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Spontaneous CP-violating phases that do not depend on the parameters of the Higgs sector—the

so-called calculable phases—are investigated. The simplest realization is in models with 3 Higgs doublets,

in which the scalar potential is invariant under non-Abelian symmetries. The non-Abelian discrete group

�ð54Þ is shown to lead to the known structure of calculable phases obtained with �ð27Þ. We investigate

the possibility of accommodating the observed fermion masses and mixings.
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Since the discovery of CP violation in 1964, its origin
remains a fundamental open question in particle physics. In
the context of the standard model (SM), CP symmetry is
explicitly broken at the Lagrangian level through complex
Yukawa couplings which lead to CP violation in charged
weak interactions via the Cabibbo-Kobayashi-Maskawa
(CKM) matrix. Among many mechanisms that generate
CP asymmetry beyond the SM, the possibility that CP is
spontaneously broken together with the gauge symmetry
group is a very attractive scenario [1,2]. One remarkable
phenomenological implication of spontaneous CP viola-
tion (SCPV) is that it provides an appealing solution to the
strong CP problem [3–10], since the only sources of CP
violation are the vacuum phases. SCPV can also soften the
well known supersymmetry (SUSY) CP problem [11,12].
Finally, it is relevant to point out that in perturbative string
theory CP asymmetry can in principle only arise sponta-
neously through complex vacuum expectation values
(VEVs) of moduli and matter fields [13–15].

In models of spontaneous CP violation one starts from a
Lagrangian that conserves CP, which implies that all
parameters of the scalar potential are real. Then, the CP
asymmetry is achieved spontaneously when the gauge
interactions are broken through complex VEVs of Higgs
multiplets. In fact, just having complex VEVs is not suffi-
cient to guarantee CP violation in the model. One has
further to verify that it is not possible to find a unitary
transformation, U, acting on the Higgs fields as

�i ! �0
i ¼ Uij�j; (1)

such that the following condition holds

Uijh�ji� ¼ h�ii; (2)

while leaving the full Lagrangian invariant. If such a trans-
formation is found, CP is a conserved symmetry even in
the presence of complex Higgs VEVs.
The main purpose of this Letter is the search for a

discrete symmetry that leads to a framework of SCPV
where the VEVs of the Higgs multiplets have geometrical
values, independently of any arbitrary coupling constants
in the scalar potential—i.e. calculable phases [16]. If such
a symmetry exists calculable phases are stable against
radiative corrections [17,18]. It has been shown in
Ref. [16] that calculable phases leading to geometrical
SCPV require more than two Higgs doublets and non-
Abelian symmetries, otherwise it is always possible to
find an unitary transformation, U, which is a symmetry
of the potential and fulfills Eq. (2). The authors found an
interesting example of calculable phases with SCPV in the
case of three Higgs doublets transforming under the dis-
crete symmetry �ð27Þ. In order to find symmetries that
generate calculable SCPV, we start by considering the most
general SUð2Þ � Uð1Þ potential Vð�Þ with three Higgs
doublets �i, having identical hypercharge,

Vð�Þ ¼ X
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where the constants �i, Ai, �i, Ci, �Ci, Di, E2i, E3i, E4i, and
E1ij, 8i;j, i, j ¼ 1, 2, 3 are taken real since CP invariance

is imposed at the Lagrangian level. In what follows it is
convenient to parametrize the VEVs of the doublets with
explicit phases:

h�1i ¼ v1e
i’1 ; h�2i ¼ v2e

i’2 ; h�3i ¼ v3e
i’3 ;

(4)

with the requirement of satisfying the experimental con-
straint from the heavy W�, Z gauge boson masses:

v2 � v2
1 þ v2

2 þ v2
3 ¼ ð ffiffiffi

2
p

GFÞ�1; (5)

where GF is the Fermi constant.
Once the Higgs doublets are shifted according to their

respective VEVs, only some terms in the potential depend
on the phases ’i: three �i terms depend on �’i þ ’j; six

terms of the type E1, three E2i and three E3i, share the same
phase-dependence as the �i; three Di terms have phase-
dependence �2’i þ 2’j; and finally, three E4i terms with

phase-dependence �i,

�i � �2’i þ ’j þ ’k; (6)

where we have assumed i � j � k.
Without any further assumption, there are many differ-

ent coupling constants and the only calculable phase solu-
tion to the extremum conditions is the trivial one. We must
therefore consider particular cases that can enable SCPV
with calculable phases by reducing the number of parame-
ters either by having coupling constants absent or related.
If several coefficients are absent, then there are nontrivial
calculable phase solutions that arise from terms which
must vanish independently. For example, if only Di � 0,
there is a solution where

� 2’i þ 2’j ¼ 0 ðmod�Þ (7)

for i � j. In contrast, when the coefficients are related,
nontrivial calculable phases may appear from cancellations
among terms. If all quartic coupling constants share the
same value, and the � bi-linears vanish, the extremum
conditions admit a solution where the terms combine to
make their appropriately weighted sum vanish; the com-
mon coupling constant factors out and calculable phases
could appear—but the phases turn out to be trivial.

The most elegant way to justify the reduction of parame-
ters of the potential in the search for SCPV with calculable
phases is by requiring invariance under discrete non-
Abelian symmetries. Therefore we consider S3, since it
is the smallest non-Abelian group and affects the potential
given in Eq. (3) by forcing coefficients of the same type to
be equal. As the added symmetry commutes with SUð2Þ
one just needs to compound the known SUð2Þ contractions
to make them invariant under the added symmetry. The

number of independent parameters is then reduced to ten as
first proposed in Refs. [19,20]:

�¼�i; A¼Ai; �¼�i; C¼Ci; �C¼ �Ci;

D¼Di; E1¼E1ij; E�¼E�i; i;j¼1;2;3; �¼2;3;4:

(8)

Applying S3 invariance to the extremum conditions,
solutions are enabled with cancellations in each type of
term. These solutions do not give calculable SCPV unless
there are further constraints. In the case D ¼ 0, the pres-
ence of terms with �’i þ ’j and �i dependence does not

lead to interesting solutions even if the coupling constants
are related. In contrast, if all terms with the �’i þ ’j

dependence are absent, there is a solution

h�iT ¼ vffiffiffi
3

p ðei’1 ; 1; 1Þ; (9)

with cos’1 ¼ �E4=6D, which is a calculable phase only if
the coupling constantsD and E4 are related in someway by
the underlying theory. Obtaining such a relationship be-
tween these coupling constants is beyond the scope of this
Letter. Finally, if onlyD � 0 it is interesting to see that the
same solutions are obtained that were already possible
without S3.
In order to further reduce the parameters of the S3

invariant potential, a simple addition of a cyclic CN sym-
metry acts by eliminating terms. In particular, C3 can
preserve the E4-type terms while excluding every other
phase-dependent term as long as each field �i transforms
differently under C3. With this charge assignment the
group S32ðC3 � C3Þ � �ð54Þ gives rise to the same po-
tential as the group �ð27Þ [16], since the only phase-
dependent terms present are of the E4 class—in what
follows we consider only this kind of potential. We note
that the E4 terms are automatically preserved for other
discrete subgroups of SUð3Þ within the �ð3n2Þ [21] and
�ð6n2Þ [22] families, when n is a multiple of 3; depending
on the nature of the group chosen, one has in addition to
select an appropriate representation for the Higgs multi-
plet, and some caution is required in order to avoid the
presence of phase-dependent terms other than E4. It is
natural that different groups may lead to the same Higgs
potential; however, this does not apply in general to the full
Lagrangian, e.g. when the fermions are included.
The extremum conditions can be written in terms of the

VEVs, vi, and the phases �i defined in Eq. (6):

@V

@vi

¼ 0 ¼ �þ 2Av2
i þ ðCþ �CÞðv2

j þ v2
kÞ

þ E4v1v2v3 cos�i; (10a)

@V

@’i

¼ 0 ¼ �2vi sin�i þ vj sin�j þ vk sin�k; (10b)

with the restriction i � j � k. For � > 0 spontaneous
breaking occurs. Our potential is a particular case where
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the theorem stated in [19] applies and guarantees that the
stable minimum is for equal magnitude components. From
Eq. (10) we derive that the only VEVs with calculable
phases are those presented in [16]:

h�iT ¼ vffiffiffi
3

p ð1; !;!2Þ; (11a)

h�iT ¼ vffiffiffi
3

p ð!2; 1; 1Þ; (11b)

with the phase! � e2�i=3 and up to cyclical permutations.
The solution given in Eq. (11b) is a better candidate for
SCPV since it is not removable by any symmetry of the
potential, whereas the solution given in Eq. (11a) is.

The structure of the Yukawa couplings is determined by
the fermion assignments and is restricted by the allowed
contractions. In this work we restrict ourselves to renor-

malizable operators: Q ~�uc and Q�dc ( ~� � i�2�
�).

Allowing higher order operators inevitably influences the
scalar potential with the square of the E4 term, even though
it is present at a much higher order with four additional
field insertions. We investigate what happens when placing
the fields �i in an irreducible �ð27Þ or �ð54Þ triplet which
acquires the VEV given in Eq. (11b) and without loss of
generality we place � in the 31 or 311 representation,

respectively.
In �ð27Þ we can assign the quark doublets Qi as a 31

triplet or as the conjugate triplet representation 32 or as a
combination of the nine possible singlets [21]. We consider
simultaneously the first two choices: one of the mass
structures will always be given by the 3a � 3a � 3a invari-
ant (a ¼ 1, 2), with the respective right-handed (rh) quarks
forced to be the same triplet 3a as Qi, and is unable to
accommodate the observed fermion hierarchy between the
two heaviest generations—this choice had already been
pointed out as nonviable in [16]. When the Qi are singlets,
the rh quarks are then forced to be triplets. The structure for
both sectors is then 31 � 32 � 1r;s (r, s ¼ 0, 1, 2). The
distinct rows of the mass matrix arise from their respective
singlets, and both quark sectors share the same type of
structure. Within this class we can assign all three Qi to a
single representation (choice I), only one of the generations
have a different singlet (choice II), or all three generations
are different singlets (choice III)—this leads, respectively,
to rank 1 mass matrices with only one nonzero eigenvalue,
the decoupling of one generation, or diagonal matrices
with three distinct eigenvalues. Notice that Mu and Md

must share the same structure (e.g. both I or II), since the
choice of �ð27Þ singlets is made on the SUð2Þ doublets Q.
The rank 1 solution of structure I accounts for the hierarchy
of the third generation, and the decoupling case of structure

II is also promising as a leading order structure. Both
structures provide good first order approximations to the
observed fermion hierarchy.
We turn now to �ð54Þ, where we assign Qi to its repre-

sentations: two pairs of conjugate triplets 31;21 , 31;22 ; four

doublets 21;...;4 and the singlets 1, 1
0 [22]. If Qi is chosen to

be a triplet, one quark sector has the mass matrix that arises
from three-triplet invariants such as 3a1 � 3a1 � 3a1 , 3

a
1 �

3a2 � 3a2 , or 3a1 � 3a1 � 3a2 . All these products lead to a

structure with two degenerate eigenvalues, but the third
product has the nondegenerate eigenvalue vanish. Even
when Qi is a combination of doublet and singlet, the
structures again have degenerate states. If the singlet is
mismatched with the singlet of the two-triplet product, the
nondegenerate value vanishes. Finally whenQi is a combi-
nation of singlets, the structures are rank 1 regardless of
choice of singlets and these are the only promising assign-
ments. We note that in an extension to the leptonic sectors,
�ð54Þ naturally enables charged leptons with an hierarch-
ical structure and neutrinos with two generations
degenerate.
To summarize, in the three Higgs doublet scenario

�ð27Þ and �ð54Þ are the smallest groups that lead to
complex VEVs with calculable phases stable against ra-
diative corrections [16]. Geometrical SCPV requires the
three Higgs to be assigned as a triplet of the respective
groups. Within this framework, we have explicitly inves-
tigated the possible fermion mass matrices of all classes of
renormalizable models. In some cases it is possible to
simultaneously obtain promising first order approxima-
tions to the observed patterns of fermion masses and mix-
ings of the up and down quark sectors. In conclusion,
spontaneous CP violation with calculable phases may be
viable, and a necessary condition is the correct interplay
between the scalar content and an appropriate non-Abelian
symmetry group. Since the number of physical scalar states
is increased, one expects a richer phenomenology that
could be accessible at high energy experiments, such as
the Large Hadron Collider.
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