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We discuss radiation reaction effects on charges propagating in ultraintense laser fields. Our analysis is

based on an analytic solution of the Landau-Lifshitz equation. We suggest quantifying radiation reaction

in terms of a symmetry breaking parameter associated with the violation of null translation invariance in

the direction opposite to the laser beam. As the Landau-Lifshitz equation is nonlinear, the energy transfer

within the pulse is rather sensitive to initial conditions. This is elucidated by comparing colliding and fixed

target modes in electron laser collisions.
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I. INTRODUCTION

The problem of classical radiation reaction (RR) has
vexed generations of physicists since its first formulation
in 1892 by Lorentz [1,2]. Following important contribu-
tions by Abraham [3] and others, the equation describing
the back reaction of the radiation field on the motion of the
radiating charge has been cast in its final covariant form by
Dirac in 1938 [4]. It is now aptly called the Lorentz-
Abraham-Dirac (LAD) equation. The relevant body of
literature has become enormous and we refer to the recent
monographs [5,6] and, in particular, to the preprint [7] for
an overview of the historical development and extensive
lists of references.

A particularly compact way of writing the LAD equa-
tion, say for an electron (mass m, charge e) is

m _u ¼ Fþ �0Pm €u; (1)

where u denotes the electron 4-velocity, F ¼ eFu=c the
Lorentz 4-force in terms of the field strength tensor, F, of
the externally prescribed field and dots derivatives with
respect to proper time, �. The second term on the right is
the RR force, FRR, which is characterized by the appear-
ance of the time parameter

�0 ¼ 2

3
re=c ’ 2 fm=c ’ 10�23 s: (2)

This is the time it takes light to traverse the classical
electron radius,1

re ¼ e2=4�mc2 ¼ ��-C ’ 3 fm; (3)

or, from the second term, the electron Compton wave
length reduced by a factor � ’ 1=137, the fine structure
constant. Obviously, the time and length scales involved
are typical for higher order QED corrections (or even
strong interactions, i.e. QCD)—a hint that the classical

LAD equation (1) may not capture all the physics at these
microscopic (and essentially quantum) scales. Finally, the
projection P � 1� u � u=c2 in (1) guarantees that
4-acceleration and velocity are Minkowski orthogonal.2

This follows upon differentiating the on-shell condition,
u2 ¼ c2, which, of course, is Einstein’s postulate on the
universality of the speed of light, c. As the velocity u is
timelike, the acceleration _u is spacelike, _u2 < 0.

II. ESTIMATING RADIATION REACTION

The LAD equation (1) is of third order in time deriva-
tives ( €u ¼ x

:::
) and hence suffers from a number of pathol-

ogies such as runaway solutions and preacceleration. One
way to overcome this is by iteration, assuming that
FRR � F—which amounts to working to first order in
�0. This in turn implies a ‘‘reduction of order’’ in deriva-
tives and results in the Landau-Lifshitz (LL) equation [8],

m _u ¼ Fþ �0P _F: (4)

Hence, one replaces the offending ‘‘jerk’’ [9] term, m €u, in
(1) by the proper time derivative of the Lorentz force [6]
where the _u term is evaluated to lowest order in �0, giving

_F ¼ e

c
_Fuþ e2

mc2
F2uþOð�0Þ: (5)

For alternative derivations of the LL equation resolving
mathematical intricacies related to regularizations of the
point particle concept we refer to [10,11].
The LL Eq. (4) was derived under the assumption of a

small reaction force, FRR � F. Let us elucidate the phys-
ics involved somewhat further by assuming that the exter-
nal field is produced by a laser described by a plane
wave with lightlike wave vector k, k2 ¼ 0. An electron
‘‘approaching’’ the laser field with initial 4-velocity u0
will, in its rest frame, ‘‘see’’ a wave frequency given by
the scalar product,

*theinzl@plymouth.ac.uk
1We employ Heaviside-Lorentz units with fine structure con-

stant � ¼ e2=4�ℏc ¼ 1=137.

2We denote the tensor product u�u� in index-free notation
with the standard symbol, ‘‘�.’’
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�0 � k � u0: (6)

At this point, one has to distinguish between two points of
view. If both k and u0 are simultaneously Lorentz trans-
formed the frequency�0 remains, of course, invariant. On
the other hand, one may think of k, the wave vector of the
laser as measured in the lab, as a distinguished 4-vector
that breaks explicit Lorentz invariance (selecting a specific
photon energy and beam direction). Different choices of
initial conditions (i.e. u0) then characterize the relation
between the initial rest frame of the electron and the lab
frame. In what follows, we will adopt this second point of
view.

The temporal gradients in (5) will be of the order of the
laser period, _F ’ �0F, so that the relative magnitude of the
reaction force becomes

r � FRR

F
¼ �0�0 � 1; (7)

with the inequality required for the validity of the LL
approximation. Consider now a head-on collision in the
lab where the laser wave vector and electron velocity are
given by

k ¼ !=cð1; ẑÞ; u0 ¼ �0cð1;��0ẑÞ; (8)

with the usual relativistic gamma factor, �0 ¼ Ee=mc2

measuring the electron energy Ee in units of mc2. Such
an electron then ‘‘sees’’ a laser frequency that is Doppler
upshifted according to

�0 ¼ �0ð1þ �0Þ! � e	0! ’ 2�0!; (9)

with the last identity holding for �0 � 1. This boost in
laser frequency is just the usual energy gain due to collid-
ing versus fixed target mode (which, of course, are related
by a longitudinal Lorentz boost with rapidity 	0). If we
define dimensionless photon energies in the comoving and
lab frames,

�0 � ℏ�0

mc2
; � � ℏ!

mc2
; (10)

the RR parameter r from (7) becomes

r ¼ 2

3
��0 ’ 4

3
��0� ’ 10�2�0�: (11)

For an optical laser, � ’ 10�6 so that r ’ 10�8�0. Thus, to
boost this to order unity (such that reaction equals Lorentz
force) requires �0 ’ 108, i.e. electron energies of order
102 TeV. These can only be produced in gamma-ray
bursts, but not (currently) in labs. The groundbreaking laser
pair production (‘‘matter from light’’) experiment SLAC E-
144, for instance, was utilizing the 50 GeV SLAC linear
collider implying �0 ’ 105 and r ’ 10�3 [12].

The standard way of quantifying radiation by accel-
erated charges is via Larmor’s formula for the radiated

power, the relativistic incarnation of which may be
written as

P ¼ �m�0 _u
2 > 0; (12)

and hence is of order �0. The LL Eq. (4) would thus
give us the radiated power to order �20. If we follow our

philosophy of neglecting second-order terms, it suffices
to express the acceleration via just the Lorentz force,

m _u ¼ F ¼ eFu=c � eE; (13)

where we have introduced the spacelike 4-vector E
corresponding to the electric field ‘‘seen’’ by the elec-
tron. If we now assume transversality of our laser fields,
k � E ¼ 0, we immediately derive a very useful conser-
vation law by dotting k into (13),

_� � k � _u ¼ 0: (14)

In other words, without RR the electron always ‘‘sees’’
the same laser frequency on its passage through the
laser beam,

� ¼ k � u ¼ k � u0 ¼ �0: (15)

If we now plug the Lorentz Eq. (13) into (12), the
average energy loss per (reduced) laser period 1=�0

in units of mc2 becomes

R � hPi
�0mc2

¼ �r
e2hE2i
m2c2�2

0

� ra20: (16)

Interestingly, we recover our RR parameter r from (7)
and (11) multiplying a new quantity, the dimensionless
laser amplitude a0. This measures the energy gain of an
electron traversing a laser wavelength, �- L ¼ c=�0, in a

field of average strength h�E2i1=2 in units of mc2.
Obviously, when this (purely classical) parameter be-
comes of order unity, the electron motion is relativistic.
Note that a0 is Lorentz invariant if k and u0 are trans-
formed simultaneously. Gauge invariance is shown [13]
by expressing it in terms of the field strength, F which
is conveniently rendered dimensionless by introducing

F̂ � eF=mc�0; (17)

so that a20 finally becomes

a20 ¼
ðu0; hF̂2iu0Þ

c2
: (18)

The energy loss parameter (16) was previously em-
ployed in [14–17]. It suggests that for substantial radia-
tion the small RR parameter r needs to be compensated
by large values of a20. The magnitude of a0 is most

easily estimated by introducing Sauter’s critical electri-
cal field, ES � m2c3=eℏ ¼ 1:3� 1018 V=m [18] and the
associated intensity, IS � cE2

S ¼ 4:2� 1029 W=cm2. For

a given lab intensity I, we then have
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a0 ¼ 1

�

ffiffiffiffiffi
I

IS

s
’ 106

ffiffiffiffiffi
I

IS

s
: (19)

In view of the current record intensity of I ¼
1022 W=cm2 [19] one can envisage a0 values of about
103 for the not too distant future [20,21]. We have seen
already in (11) that large gamma factors (colliding
mode) yield a further increase of radiative losses. In
addition, the losses accumulate over successive laser
periods. After, say, N cycles one expects a total relative
change of the electron gamma factor given by

j��j
�0

¼ 2�NR ¼ 8�

3
N��0�a

2
0: (20)

Thus, the smallness of �� ’ 10�8 may be compensated
by pulse duration, N, initial electron energy, �0, and
intensity, a20.

III. MODELLING THE LASER

The simplest model of a laser (beam) is provided by a
plane wave with a field tensor depending solely on the
phase, F ¼ Fð
Þ, 
 ¼ k � x, and obeying transversality,
Fk ¼ 0. If we choose k as in (8), we have

� ¼ k � u ¼ !ðu0 � u3Þ=c � !u�=c; (21)


 ¼ k � x ¼ !ðx0 � x3Þ=c � !x�=c: (22)

In other words, the laser field F only depends on the light-
front or null coordinate, x� ¼ ct� z [22].

Plane waves are invariantly characterized as null fields
[23,24] for which both scalar and pseudoscalar invariants
vanish,

S � 1

4
trF2 ¼ 0; (23)

P � 1

4
trF~F ¼ 0: (24)

The vanishing of S implies that the energy momentum
tensor of a plane wave is just F2,

cT ¼ F2 � S1 ¼ F2: (25)

This is the only nontrivial power of field strength as F is
nilpotent with index 3, i.e. F3 ¼ 0, which will be important
when we solve the equations of motion in such a field.

We emphasize that there is no intrinsic invariant scale
associated with a null field. The only way to associate a
nonvanishing invariant is by using a probe (dubbed ‘‘third
agent’’ in [25]) such as an electron or a (nonlaser) photon.
This naturally leads to the invariant amplitude a0 as de-
fined in (18) which explicitly depends on the probe elec-
tron 4-velocity. Defining the energy density of the laser
‘‘seen’’ by the electron as

w0 � ðu0; cTu0Þ=c2 ¼ ðu0; F2u0Þ=c2 ¼ E2; (26)

we see that (18) precisely represents the dimensionless
version of this energy density,

a20 ¼ hŵ0i: (27)

Typically, the plane wave modelling the laser will be
pulsed, i.e. of finite duration in phase 
. We accommodate
this situation by parameterizing the dimensionless field

strength F̂ as follows. We assume the plane wave field to
be linearly polarized along the spacelike transverse

4-vector � (�2 ¼ �1) and hence decompose F̂ into
magnitude a0, envelope f ¼ fð
Þ and a constant tensor,
f ¼ n � �� � � n,

F̂ð
Þ ¼ a0fð
Þf; (28)

with the dimensionless constant 4-vector n � kc=�0

obeying n2 ¼ n � � ¼ 0 and n � u ¼ n � u0 ¼ c. As a re-
sult, the square of f is simply f2 ¼ n � n with all higher
powers vanishing due to n2 ¼ 0. In order for (28) to be
consistent with (18) and (27) the average h. . .i must be
defined in such a way that f is normalized, hf2i ¼ 1.

Defining a dimensionless gauge potential, Â ¼ eA=mc2,
the field strength becomes

F̂ ¼ n � Â0 � Â0 � n; (29)

the prime henceforth denoting the derivative with respect
to invariant phase 
. Comparison with (28) finally yields

Â0 ¼ a0f� and a20 ¼ �hÂ02i.
A more realistic laser model is provided by Gaussian

beams, i.e. solutions of the wave equation in paraxial
approximation [26]. The corresponding fields have non-
trivial longitudinal and transverse envelopes resulting in
the appearance of longitudinal field components. For this
reason, the fields are no longer null and the charge dynam-
ics becomes more complicated. Charged particle velocities
and trajectories in such fields have to be obtained numeri-
cally [27].

IV. SOLVING THE LL EQUATION

Unlike the LAD, the LL equation is a fairly standard
equation of motion being second order in time derivatives.
Hence, it requires two integrations and initial conditions
for velocity and position. For the purposes of the present
discussion, it will be sufficient to perform only the first
integration for which we need to provide the initial
4-velocity, uð0Þ ¼ u0.

A. Neglecting radiation reaction

To set the stage for a later comparison we first briefly
recall the solution without RR, i.e. of the Lorentz force
equation of motion (13). We note that for any function f ¼
fð�Þ of proper time, we may trade derivatives according to

_f ¼ f0 _
 ¼ f0� ¼ f0�0; (30)
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where, in the last step, we have used the conservation law

(15). In terms of the dimensionless field strength F̂, the
Lorentz equation takes on the particularly compact form

u0 ¼ F̂u: (31)

This is, of course, integrated by a matrix exponential which

truncates at second order due to nilpotency, F̂3 ¼ 0.
Employing the parameterization (28), the solution be-
comes

uL ¼ u0 � ca0I1�þ
�
a0I1� � u0 þ 1

2
a20I

2
1c

�
n; (32)

where the subscript ‘‘L’’ stands for ‘‘Lorentz.’’ The func-
tion I1ð
Þ is the pulse shape integral

I1 �
Z 


0
d’fð’Þ: (33)

Upon inspection of the solution (32), we note the following
features. The velocity decomposes into transverse and
longitudinal contributions given by the second and
third terms on the right, respectively. If the initial velocity
is longitudinal (like for a head-on collision) we have
� � u0 ¼ 0. In this case, the longitudinal velocity is qua-
dratic in a0 while the transverse component is always linear.

One may rewrite the solution (32) in terms of the gauge

potential Â ¼ a0I1� defined in (29) which results in the
neat expression

u ¼ u0 � cÂþ
�
Â � u0 � 1

2
Â2c

�
n (34)

From this expression, one easily identifies the additional

conserved quantity � � ðuþ cÂÞ [28] corresponding to the
transverse canonical momentum. As stated above, one has

Â � u0 ¼ 0 for both fixed target and colliding modes. The

quadratic contributions in (34) are actually positive as Â is

spacelike, Â2 < 0.

B. Including radiation reaction

Upon including RR, we have to solve the full LL Eq. (4)
which we write in dimensionless notation as

�̂u0 ¼ F̂uþ rð�̂F̂0 þ F̂2 � ŵÞu; (35)

with ŵ � ðu; F̂2uÞ=c2, cf. (26) and (27), and a normalized
frequency,

�̂ � �=�0 ¼ k � u=k � u0: (36)

Clearly, the LL Eq. (35) is nonlinear in the unknown u.
Remarkably, though, there is an analytic solution for a
plane wave background, F ¼ Fð
Þ [15,17,29]. Let us
briefly review its main steps using our compact notation.

Recall that the Lorentz Eq. (13) entails the conservation

law (15) which is just �̂ ¼ 1. In contradistinction, a

nonvanishing RR force, FRR ¼ �0P _F, implies that �̂ is
no longer conserved, but rather

�̂ 0 ¼ �rŵ2 ¼ �Rf2�̂2: (37)

This is possibly the most significant new feature: In the
presence of RR the electron will see a continuously chang-
ing laser frequency during its passage through the pulse.
Crucially, however, the equation (37) for the longitudinal
velocity component completely decouples and, being first
order, can be solved by straightforward quadrature,

�̂ ¼ 1

1þ RI2
’ 1� RI2; (38)

assuming the initial condition �̂0 ¼ 1 and defining the
shape integral

I2 �
Z 


0
d’f2ð’Þ; (39)

cf. (33). It is worth noting that the RR parameter R from
(16) appears at this stage. As R� �0, we should actually
use the ultimate expression in (38) in keeping with our
philosophy of neglecting terms of order �20.

In any case, we would like to point out that �̂ is a
particularly nice signature for RR as it differs from unity
only when a substantial amount of RR is present. In more

physical terms, �̂ � 1 signals symmetry breaking in the
following sense. Together with the longitudinal velocity
u0 � u3 ��, cf. (21), the longitudinal momentum, p� ¼
p0 � p3, ceases to be conserved. As a result, RR induces a
breaking of translational invariance in the conjugate null
direction,3 xþ ¼ x0 þ x3.
Let us continue with the LL equation and the remaining

velocity components. The crucial technical trick [15] is to
introduce a new 4-velocity v via

v � �̂�1u ¼ ð1þ RI2Þu; (40)

the longitudinal component of which is again conserved,
k � v ¼ �0. Using (37), it is straightforward to see that the
LL equation for v simplifies to

v0 ¼ ð�̂�1F̂þ rF̂0 þ r�̂�1F̂2Þv: (41)

As we know �̂�1 as a function of 
 from (38), the system
(41) is indeed linear and easily solved via exponentiation.
To arrive at the solution, we use the parameterization (28)
and discard all terms of order �20 (or r2). Noting that

u0 ¼ v0, the solution for v may then be written as a cor-
rection to the Lorentz solution (32) in the following way:

v ¼ uL þ r�vþOðr2Þ: (42)

The RR term is explicitly given by

3Recall the scalar product p � x ¼ pþx�=2þ p�xþ=2�
p? � x?.
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�v ¼ �ca0I21�þ ða0I21� � u0 þ a20I1I21cþ a20I2cÞn;
(43)

with the new shape integral

I21 � fþ a20

Z 


0
d’I2f: (44)

Comparing (43) and (32), one can identify precisely the
same vector structure, the analogous longitudinal and trans-
verse terms guaranteeing k � v ¼ k � v0 ¼ �0 ¼ const.

Obviously, in the limit of no RR (r ! 0) one has �̂ ! 1
and �v ! 0 such that (32) is readily recovered from (42)
and (43).

As a final comment, we note that the dependence on
proper time � is recovered by integrating (38), which gives

�0� ¼ 
þ R
Z 


0
d’I2ð’Þ: (45)

Hence, in proper time �, RR leads to a phase shift com-
pared to the Lorentz solution [29] as � is no longer pro-
portional to the phase, 
.

V. AN ANALYTIC EXAMPLE

With the analytic solution (43) of the LL equation at
hand we can readily analyze an example. The only remain-
ing technical difficulty is the evaluation of the pulse shape
integrals (33), (39), and (44). It turns out that they may be
performed analytically for the pulse shape function

fð
Þ �
�
sin4ð
=2NÞ sinð
Þ; 0 	 
 	 2�N;

0 else
(46)

originally suggested in [30] (see also [31]). The pulse (46)
has a duration of 
0 � 2�N (hence it contains N cycles)
and vanishes identically outside this interval. Thus, unlike
a sine-modulated Gaussian [29], it has compact support
(see Fig. 1).

A. Symmetry breaking

Let us first consider the behavior of the symmetry-

breaking parameter �̂ from (38). For this, we need the
integral I2, which is

I2 ¼
� 35
256
þ �I2 0 	 
 	 
0;

35
256
0 else

: (47)

The term �I2 in (47) denotes a series of small amplitude
sine functions which we do not explicitly display. All we
need to know is that they vanish at the ‘‘end’’ of the pulse,

�I2ð
0Þ ¼ 0. Hence, inside the pulse �̂ ¼ 1� RI2 drops
linearly with small oscillations superimposed until it
reaches a final plateau. For parameter values �0 ¼ 100,
a0 ¼ 150, � ¼ 10�6 (implying R ¼ 0:022) and N ¼ 10
the resulting behavior is shown in Fig. 2.

From (47) the final plateau value, once the pulse has
passed, is given by the simple expression

�̂f ¼ 1� RI2ð
0Þ ¼ 1� 2�N
35

256
R: (48)

For the parameter values of Fig. 2, the numerical value

for the plateau value is �̂f ¼ 0:81. In general, assuming

a head-on collision with �0 � 1 one has �0 ’ 2�0,
�f ’ 2�f and the total relative energy loss becomes

j��j
�0

’ 1� �̂f ¼ 35

256
� 2�NR ’ NR: (49)

Apart from the numerical coefficient, this is precisely
our prediction (20) based on Larmor’s formula.

FIG. 1 (color online). Laser pulse (46) for N ¼ 10 as a func-
tion of phase, 
.

FIG. 2 (color online). Laser frequency �̂ ¼ k � u=k � u0 as
‘‘seen’’ by the electron during the passing of the pulse
(N ¼ 10) as a function of phase, 
. Horizontal (black) line:
Constant result (15) without RR (no symmetry breaking).
Decreasing (red) line: RR Solution (38) signalling symmetry
breaking.
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As an additional bonus, (48) provides us with a criterion
for when the LL approximation breaks down. This clearly
is the case when NR becomes of order unity which, using
(11), translates into

e	0a20N ’ 108: (50)

For �0 � 1, one has e	0 ¼ �0ð1þ �0Þ ’ 2�0, so, when
�0 ¼ 100 in Fig. 2 we expect our approximations to break
down when a20 ’ 105 or a0 ’ 320. This is indeed borne out
by Fig. 3.

B. Varying initial conditions

Let us finally look at the energy transfer dynamics in
more detail. We want particularly to compare the two
scenarios of fixed target and colliding modes which can
both be described by the choice (8). All we have to do for a
fixed target (electron initially at rest) is set �0 ¼ 0 and
�0 ¼ 1. We are interested in the electron energy as a
function of 
, which describes its ‘‘history’’ during the
passing of the pulse. This energy may be written as

Ee ¼ mcu0 ¼ �mc2; (51)

so we just have to monitor the behavior of the electron
gamma factor, �ð
Þ ¼ u0ð
Þ=c. In the LL case this is
governed by a nonlinear system, so we expect a significant
dependence on initial conditions. This is indeed what
happens. Let us first work out the analytical expressions.

In analogy with (42) we split into a Lorentz and RR part,

� ¼ �L þ ��; (52)

with the Lorentz contribution (32) always yielding an
increase,

�L ¼ �0 þ 1

2
e�	0a20I

2
1 > �0: (53)

The leading RR correction is

�� ¼ 2

3
��a20fI1fþ a20I4 þ I2ð1� �0e

	0Þg; (54)

with the new combination of shape integrals,

I4 � I1
Z 


0
I2f� 1

2
I21I2: (55)

For the pulse (46), I4 turns out to be positive with compact
support while I1f can have either sign. All shape integrals
are of order unity. Hence, for the case of interest (large
a0 � 1) the positive I4 term dominates the I1f term. As a
consequence, the sign of �� is entirely determined by the
last term, that is, by the initial conditions. The simplest
case is the fixed target mode (FTM, �0 ¼ 1 ¼ e	0) for
which the crucial term vanishes and the RR correction is
never negative,

��FTM ’ 2

3
��a40I4 
 0: (56)

Asymptotically, once the pulse has passed (
>
0) we
have ��FTM ¼ 0 as I4 has compact support. Hence, for
FTM (and only for FTM) there is no net energy transfer
between electron and laser pulse (Fig. 4).
The situation is different in colliding mode (CM).

Assuming �0 � 1, we have

��CM ’ 2

3
��a20ða20I4 � 2�2

0I2Þ: (57)

Unlike I4, I2 takes on a nonzero constant value after the
pulse (
>
0). Hence, there is an asymptotic energy loss,

��CM=�0 ’ � 4

3
��a20�0I2ð
0Þ ’ �NR; (58)

so that we recover (49) having identified its sign. The
behavior of � in CM is depicted in Fig. 5 both with and
without RR.

FIG. 3 (color online). Laser frequency �̂ as a function of
phase, 
, for a pulse with N ¼ 10 and a0 ¼ 350. For this

value, �̂ becomes negative signalling a breakdown of the LL
approximation.

FIG. 4 (color online). Electron gamma factor as a function of
phase 
 in fixed target mode (�0 ¼ 1). At the given vertical
scale the curves with and without RR are indistinguishable. In
both cases there is no net energy transfer.
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Let us finally trace the behavior of the RR correction��
during the crossover from FTM to CM, i.e. with increasing
�0. This is depicted in Fig. 6. The upper panel shows the
FTM (�0 ¼ 1). In agreement with (56), the RR correction
is always positive so that there is energy gain within the
pulse. Compared to the amplitude � (see Fig. 4) this is
rather small, ��FTM � �. This intermediate energy gain
increases with a0, cf. (56), but no net energy transfer
survives the passing of the pulse.

If �0 is increased, �0 > 1, one enters CM (Fig. 6, central
and lower panel). For intermediate values of �0 (central
panel), ��CM stays positive as long as 
 is not too large.
Once a sufficient number of cycles has passed, however,
��CM becomes negative which implies net energy loss.

For sufficiently large �0, the RR correction ��CM is
always negative, irrespective of the value of 
 (Fig. 6,
lower panel). In summary, Fig. 6 thus shows the competi-
tion of the second and third terms in (54). The latter is
absent for �0 ¼ 1 (FTM, upper panel). For intermediate �0

(central panel) the a20 term dominates for small
 but, since

I2 increases monotonically with 
, it overwhelms the sum
for large 
 when I4 goes to zero. For sufficiently large �0,
this holds for all 
 (lower panel).

This competition of a0 and �0 has been noted before in
the context of nonlinear Thomson scattering [32] and
also RR dynamics [33]. There it was found that the
3-momentum transfer changes sign at a ‘‘critical’’ value
of a0 ’ 2�0. For Thomson scattering, this value defines an
effective center-of-mass system for which there is no en-
ergy transfer between electrons and laser photons. As a
result, the theoretical emission spectrum degenerates into a
pure line spectrum [32].

We close this subsection by reemphasizing the crucial
importance of working consistently to leading order in RR.
Painful experience has told us that (wrongly) including

higher order terms in the LL solution (42) distorts the
balance of terms in (54), and one would not reach the
conclusions above.

C. Thomson Scattering and RR

At this point is seems fair to ask whether the energy loss
�� displayed e.g. in Fig. 6 can actually be measured
experimentally. This question is not straightforwardly an-
swered. It seems best to look for derived signatures in the

FIG. 5 (color online). Electron gamma factor as a function of
phase 
 in colliding mode (�0 ¼ 100). Upper curve (green):
Lorentz equation (no RR). Lower curve (red): LL equation (RR)
which implies net energy loss.

FIG. 6 (color online). RR correction to electron gamma factor
as a function of phase 
 for a0 ¼ 150 but different values of the
initial gamma factor. Upper panel: �0 ¼ 1 (FTM). Central panel:
�0 ¼ 40. Lower panel: �0 ¼ 100.
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radiation spectra or intensity distributions [34,35]. These
may be viewed as resulting from a scattering process,
eþ n�L ! e0 þ �0 where we allow for a total of n incom-
ing laser photons �L. As long as ℏ�0 � mc2 [i.e. �0 � 1,
cf. (10)] the scattering is classical and one may use the
results for (nonlinear) Thomson scattering.

The RR correction to the (linear) Thomson cross section
was already obtained by Dirac in his seminal paper [4],


RR ¼ 
Th

1þ r2
’ 
Th

�
1� 4

9
�2�2

0

�
; (59)

which was soon afterwards confirmed by Heitler [36] and
Gora [37]. Note that the LL approximation corresponds to
the last term on the right-hand side of (59). On the other
hand, for nonlinear Compton scattering the cross section
becomes intensity (i.e. a0) dependent. A simple expression
is only obtained for a0 � 1, namely [38]


NLC ’ 
Thð1� 2�0Þ
�
1� 2

5
a20

�
; (60)

with quantum and nonlinear corrections proportional to �0

and a20, respectively. Combining these with the RR correc-

tion of (59) we expect a total cross section


 ’ 
Thð1� 2�0Þ
�
1� 2

5
a20

��
1� 4

9
�2�2

0

�
: (61)

Clearly, the classical LL contribution�2�2
0 is much smaller

than the quantum correction 2�0. But similarly to (20)
upon expanding we obtain a term�a20�

2�2
0 which suggests

that in the full nonperturbative (a0 � 1) cross section RR
may be boosted by large a0. Such a nonlinearly enhanced,
classical RR correction could indeed compete with, or even
dominate, quantum effects. A detailed analysis of this is
certainly desirable but lies beyond the scope of this paper.

VI. CONCLUSION

We have re-analyzed the problem of radiation reaction
by solving the Landau-Lifshitz equation analytically for

an electron in an intense plane wave laser field. Such a
field depends solely on the phase 
 ¼ k � x or, with
the laser wave vector k pointing in z direction, on the
light-front coordinate x� ¼ ct� z. A particularly useful
signature for radiation reaction is the laser frequency as
‘‘seen’’ by the electron, � ¼ k � u. This ceases to be
conserved when radiation reaction is present and thus
provides a clear signal for symmetry breaking: transla-
tional invariance in the light-front coordinate xþ ¼ ctþ z
is lost.
For a pulsed plane wave of finite duration in x� (con-

sisting of N cycles) the magnitude of the total change in�
(hence in longitudinal momentum, p�) obtained from the
Landau-Lifshitz equation is well described by Larmor’s
formula for the radiated power. This has been corroborated
by a careful study of the energy transfer dynamics and its
dependence on initial conditions. The fixed target mode
(electron at rest initially) is singled out as the only scenario
for which there is no net energy transfer. Colliding modes
with arbitrarily small initial velocity (�0 > 1) always entail
net energy loss. To arrive at these results it is of crucial
importance to consistently truncate all expressions at lead-
ing order in radiation reaction. In this way it becomes
obvious that the Landau-Lifshitz equation breaks down
when �0a

2
0N ’ 108. Hence, if one wants to rely on the

Landau-Lifshitz approximation, the electron energy �0,
laser amplitude a0 and pulse duration N cannot be in-
creased arbitrarily.
The integrability properties of both the Lorentz and

Landau-Lifshitz equations seem quite intriguing. We plan
to return to this topic elsewhere.
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