apparent magnitude and velocity of the asteroid con-
verted to Gaia astrometric precision (see Fig. 1).

The matrix A contains the partial derivatives of the
longitudes � with respect to the state vector (u0, C0),

A ¼

D1 0 � � � 0 B1

0 D2
. .
. ..

.
B2

..

. . .
. . .

.
0 ..

.

0 � � � 0 Dn Bn

0
BBBBB@

1
CCCCCA:

Here, Dk is a nkobs � 6 matrix (nkobs being the number of

observations for the asteroid k), which may be defined by

½Dk�i;j¼1;...6¼ @�i

@uk
0

¼
�
@�i

@xk0
;
@�i

@yk0
;
@�i

@zk0
;
@�i

@ _xk0
;
@�i

@ _yk0
;
@�i

@ _zk0

�
: (2)

It represents the variations of �i, the Gaia longitude at the
ith observation of the asteroid k, with respect to its position
and velocity in rectangular coordinates at the reference
time T0. As for the nkobs � p matrix Bk, it consists of the

variations of the longitudes �i with respect to the p global
parameters,

½Bk�i;j¼1;...;p ¼ @�i

@C0

¼
�
@�i

@C1

; � � � ; @�i

@Cp

�
: (3)

The matrix elements are decomposed with respect to the
rectangular coordinates,

@�i

@uk
0

¼ X3
q¼1

@�i

@rq

@rq

@uk
0

;
@�i

@C0

¼ X3
q¼1

@�i

@rq

@rq
@C0

;

and are then evaluated by analytically computing the quan-
tities (@�i=@rq) while the equations of motion taking into

account the perturbations from the planets and Pluto, the
solar quadrupole J�2 (see Eq. (8)) and the relativistic effects
from the Sun [see Eq. (12)] in the force function F are
numerically integrated,

€rðtÞ ¼ FðtÞ (4)

together with the variational equations,

d2

dt2

�
@rq

@uk
0

�
¼ X3

n¼1

�
@Fq

@rn

@rn
@uk

0

þ @Fq

@ _rn

@ _rn
@uk

0

�
;

d2

dt2

�
@rq
@C0

�
¼ @Fq

@C0

þ X3
n¼1

�
@Fq

@rn

@rn
@C0

þ @Fq

@ _rn

@ _rn
@C0

�
:

Regarding the temporal variation in the gravitational con-
stant (see Sec. IVC) and a violation of the SEP (see
Sec. IVD), the initial values for the associated parameters
in the variance analysis process are _G=G ¼ � ¼ 0, given
that both deviations from the general relativity are not
proven.
The formal precisions of the global parameters assess-

ment C0 are then given by the diagonal elements of the
inverse normal matrix ðAtWAÞ�1. In the case of Gaia, the

weighted partial derivatives matrix W1=2A is huge; more
than 200 000 asteroids will be considered. Therefore, han-
dling of the block matrices ðDk;BkÞk¼1;...;n forming the

matrix A is required to compute the covariance elements,

FIG. 1 (color online). The expected along-scan accuracy of
individual observations �� as to the asteroid apparent magnitude
V and the AL apparent velocity vAl: the continuous line when
vAl< 33,3 mas/s and the dashed one in the other case.
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c ovð�C0Þ ¼ U�1; (5)

U ¼ Xn
k¼1

ðBk
tBk �Bk

tDkðDk
tDkÞ�1Dk

tBkÞ; (6)

where n is the total number of treated asteroids. All matrix
inversions (see Eqs. (5) and (6)) are obtained through the
singular value decomposition, which enables us to diag-
nose the conditioning of the normal matrix, and so, the
stability of the solution.

IV. PARAMETER ESTIMATION AS TESTS
OF FUNDAMENTAL PHYSICS

A. The solar quadrupole J�
2

1. Description

Currently, scientists agree that the solar quadrupole mo-
ment J�2 is of the order of 10�7 according to the most
precise estimations from different methods (e.g., helioseis-
mology, figure of the Sun, planetary ephemerides). How-
ever, there is still a large scatter in the published values
with clearly systematic effects depending on the derivation
methods (optical observations, helioseismology, models)
and no firm consensus has been reached.

The anomaly of the perihelion motion of Mercury has
been known since 1859, thanks to Leverrier [14], but the
idea of a distorted Sun for explaining the cause arose only
in the 1890s, with Harzer’s paper [15] and the independent
investigation of Newcomb [16] in 1895. However, this
assumption (at least with the magnitude required to ac-
count for Mercury anomaly) was ruled out from direct
measurements of the oblateness performed during the
Venus transits of 1874 and 1882. We may say that the
determination of the solar quadrupole J�2 really began in
1966, when Dicke and Goldenberg carried out observa-
tions with the Princeton Solar Distortion Telescope. They
measured the solar ellipticity for the first time. Their
revised estimate, J�2 ¼ ð2:47� 0:23Þ � 10�5 [17], was
much larger than the current values. Besides, the astro-
physical consequences that it generated were difficult to
accept, but rekindled, however, the interest for this subject
and originated new investigations of solar interior models.

Two general principles of investigating J�2 can be re-
tained: the astrophysical methods that are based on the
physical properties of the studied body, and the dynamical
methods, which rest on the analysis of the perturbations
that the solar oblateness produces upon the motion of
celestial bodies (e.g., asteroids, the Moon and planets).
The second approach has the advantage of being directly
sensitive to J�2 , regardless of any assumption about the
internal structure. However, the historical derivations often
provided impossible results: Landgraf calculated in 1992
a negative value, J�2 ¼ ð�6� 58Þ � 10�7 [18], using as-
trometric observations from 1949 to 1987, and in a very
complete review of estimates inferred from the perihelion

shift of Mercury [19], ten negative fits out of 23 can be
read. The main causes are certainly the low observational
accuracy and systematic errors (that the large observational
time-spans increased).
Apart from minor planets, the study of the Moon and

planetary motions also gave us the opportunity to con-
straining the solar quadrupole J�2 . More precisely, the
Moon’s physical librations due to the solar oblateness
were analyzed from the accurate lunar laser-ranging
(LLR) data, and Bois and Girard [20] inferred that the
value of J�2 was smaller than 3:0� 10�6. The planetary
ephemerides regularly deliver J�2 estimates. Pitjeva [21]
estimated J�2 ¼ ð1:9� 0:3Þ � 10�7 (EPM 2004 planetary
ephemerides), Fienga et al. [22] found a similar value with
J�2 ¼ ð1:82� 0:47Þ � 10�7 (INPOP08), whereas in JPL’s
ephemerides DE414, J�2 ¼ ð2:34� 0:49Þ � 10�7. The dis-
crepancy could be explained by a difference in the model-
ling of asteroid perturbations on Mercury and Venus.
Nevertheless, Standish gave in a private communication
(2000) two estimations that are much closer to those from
INPOP08 and EPM 2004: J�2 ¼ ð2:0� 0:4Þ � 10�7 from
a particular method detailed in Pireaux and Rozelot [19]
J�2 ¼ ð1:9� 0:16Þ � 10�7.
A reliable dynamical estimation of J�2 would be a valu-

able constraint for the interior model of the Sun and the
physical processes that govern its internal structure, its
geometry and physics being strongly connected [23,24].
In the field of solar-system dynamics, that would improve
orbit determination of the most sensitive celestial bodies
(e.g., near-Earth asteroids, Mercury) as well as tests of
general relativity; the accuracy in the derivation of the
relativistic parameters (PPN) is reduced by their strong
correlation with J�2 when they are inferred from the light
deflection experiment or dynamical methods.
For all these reasons, deriving precisely J�2 is among

the objectives of several future missions. The ESA
BepiColombo mission in cooperation with Japan will be
launched in about 2014 with the aim of exploring Mercury,
the orbit of which is the most sensitive to the solar
oblateness among planets. A precision of 10�8 is ex-
pected [25]. The Astrodynamical Space Test of Relativity
using Optical Devices (ASTROD) mission under consid-
eration proposes to test the general relativity using laser
interferometric ranging from at least three spacecraft;
the formal uncertainty should be of the order of
4:3� 10�11 [26].

2. Dynamical modelling

The perturbation produced by the solar oblateness,

which we denote by FJ�
2 , is derived from the potential

function

VJ�
2
¼ �Gm�

r

�
ae
r

�
2
J�2 P2ðsin�Þ: (7)
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Here, P2ðsin�Þ ¼ ð3sin2�� 1Þ=2 is the second Legendre
polynomial, � is the latitude of the asteroid in the equato-
rial frame of the Sun, and rð¼k r kÞ is its heliocentric
distance. The direction of the rotational axis of the Sun is
represented by the unit vector K.

As sin� ¼ cos

�
	

2
��

�
¼ K � r

r
;

we have

VJ�
2
¼ � 1

2
Gm�a2e

J�2
r5

ð3ðK � rÞ2 � r2Þ

and then

F
J�
2

i ¼ @VJ�2
@ri

¼ � 3

2
Gm�a2e

J�2
r7

ð2ðK � rÞr2Ki þ ½r2 � 5ðK � rÞ2�riÞ:
(8)

The equations of asteroid motion are computed in the
ecliptic reference frame. The direction of the solar rota-
tional axis K is thus expressed in this frame,

K ¼ R1ð�
Þ �R1ð�IÞ �R3ð��Þ
0

0

1

2
664

3
775

¼
sin� sinI

� cos
 cos� sinIþ sin
 cosI

sin
 cos� sinIþ cos
 cosI

2
664

3
775

where

R1ð�IÞ ¼
1 0 0

0 cosI sinI

0 � sinI cosI

0
BB@

1
CCA;

R3ð��Þ ¼
cos� sin� 0

� sin� cos� 0

0 0 1

0
BB@

1
CCA:

Here, � ¼ 90	 þ �0, I ¼ 90	 � �0 and, �0 and �0

are, respectively, the right ascension and declination
of the solar rotational axis in the equatorial reference
frame J2000 [27]. The obliquity of the ecliptic 
 ¼
23	2602100:4119 [28] is used to pass from the equatorial
to the J2000 ecliptic reference frame.

B. The PPN parameters

1. The PPN parameter �

The parameter � can be seen heuristically as a measure
of the curvature of spacetime by a unit rest mass [29].
The two main tests of the parameter � are based on the
bending of light and the time delay of a signal. Until 1968,
every experiment for computing the light deflection was
performed during a total solar eclipse. The results were
affected by many errors from weather, the change of
temperature leading to telescope optical distortions etc.
Then, in the early 1970s, the development of radio-
interferometry allowed us to achieve a precision of about
0.001 arcsecond: the angular separation of two quasars was
monitored while the Sun passed in front of one of the two
in order to measure the deflection of its emitted radio
waves. Among the very first measurements, we can cite
Seielstad et al. [30] and Muhleman et al. [31], who, in
1970, provided, respectively, ð1þ �Þ=2 ¼ 1:01� 0:12
and ð1þ �Þ=2 ¼ 1:04þ0:15

�0:10. Then, the very-long-baseline

radio interferometry (VLBI) became the most accurate tool
and achieved accuracies better than 100 �as in deriving
angular separations and their variations. From almost
2� 106 VLBI observations (from 541 radio sources spread
out among 87 VLBI sites), Shapiro et al. (2004) measured
�� 1 ¼ ð�1:7� 4:5Þ � 10�4 [32]. The derivation preci-
sion was then improved: � was found to be unity within
1:2� 10�4 [33]. However, this method is not a ‘‘pure’’
bending-of-light experiment in so far as the Shapiro effect
[34] is routinely accounted for in VLBI observations con-
trary to the measurement performed by Fomalont et al.
(2009), which provided �� 1 ¼ ð2� 3Þ � 10�4 [35].
The other general test of � consists in measuring the

time delay of a signal (deviation from the Newtonian
framework) known as the Shapiro effect, in the round-
trip travel time of a radar signal due to the presence of a
massive body near its route. We can count two types of
experiment according to the reflector: the latter takes the
form either of a planetary surface (e.g., Venus or Mercury)
or of a piece of electronic equipment on board a space-
craft in charge of retransmitting the signal to the Earth.
The Cassini experiment based on Doppler tracking of
the spacecraft, which was heading for Saturn, provided
one of the most precise measurements with �� 1 ¼
ð2:1� 2:3Þ � 10�5 [36]. Nevertheless, the data processing
algorithm did not take into account the orbital motion of
the Sun, what sparked off several discussions [37,38].
The parameter � was also fitted by analyzing the

relativistic effects from the Sun on planetary motion. It
was estimated along with the parameter � accurately to
2� 10�4 [39]. However, the correlation between both
parameters was most likely high since Pitjeva [40] found
a correlation of 84% for a similar fit.
Several future missions will improve the �measurement

accuracy: BepiColombo expects a precision of�2� 10�6

[41] by determining the perihelion shift of Mercury’s orbit
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and measuring the time delay and Doppler shift. However,
the most promising missions are LATOR [42]—the deflec-
tion of light will be measured by laser interferometry
between two micro-spacecraft whose lines of sight pass
close by the Sun—and ASTROD [26], which predicts an
accuracy of 10�9. Earlier than the end of these missions,
Gaia should provide a very competitive estimate accurate
to about 10�6 [43] from a bending-of-light experiment.
The same process was used from the Hipparcos astrometric
data to achieve the best determination of � in the visible:
� ¼ 0:997� 0:003 [44].

2. The PPN parameter �

In the PPN formalism, the parameter � is described as a
measure of the nonlinearity in the superposition law for
gravity [29]. The primary source for its assessment follows
from the drift in the perihelion of solar-system objects.
It is produced by the relativistic effects from the Sun at the
rate of

_! ¼ ð2þ 2�� �Þ n

að1� e2Þ
Gm�
c2

; (9)

where ! is the argument of perihelion, a the semimajor
axis of the perturbed body, e its eccentricity, n its mean
motion, and c the speed of light. Thus, analyzing the
motion of bodies orbiting the Sun offers a dynamic con-
straint of �. Furthermore, its strong correlation with � can
be overcome, the latter having been accurately estimated
from other methods mentioned in Sec. IVB1. Currently,
the most precise estimations of �, uncertain to�1� 10�4,
were obtained from the planetary observations: the fits
were performed along with the solar quadrupole J�2 in
Fienga et al. [45] and � in Pitjeva [21].

In the PPN formalism, � can be also measured from the
test of the strong equivalence principle. This parameter is
linked to the Nordtvedt parameter � and the PPN parame-
ters (�; �; ; �1; �2; �1; �2) by the relationship [46]

� ¼ 4�� �� 3� 10

3
� �1 þ 2

3
�2 � 2

3
�1 � 1

3
�2;

(10)

which, in fully conservative, Lorentz-invariant theories of
gravity, can be reduced to

� ¼ 4�� �� 3: (11)

From the previous equation, the LLR data enabled us to
estimate �� 1 to ð1:2� 1:1Þ � 10�4 [47]. Including
the SEP in the � fit can be of particular interest in reducing
the strong correlation between � and the solar quad-
rupole J�2 if the fit is also based on the analysis of the
relativistic perihelion shift. This was investigated for the
BepiColombo radio science experiment [41], and a preci-
sion of 2� 10�6 is expected for the estimation of �
while the Nordtvedt parameter � would be constrained
within �10�5.

3. Dynamical modelling

In the heliocentric equations of motion, the relativistic
terms produced by a nonrotating spherically-symmetric
Sun are given by the Schwarzschild solution, which in
the PPN formalism and isotropic coordinates take the
form [48],

FR
i ¼ Gm�

c2

��
2ð�þ �ÞGm�

r4
� �

ð _r: _rÞ
r3

�
ri

þ 2ð�þ 1Þðr � _rÞ _ri
r3

�
; (12)

where r and _r are, respectively, the position and velocity
vectors of the asteroid.

C. The time-variation of the gravitational constant

Dirac was among the first to point out a possible varia-
tion of the constant of gravitation G. This hypothesis
originates in the fact that the combination of the gravita-
tional constant G, the reduced Planck constant ℏ and the
Hubble constant H0 as�

ℏ2H0

Gc

�
1=3 ’ m	; (13)

is close to the mass of the pi-meson (elementary particle)
m	 [49]. Regarding this numerical coincidence as signifi-
cant is problematic for many cosmological models, which
consider H0 as nonconstant but a function of the age of the
universe tu. Instead of reformulating the atomic and nu-
clear physics, Dirac thus stated that G decreases with time
at the rate of

_G=G ¼ �3H0 ¼ �t�1
u :

Theories of gravitation inspired by the idea of a time-
varying G were attempted. The most accomplished was
proposed by Brans and Dicke [50] in 1961, when they
replaced 1=G by a scalar field which can vary in space
and time.
Several methods can provide a constraint on _G=G. If we

consider measurement precision and model validity, the
analysis of LLR data yields the best estimations: _G=G was
measured at the level of ð4� 9Þ � 10�13 yr�1, showing for
the highest correlation a value of 0.74 with the diurnal tidal
dissipation parameter [47]; the accuracy was then im-
proved to reach a standard deviation of 3� 10�13 yr�1

[51]. More precise estimations better than �0:1% of the
inverse of the universe age (� 7:3� 10�14 yr�1) are ex-
pected with the new APOLLO ranging station [52].
However, the increase of the derivation accuracy requires
to refine the dynamical modelling: Williams et al. [52]
pointed out the fact that testing _G=G can be influenced by
the solar mass loss (��7� 10�14 m� yr�1) given the
impossibility to discriminate between a variation in G
and m�, and the thermal reradiation from the Earth and
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Moon has to be considered for accuracies below
10�14 yr�1.

The study of the Big-Bang nucleosynthesis, helioseis-
mology, pulsar timing data and planetary radar-ranging
measurements [53] also allow to measure _G=G. Using
the observations of Mars (Viking landers, Marineer 9),
Venus and Mercury (radar) and LLR data, Hellings et al.
[54] measured _G=G ¼ ð2� 4Þ � 10�12 yr�1. The authors
indicated that the lack of knowledge in asteroid masses
was the major uncertainty in the estimation of _G=G. There-
fore, the fits from planetary observations will gain in
accuracy when Gaia has derived the masses of more than
150 massive asteroids [55], resulting mainly in improving
the Martian ephemeris [56]. A more recent estimate by
Pitjeva [39] who used a huge set of planetary observations,
reached a precision of 5� 10�14 yr�1.

In the literature, formulas can be read about the secular
variations of osculating elements (semimajor axis a, mean
motion n and mean longitude �) due to the gravitational
‘‘constant’’ decreasing in time. They are based on a prop-
erty demonstrated by Mestschersky [57,58], which states
that the classical two-body problem can be reducible to
quadratures if the constant of gravitation is expressed as

G ¼ ðb1 þ b2tÞ�1;

where b1 and b2 are constants. Then, Vinti [59] calculated
the following expressions by assuming GðtÞ � ðkþ tÞ�1,

1

2

_n

n
¼ � _a

a
¼ 1

2n

_�

�
¼

_G

G
:

In the framework of Gaia, we consider a linear variation
in time of G,

GeffðtÞ ¼ Gþ _Gðt� t0Þ; (14)

where t0 is a reference time. In terms of secular effect, we
can notice a change in the mean anomalyM at the time t by
an amount of (see Appendix A),

�M ¼ n
_G

G
m�ðt� t0Þ2; (15)

where n is the asteroid mean motion at the time t0.

D. Testing the Strong Equivalence Principle

1. Description

The equivalence principle (EP) contributed to the foun-
dation of the Theory of General Relativity. It states that the
inertial mass mI, which measures the resistance of a body
to a change of its motion, is equal to the gravitational mass
mG that scales its acceleration in an external gravitational
field. One hypothesis of the EP says that the acceleration
of any freely falling test body is not determined by its com-
position or structure. Thus, we can separate this principle
into two forms according to the internal interactions con-
tributing identically to the inertial and gravitational

masses. The weak form is based on the strong, weak and
electromagnetic forces, while the strong one also includes
the gravitational interaction.
The very first tests by Newton, and then Bessel, com-

pared the periods of pendulum differing in masses and
compositions without showing a discrepancy. Then Baron
Loránd von Eötvös devised a more sophisticated experi-
ment based on a torsion-balance [60] that the Princeton
group of Dicke redesigned. The gravitational accelerations
of gold and aluminum turned out to be equal to one part in
1011 [61]. Currently, the weak equivalence principle was
tested to a precision of 10�13 by measuring the fractional
differential acceleration between beryllium and titanium
[62,63]. Nevertheless, the objects tested in the laboratory
are by far too small for a test of the Strong Equivalence
Principle (SEP) contrary to astronomical bodies which
show a significant contribution of the gravitational self-
energy to their masses (see Table II).
The violation of the SEP was first envisaged by Dicke

[67], but it is Nordtvedt who independently discovered and
investigated carefully the hypothesis [9,68,69]. In the PPN
formalism, the Nordtvedt effect is generalized by

mG

mI
¼ 1þ � ¼ 1þ �

Eg

mrc
2

(16)

where � is a dimensionless constant known as the
Nordtvedt parameter. mr is the rest mass (inertial mass
when the body is at rest),

mr ¼
Z
V
�ðxÞd3x:

Here, �ðxÞ is the mass density of the body, x the vector
from the center of mass to a point in the volume. � is the
correction term associated to the body depending on its
gravitational self-energy,

Eg ¼ � 1

2
G
Z �ðxÞ�ðx0Þ

jx� x0j d3xd3x0 ¼ � 1

2

Z
VðxÞ�ðxÞd3x;

(17)

TABLE II. Correction terms for massive astronomical bodies
(� ¼ 1) and laboratory objects as a comparison.

Body � Body �

Mercury �6� 10�11 Jupiter �1:2� 10�8

Venus �3:6� 10�10 Saturn �4:3� 10�9

Earth a �4:2� 10�10 Uranus �1:5� 10�9

Moon �1:9� 10�11 Neptune �1:9� 10�9

Mars �8:4� 10�11 Ceresb �9� 10�13

Laboratory

objects �10�25

aThe numerical evaluation by Anderson et al. [64] from the Earth
model of Allen [65] gives a close result: � ¼ �4:6� 10�10.
bA mean radius of 467.9 km is used [66].
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where VðxÞ is the gravitational potential. In the solar
system, the correction term � for the Sun is by far the
largest if the SEP is violated. A numerical evaluation based
on the standard solar model [70] yields

�� ��3:52� 10�6�:

Regarding the other massive celestial bodies (see Table II),
the internal gravitational potential of an homogeneous
sphere of radius R with a density � can be used,

VðrÞ ¼ 2	G�

�
R2 � 1

3
r2
�
; (18)

to approximate their gravitational self-energy, and then the
associated correction term

� ¼ � 3

5

Gmr

c2R
�: (19)

If the gravitational self-energy disobeys the equivalence
principle, Earth is falling toward the Sun with an accelera-
tion different from that of the Moon. An orbit polarization
of the Earth satellite can thus be noticed directed along the
Earth-Sun line [71] with an oscillation of the distance
Earth-Moon [72],

�rðtÞ ¼ 13� cosð!0 �!sÞt½meters�:
Here, !0 and !s are, respectively, the angular velocities
of the assumed circular unperturbed orbits of the Moon
and the Sun around the Earth. The cosine argument repre-
sents the angle between the Earth-Moon and Earth-Sun
vectors at the time t. Since the first LLR measure-
ments in 1969, their analysis has provided the most accu-
rate test of the SEP: the precision currently reached is
j�j ¼ ð4:4� 4:5Þ � 10�4 [47], and should be pushed to a
few parts in 105 [52] with the Apache Point Lunar Laser-
ranging Operation (APOLLO) project [73] by achieving
the millimetric range precision.

In his first paper, Nordtvedt [9] suggested the observa-
tion of Trojan asteroids as a possible experiment: the
Nordtvedt effect would produce a movement of the
Lagrange points L4-L5 toward Jupiter by an amount of

�r ¼ 1

3
��R�J � 912:7 kmð� ¼ 1Þ

where R�J is the Sun-Jupiter distance. Orellana and
Vucetich [11] implemented the idea from observations of
the first 12 Trojan asteroids over large periods of time
ranging from 64 to 84 years. The Nordtvedt parameter
was then measured to � ¼ �0:56� 0:48 with an analysis
of external errors. The lack of accuracy in the astrometric
observations was the major barrier to achieving a competi-
tive derivation of �. Other tests drew inspiration from
three-body configurations such as using radar observations
of 2:1 resonant asteroids with Jupiter [74].

2. Dynamical model

The basic post-Newtonian equations of motion for a
system of mass-monopoles can be described by the well-
known Einstein-Infeld-Hoffmann (EIH) equations. Their
expression in the PPN formalism can be read in Will [46].
If the SEP is violated, only the Newtonian part of the
equations of motion is modified by Eq. (16) in the case
of spherically-symmetric, stationary bodies and relativistic
terms expressed to the order c�2. In barycentric coordi-
nates, they may be written for a body k as,

d2xk

dt2
¼ �ð1þ�kÞ

X
B�k

GmB

xkB

jxkbj3
(20)

where xk and �k, are, respectively, the position vector and
the correction term from Eq. (16) of the body k, xkB ¼
xkðtÞ � xBðtÞ, and mB is the mass of the body B.
Changing the equations of motion into heliocentric co-

ordinates allows us to introduce the solar correction term
�� from the Nordtvedt effect. Subtracting the barycentric
acceleration of the Sun (see Eq. (20)) from those of an
asteroid a gives the heliocentric equations of dynamics,

d2ra
dt2

¼ �Gðð1þ�aÞm� þ ð1þ ��ÞmaÞ ra
jraj3

� X
B�a;�

GmB

�
ð1þ�aÞ raB

jraBj3
þ ð1þ ��Þ rB

jrBj3
�

(21)

where ra and rB are, respectively, the heliocentric position
vectors of the asteroid and the perturbing body B which
here are the planets, raB ¼ raðtÞ � rBðtÞ.
In Eq. (21), the Nordtvedt effect appears in several terms

but with large differences in magnitude. It is thus relevant
to carry out a selection of the most significant terms in
estimating � according to the magnitude, given the short
observational timespan of the Gaia mission. We roughly
first estimated the correction factor � for 542 684 asteroids
from the Astorb database. Each asteroid is considered as a
spherical body with a mass m and a homogeneous density
�. The mass used is either a direct measurement or an
estimation from a density assumed to 2:5 g cm�3 and a
volume concluded from the diameter as a function of the
absolute magnitude H and the geometric visible albedo
[75]. Under the assumption of a spherical asteroid, the

correction term � is / m2=3�1=3. Mass is the deciding
parameter for a strong correction factor. Compare now
the magnitudes of the terms containing the Nordtvedt
parameter:

’1 ¼ Gm��a=jraj2; ’2 ¼ Gma��=jraj2;
c B

1 ¼ GmB�a=jraBj2; c B
2 ¼ GmB��=jrBj2:

(22)

The maximum values for ’1 and ’2 from the above eq-
uationswere found for asteroid (1) Ceres, which combines a
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large mass with a close heliocentric distance in comparison
with the massive dwarf planets beyond Neptune. Compared
with the mean value of c J

2, which appears in the Jovian
perturbations and is by far the largest among the perturba-
tions of its kind, the quantities’1 and’2 are much smaller:

c J
2=’1 > 103 and c J

2=’2 > 2� 106:

Regarding the quantity c B
1 , it varies with the distance of

the asteroid to the planet B. We must consider different
groups of minor planets according to the encounters that
they can experience with planets. The first one is the
population of near-Earth asteroids, and only the most
massive inner planet is used for computations. Among
7614 NEAs, the asteroid showing the largest correction
factor has to fly past Earth at a distance shorter than
5:3� 10�6 au (� 0:05% of the terrestrial Hill sphere
radius) so that at the encounter time, c 


1 is equal to the
mean value of c J

2. As to the asteroids having an orbit close
to Jupiter’s (e.g., Hilda asteroids, Trojans), the planetary
distance has to be smaller than 6:5� 10�4 au (� 0:19% of
the Jovian Hill sphere radius). Thus, the planetocentric
distances necessary for the term c B

1 to be also retained
in constraining � are too small: the probability to observe
such small distances between an asteroid and the above-
mentioned planets during the Gaia mission is extremely
low, and even if that was so, it would be risky to use the
observations of the offending asteroid to test the SEP; in
such cases of close approaches, the very strong gravita-
tional perturbations caused by the planet prevent us from
accurately fitting parameters because their modelling be-
comes too sensitive to the initial conditions. As a conclu-
sion, the terms depending on the heliocentric position of
planets, and, in particular, Jupiter, are easily the most
significant in the estimation of the Nordtvedt parameter.
In the framework of Gaia, the dynamical model in analyz-
ing the Nordtvedt effect may be thus expressed as

d2ra
dt2

¼ �Gðm� þmaÞ ra
jraj3

� X
B�a;�

�
GmB

raB
jraBj3

þ ð1þ��ÞGmB

rB
jrBj3

�
: (23)

We can notice that the masses of planets are factors in-
separable from the force due to the Nordtvedt effect (see
Eq. (23)). They will thus be considered in the variance
analysis in order to evaluate their correlations with �.
When comparing the values of planetary masses and their
mean distance to the Sun, modelling the anomalous
‘‘Nordtvedt’’ perturbation only through the perturbations
by Jupiter is fully sufficient. That was confirmed by nu-
merical simulations in Sec. V.

3. Discussion

When drawing a distinction between the inertial and
gravitational masses, we must pay attention to the nature

of the estimated masses of the bodies that perturb the
asteroid motion. Regarding planets, their masses are com-
puted by analyzing their gravitational perturbations on
their natural satellites or space probes passing nearby,
and in consequence, they are gravitational masses. Re-
garding the Sun, itsGm is estimated by analyzing its effect
on the motions of the planets (gravitational mass) as well
as from the light-times through the Shapiro effect (gravi-
tational mass). However, this case is slightly different from
planets: for historical reasons, Gm� is first held to a fixed
value in units of au3 day�2 and the position and velocity of
the planets are integrated in units of au and au day�1, in
order to be then fitted to observations (mainly round-trip
light-time in seconds) along with the scale factor convert-
ing au to km. Then, Gm� can be evaluated in km3 s�2.
Even if the derivation is not really direct, numerical tests
showed that the result obtained is similar to a fit of the solar
Gm with an au fixed (Folkner, personal communication).
In INPOP08 [22], that was also checked. In a near future,
the fit of Gm� with an au fixed should replace the current
procedure that is described above.
As seen in Sec. IVD1, the violation of the SEP in the

case of spherically-symmetric bodies results only in a dif-
ference between the inertial and gravitational masses de-
fined by Eq. (16) and so, in Eq. (20). Nevertheless, the
nonstationarity of bodies (e.g., radial oscillation) can pro-
duce a violation of the SEP in the case where � � 1, and
also � � 1 if several nonstationary bodies are considered:
the resulting impact in the translational equations of mo-
tion investigated by Vlasov [76] is given in Eq. (9.4.7) of
their paper. New terms also appear in the formulation of the
gravitational mass. It will be interesting to consider the
radial oscillations of the Sun to test the SEP: we should
determine if these effects can be important in the violation
of the SEP according to the recent estimations of � and
then if they are so, redesign the test of the SEP by taking
account the new terms in the equations of motion from
these new effects.

V. RESULTS

A. Expected formal uncertainties

Using realistic simulated data (see Sec. II), we esti-
mated, for each parameter previously presented, the formal
precisions that we can expect by performing a global fit
from Gaia data. In addition, a careful analysis of the
covariance matrix allowed us to detect the asteroids not
suitable for the global least squares inversion, the low
number and bad distribution of observations being the
main reasons. Once these 129 122 minor planets had
been discarded, 112 349 minor planets remained for the
variance analysis. The Gm of Jupiter was added to the
unknown parameters by reason of its potential strong cor-
relation with the Nordtvedt parameter�. The general result
is presented in Table III, supplemented by the best current
estimations of each parameter as a comparison and those
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that other missions will achieve. The correlation coeffi-
cients are given in Table IV. Those for � and � are notice-
ably similar in magnitude, and hence the parameter � do
not appear in the correlation matrix. We separated the
parameters � and � in the variance analysis because they
are very strongly correlated, and it is more relevant to fit
only one while the other is held to a value derived from
another method. The variance analysis results lead us in-
clined to assessing � given that � can be derived differ-
ently and more precisely: the bending-of-light experiment
by Gaia should allow us to achieve a precision of about
10�6 [43] instead of 8� 10�4 from the Gaia asteroid
observations (see Table III). Regarding the Nordtvedt ef-
fect, numerical simulations showed us that only the effects
from a violation of the SEP in the Jovian perturbations on
asteroid motion was important in appraising �: 1 order of
magnitude is lost in the formal precision, when Jupiter is
removed from the set of eight planets. More precisely, the
precision on � could decrease to only �0

� ¼ 2:8� 10�2

(fitted along with �, J�2 and _G=G).
Gaia will make a breakthrough in tests of fundamental

physics from the dynamics of asteroids: even if the ex-
pected precisions are not better than the best current ones
(see Table III), the analysis of Gaia data will first provide
rather competitive and valuable constraints on most of
them. The results could even be improved by a factor �3
at most, knowing that the astrometric precision used in
the simulations was underestimated (see Sec. II). Further-
more, the systematic errors will be limited by the short
observational time-span (five years) and a very complete
dynamical model; the perturbations from many massive
asteroids, the relativistic effects from the Sun, and also the
planets in certain cases, as well as nongravitational
forces will be modeled. Thus, the fit accuracy will be
ensured. Using a large set of asteroid orbits will allow us
to decrease the correlations between the fitted parameters:
the coefficients listed in Table IV are low except for the
correlations between J�2 and� as expected (� 0:57), and to
a much lesser degree between the Nordtvedt parameter �

and both _G=G and Gmj with respective values of �0:18

and 0.2. Nevertheless, the current estimated uncertainty for
J�2 does not show its assessment with Gaia as relevant (the
standard deviation being close to current estimates).
Holding this parameter to a nominal value from future
missions like BepiColombo turns out to be the wisest
solution for the moment. Another point to stress is that
Gaia should provide a competitive estimate of the Gm of
Jupiter with the best current one obtained from natural
satellite motion analysis. The formal precision should
even be better given the underrated Gaia astrometric per-
formance (see Sec. II).
A point to keep in mind is that these parameters can be

measured by other methods, with a high accuracy at times:
the dynamical model that will be used for Gaia can thus be
put to the test. As an example, a precision of 10�5 is pre-
dicted for � from the LLR experiments with the APACHE
telescope [52], and a deviation between the latter and the
Gaia measurement could shed light on inadequacies in the
dynamical model.
Two mission scenarios have been likewise examined:

the first one plans a launch delay of one year with the same
mission duration (five years) and the second one an
operational-time extension by one year. The new expected
standard deviations for our set of global parameters are
given in Table V. We can notice that the mission postpone-
ment does not have a significant impact on the fit preci-
sions, as valuable asteroids are always observed by the
satellite. Nevertheless, an additional year for the mission

TABLE III. Overview of the Gaia performance in constraining the following global parameters: the PPN parameters � and �, the
solar quadrupole J�2 , the time-variation of the gravitational constant _G=G, the Nordtvedt parameter � and the Gm of Jupiter.

Parameter Initial value the best current estimates

Formal precisions

from Gaia (simulations) future missions

� 1a �10�4 Planetary ephem. 1:44� 10�3 2� 10�6 BepiColombo [41]

� 1a 2:3� 10�5 Cassini [36] 7:90� 10�4 10�9 ASTROD [26]

J�2 2� 10�7 �5� 10�8 Planetary ephem. 1:71� 10�7 10�8 BepiColombo [25]
_G=G ½yr�1� 0a 9� 10�13 LLR [47] 3:18� 10�12 �7:3� 10�14 LLR [52]

� 0a 4:5� 10�4 LLR [47] 2:36� 10�3b �10�5 LLR [52]

Gmj ½au3d�2� 2:82� 10�7 3:35� 10�15 Jovian satellitesc 2:89� 10�15

aTheoretical value in general relativity,
b�� ¼ �3:52� 10�6�
cJacobson, R.A. 2005. ’’Jovian Satellite ephemeris–JUP230’’ private communication.

TABLE IV. Correlation matrix for the fit of the parameters
listed in Table III.

� J2 � Gmj
_G=G

�
J�2 0.568

� �0:064 �0:035
Gmj 0.003 �0:010 0.203
_G=G 0.031 0.023 �0:183 �0:047
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would allow us to improve the precisions by factors within
1.9–3.7.

B. The most valuable asteroids

In this part, we focus on the most significant asteroids in
estimating each parameter: the expected precisions are
computed for the set of parameters listed in Table III but
by removing solely one asteroid each time. Thus, the
increase in the estimate uncertainty of each parameter
because of the removal allow us to assess the importance
of each asteroid in the process of fitting and to rank them
relative to their contribution. This can be useful to better
appraise the solution accuracy and to refine the dynamical
model if need be (e.g., modelling nongravitational forces
for certain NEAs).

In Fig. 2, the increase in the standard deviation for
each parameter was drawn as a function of the number of
the asteroids removed from the fit and previously ranked
by decreasing contribution to each estimation. A few sig-
nificant Earth-crossing asteroids provide most of the

information on the values of � and J�2 . They are listed in

Table VIwhere, withal, we can read the semimajor axes and
eccentricities of the asteroids, their theoretical perihelion
precession rates (from relativity and the solar oblateness),
some observation aspects of them by Gaia and their con-
tribution to estimating � and J�2 . In addition, we provide

some information about the Yarkovsky effect given that it
may be an important component in NEA orbit determina-
tion: we evaluated the capability of Gaia to detect a secular
drift in the semimajor axis _a from this nongravitational
force using the same procedure detailed in Ref. [13]; we
thus yield the uncertainty on _a from the present simulated
Gaia data (see Sec. II), and its ratio to an estimated _a. The
latter was numerically computed from formulas used in the
modelling of the Yarkovsky perturbations by Vokrouhlický
[77,78] except for two asteroids, (2100) Ra-Shalom and
(85953) 1999 FK21, the Yarkovsky effect in their motions
having already been revealed [79]. Table VI shows three
NEAs as being by far the most important in � and J�2
derivations: (137924) 2000 BD19, (66391) 1999 KW4
and (3200) Phaethon. Even if these minor planets do not
have the optimal characteristics to be strongly sensitive to
the Yarkovsky forces (e.g., their diameters, from the MPC
or inferred from their absolute magnitudes and geometric
visible albedos [75], are larger than 1 km), our scanty
knowledge of other important physical parameters does
not allow us to accurately assess the Yarkovsky accelera-
tion, and to label it as negligible for the � and J�2 fits.

Therefore, the Yarkovsky signature in their orbits will be
investigated from the Gaia observations through the secular
variation in the semimajor axis, whichmight be estimated to
a precision of �10�4 auMyr, for the three NEAs above-
mentioned. However, complementary ground-based obser-
vations (e.g., radar, photometric) would be valuable to
increase the ability to detect and model the Yarkovsky
forces, and consequently to get more accurate fits.
The information about the other parameters ( _G=G,� and

Gmj) is chiefly yielded by several thousands of asteroids,

most of them lying in the main-belt (see Fig. 3). Regarding
the Nordtvedt effect, MBAs are easily the main source
of knowledge about �: we can achieve a precision of

TABLE V. Uncertainty estimates as to different Gaia mission scenarios.

Scenarios

Current Planning:

Launch delayed

for one year:

Mission extended

by one year:

Parameter 20132018 20142019 20132019

�� 1:44� 10�3 1:28� 10�3 7:42� 10�4

�� 7:90� 10�4 6:71� 10�4 3:79� 10�4

�J�
2

1:71� 10�7 1:64� 10�7 4:64� 10�8

� _G=G ½yr�1� 3:18� 10�12 2:43� 10�12 1:08� 10�12

�� 2:36� 10�3 2:15� 10�3 9:90� 10�4

�Gmj
½au3d�2� 2:89� 10�15 3:02� 10�15 1:38� 10�15

FIG. 2 (color online). Variation of the uncertainty in the deri-
vation of (J�2 , �, _G=G, �, Gmj) relative to the asteroids removed

from the fit. They were first ranked by decreasing contribution to
the estimation of each parameter.
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TABLE VI. The most contributive 20 asteroids to the estimations of � and J�2 . Their orbital semimajor axis a and eccentricity e are
provided with the perihelion precession rate _! (from relativity and the solar oblateness), the total number of Gaia observations and, in
parentheses, the quantity of cases with a ‘‘critical’’ apparent along-scan velocity (see Sec. II), the observation arc and the mean
apparent magnitude meanV. In the next two columns, we give the increasing factor in the uncertainty of their estimates if the asteroid i
is not included in the process of fit, and its cumulative value. The last two columns are devoted to the Yarkovksy effect: first, we can
read the sensitivity of Gaia to reveal this effect through the secular drift in the semimajor axis _a, and then we relate the formal
uncertainty to a rough numerical estimation of _a.

Asteroid i a e Perihelion Gaia observations Uncertainty increasing Yarkovsky effect

no IAU name shift _!� number arc Mean V factor in the fit of � �Gaia
_a k _a k =�Gaia

_a

[au] ½”=100yr� [yr] [%] [%] ½�10�4auMyr�
66391 1999 KW4 0.64 0.69 22.05 37 (10) 4.2 17.7 12.31 12.31 1.01 1.85

137924 2000 BD19 0.88 0.90 26.80 34 (5) 4.4 19.0 12.13 32.81 6.25 0.35

3200 Phaethon 1.27 0.89 10.11 74 (15) 4.1 18.2 1.94 38.01 1.73 0.39

105140 2000 NL10 0.91 0.82 14.43 72 (4) 4.2 18.8 1.92 40.63 2.27 0.55

137170 1999 HF1 0.82 0.46 8.03 44 (4) 4.1 16.6 1.01 43.20 1.30 0.80

163243 2002 FB3 0.76 0.60 11.88 33 (9) 4.1 18.1 0.93 45.71 0.57 2.86

2100 Ra-Shalom 0.83 0.44 7.50 52 (11) 4.2 17.7 0.71 47.87 1.62 4.38

87684 2000 SY2 0.86 0.64 9.57 81 (4) 4.4 18.4 0.67 49.75 2.55 0.54

2005 GO21 0.75 0.34 8.81 53 (4) 4.0 18.3 0.65 51.39 0.94 1.68

433 Eros 1.46 0.22 1.57 94 (0) 3.5 14.0 0.54 52.85 5.52 0.03

66146 1998 TU3 0.79 0.48 9.11 59 (6) 4.4 16.6 0.49 53.69 1.29 0.84

163693 2003 CP20 0.74 0.32 9.05 40 (0) 4.0 18.1 0.42 54.70 2.08 1.06

137925 2000 BJ19 1.29 0.76 4.86 35 (10) 4.2 18.2 0.41 55.98 2.19 0.67

141484 2002 DB4 0.86 0.37 6.52 40 (8) 4.2 18.3 0.38 57.10 1.30 1.44

4953 1990 MU 1.62 0.66 2.02 151 (34) 4.6 17.7 0.35 58.08 6.54 0.15

12711 Tukmit 1.19 0.27 2.70 77 (10) 4.9 18.3 0.33 59.47 2.22 0.87

3753 Cruithne 1.00 0.52 5.25 79 (15) 4.4 18.3 0.30 60.40 0.62 1.09

5381 Sekhmet 0.95 0.30 4.81 155 (33) 4.8 18.5 0.28 61.48 0.86 3.13

99907 1989 VA 0.73 0.59 13.10 19 (6) 3.2 18.6 0.25 63.19 13.51 0.32

2005 MB 0.98 0.79 10.71 40 (0) 4.3 19.5 0.25 64.03 7.05 0.31

Asteroid i a e Perihelion Gaia observations Uncertainty increasing

factor in the fit of J�2
Yarkovsky effect

no IAU name shift _!J�
2

number arc Mean V �Gaia
_a k _a k =�Gaia

_a

[au] ½”=100yr� [yr] [%] [%] ½�10�4auMyr�
137924 2000 BD19 0.88 0.90 5:1� 10�2 34 (5) 4.4 19.0 61.42 61.42 6.25 0.35

66391 1999 KW4 0.64 0.69 1:5�10�2 37 (10) 4.2 17.7 7.98 95.12 1.01 1.85

3200 Phaethon 1.27 0.89 1:4� 10�2 74 (15) 4.1 18.2 3.64 140.66 1.73 0.39

85953 1999 FK21 0.74 0.70 1:8� 10�2 44 (6) 4.9 19.5 1.09 165.85 1.27 11.15

137170 1999 HF1 0.82 0.46 4:2� 10�3 44 (4) 4.1 16.6 0.44 174.19 1.30 0.80

2007 EP88 0.84 0.89 5:7� 10�2 37 (4) 4.0 19.9 0.42 185.34 97.89 0.04

2100 Ra-Shalom 0.83 0.44 4:4� 10�3 52 (11) 4.2 17.7 0.42 196.79 1.62 4.38

138127 2000 EE14 0.66 0.53 1:1� 10�2 28 (10) 4.1 18.5 0.37 213.20 1.86 1.13

99907 1989 VA 0.73 0.59 8:7� 10�3 19 (6) 3.2 18.6 0.37 225.15 13.51 0.32

1566 Icarus 1.08 0.83 1:1� 10�2 31 (7) 4.2 18.9 0.36 251.58 8.73 0.34

163243 2002 FB3 0.76 0.60 9:1� 10�3 33 (9) 4.1 18.1 0.35 264.97 0.57 2.86

87684 2000 SY2 0.86 0.64 7:2� 10�3 81 (4) 4.4 18.4 0.29 283.01 2.55 0.54

105140 2000 NL10 0.91 0.82 1:3� 10�2 72 (4) 4.2 18.8 0.24 321.26 2.27 0.55

2005 GO21 0.75 0.34 4:5� 10�3 53 (4) 4.0 18.3 0.14 332.44 0.94 1.68

40267 1999 GJ4 1.34 0.81 3:0� 10�3 39 (0) 4.9 19.0 0.14 343.17 5.59 0.28

2005 MB 0.98 0.79 5:8� 10�3 40 (0) 4.3 19.5 0.13 364.58 7.05 0.31

87309 2000 QP 0.85 0.46 2:9� 10�3 31 (8) 4.4 19.1 0.13 374.32 5.92 0.52

12711 Tukmit 1.19 0.27 6:0� 10�4 77 (10) 4.9 18.3 0.13 378.17 2.22 0.87

137925 2000 BJ19 1.29 0.76 2:6� 10�3 35 (10) 4.2 18.2 0.12 390.07 2.19 0.67

5381 Sekhmet 0.95 0.30 7:0� 10�4 155 (33) 4.8 18.5 0.09 395.79 0.86 3.13
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�M
� ¼ 2:54� 10�3 only by considering this population,

which is very close to the general result in Table III (�� ¼
2:36� 10�3). On the other hand, the Trojan asteroids, well-
known as privileged candidates to test a violation of the SEP
(see Sec. IVD1) are trifling for Gaia (too short observatio-
nal time): the awaited observations of 1362 Trojans by the
satellite will enable us only to achieve a precision of �T

� ¼
1:25� 10�1, 2 orders of magnitude worse than the final
uncertainty from all minor planets.

C. Planetary masses as unknown parameters

For the sake of curiosity, a variance analysis was applied
to estimating the Gm of the eight planets and Pluto simul-
taneously. The expected formal precisions and comparison
to other derivations are compiled in Table VII. None
of planetary Gms are really worth measuring from the
Gaia observation of minor planets except for Jupiter. Its
estimate mostly depends on the main-belt asteroids that
Gaia will observe (see Fig. 3(b)), which is an important
point because, their dynamics being well-known, system-
atic errors will not be a problem in yielding an accurate
measurement.

VI. CONCLUSION

As a conclusion, the results obtained were summarized
and supplemented by the future work to be led for their
improvement.

(1) The future observations by the satellite Gaia will
first enable us to extend the possibility to carry out
accurate tests of fundamental physics by analyzing
the astrometric observations of minor planets. The
most relevant assessments concern the PPN parame-
ter �, the temporal variation in the gravitational
constant _G=G and the Nordtvedt parameter �. The
addition of the Jovian Gm among the unknown
parameters is of interest since it could be computed
with a competitive formal precision. Furthermore,
the results should be better, knowing that the Gaia
astrometric precision used in the simulations is
underestimated, and asteroid discoveries by the sat-
ellite could bring new significant constraints on
certain parameters (e.g., well-observed new NEAs
in the derivation of �). Two mission scenarios
were also envisaged: a one-year delay should not

TABLE VII. Deriving the Gm of the eight planets and Pluto with Gaia.

Body Gaia Current Estimation method

j Gmj precision precision references

½au3d�2� ½au3d�2� ½au3d�2�
Mercury 4:91� 10�11 1:43� 10�15 8:92� 10�17 Space probe [80]

Venus 7:24� 10�10 6:60� 10�16 1:34� 10�17 Space probe [81]

Earth 8:89� 10�10 3:46� 10�16 3:12� 10�18 Moon (LLR) a

Mars 9:55� 10�11 3:11� 10�16 6:24� 10�19 Space probes [82]

Jupiter 2:82� 10�07 2:83� 10�15 3:35� 10�15 Natural satellites b

Saturn 8:46� 10�08 3:26� 10�14 2:45� 10�15 Natural Satellites and Space probes [83]

Uranus 1:29� 10�08 3:37� 10�13 1:34� 10�14 Natural satellites [84]

Neptune 1:52� 10�08 1:20� 10�12 2:23� 10�14 Space probe and Natural satellites [85]

Pluto 1:95� 10�12 1:57� 10�12 8:25� 10�15 Natural satellites [86]

aFolkner, W.M. and Williams, J. G. 2008. ’’GM parameters and uncertainties in planetary ephemeris DE421.’’ Interoffice Memo.
343R-08-004 (internal document), Jet Propulsion Laboratory, Pasadena, CA.
bJacobson, R. A. 2005. ’’Jovian Satellite ephemeris–JUP230’’ private communication.

FIG. 3 (color online). Plots of orbital elements in semimajor axis vs. eccentricity space of the asteroids which, if they are not
considered in the fit of the Nordtvedt parameter � (a), Gm of Jupiter (b) and _G=G (c), double the final derivation uncertainties listed in
Table III—about half of the total information is contained in the Gaia observations of them.
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significantly change the results, while a one-year
extension would allow us to reduce the derivation
uncertainties by factors within 1.9–3.7. In addition,
several parameters have already accurately mea-
sured by other methods, and then a discre-
pancy from the Gaia derivation may be a valuable
alert about the correctness of the dynamical model
used.

(2) The asteroids on which the parameter estimations
with Gaia rest were listed. Thus, we can better know
where our efforts have to be directed in order to
improve the measurement accuracy. Near-Earth as-
teroids, which are essential for some tests of general
relativity, are the main motivation for such a list.
They are well-known to be very sensitive to the
nongravitational Yarkovsky effect, the modelling
of which is tricky because the knowledge of many
physical parameters hard to estimate, is required.
Having identified the most promising candidates for
tests of GR, we can define the parameters to be
derived, the observation campaigns to be conse-
quently led, and the accurate radar observations
from the ground that we can combine with the
Gaia data to improve the derivation precision. The
impact of the Gaia stellar catalogue is another point
to take into consideration. It will allow us to im-
prove the reduction procedure of ground-based ob-
servations, and so, the accuracy of reduced data; in
consequence, introducing new reduced observations
showing a good precision could be an interesting
subject to be investigated.

(3) The inquiry into the test of the Nordtvedt effect is far
from finished: the impact of the nonstationarity of
the Sun will be studied given that the Sun experi-
ences radial oscillations.
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APPENDIX A: SECULAR EFFECT FROM THE
TEMPORALVARIATION OF G

The largest secular effect from a linear temporal varia-
tion of G is in the mean anomaly M because the attraction
of the Sun dominates in the solar system. In the classical
two-body problem, the linear variation in time of G can be
considered as a perturbation deriving from the potential

U _G ¼
_Gðt� t0Þ

r
m�: (A1)

In order to estimate the first-order secular terms in the
perturbations of the osculating elements, we average the
potential U _G over the fast changing angular variables to
remove the periodic effects due to 1=r. The averaged
potential has the form

½U _G� ¼
1

2	

Z 2	

0

_Gðt� t0Þ
r

m�dM;

¼ 1

2	

Z 2	

0

_Gðt� t0Þ
a

m�dE;

where E is the eccentric anomaly. The integration is direct
when considering _Gðt� t0Þ as a constant: _G=G is precisely
estimated to ð4� 9Þ � 10�13 a year [47], which is very
small in comparison with the variation of the heliocentric
distance r of the body. The effective general averaging
principle with slowly varying parameters [87] gives

½U _G� �
_Gðt� t0Þ

a
m�: (A2)

In the Lagrange’s planetary equations, the averaged poten-
tial in Eq. (A2) implies that only the mean anomaly is
secularly perturbed, at the rate of

dM

dt
¼ � 2

na

@½U _G�
@a

; (A3)

where n is the mean motion of the celestial body at the time
t0. At the time t, the mean anomaly M will have thus
changed by

�M ¼
Z t

t0

� 2

na

@½U _G�
@a

dt ¼ n
_G

G
m�ðt� t0Þ2: (A4)
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