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Polarization of light rotates in a gravitational field. The accrued phase is operationally meaningful only

with respect to a local polarization basis. In stationary space-times, we construct local reference frames

that allow us to isolate the Machian gravimagnetic effect from the geodetic (mass) contribution to the

rotation. The Machian effect is supplemented by the geometric term that arises from the choice of standard

polarizations. The phase accrued along a close trajectory is gauge-independent and is zero in the

Schwarzschild space-time. The geometric term may give a dominant contribution to the phase. We

calculate polarization rotation for several trajectories and find it to be more significant than is usually

believed, pointing to its possible role as a future gravity probe.

DOI: 10.1103/PhysRevD.84.121501 PACS numbers: 04.20.Cv, 03.65.Vf, 04.25.Nx, 95.30.Sf

I. INTRODUCTION

Description of electromagnetic waves in terms of rays
and polarization vectors is a theoretical basis for much of
optics [1] and observational astrophysics [2]. Light rays in
general relativity (GR) are null geodesics. Their tangent
four-vectors k, k2 ¼ 0, are orthogonal to the spacelike
polarization vectors f, f2 ¼ 1. Polarization is parallel-
transported along the rays [3,4],

r kk ¼ 0; rkf ¼ 0; k (1)

where rk is a covariant derivative along k. These equations
were solved for a variety of backgrounds ([4–13]), ranging
from the weak field limit of a single massive body to
gravitational lenses and gravitational waves.

Solutions of Eq. (1) predict polarization rotation in a
gravitational field. Mass of the gravitating system is
thought to have only a trivial effect, while its spin and
higher moments cause the gravimagnetic/Faraday/Rytov-
Skrotski�� rotation (phase) [5–8]. A version of Mach’s
principle [14], interpreted as presence of the Coriolis ac-
celeration due to frame-dragging around a rotating massive
body [3,4], was first proposed to calculate polarization
rotation in Ref. [15]. It provides a convenient conceptual
framework for the gravimagnetic effect [6].

Polarization is operationally meaningful only if its di-
rection is compared with some standard polarization basis
(two linear polarizations, right- and left-circular polariza-
tions, etc.). Insufficient attention to the definition of the
standard polarizations is one of the reasons for the dispa-
rate values of the rotation angle �� that are found in the
literature (see Ref. [16] for the discussion). In this paper,
we investigate the role of local reference frames in estab-
lishing ��, focusing primarily on stationary space-times.

We derive the equation for polarization rotation for an
arbitrary choice of the polarization basis. In addition to the
expected Machian term [6,15], this equation contains a
reference-frame term,whichmakes a dominant contribution

to the net rotation in the examples we consider. Only a
particular choice of the standard polarizations allows stating
that the mass of the gravitating body does not lead to a phase
along an open orbit, and we demonstrate how this gauge can
be constructed by local observers. On the other hand, on
closed trajectories, the reference-frame term results in a
gauge-independent contribution.
Taking Kerr space-times as an example, we calculate

�� for several trajectories and find the phase to be greater
than it was commonly believed. As a result, polarization
rotation may become a basis for alternative precision tests
of GR.
We use �þþþ signature, set G ¼ c ¼ 1, and use

Einstein summation convention in all dimensions. Three-
dimensional vectors are written in boldface, and the unit
vectors are distinguished by carets, such as ê.

II. TRAJECTORIES AND ROTATIONS

To every local observer with a four-velocity u, we attach
an orthonormal tetrad, with the time axis defined by
e0 � u [3]. In stationary space-times, a tetrad of a static
observer is naturally related to the Landau-Lifshitz 1þ 3
formalism [17]. Static observers follow the congruence of
timelike Killing vectors that defines a projection from the
space-time manifold M onto a three-dimensional space
�3, �: M ! �3.
Projecting is performed in practice by dropping the

timelike coordinate of an event. Vectors are projected by
a push-forward map ��k ¼ k in the same way. For a static
observer, the three spatial basis vectors of the local ortho-
normal tetrad are projected into an orthonormal triad,
��em ¼ êm, êm � ên ¼ �mn, m, n ¼ 1, 2, 3.
The metric g on M can be written in terms of a three-

dimensional scalar h, a vector g, and a three-dimensional
metric � on �3 [17] as

ds2 ¼ �hðdx0 � gmdx
mÞ2 þ dl2; (2)
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where h ¼ �g00, gm ¼ �g0m=g00 and the three-
dimensional distance is dl2 ¼ �mndx

mdxn. The inner
product of three-vectors will always refer to this metric.
Vector products and differential operators are defined as
appropriate dual vectors [17].

For example, the Kerr metric in the Boyer-Lyndquist
coordinates [3,4,17] leads to

h ¼ 1� 2Mr

�2
; g0i ¼ ��i�

2Mar

�2
sin2�; (3)

whereM is the mass of a gravitating body, a ¼ J=M is the
angular momentum per unit mass, �2 ¼ r2 þ a2cos2�, and
�ij is Kronecker’s delta.

Using the relationship between four- and three-
dimensional covariant derivatives, r� and Dm, respec-

tively, the propagation equations (1) in a stationary
space-time [6,7] result in a joint rotation of unit polariza-
tion and tangent vectors [16],

Dk̂

d	
¼ �� k̂;

Df̂

d	
¼ �� f̂; (4)

where 	 is the affine parameter and k̂ ¼ k=k. The angular
velocity of rotation � is given by

� ¼ 2!� ð! � k̂Þk̂� Eg � k; (5)

where

! ¼ � 1

2
k0curlg; Eg ¼ �rh

2h
: (6)

III. REFERENCE FRAMES

For each momentum direction k̂ polarization is specified

with respect to two standard polarization vectors b̂1;2. In a

flat space-time, these are uniquely fixed by Wigner’s little
group construction [18,19]. The standard reference mo-
mentum is directed along an arbitrarily defined z-axis,
with x- and y-axes defining the two linear polarization

vectors. A direction k̂ is determined by the spherical angles

ð�;�Þ. The standard rotation that brings the z-axis to k̂ is
defined [18] as a rotation around the y-axis by Ryð�Þ that is
followed by the rotation Rzð�Þ around the z-axis, so

Rðk̂Þ � Rzð�ÞRyð�Þ. Standard polarizations for the direc-

tion k̂ are defined as b̂1 � Rðk̂Þx̂ and b̂2 � Rðk̂Þŷ. An
additional gauge fixing promotes b̂i to four-vectors, so a
general linear polarization vector is written as

f ¼ cos�b1ðkÞ þ sin�b2ðkÞ: (7)

We adapt a gauge in which polarization is orthogonal
to the observer’s four-velocity, u � f ¼ 0, so in a three-
dimensional form, the transversality condition reads as

k � f̂ ¼ 0.
The net polarization rotation that results from a Lorentz

transformation can be read off either by using the definition
of the corresponding little group element or by referring

the resulting polarization vector f0 to the new standard
polarization vectors biðk0Þ [19]. On a curved background,

the standard polarization triad ðb̂1; b̂2; k̂Þ should be defined
at every point.
Assume that two standard linear polarizations are

selected. By setting f̂ ¼ b̂1 at the starting point of the

trajectory, we have sin�ð	Þ ¼ f̂ð	Þ � b̂2ð	Þ, so
d�

d	
¼ 1

f̂ � b̂1

�
Df̂

d	
� b̂2 þ f̂ �Db̂2

d	

�

¼ ! � k̂þ 1

f̂ � b̂2

f̂ �Db̂2

d	
: (8)

This is the desired phase evolution equation. The term

! � k̂ is the Machian effect as it was postulated in
Ref. [15]. The second term—the reference-frame contribu-
tion—was missing from the previous analysis. However, in
the examples below, the reference-frame term dominates the
Machian effect by one power of the relevant large parameter.
In general, a rigid rotation of momentum and polariza-

tion leads to a nonzero polarization rotation �� with
respect to the standard directions [18,19]. Right- and left-
circular polarizations remain invariant, but acquire Wigner
phase factors e�i��, respectively.
The statement of zero accrued phase �� ¼ 0 in the

Schwarzschild space-time [5,6,11], where a ¼ 0, so
! ¼ 0 and � ¼ �Eg � k, is correct only in a particular

gauge. Defining this phase to be zero allows us to make a
choice of standard polarizations that does not require refer-
ences to a parallel transport or communication between the
observers. This gauge construction is based on the follow-
ing property.

A. Property 1

A rotation Rb̂2
ð
Þ around the b̂2-axis, where the polar-

ization triad ðb̂1; b̂2; k̂Þ is obtained from ðx̂; ŷ; ẑÞ by the

standard rotation Rðk̂Þ, does not introduce a phase.

Proof of property 1

If the triad ðb̂1; b̂2; k̂Þ is rigidly rotated byR, it typically

results in an angle between, say,Rb̂2 and b̂2ðRk̂Þ. This is
theWigner’s phase � of photons. It can be read off from the
definition [18,19],

Rzð�Þ � R�1ðRk̂ÞRRðk̂Þ: (9)

However, if R ¼ Rb̂2
ð
Þ, then using the decomposition

Rb̂2
ð
Þ ¼ Rðk̂ÞRyð
ÞR�1ðk̂Þ; (10)

so k̂0 ¼ Rb̂2
ð
Þk̂ ¼ k̂0ð�þ 
;’Þ, the Wigner rotation

matrix is

Rzð�Þ ¼ R�1ðk̂0ÞRb̂2
ð
ÞRðk̂Þ¼ R�1

y ð�þ 
ÞRyð�ÞRyð
Þ
¼ 1: (11)
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B. Newton gauge

In the Schwarzschild space-time, we see that if the
z-axis is oriented along the direction of the free-fall accel-

eration Eg, and b̂2 / Eg � k ¼ �, no polarization phase

is accrued. As a photon propagates along its planar trajec-

tory, its momentum k̂ and linear polarization b̂1 are rotated

around the direction b̂2, which is perpendicular to the plane
of motion.

In a general stationary space-time, we construct the
polarization basis by defining a local z-axis along the
free-fall acceleration, ẑ � w=jwj, and define the standard

polarization direction b̂2 to be perpendicular to the mo-
mentum and the local z-axis,

b̂ 2 � w� k̂=jw� k̂j: (12)

This convention, that we will call the ‘‘Newton gauge,’’ is
consistent: if we set ẑ ¼ �r̂ in the flat space-time, then no
phase is accrued as a result of the propagation. In addition to
being defined by local operations, theNewton gauge has two
further advantages. First, it does not rely on a weak field
approximation for definition of the reference direction.
Second, if the trajectory is closed or self-intersecting, the
reference direction ẑ is the same at the points of the
intersection.

IV. EXAMPLES

We discuss polarization rotation in a Kerr space-time in
two different settings, giving the calculational details in
Ref. [16]. To simplify the expressions, we define the affine
parameter [3,4] by fixing the energy E ¼ �k0 ¼ 1.
Trajectories are calculated using Carter’s conserved quan-
tity � [4,17].

The light is emitted from the point ðrin; �in; 0Þ and ob-
served at ðrout; �out; �outÞ. To simplify the exposition, we
assume a distant observation point (rout ! 1). In one
scenario, we consider a trajectory in the outgoing principal
null geodesic congruence [4,7]. In a ‘‘scattering’’ scenario,
the light is emitted and observed far from the gravitating
body (rin; rout � M;a).

Outgoing geodesics in principal null congruence
have km ¼ ð1; 0; a=�Þ, � � r2 � 2Mrþ a2, along the
entire trajectory, and can be easily integrated [4]. Taking

into account that the Machian term ! � k̂�Oðr�3Þ in
Eq. (8) is dominated by the reference-frame term, the
leading order of polarization rotation is found by a direct
integration:

sin�� ¼ � a

rin
cos�in þOðr�2

in Þ; (13)

in agreement with Ref. [7].
Evolution of polarization along a general trajectory is

most easily obtained by using Walker-Penrose conserved
quantity K1 þ iK2 [4]. We adapt the calculation scheme of
Ref. [8]. Trajectories reach the asymptotic outgoing value

of the azimuthal angle �out, and the conservation laws
determine the outgoing momentum as

k�̂ ¼ ð1; 1;��out=r;D=r sin�outÞ; (14)

where D ¼ Lz=E is a scaled angular momentum along the
z-axis and �2

out � �þ a2cos2�out �D2cot2�out. Initial
momentum in the scattering scenario satisfies a similar
expression.
Using the transversality of polarization and the gauge

condition f0̂ ¼ 0, we select f�̂ and f�̂ as two independent
components. Walker-Penrose constants are bilinear in the
components of polarization and momentum. Hence, one
obtains a transformation matrix R,

f�̂out

f�̂out

0
@

1
A ¼ R

f�̂in

f�̂in

0
@

1
A: (15)

Polarization is expressed in the basis b̂1, b̂2. Matrices N

connect ðf�̂; f�̂Þ with ðf1; f2Þ. As a result, the evolution is
represented by the matrix

T ¼ NoutRN
�1
in : (16)

If initial polarization is f̂ ¼ b̂in
1 , then the rotation angle is

given by sin� ¼ T21 [16].
We present a special case of the scattering scenario that

allows an easy comparison with the literature [16] and
highlights the importance of a proper treatment of refer-
ence frames. If the initial propagation direction is parallel
to the z-axis with the impact parameter s, then the polar-
ization is rotated by

sin� ¼ 4Ma

�2
þ 15M2a

4�3
þOð��4Þ; (17)

where

�2 � D2 þ � ¼ s2 � a2: (18)

The antiparallel initial direction gives the opposite sign.

At the leading order in s�1, we can assume f̂ 	 b̂1 and
directly integrate Eq. (8). The result shows that the leading
contribution to the polarization rotation comes from the

reference-frame term, while the Machian term! � k̂ at this
order does not contribute to the integral. The latter result
was used to justify the view that the polarization rotation is
1=r3min effect, where rmin � s is the minimal distance from

the gravitating body.

V. GAUGE-INVARIANT PHASE

Consider a basis of one-forms ð
1; 
2; 
3Þ that is dual to
ðb̂1; b̂2; k̂Þ. A matrix of connection one-forms ! is written
with the help of Ricci rotation coefficients !a

cb as !a
b ¼

!a
cb


c [3,20]. Taking into account Eq. (7) and the anti-

symmetry of the connections!a
b ¼ !ab ¼ �!ba, we find
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Df̂

d	
¼ ð�b̂1f

2 þ b̂2f
1Þ
�
d�

d	
�!1

32k

�

þ kð!3
31f

1 þ!3
32f

2Þ: (19)

A comparison with Eq. (4) leads to the identification�1 ¼
� � b̂1 ¼ k!3

32, �
2 ¼ �k!3

31, where k ¼ jkj, and an al-

ternative equation for the polarization rotation,

d�

d	
¼ ! � k̂þ!1

32k: (20)

Freedom of choosing the polarization frame ðb̂1; b̂2Þ at
every point of the trajectory is represented by a SO(2)
rotation Rk̂ðc ð	ÞÞ. Under its action, the connection trans-

forms as ! ! R!R�1 þ R�1dR [20], so d�=d	 �
d�=d	þ dc =d	.

A closed photon trajectory (i.e. kin ¼ kout, xmin ¼ xmout)
may occur ‘‘naturally’’ (as a result of the initial conditions)
or with judiciously positioned mirrors. The resulting
gauge-invariant phase is

�� ¼
I

! � k̂d	þ
I

!1
32kd	: (21)

Given a trajectory with a tangent vector k, one can define a
SO(2) line bundle with the connection �! ¼ !1

32k, similarly

to the usual treatment of geometric phase [20,21]. Using
Stokes’ theorem, the reference-frame term can be rewritten
as a surface integral of the bundle curvature �� ¼ d �!, asR

�! ¼ RR
��. A more practical expression follows from our

previous discussion: �� ¼ arcsinf̂out � b̂2.
Conservation of K1 and K2 in the Kerr space-time

ensures that if a trajectory is closed as a result of the initial

conditions, then f̂out ¼ f̂in and�� ¼ 0. The Newton gauge
is designed to give a zero phase along any trajectory in the
Schwarzschild space-time. As a result of the gauge invari-
ance of Eq. (21), no phase is accrued along a closed
trajectory in the Schwarzschild space-time, regardless of
the gauge convention.

As an example of a nonzero phase along a closed tra-
jectory, consider the following combination of the scatter-
ing scenarios. The trajectory starts parallel to the axis of
rotation with an impact parameter s1 (and the initial angle
�1 ¼ �). Far from the gravitating body (so its influence
can be ignored), the outcoming photon is twice reflected
and sent in again with the impact parameter s2 and the

initial angle �2 ¼ 0. After the second scattering and ap-
propriate reflections, it is returned to the initial position
with the initial value of the momentum. Then

�� ¼ 4aMð��2
1 ���2

2 Þ þOð��3Þ: (22)

VI. OUTLOOK

Observation of the frame-dragging effects is the last of
the ‘‘classical’’ tests of GR [22] that has not yet been
performed with a sufficient accuracy. In addition to
Gravity Probe-B [23] and LAGEOS [24] experiments,
there are proposals to use Sagnac interferometry with
ring-laser gyroscopes [25], or matter or quantum optical
interferometry [26]. The main difficulty in these tests is the
necessity to isolate a much larger geodetic effect that is
caused by the Earth’s mass.
Polarization phase (along a closed trajectory or in the

Newton gauge for an open path) is insensitive to it. We take
Eq. (13) to estimate the polarization rotation in the near-
Earth environment. The Earth angular momentum is J
 ¼
5:86� 1040 cm2 g sec�1 [27]. We send the photon on a
geodetic from the principal null congruence starting at
some ðrin; �inÞ and detect it at infinity (otherwise, we
have to correct by the term a sin�in=rout). Assuming rin ¼
12270 km (the semimajor axis of the LAGEOS satellite
orbit [24]), we obtain��� 55arcmsec in a single run. For
comparison, the relevant precession rates for the Gravity
Probe-B and LAGEOS experiments are 39 arc msec/yr and
31 arc msec/yr, respectively.
We showed that polarization rotation in a gravitational

field is obtained from both the Machian Coriolis accelera-
tion and a reference-frame term, and the latter may be
dominant. It is responsible for a gauge-independent geo-
metric phase that is accrued on a closed trajectory in sta-
tionary space-times. The effect is proportional to the
angular momentum of a gravitating body and possibly
may be used in future gravity probe experiments.
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