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C-theory provides a unified framework to study metric, metric-affine and more general theories of

gravity. In the vacuum weak-field limit of these theories, the parameterized post-Newtonian parameters �

and � can differ from their general relativistic values. However, there are several classes of models

featuring long-distance modifications of gravity but nevertheless passing the Solar System tests. Here it is

shown how compute the parameterized post-Newtonian parameters in C-theories and also in non-

minimally coupled curvature theories, correcting previous results in the literature for the latter.
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I. INTRODUCTION

There are many fascinating applications of modified
gravity to cosmology [1,2]. In the context of more general
gravity theories than Einstein’s general relativity (GR), one
may hope to resolve such possibly deep issues in the
standard model of cosmology as the initial singularity
and the subsequent inflation, or the dark sector of the
universe that consists dark matter and the cosmological
constant. Most importantly, with the present and forth-
coming experimental data, we are able to observationally
test various aspects of the nature of gravity at cosmological
scales to high precision. However, any viable theory of
gravity should of course be able to reproduce the successes
of GR at the near-Newtonian scales relevant at the Solar
System, where we already have tight bounds on the devia-
tions from GR.

Here we examine the C-theories of gravitation [3] from
this local point of view. First in Sec. II we write down the
C-theory action and review some results concerning spe-
cial classes of theories it contains. In particular, we point
out that the previous derivations of the PPN parameters in
the nonminimally coupled class of models (3) are incor-
rect. In Sec. III we present the scalar-tensor formulation of
the C-theory action and compute the corresponding PPN
parameters. We show there are three qualitatively different
ways to reconcile these theories with the Solar System
experiments without resorting to the chameleon mecha-
nism. Some explicit results for specific models are given in
the Appendix.

II. ON SOME LIMITS OF CðRÞ THEORY

A. The C-theory action

Any physical theory of gravitation contains two affine
structures. One connection determines the geometry, an-
other the geodesics of matter. In GR these connections
coincide. The C-theories emerge from a nontrivial relation
between the connections [3]. In the simplest case, which

can be more specifically referred to as the CðRÞ theories,
the relation between the connections is conformal and
depends solely upon the curvature scalar R. The action
can then be written as

SC ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½fðRÞ þ �̂� CðRÞ�þLm�; (1)

where � ¼ ���g��, �̂ ¼ ���ĝ�� and

R � g��ð�̂�
��;� � �̂�

��;� þ �̂�
���̂

�
�� � �̂�

���̂
�
��Þ; (2)

�̂ being the Christoffel connection of ĝ��, generalizes fðRÞ
theories in such a way that when CðRÞ ¼ 1 one recovers
the metric fðRÞ theory, and when CðRÞ ¼ f0ðRÞ, the
theory represents an improved variant of the
Palatini-fðRÞ gravity.1 Furthermore, the nonminimally
coupled curvature theories [6]

Snmc ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½f1ðRÞ þ f2ðRÞ�2Lm�; (3)

can be mapped to the action (1) written in the C-frame of
these theories, defined by the conformal transformation
g��!CðRÞg��, when one identifies2 f1ðRÞ¼fðrðRÞÞ=
C2ðrðRÞÞ and f2ðRÞ ¼ CðrðRÞÞ where rðRÞ is the solution
to the equation r=CðrÞ ¼ R. All of the three types of fðRÞ
theories—the metric, the Palatini and the nonminimally
coupled versions—have been very extensively studied in
the literature [7]. The simple starting point (1) contains
them all and, between and beyond them, completely new
theories.

*tomi.koivisto@fys.uio.no

1To obtain precisely the usual Palatini-fðRÞ theory, one may
impose the constraint instead upon the connection [4]. One may
also consider a metric-Palatini hybrid theory [5].

2Strictly speaking this is assuming that the matter Lagrangian
is homogeneous in the metric, but it is in this context the
nonminimally coupled theories are usually discussed in. We
assumed dustlike matter above.
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B. The PPN parameters in the limiting models

In this paper we study the post-Newtonian parameters in
the unifying framework provided by the action (1). It is
then useful to review the state of art in the limiting fðRÞ
gravities. After some initial debates [8], it was settled that
metric fðRÞ gravity, as corresponding to the !BD ¼ 0
scalar-tensor theory, features � ¼ 1=2 in the massless limit
that is relevant to the dark energy alternatives [9]. One
could perhaps however render the field locally massive
enough by exploiting the so-called chameleon mechanism,
in particular, models [10].

In the Palatini theories, the vacuum solutions reduce to
GR and a cosmological constant, and if the value of the
latter is given by the dark energy scale, one surely repro-
duces the Solar System predictions of GR to a sufficient
accuracy. However, there is still some controversy about
the validity of these vacuum solutions [11]. From our
viewpoint the ambiguities in the predictions of the theory
can be traced down to inherent inconsistency, which hin-
ders one from considering gradients of matter fields at
small scales [12,13]. The action (1), also when C ¼ f0,
however provides a consistent theory at all scales and thus
the prescription outlined below will uniquely fix also the
Solar System predictions for these (potentially) viable
versions of the Palatini models.

The Newtonian limit of the nonminimally coupled cur-
vature theories remains to be clarified. In Ref. [14] it was
claimed that theories of the form (3) share the PPN limit
with GR. However this conclusion was not based on a
proper derivation and indeed we will here find a different
result. It is straightforward to show that, since (3) has the
biscalar representation

Snmc ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½cR� 2Vð�; c Þ þ f2ð�Þ�2Lm�; (4)

where 2�2Vð�; c Þ ¼ �c � f1ð�Þ, one can write it, in the
Einstein frame, as the biscalar-tensor theory

S�nmc¼
ffiffiffiffiffiffiffiffiffiffi�g�

p ½R��2	ij’
i
;�’

j;��4Uð’kÞ�f�ð’kÞ�2L�
m�;
(5)

where the transformations g��� ¼ c g�� and ’1 ¼ffiffiffi
3

p
logðc Þ=2, ’2 ¼ � were performed. When we

assume Lm is homogeneous of degree n in the metric,
we can write

f�ð’kÞ ¼ f2ð’2Þe�2ðnþ2=
ffiffi
3

p Þ’1 � Að1=4Þ: (6)

Because the field matrix 	ij is singular,

	 ¼ 1 0
0 0

� �
; (7)

one cannot invert it and straightforwardly plug to model
into the formalism of Damour and Esposito-Farese [15] to
obtain the post-Newtonian expansion for the two-field
action. This is of course due to one of the fields being

nondynamical. The way around this proposed in Ref. [14]
was to add an antisymmetric piece a to the matrix as

	 ¼ 1 a
�a 0

� �
: (8)

However, in general the results will depend upon the anti-
symmetric part when one exploits this method. This can be
easily seen by adding the antisymmetric part in some other
frame (in particular, any which is nondiagonal in the fields)
and repeating the calculation. This shows that the result is
not meaningful.
In fact, this can be seen by directly proceeding from (5).

Let us recall the definition of variables [15]

�i � @ logA

@’i ; �2 ¼ 	ij�i�j: (9)

Looking now at the action (5) and the definition (6), one
notes that the matter is coupled nonminimally to both of
the fields, and thus the effective coupling function A should
be considered to depend on both scalars (we also disagree
on this point with Ref. [14] which set �2 ¼ 0). We obtain

that �1 ¼ �ðnþ 2Þ=ð2 ffiffiffi
3

p Þ and �2 ¼ ðlogf2ð�Þ0Þ2=4 and
hence

�� 1 ¼ �2
�2

1þ �2
¼ �2

ðlogf2ð�Þ0Þ2
4a2 þ ðlogf2ð�Þ0Þ2 : (10)

Thus we find that the result depends upon the arbitrary
parameter a due to the illegitimate procedure of replacing
(7) with (8).
A correct way to deal with such a theory with a non-

dynamical degree of freedom is to integrate it away and
then follow the usual steps considering the one remaining
dynamical field. We shall turn to this in the following.

III. C-THEORYAS SCALAR-TENSOR THEORY

As was shown in the original paper [3], the C-theory
Lagrangian appearing in (1) can be reformulated as a
scalar-tensor theory involving two fields � and 
 as

2L¼
R�3

2


ð@CÞ2
C2

þ 3

C
ð@�CÞð@�
Þ�
�þfð�Þþ2Lm:

(11)

Here C is understood as a function of � and the matter
Lagrangian Lm is minimally coupled to gravity. The
Solar System experiments effectively probe the vacuum
metric outside a spherical source. We are looking at per-
turbative corrections to the Schwarzchild metric where
sources can be neglected. Then, by studying the equations
of motion ensuing from the Lagrangian (11), one can show
that there exists an algebraic relation between the two
fields,


 ¼ Cð�Þf0ð�Þ � 2C0ð�Þfð�Þ
Cð�Þ � C0ð�Þ� : (12)
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Thus one can solve for � ¼ �ð
Þ and use the result to
rewrite the theory (11) as a single-field scalar-tensor theory

L ¼ 1

2

R�!ð
Þ

2

ð@
Þ2 � Vð
Þ; (13)

where the Brans-Dicke function reads, explicitly,

!ð
Þ ¼ 3


�



2

�
d logCð�ð
ÞÞ

d


�
2 �

�
d logCð�ð
ÞÞ

d


��
: (14)

When one considers very light fields, so that the Vð
Þ ¼
½ð
�ð
Þ � fð�ð
ÞÞ�=ð2�2Þ can be neglected, the PPN pa-
rameters can be deduced solely from the function !ð
Þ in
the canonical form of the theory (13). In this massless
limit, the two nontrivial parameters are

�� 1 ¼ !0ð
Þ
ð3þ 2!ð
ÞÞð4þ 2!ð
ÞÞ

�����

¼
0

; (15)

�� 1 ¼ � 1

2þ!ð
Þ
�����

¼
0

; (16)

where 
0 corresponds to the present cosmological value of
the scalar field. Thus we have a completely specified
method to determine the weak-field corrections relevant
at the Solar System, given any functions fðRÞ and CðRÞ.

We readily see that the well-known result � ¼ 1=2 is
obtained in the metric limit where C is a constant, since
then ! ¼ 0. It is quite interesting that in general the
parameter � becomes a function of the scalar field, which
allows in principle to find nontrivial viable models. These
should have sufficiently large !ð
0Þ> 40000 or so [16].

A. Class A models

Let us consider the example

fðRÞ ¼ f0Rn; CðRÞ �Rm: (17)

The Brans-Dicke function in (14) becomes then

!BD ¼ 3m

2ðn� 1Þ ½2ðn� 1Þ �m�: (18)

The parameter � ¼ 0 has thus its GR value, and

�� 1 ¼ � 2ðn� 1Þ2
3m2 � 6mðn� 1Þ þ 4ðn� 1Þ2 : (19)

The class of models is special because it the parameters are
constant regardless of the dynamics of the field.
Remarkably, any power m for the conformal factor C is
compatible with the Solar System constraints, as long as
the dependence upon the curvature is nearly enough linear,
f�R1þ�. In particular, when the action is Einstein-
Hilbert, n ¼ 1, GR predictions are reproduced identically.

We expect still nontrivial cosmological modifications,
since in the presence of matter the equation of motion is,
when n ¼ 1,

�
1

m
� 1

�

þ

�
2� 1

m

�
f0 ¼ �2 


�
T: (20)

We see that in general the scalar field can be dynamical, but
in vacuum T¼0 it reduces to a constant 
vac¼
ð2m�1Þf0=ðm�1Þ. Thus it is possible to reconcile new
cosmological effects with the GR predictions at the Solar
System level. We most probably could however distinguish
these models from GR at higher orders of the PPN expan-
sion, but that is beyond the scope of the present study.

B. Class B models

Consider a variation of the latter case,

fðRÞ ¼ R; CðRÞ ¼ 1þ
�
R
R0

�
m
: (21)

The PPN parameters are given explicitly in the Appendix.
In this case, the corrections vanish at the point 
 ¼ 2,

��1¼�1

6
ð
�2Þ2�1

3
ðm�1Þð
�2Þ3þOðð
�2Þ4Þ;

(22)

�� 1 ¼ � 1

12
ð
� 2Þ þ 1

4
ð
� 2Þ2 þOðð
� 2Þ3Þ: (23)

The point 
 ! 2 corresponds to the limit of infinite
R ! 1. It should be noted that this quantity is different
from the metric spacetime curvature R, which should be
very small in the appropriate limit. However, it is not clear
such a configuration may be naturally arranged.
We find similar result by looking at the exponential form

fðRÞ ¼ R; CðRÞ � expðkRÞ: (24)

The effective Brans-Dicke parameter is then in vacuum

! ¼ 3
ð8þ ð2
� 7Þ
Þ
2ð
� 2Þ2 : (25)

Again, the corrections vanish at the point 
 ¼ 2,

�� 1 ¼ � 1

6
ð
� 2Þ4 � 1

6
ð
� 2Þ5 þOðð
� 2Þ6Þ; (26)

�� 1¼�1

6
ð
� 2Þ3 þ 5

24
ð
� 2Þ4 þOðð
� 2Þ5Þ: (27)

The complete parameters are given in the Appendix.
One more example which yields qualitatively very simi-

lar results is given by the example

fðRÞ ¼ R; CðRÞ � expð1þ ðR=R0ÞmÞ: (28)

What one finds again in this case is that the post-Newtonian
corrections vanish at 
 ¼ 2, which however implies an
infinite R.
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C. Class C models

Finally, we consider the parametrization

fðRÞ¼Rþ�

�
R
R0

�
n
R; logCðRÞ¼1þ

�
R
R0

�
n
: (29)

We chose the same exponent n to simplify analytic calcu-
lations. The purpose of this example is to illustrate a third
possible kind of qualitatively different behavior of the PPN
parameters. Towit, the parameters need not be constant nor
R large, while there still exist solutions which reproduce
precisely GR predictions up to the leading post-Newtonian
order. From the form of the Brans-Dicke function (A5) one
sees that the corrections vanish at the point


 ¼ 1

n
½ð3� nÞ�þ 2n� 2

ffiffiffiffiffiffi
2�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ ð1� �Þn

p
�: (30)

This corresponds to the value of the scalar R

R ¼
�
2�� ffiffiffiffiffiffi

2�
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�þ ð1� �Þnp
2�n

�ð1=nÞ
R0; (31)

that is obviously nonsingular.

IV. CONCLUSIONS

We provided a recipe to compute the PPN parameters for
C-theory. According to the behavior of these parameters,
we classified C-theories into three classes. In class A
models, the parameters are constant. The metric fðRÞ
models belong to this class, characterized by � ¼ 1=2,

but there are also viable models. In particular, the power-
law models (17) can mimic GR when n is close to unity. In
class B models, the GR limit seems more difficult to
produce as it does not correspond to finite solution for
the scalar curvature. In class C models, the PPN parameters
are functions of the scalar field in such a way that the GR
limit can be obtained when both of the two effective scalar
fields are finite.
These results provide further motivation to explore the

cosmological implications of the new theories included
within the unifying framework of C-theories (on implica-
tions of nonmetricity to chaotic inflation; see Ref. [17]). It
also remains to be seen whether those theories can be
observationally distinguished by testing their predictions
at the strong field regime or at the higher orders of the PPN
expansion.
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APPENDIX: SPECIFIC MODELS

1. Power-law model

For the model (21) the parameters have the following
form:

�� 1 ¼ � 2ð
� 2Þ2

ð3m2
ð
� 2Þ2 � 6mðð
� 2Þ
þ 2Þð
� 2Þ þ 
ð3ð
� 4Þ
þ 25Þ � 28Þ þ 16

: (A1)

��1¼ ð
�2Þðmð
�2Þ2�ð
�4Þ
�2Þ
ððm�1Þð
�2Þ
�2Þð
ð3m2
ð
�2Þ2�6mðð
�2Þ
þ2Þð
�2Þþ
ð3ð
�4Þ
þ25Þ�28Þþ16Þ : (A2)

2. Exponential model

For the model (24) the parameters have the following form:

�� 1 ¼ � 2ð
� 2Þ4

ð
ð4
2 � 26
þ 75Þ � 104Þ þ 64

: (A3)

�� 1 ¼ � ð
� 2Þ3ð
þ 2Þ
ðð
� 3Þ
þ 4Þð
ð
ð4
2 � 26
þ 75Þ � 104Þ þ 64Þ : (A4)

3. The double power-law model

The Brans-Dicke function computed for the model (29) is

!ð
Þ ¼
3
ðn� nð�ðn�3Þþnð
�2ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�ðnþ1Þþnð
�2ÞÞ2�8�nð
�1Þ
p Þð
ðn� nð�ðn�3Þþnð
�2ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�ðnþ1Þþnð
�2ÞÞ2�8�nð
�1Þ
p Þ � 8�nÞ

32�2n2
: (A5)
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