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The presence of noncyclic phases is revealed in the time evolution of mixed meson systems. Such

phases are related to the parameter z describing the CPT violation; moreover, a nonzero phase difference

between particle and antiparticle arises only in the presence of CPT symmetry breaking. Thus, a

completely new test for the CPT invariance can be provided by the study of such phases in mixed

mesons. Systems which are particularly interesting for such an analysis are the B0
s � �B0

s and the K0 � �K0

ones. In order to introduce noncyclic phases, some aspects of the formalism describing the mixed neutral

mesons are analyzed. Since the effective Hamiltonian of systems like K0 � �K0, B0 � �B0, B0
s � �B0

s ,

D0 � �D0 is non-Hermitian and non-normal, it is necessary to diagonalize it by utilizing the rules of non-

Hermitian quantum mechanics.
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I. INTRODUCTION

Quantum mixing of particles is among the most intrigu-
ing topics in subnuclear physics. The theoretical aspects of
this phenomenon have been analyzed thoroughly in the
contexts of quantum mechanics (QM) [1–4] and of quan-
tum field theory [5–15] where modifications to the QM
oscillation formulas have been obtained. The field-
theoretical corrections, due to the nonperturbative vacuum
structure associated with particle mixing, may be as large
as 5%–20% for strongly mixed systems, such as!��, or
for �� �0 [7]. On the contrary in meson systems such as
K0, B0

d, B0
s , and D0 and in the fermion sector, these

corrections are negligible. Then, although the quantum
field theory analysis discloses features which cannot be
ignored (see, for example, Refs. [12–15]), nevertheless a
correct phenomenological description of systems such
as B0 � �B0 can also be dealt with in the context of
QM, neglecting the nonperturbative field-theoretical
effects.

The analysis of mixed meson systems has played a
crucial role in the phenomenology. Indeed the mixing of
K0 � �K0 provided the first evidence of CP violation in
weak interactions [16] and the B0 � �B0 mixing is used to
determine experimentally the precise profile of the
Cabibbo-Kobayashi-Maskawa unitarity triangle [17,18].
Moreover, particle mixing offers the possibility to inves-
tigate new physics beyond the standard model of elemen-
tary particle physics, and, in particular, allows us to test the
validity of the CPT symmetry which is supposed to be an
exact symmetry. Up to now all possible tests are consistent
with no CPT violation [19]; however, new and much more
precise measurements are expected in the next generation
of experiments at the LHC, where B0

s and B0
d mesons will

be abundantly produced and where the very high time
resolution of order of 40 fs of the detectors ATLAS and
CMS will permit us to track precisely the time evolution of
the B particles.

On the other hand, in recent years great attention has
been devoted to the study of geometric phases [20–35]
which appear in the evolution of many physical systems.
Berry-like phases and noncyclic invariants associated to
neutrino oscillations (see, for example, [36–39] and refer-
ences therein) and to non-Hermitian systems (see, for
example, [24,40–43] and references therein) have also
been studied extensively.
In the present paper, it is shown that these most interest-

ing issues are intimately bound together in such a way that
the noncyclic phases for mixed meson systems appear to
provide a new instrument to test the CPT symmetry. It is
shown that phases such as the Mukunda-Simon ones [24],
appearing as an observable characterization of the mixed
mesons evolution, are related to the parameter denoting the
CPT violation. In particular, the presence of nontrivial
Mukunda-Simon phases and of a phase difference between
particle and antiparticle indicates unequivocally the CPT
symmetry breaking in mixed boson systems. Furthermore,
it is shown that the noncyclic phases can be useful also to
analyze the CP violation. An especially interesting system
for studying the geometric phases is the B0

s � �B0
s one be-

cause a lot of particle-antiparticle oscillations occur within
its lifetime. Thus, the next experiments on the B0

s mesons
might open new horizons to be explored in future research.
In Appendix C, the Aharonov-Anandan invariants [23]

for mixed mesons are presented and their relation with the
parameter describing CP violation is shown.
In order to study the noncyclic phases, some of the

features of the formalism depicting the evolution of mixed
neutral mesons in QM have been analyzed. Since in the
Wigner-Weisskopf approximation [44] the effective
Hamiltonian describing such systems is non-Hermitian and
non-normal, to diagonalize it the rules of non-Hermitian
quantum mechanics have to be used. In this work, the
biorthonormal basis formalism [45–48] will be used.
The structure of the paper is the following: in Sec. II the

effective Hamiltonian H of mixed meson systems is
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diagonalized by a complete biorthonormal set of states.
The Mukunda-Simon phases for mixed mesons, their con-
nections with CPT and CP violations, and the analysis of
such phases for Bs mesons are presented in Sec. III.
Section IV is devoted to the conclusions.

Useful expressions of the states jM0ðtÞi and j �M0ðtÞi are
reported in Appendix A. In Appendix B, the asymmetries
describing the T and CPT violations are computed using
the biorthonormal basis formalism. They coincide with the
corresponding ones obtained by employing the states usu-
ally adopted in the literature. The Aharonov-Anandan in-
variants are studied in Appendix C.

II. MESON MIXING AND
BIORTHONORMAL BASIS

The time evolution of a beam of the neutral boson
system and of its decay products can be described as
jc ðtÞi ¼ cM0ðtÞjM0i þ c �M0ðtÞj �M0i þP

ndnðtÞjni, where
M0 denotes K0, B0

d, B
0
s , or D

0, �M0 denotes the correspond-

ing antiparticles, jni are the decay products, t is the proper
time, cM0ðtÞ, c �M0ðtÞ, and dnðtÞ are time dependent func-
tions. Since the decay products are absent at the instant of
the M0 and �M0 production, the state vector at initial time
t ¼ 0 is given by jc ð0Þi ¼ cM0ð0ÞjM0i þ c �M0ð0Þj �M0i.

If one is interested in evaluating only the wave functions
cM0ðtÞ and c �M0ðtÞ and the times considered are much
larger than the typical time scale of the strong interaction,
then the time evolution of jc ðtÞi can be well described, in
the space formed by jM0i and j �M0i, by the Wigner-
Weisskopf approximation [44]. The time evolution is
thus determined by the Schrödinger equation i d

dt� ¼
H�, where � ¼ ðcM0ðtÞ; c �M0ðtÞÞT and the effective
Hamiltonian

H ¼ H 11 H 12

H 21 H 22

 !

of the system is non-Hermitian. It can be written as

H ¼ M� i �2 with M and � Hermitian matrices. The ma-

trix elements of H are constrained by the conservation of
discrete symmetries [4]: CPT conservation impliesH 11 ¼
H 22, T conservation entails jH 12j ¼ jH 21j, and CP
conservation requires H 11 ¼ H 22 and jH 12j ¼ jH 21j.

Notice that in the presence of CP violation, i.e., for
jH 12j � jH 21j, the mass matrix M and the decay matrix
� do not commute, ½M;�� � 0, then the Hamiltonian
H is non-Hermitian, H � H y, and non-normal,
½H ;H y� � 0. In this case, the left and right eigenstates
of H are independent sets of vectors that are not con-
nected by complex conjugation. This implies that H
cannot be diagonalized by a single unitary transformation
but one has to use the rules of non-Hermitian quantum
mechanics. In the following, the biorthonormal basis
formalism [45–48] will be used and the discussion

presented in Ref. [48] will be applied to describe the
time evolution of mixed mesons in the presence of CP
violation (see also Ref. [49]).
Let �j ¼ mj � i�j=2, with j ¼ L, H (L denotes the

light mass state and H the heavy mass state1), be the
eigenvalues of the Hamiltonian H , with jMji the corre-

sponding eigenvectors:

H jMji ¼ �jjMji: (1)

Denoting with "j and j eMji (j ¼ L, H) the eigenvalues and

the eigenvectors ofH y,H yj eMji ¼ "jj eMji, this equation
can be recast in the form

h eMjjH ¼ h eMjj"�j : (2)

By projecting Eq. (2) on the state jMji one has

h eMjjH jMji¼ h eMjj"�j jMji¼ h eMjj�jjMji. Then "�j ¼ �j;

i.e., the eigenvalues of H are the complex conjugates

of those of H y. Moreover one has h eMijH jMji ¼
h eMij"�i jMji ¼ h eMij�jjMji. Hence, ð�j � "�i Þh eMijMji ¼ 0.

This last relation together with �j � "�i for i � j implies the

biorthogonality relation

h eMijMji ¼ hMjj eMii ¼ �ij: (3)

Let us now derive the completeness relation. The state
vector jc ðtÞi of the neutral boson system (without its

decay products) can be expressed as jc ðtÞi¼P
j¼1;2ajðtÞjMji¼P

j¼1;2eajðtÞj eMji with ajðtÞ ¼ h eMjjc ðtÞi
and eajðtÞ ¼ hMjjc ðtÞi, i.e., jc ðtÞi ¼ P

j¼1;2jMji�
h eMjjc ðtÞi ¼ P

j¼1;2j eMjihMjjc ðtÞi. This last equation im-

plies the completeness relationsX
j

jMjih eMjj ¼
X
j

j eMjihMjj ¼ 1: (4)

Summarizing, since in the presence of CP violation the
effective Hamiltonian H of mixed meson systems is non-
Hermitian and non-normal, then the conjugate states

h eMjjy � j eMji and jMjiy � hMjj are not isomorphic to

their duals: j eMji � jMji and hMjj � h eMjj. In this case,

as a consequence of Eqs. (3) and (4), the set of states

fjMji; h eMjjg, with j ¼ L, H, is a complete biorthonormal

system for H .2

1For K mesons, usually the mass eigenstates are defined
according to their lifetimes: KS is the short-lived and KL is the
long-lived. In this system KL is the heavier state.

2Note that Eqs. (1)–(4) do not determine the biorthonormal

system fjMji; j eMjig uniquely. Any other biorthonormal system

fjM0
ji; j eM0

jig satisfying these conditions has the form jM0
ji ¼

�jjMji and j eM0
ji ¼ 1

��
j
j eMji, with �j complex. This fact, how-

ever, does not affect any measurable quantity [49].
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Furthermore, since the time evolution operator associ-

ated with H , UðtÞ ¼ e�iH t is not unitary, one also

introduces the time evolution operator of H y, eUðtÞ ¼
e�iH yt, which satisfies U eUy ¼ eUy

U ¼ 1. The spectral
forms of the Hamiltonian and of the operators UðtÞ andeUðtÞ are then given by

H ¼ X
j¼L;H

�jjMjih eMjj;

UðtÞ ¼ X
j¼L;H

e�i�jtjMjih eMjj;

eUðtÞ ¼ X
j¼L;H

e�i��
j tj eMjihMjj;

(5)

respectively. Thus the time evolved of the states jMki and
j eMki (k ¼ L, H) at time t is jMkðtÞi ¼ UðtÞjMki ¼
e�i�ktjMki and j eMkðtÞi ¼ eUðtÞj eMki ¼ e�i��

k
tj eMki and the

corresponding conjugate states are hMkðtÞj ¼ hMkjUyðtÞ ¼
hMkjei��

k
t and h eMkðtÞj ¼ h eMkj eUyðtÞ ¼ h eMkjei�kt.

Note that the existence of a complete biorthonormal set
of eigenvectors of H implies that H is diagonalizable.
Thus, a matrix V exists such that V�1HV ¼ diagð�L; �HÞ,
with

V ¼ pL pH

qL �qH

 !
;

V�1 ¼ 1

qLpH þ qHpL

qH pH

qL �pL

 !
;

(6)

where qL ¼ cL, pL ¼ cLð�L�H 22

H 21
Þ, qH ¼ �cH, pH ¼

cHð�H�H 22

H 21
Þ, and cL, cH are complex constants: cL, cH 2

C� f0g. The right and left eigenvectors of the Hamiltonian
H are ðpL; qLÞT , ðpH;�qHÞT and 1

qLpHþqHpL
ðqH; pHÞ,

1
qLpHþqHpL

ðqL;�pLÞ, respectively.3 The explicit expres-

sions of the mass eigenstates jMLi, jMHi, h eMLj, and

h eMHj in terms of the parameters qj and pj, j ¼ L, H are

given in Appendix A. It is now convenient to introduce the
CP and CPT parameters and to express the meson states in
terms of these parameters. The constraints on H imposed
by CP and T invariance suggest adopting the following CP
and T violation parameter:

" ¼ jpH=qHj � jqL=pLj
jpH=qHj þ jqL=pLj ¼

jp=qj � jq=pj
jp=qj þ jq=pj

¼ jH 12j � jH 21j
jH 12j þ jH 21j

; (7)

where

q

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
qLqH
pLpH

s
¼

ffiffiffiffiffiffiffiffiffiffiffi
H 21

H 12

s
: (8)

Moreover, CPT invariance imposes the equality of the
diagonal elements of the Hamiltonian H , H 11 ¼ H 22.
Thus such an invariance can be tested by checking that the
difference H 22 �H 11 is equal to zero. CPT violation
can be described conveniently by the quantity z which is
independent of phase convention:

z ¼
qL
pL

� qH
pH

qL
pL

þ qH
pH

¼ ðH 22 �H 11Þ
�L � �H

: (9)

Notice that in the standard model extension the parameter z
depends on the four-momentum of the meson [50]; more-
over, in the case of CPT invariance, p=q ¼ pL=qL ¼
pH=qH and z ¼ 0.
By using Eqs. (8) and (9), the mass eigenstates jMLi and

jMHi can be written in terms of jM0i and j �M0i as
jMLi ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffi
1� z

p jM0i þ q
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p j �M0i; (10)

jMHi ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p jM0i � q
ffiffiffiffiffiffiffiffiffiffiffiffi
1� z

p j �M0i; (11)

and, in a similar way, h eMLj and h eMHj are expressed as

h eMLj ¼ 1

2pq

h
q

ffiffiffiffiffiffiffiffiffiffiffiffi
1� z

p hfM0j þ p
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p hf�M0j
i
; (12)

h eMHj ¼ 1

2pq

h
q

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p hfM0j � p
ffiffiffiffiffiffiffiffiffiffiffiffi
1� z

p hf�M0j
i
: (13)

Thus, at time t, the states jM0ðtÞi and j �M0ðtÞi in terms of
jMLi and jMHi are

jM0ðtÞi ¼ 1

2p

h ffiffiffiffiffiffiffiffiffiffiffiffi
1� z

p jMLie�i�Lt þ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p jMHie�i�Ht
i
;

(14)

j �M0ðtÞi ¼ 1

2q

h ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p jMLie�i�Lt � ffiffiffiffiffiffiffiffiffiffiffiffi
1� z

p jMHie�i�Ht
i
;

(15)

hfM0ðtÞj ¼ p
h ffiffiffiffiffiffiffiffiffiffiffiffi

1� z
p h eMLjei�Lt þ ffiffiffiffiffiffiffiffiffiffiffiffi

1þ z
p h eMHjei�Ht

i
;

(16)

hf�M0ðtÞj ¼ q
h ffiffiffiffiffiffiffiffiffiffiffiffi

1þ z
p h eMLjei�Lt � ffiffiffiffiffiffiffiffiffiffiffiffi

1� z
p h eMHjei�Ht

i
:

(17)

The states in Eqs. (14), (15), and (17) are the correct ones
to be used in computations.

3If we impose the normalization conditions of jMji, j ¼ 1, 2,

we have jcLj ¼ jH 21jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�L�H 22j2þjH 21j2

p , jcHj ¼ jH 21jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jH 22��H j2þjH 21j2

p ,

and jpLj2 þ jqLj2 ¼ jpHj2 þ jqHj2 ¼ 1.
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III. MESON MIXING AND
MUKUNDA-SIMON PHASE

The main result of the paper is presented in this section;
the Mukunda-Simon phases appearing in the time evolu-
tion of mixed meson M0 � �M0 systems are related to the
parameter describing the CPT violation, and a difference
between the noncyclic phases of particles and of antipar-
ticles signals CPT symmetry breaking. Moreover, the non-
cyclic phases due to the particle-antiparticle oscillations
are related to the parameters denoting the CP violation. A
system particularly appropriate to study such phases is the
B0
s � �B0

s one.
Let us start by introducing theMukunda-Simon phases for

Hermitian systems. Subsequently, we consider such phases
in the case of non-Hermitian systems and of mixed mesons.

Consider a quantum system whose state vector
jc ðtÞi evolves according the Schrödinger equation
iðd=dtÞjc ðtÞi ¼ HðtÞjc ðtÞi; the Mukunda-Simon phase
is defined as [24] �ðtÞ ¼ arghc ð0Þjc ðtÞi �
=R

t
0hc ðt0Þj _c ðt0Þidt0, where the dot denotes the derivative

with respect to t0. The generalization of the above phase to
the case of a system with a diagonalizable non-Hermitian
Hamiltonian H NHðtÞ is presented in Ref. [24]. Its exten-
sion to the biorthonormal basis formalism is the following.

Denoting with jc NHðtÞi and jec NHðtÞi the solution to the
Schrödinger equation iðd=dtÞjc NHðtÞi¼H NHðtÞjc NHðtÞi
and to its adjoint equation iðd=dtÞj ec NHðtÞi ¼
H y

NHðtÞj ec NHðtÞi, respectively, the Mukunda-Simon

phase is given by �NHðtÞ ¼ arghec NHð0Þjc NHðtÞi �
=R

t
0hec NHðt0Þj _c NHðt0Þidt0. Such a quantity is reparametri-

zation invariant and it is invariant under the complex gauge

transformations jc NHðtÞi ! jc 0
NHðtÞi ¼ S�1ðtÞjc NHðtÞi

and jec NHðtÞi ! jec 0
NHðtÞi ¼ W�1ðtÞj ec NHðtÞi, where

WðtÞ ¼ ½S�1ðtÞ�y. Therefore, �NHðtÞ is a geometric phase
associated with the evolution of a quantum non-Hermitian
system.
In the particular case of mixed meson systemsM0 � �M0

one has the following phases:

�M0M0ðtÞ ¼ arghfM0ð0ÞjM0ðtÞi � =
Z t

0
hfM0ðt0Þj _M0ðt0Þidt0;

(18)

� �M0 �M0ðtÞ ¼ arghf�M0ð0Þj �M0ðtÞi � =
Z t

0
hf�M0ðt0Þj _�M0ðt0Þidt0;

(19)

�M0 �M0ðtÞ ¼ arghfM0ð0Þj �M0ðtÞi � =
Z t

0
hfM0ðt0Þj _�M0ðt0Þidt0;

(20)

� �M0M0ðtÞ ¼ arghf�M0ð0ÞjM0ðtÞi � =
Z t

0
hf�M0ðt0Þj _M0ðt0Þidt0:

(21)

�M0M0ðtÞ and � �M0 �M0ðtÞ are the phases of the particle M0

and of the antiparticle �M0, respectively, and they are con-
nected to the CPT violation parameter; �M0 �M0ðtÞ and
� �M0M0ðtÞ are the phases due to particle-antiparticle oscil-
lations, and they are linked to CP violation (see below).
Let us analyze in more detail such phases by starting

with �M0M0ðtÞ and � �M0 �M0ðtÞ. By using Eqs. (14)–(17),
their explicit form is given by

�M0M0ðtÞ ¼ arg½e��t=4½ð1�<zÞ cosðmLtÞ � =z sinðmLtÞ� þ e���t=4½ð1þ<zÞ cosðmHtÞ þ =z sinðmHtÞ�
� i½e��t=4½ð1�<zÞ sinðmLtÞ� þ =z cosðmLtÞ� þ e���t=4½ð1þ<zÞ sinðmHtÞ � =z cosðmHtÞ��
þ t

2

�
mþ �m<zþ��

2
=z
�
; (22)

and

� �M0 �M0ðtÞ ¼ arg½e��t=4½ð1þ<zÞ cosðmLtÞ þ =z sinðmLtÞ� þ e���t=4½ð1�<zÞ cosðmHtÞ � =z sinðmHtÞ�
� i½e��t=4½ð1þ<zÞ sinðmLtÞ � =z cosðmLtÞ� þ e���t=4½ð1�<zÞ sinðmHtÞ þ =z cosðmHtÞ���
þ t

2

�
m� �m<z���

2
=z
�
; (23)

respectively, where m ¼ mL þmH, �m ¼ mH �mL, and
�� ¼ �H � �L.

4 The symbol � denotes � ¼ �L þ �H

(Appendix B). Assuming ��t
2 is small, which is valid

in the range j�tj< 15 ps used in the experimental

analysis on the B0 � �B0 system [51,52], Eqs. (22) and
(23) become

�M0M0ðtÞ ’ arg

�
cos

�
�mt

2

�
þ ð=z� i<zÞ sin

�
�mt

2

��
þ t

2

�
�m<zþ��

2
=z
�
; (24)

and

4The sign of �� is not yet established for B and Bs mesons,
while ��< 0 for K mesons and ��> 0 for D mesons.
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� �M0 �M0ðtÞ ’ arg

�
cos

�
�mt

2

�
� ð=z� i<zÞ sin

�
�mt

2

��
� t

2

�
�m<zþ ��

2
=z
�
; (25)

respectively. These equations show the dependence of the
phases on the real and imaginary parts of the z parameter
defined in Eq. (9). In particular, the difference between

�M0M0ðtÞ and � �M0 �M0ðtÞ, ��ðtÞ ¼ �M0M0ðtÞ �� �M0 �M0ðtÞ,
is due to terms related to z and it is nonzero only in the
presence of CPT violation. Indeed, in the case of CPT
invariance, z ¼ 0, one has �CPT

M0M0ðtÞ ¼ �CPT
�M0 �M0ðtÞ ¼

arg½cosð�mt
2 Þ�, which is trivially equal to 0 or � and

��ðtÞ ¼ 0.
Coming back now to the phases�M0 �M0ðtÞ and� �M0M0ðtÞ,

their explicit expressions are

�M0 �M0ðtÞ ¼ �

2
�m

2
tþ arg

�
p

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
sin

��
�m� i��

2

�
t

2

��
þ=

�
i
p

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p �
�m� i��

2

�
t

2

�
; (26)

and

� �M0M0ðtÞ ¼ �

2
�m

2
tþ arg

�
q

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
sin

��
�m� i��

2

�
t

2

��
þ=

�
i
q

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p �
�m� i��

2

�
t

2

�
: (27)

For ��t
2 � 1 and omitting second order terms in z, one

obtains

�M0 �M0ðtÞ ¼ �

2
�mt

2
þ arg

�
p

q
sin

�
�mt

2

��
��mt

2
<
�
p

q

�
� ��t

2
=
�
p

q

�
; (28)

and

� �M0M0ðtÞ ¼ �

2
�mt

2
þ arg

�
q

p
sin

�
�mt

2

��
��mt

2
<
�
q

p

�
� ��t

2
=
�
q

p

�
; (29)

and the phase difference is �M0 �M0ðtÞ �� �M0M0ðtÞ � 0. On
the contrary, in the case of CP conservation one has

�CP
M0 �M0ðtÞ ¼ �CP

�M0M0ðtÞ

¼ �

2
� ðmþ�mÞ t

2
þ arg

�
sin

�
�mt

2

��
; (30)

and there is no phase difference.

Numerical analysis

The features of the phases related to the parameter z, i.e.,
�M0M0 , � �M0 �M0 , and ��, are analyzed in detail for the Bs

system. Such a system is particularly appropriate for the
study of noncyclic phases since many particle oscillations
occur within its lifetime. Another useful system for such
analysis is the neutral kaon one [53].
For the Bs mesons, one takes ms ¼ 1:630 07�

1013 ps�1, �ms ¼ 17:77 ps�1, �s ¼ 0:678 ps�1, ��s ¼
�0:062 ps�1. Moreover, one considers values of <z and
=z in the intervals, �0:1 � <z � 0:1 and �0:1 � =z �
0:1, which are consistent with the experimental data [52].
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FIG. 1 (color online). Plots of �B0
sB

0
s
as a function of time t for =z ¼ 0 and different values of <z. In panel (A) �B0

sB
0
s
ðtÞ is reported

for sample values of Rez 2 ½�0:1; 0� as indicated in the inset. In panel (B) �B0
sB

0
s
ðtÞ is plotted for sample values of Rez 2 ½0; 0:1� as

shown in the inset.
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Notice that, in such intervals for <z and =z, the phases
�B0

sB
0
s
, � �B0

s
�B0
s
, and �� are weakly depending on the value

of =z. Indeed, for example, in the time interval of the B0
s

lifetime, the shape variation of�B0
sB

0
s
and� �B0

s
�B0
s
with =z is

at most of the order of 0.2%, so that one can fix an arbitrary
value of =z in the values interval ½�0:1; 0:1� and study the
noncyclic phases as functions of time for different values
of <z. In Figs. 1–3 the phases are drawn for =z ¼ 0. In
order to better show the behavior of the phases, the figures
contain two plots (A) and (B) of the same phase for sample
values of <z belonging to the intervals ½�0:1; 0� and
½0; 0:1�, respectively.

The plots show that in the case of CPT violation, the
phases �B0

sB
0
s
and � �B0

s
�B0
s
are clearly nontrivial; in fact they

can assume values different from 0 and�, and in particular,
the phase difference �� is nonzero.

IV. CONCLUSIONS

In the presence of T violation the effective Hamiltonian
of mixed meson systems is non-Hermitian and non-normal.

The left and right eigenstates ofH are independent sets of
vectors that are not connected by complex conjugation.
Then H cannot be diagonalized by a single unitary trans-
formation but by a complete biorthonormal set of vectors.
The correct flavor states are then derived by using the

biorthonormal basis formalism. They are used to compute
the noncyclic phases for oscillating mesons and the asym-
metries describing the CP and CPT violations (see
Appendix B). The obtained asymmetries are equivalent
to the ones achieved by the usual formalism.
The main outcome of the present work is the study of the

Mukunda-Simon phases for mixed mesons and the discov-
ery of the fact that the geometric phases appearing in the
evolution of the meson �M0M0ðtÞ and of its antiparticle
� �M0 �M0ðtÞ depend on the CPT violating parameter z. In
particular, only in the case of CPT symmetry breaking,
such phases are nontrivial and the phase difference ��
between the particle and antiparticle is nonzero.
The possibility of CPT violation has been investigated

in detail by analyzing the Mukunda-Simon phases for the
neutral Bs system. Such a system, together with the kaon, is
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FIG. 3 (color online). Plots of �� as a function of time for =z ¼ 0 and different sample values of <z as in Figs. 1 and 2.
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especially suitable for the study of geometric phases. The
high precision of the upcoming experiments on the B0

s

mesons will allow us, in the future, to completely deter-
mine the dynamics of such particles; thus such experiments
and the ones analyzing kaons dynamics might allow an
accurate analysis of the geometric phases and, in particular,
a measurement of the phase difference�� generated in the
time evolution of the particle and the antiparticle. Such
measurements might represent a completely alternative
method to test one of the most important symmetries of
the nature.

Finally, it has been also shown that the Mukunda-Simon
phases �M0 �M0ðtÞ, � �M0M0ðtÞ and the Aharonov-Anandan
invariants sM0 �M0ðtÞ, s �M0M0ðtÞ (see Appendix C) due to
meson oscillations are related to the CP violation parame-
ters. CPT violation should not affect these phases, as the
corrections are quadratic and expected to be negligible for
small z. Thus, a study of the noncyclic phases might be
useful also for the analysis of the CP symmetry breaking.
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APPENDIX A: OTHER EXPRESSIONS OF THE
STATES jM0ðtÞi AND j �M0ðtÞi

The mass eigenstates jMLi and jMHi are written in terms
of jM0i, j �M0i as5

jMLi ¼ pLjM0i þ qLj �M0i; (A1)

jMHi ¼ pHjM0i � qHj �M0i; (A2)

and in a similar way, h eMLj and h eMHj are expressed as

h eMLj ¼ 1

qLpH þ qHpL

h
qHhfM0j þ pHhf�M0j

i
; (A3)

h eMHj ¼ 1

qLpH þ qHpL

h
qLhfM0j � pLhf�M0j

i
: (A4)

Then at time t, the states jM0ðtÞi and j �M0ðtÞi in terms of
jMLi and jMHi are

jM0ðtÞi ¼ 1

qLpH þqHpL

h
qHjMLie�i�LtþqLjMHie�i�Ht

i
;

(A5)

j �M0ðtÞi ¼ 1

qLpH þqHpL

h
pHjMLie�i�Lt�pLjMHie�i�Ht

i
;

(A6)

hfM0ðtÞj ¼ pLh eMLjei�Lt þ pHh eMHjei�Ht; (A7)

hf�M0ðtÞj ¼ qLh eMLjei�Lt � qHh eMHjei�Ht: (A8)

These states can be expressed also in the bases

fjM0i; j �M0i; hfM0j; hf�M0jg as

jM0ðtÞi ¼ ½gþðtÞ þ zg�ðtÞ�jM0i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p q

p
g�ðtÞj �M0i;

(A9)

j �M0ðtÞi ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p p

q
g�ðtÞjM0i þ ½gþðtÞ � zg�ðtÞ�j �M0i;

(A10)

hfM0ðtÞj ¼ ½egþðtÞ þ zeg�ðtÞ�hfM0j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p p

q
eg�ðtÞhf�M0j;

(A11)

hf�M0ðtÞj ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p q

p
eg�ðtÞhfM0j þ ½egþðtÞ � zeg�ðtÞ�hf�M0j;

(A12)

with g�ðtÞ ¼ 1
2 ðe�i�Ht � e�i�LtÞ and eg�ðtÞ ¼ 1

2 �ðei�Ht � ei�LtÞ.

APPENDIX B: CP AND CPT ASYMMETRIES

The expressions of the asymmetries AT and ACPT de-
scribing a departure from time reversal and CPT invari-
ances, respectively, are calculated by using the states
derived in the biorthonormal formalism, Eqs. (14)–(17).
The obtained results are equivalent to the asymmetries
computed by using the usual formalism [52,54].
Let us begin by computing the T asymmetry. The vio-

lation of time reversal invariance can be revealed by the
comparison between the probability of transition from �M0

to M0, P �M0!M0 , and the probability of transition from M0

to �M0, PM0! �M0 , in the asymmetry:

ATð�tÞ ¼ P �M0!M0ð�tÞ � PM0! �M0ð�tÞ
P �M0!M0ð�tÞ þ PM0! �M0ð�tÞ (B1)

with �t ¼ tf � ti denoting the time interval between the

initial time ti and the final time tf. The transition ampli-

tudes A �M0!M0ð�tÞ and AM0! �M0ð�tÞ are given, respectively,
by

A �M0!M0ð�tÞ ¼ hfM0ðtfÞj �M0ðtiÞi ¼ hfM0je�iH�tj �M0i

¼ 1

2

q

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
ðe�i�L�t � e�i�H�tÞ; (B2)

5Note that hMjjMi�ji � 0; for example, in the kaon case, one
has hKSjKLi � 0.
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AM0! �M0ð�tÞ ¼ hf�M0ðtfÞjM0ðtiÞi ¼ hf�M0je�iH�tjM0i

¼ 1

2

p

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
ðe�i�L�t � e�i�H�tÞ: (B3)

The results in Eqs. (B2) and (B3) are obtained by introduc-

ing the identity operator jMLih eMLj þ jMHih eMHj ¼ 1 on
the right side of the operator e�iH�t. The corresponding
transition probabilities are then

P �M0!M0ð�tÞ ¼ jhfM0ðtfÞj �M0ðtiÞij2

¼ 1

2

��������q

p

��������2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
j2e�ð�=2Þ�t

�
�
cosh

�
���t

2

�
� cosð�m�tÞ

�
; (B4)

PM0! �M0ð�tÞ ¼ jhf�M0ðtfÞjM0ðtiÞij2

¼ 1

2

��������pq
��������2j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
j2e�ð�=2Þ�t

�
�
cosh

�
���t

2

�
� cosð�m�tÞ

�
: (B5)

The asymmetry AT is time independent and it is given by

AT ¼ 1� j qp j4
1þ j qp j4

: (B6)

A value different from zero of the quantity in Eq. (B6)
indicates a direct T violation independent from CPT vio-
lation. The result (B6) coincides with Eq. (54) in Ref. [54].

In a similar way, the violation of CPT invariance can be
revealed by the comparison between the probability of
transition from M0 to M0, PM0!M0 , and the probability of
transition from �M0 to �M0, P �M0! �M0 , in the asymmetry

ACPTð�tÞ ¼ PM0!M0ð�tÞ � P �M0! �M0ð�tÞ
PM0!M0ð�tÞ þ P �M0! �M0ð�tÞ : (B7)

The transition amplitudes AM0!M0ð�tÞ and A �M0! �M0ð�tÞ
are given, respectively, by

AM0!M0ð�tÞ ¼ hfM0ðtfÞjM0ðtiÞi ¼ hfM0je�iH�tjM0i

¼
�
1þ z

2

�
e�i�H�t þ

�
1� z

2

�
e�i�L�t; (B8)

A �M0! �M0ð�tÞ ¼ hf�M0ðtfÞj �M0ðtiÞi ¼ hf�M0je�iH�tj �M0i

¼
�
1� z

2

�
e�i�H�t þ

�
1þ z

2

�
e�i�L�t; (B9)

where again the relation jMLih eMLj þ jMHih eMHj ¼ 1 has
been introduced on the right side of e�iH�t. The corre-
sponding transition probabilities are then

PM0!M0ð�tÞ ¼ jhfM0ðtfÞjM0ðtiÞij2

¼ e�ð�=2Þ�t
��

1þ jzj2
2

�
cosh

�
���t

2

�
�<z sinh

�
���t

2

�
þ
�
1� jzj2

2

�
� cosð�m�tÞ þ =z sinð�m�tÞ

�
; (B10)

P �M0! �M0ð�tÞ ¼ jhf�M0ðtfÞj �M0ðtiÞij2

¼ e�ð�=2Þ�t
��

1þ jzj2
2

�
cosh

�
���t

2

�
þ<z sinh

�
���t

2

�
þ
�
1� jzj2

2

�
� cosð�m�tÞ � =z sinð�m�tÞ

�
: (B11)

The asymmetry ACPT is thus given by

ACPTð�tÞ ¼
�2<z sinhð���t2 Þ þ 2=z sinð�m�tÞ

ð1þ jzj2Þ coshð���t2 Þ þ ð1� jzj2Þ cosð�m�tÞ :

(B12)

Omitting second order terms in z and making the approxi-

mation sinhð���t2 Þ ’ ���t
2 which is valid in the range

j�tj< 15 ps used in the experimental analysis of the
B0 � �B0 systems [52,55], one has

ACPTð�tÞ ’ �<z���tþ 2=z sinð�m�tÞ
coshð���t2 Þ þ cosð�m�tÞ ; (B13)

which coincides with Eq. (6) of Ref. [52]. In the case of
CPT invariance, z ¼ 0 and ACPT ¼ 0.

APPENDIX C: AHARONOV-ANANDAN
PHASE AND CP VIOLATION

The Aharonov-Anandan invariant is defined as [21] s ¼
2
R
t
0 �Eðt0Þdt0, where �E is the variance of the energy E.

The generalization to systems with a non-Hermitian
Hamiltonian is presented in Ref. [46] where the biortho-
normal basis formalism is also used. For a system with

a complete biorthonormal basis fjc ðtÞi; hec ðtÞjg, the

variance is given by �E2
NHðtÞ ¼ hec ðtÞjH2jc ðtÞi �

ðhec ðtÞjHjc ðtÞiÞ2, and the Aharonov-Anandan phase is
sNH ¼ 2

R
t
0 j�ENHðt0Þjdt0. In the particular case of the

mixed meson systems, one has the following variances:
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�EM0M0ðtÞ ¼ �E �M0 �M0ðtÞ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� z2Þ

q
ð�H � �LÞ; (C1)

�EM0 �M0ðtÞ ¼ hfM0ðtÞjHj �M0ðtÞi

¼ �p

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� z2Þp
2

ð�H � �LÞ; (C2)

�E �M0M0ðtÞ ¼ hf�M0ðtÞjHjM0ðtÞi

¼ � q

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� z2Þp
2

ð�H � �LÞ: (C3)

Such relations show that the variances depend on z2.
Moreover, since �EM0M0ðtÞ ¼ �E �M0 �M0ðtÞ, then the corre-
sponding invariants for the particle and antiparticle are
equal. These facts mean that Aharonov-Anandan invariants
do not represent a good tool to test CPT invariance.
However, such phases could be useful in the study of CP
violation. Indeed, by neglecting the second order depen-
dence on the z parameter, one has

sM0M0ðtÞ ¼ s �M0 �M0ðtÞ ¼ 2
Z t

0
j�EM0M0ðt0Þjdt0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�mÞ2 þ ð��Þ2

4

s
t; (C4)

sM0 �M0ðtÞ ¼ 2
Z t

0
j�EM0 �M0ðt0Þjdt0

¼
��������pq

��������
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�mÞ2 þ ð��Þ2

4

s
t; (C5)

s �M0M0ðtÞ ¼ 2
Z t

0
j�E �M0M0ðt0Þjdt0

¼
��������q

p

��������
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�mÞ2 þ ð��Þ2

4

s
t: (C6)

The phase sM0 �M0ðtÞ is different from s �M0M0ðtÞ because of
the CP violation p � q, independently from CPT viola-
tion. Equations (C5) and (C6) can then be used to compute
the following quantity:

sM0 �M0 � s �M0M0

sM0 �M0 þ s �M0M0

¼ jp=qj � jq=pj
jp=qj þ jq=pj ¼

jH12j � jH21j
jH12j þ jH21j ; (C7)

which coincides with the CP and T violating parameter "
defined in Eq. (7). Thus, the Aharonov-Anandan phases
could represent a completely new way to estimate the
parameter " in mixed meson systems such as the K0 � �K0

one [53]. In the case of CP conservation one should have
sM0M0ðtÞ ¼ s �M0 �M0ðtÞ ¼ sM0 �M0ðtÞ ¼ s �M0M0ðtÞ and " ¼ 0.
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