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Probing CPT violation in meson mixing by a noncyclic phase
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The presence of noncyclic phases is revealed in the time evolution of mixed meson systems. Such

phases are related to the parameter z describing the CPT violation; moreover, a nonzero phase difference
between particle and antiparticle arises only in the presence of CPT symmetry breaking. Thus, a
completely new test for the CPT invariance can be provided by the study of such phases in mixed
mesons. Systems which are particularly interesting for such an analysis are the BY — BY and the K° — K?°
ones. In order to introduce noncyclic phases, some aspects of the formalism describing the mixed neutral
mesons are analyzed. Since the effective Hamiltonian of systems like K — K°, B — B°, BY — B,
D° — DY is non-Hermitian and non-normal, it is necessary to diagonalize it by utilizing the rules of non-

Hermitian quantum mechanics.
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L. INTRODUCTION

Quantum mixing of particles is among the most intrigu-
ing topics in subnuclear physics. The theoretical aspects of
this phenomenon have been analyzed thoroughly in the
contexts of quantum mechanics (QM) [1-4] and of quan-
tum field theory [5—15] where modifications to the QM
oscillation formulas have been obtained. The field-
theoretical corrections, due to the nonperturbative vacuum
structure associated with particle mixing, may be as large
as 5%-20% for strongly mixed systems, such as w — ¢, or
for 5 — m' [7]. On the contrary in meson systems such as
K° BY, BY?, and D° and in the fermion sector, these
corrections are negligible. Then, although the quantum
field theory analysis discloses features which cannot be
ignored (see, for example, Refs. [12-15]), nevertheless a
correct phenomenological description of systems such
as B® — B® can also be dealt with in the context of
QM, neglecting the nonperturbative field-theoretical
effects.

The analysis of mixed meson systems has played a
crucial role in the phenomenology. Indeed the mixing of
K° — K° provided the first evidence of CP violation in
weak interactions [16] and the B® — B mixing is used to
determine experimentally the precise profile of the
Cabibbo-Kobayashi-Maskawa unitarity triangle [17,18].
Moreover, particle mixing offers the possibility to inves-
tigate new physics beyond the standard model of elemen-
tary particle physics, and, in particular, allows us to test the
validity of the CPT symmetry which is supposed to be an
exact symmetry. Up to now all possible tests are consistent
with no CPT violation [19]; however, new and much more
precise measurements are expected in the next generation
of experiments at the LHC, where B? and B mesons will
be abundantly produced and where the very high time
resolution of order of 40 fs of the detectors ATLAS and
CMS will permit us to track precisely the time evolution of
the B particles.
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On the other hand, in recent years great attention has
been devoted to the study of geometric phases [20-35]
which appear in the evolution of many physical systems.
Berry-like phases and noncyclic invariants associated to
neutrino oscillations (see, for example, [36—39] and refer-
ences therein) and to non-Hermitian systems (see, for
example, [24,40-43] and references therein) have also
been studied extensively.

In the present paper, it is shown that these most interest-
ing issues are intimately bound together in such a way that
the noncyclic phases for mixed meson systems appear to
provide a new instrument to test the CPT symmetry. It is
shown that phases such as the Mukunda-Simon ones [24],
appearing as an observable characterization of the mixed
mesons evolution, are related to the parameter denoting the
CPT violation. In particular, the presence of nontrivial
Mukunda-Simon phases and of a phase difference between
particle and antiparticle indicates unequivocally the CPT
symmetry breaking in mixed boson systems. Furthermore,
it is shown that the noncyclic phases can be useful also to
analyze the CP violation. An especially interesting system
for studying the geometric phases is the BY — BY one be-
cause a lot of particle-antiparticle oscillations occur within
its lifetime. Thus, the next experiments on the BY mesons
might open new horizons to be explored in future research.

In Appendix C, the Aharonov-Anandan invariants [23]
for mixed mesons are presented and their relation with the
parameter describing CP violation is shown.

In order to study the noncyclic phases, some of the
features of the formalism depicting the evolution of mixed
neutral mesons in QM have been analyzed. Since in the
Wigner-Weisskopf —approximation [44] the effective
Hamiltonian describing such systems is non-Hermitian and
non-normal, to diagonalize it the rules of non-Hermitian
quantum mechanics have to be used. In this work, the
biorthonormal basis formalism [45-48] will be used.

The structure of the paper is the following: in Sec. II the
effective Hamiltonian JH of mixed meson systems is
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diagonalized by a complete biorthonormal set of states.
The Mukunda-Simon phases for mixed mesons, their con-
nections with CPT and CP violations, and the analysis of
such phases for B, mesons are presented in Sec. III.
Section IV is devoted to the conclusions.

Useful expressions of the states |M°(¢)) and |M°(1)) are
reported in Appendix A. In Appendix B, the asymmetries
describing the 7 and CPT violations are computed using
the biorthonormal basis formalism. They coincide with the
corresponding ones obtained by employing the states usu-
ally adopted in the literature. The Aharonov-Anandan in-
variants are studied in Appendix C.

II. MESON MIXING AND
BIORTHONORMAL BASIS

The time evolution of a beam of the neutral boson
system and of its decay products can be described as
[0(0) = o (DIMO) + g (D) + X, d, (1)), where
M° denotes K°, B, BY, or D°, M° denotes the correspond-
ing antiparticles, |n) are the decay products, 7 is the proper
time, ¥ ,,0(7), y(¢), and d,(¢) are time dependent func-
tions. Since the decay products are absent at the instant of
the M° and M° production, the state vector at initial time
£ = 0is given by [4/(0)) = 0 (O)[M) + ¢ 30(0)|A1°).

If one is interested in evaluating only the wave functions
Y po(?) and ¢ j0(7) and the times considered are much
larger than the typical time scale of the strong interaction,
then the time evolution of |(z)) can be well described, in
the space formed by |M°) and |M°), by the Wigner-
Weisskopf approximation [44]. The time evolution is
thus determined by the Schrodinger equation i %‘I’ =
HY, where W = (0(t), Prz0(1)7 and the effective
Hamiltonian

j_[:<3{11

Hn)
3-[21

3-[22

of the system is non-Hermitian. It can be written as
H=M- ig with M and I" Hermitian matrices. The ma-
trix elements of JH{ are constrained by the conservation of
discrete symmetries [4]: CPT conservation implies HH |; =
H,,, T conservation entails |H |,| = |H 5|, and CP
conservation requires H 1, = H », and |FH 5| = |H 5].

Notice that in the presence of CP violation, i.e., for
|H 15| # |H 5|, the mass matrix M and the decay matrix
I' do not commute, [M, '] # 0, then the Hamiltonian
H is non-Hermitian, H # H*', and non-normal,
[H, Ht] +# 0. In this case, the left and right eigenstates
of H are independent sets of vectors that are not con-
nected by complex conjugation. This implies that JH
cannot be diagonalized by a single unitary transformation
but one has to use the rules of non-Hermitian quantum
mechanics. In the following, the biorthonormal basis
formalism [45-48] will be used and the discussion
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presented in Ref. [48] will be applied to describe the
time evolution of mixed mesons in the presence of CP
violation (see also Ref. [49]).

Let A; = m; —il';/2, with j =L, H (L denotes the
light mass state and H the heavy mass state'), be the
eigenvalues of the Hamiltonian H, with |M j) the corre-
sponding eigenvectors:

g-[le>:/\j|Mj>' (D

Denoting with &; and |]l71 ;) (j = L, H) the eigenvalues and
the eigenvectors of JH T, H't |M;) = &,;|M ), this equation
can be recast in the form

(M| H = (i]e. 2)

By projecting Eq. (2) on the state |M ;) one has
(M| H |M;)=(M,|&5|M;)=(M;|A;IM). Then &} = A;;
ie., the eigenvalues of J{ are the complex conjugates
of those of FT. Moreover one has (M;,|H|M;) =
This last relation together with A; # & fori # j implies the
biorthogonality relation

(M\M;y = (M,|i1) = 8. 3)

Let us now derive the completeness relation. The state
vector |i(r)) of the neutral boson system (without its

decay products) can be expressed as |¢()=
> i=12a,(DIM;) :Zj=1,2a’j(t)|Mj> with a;(r) = (M| /(1))
and 30 = M), i 100) = 5,o2M,) %
(M| (1)) = 31 2|M ;XM |4 (2)). This last equation im-
plies the completeness relations

S IMYM | = Y 1M XM;| = 1. )
J J

Summarizing, since in the presence of CP violation the
effective Hamiltonian J{ of mixed meson systems is non-
Hermitian and non-normal, then the conjugate states
<1\%le = IMJ) and |M;)" = (M;| are not isomorphic to
their duals: IA'ZJ-) # |M;) and (M| # (A'Zjl. In this case,
as a consequence of Egs. (3) and (4), the set of states
{Im), <A7I ;I}, with j = L, H, is a complete biorthonormal
system for H .2

'"For K mesons, usually the mass eigenstates are defined
according to their lifetimes: K is the short-lived and K; is the
long-lived. In this system K; is the heavier state.

Note that Egs. (1)-(4) do not determine the biorthonormal

system {|M), |M )} uniquely. Any other biorthonormal system
{IM?), |1\%)} satisfying these conditions has the form |M’) =
a;|M;) and |A%) = a%lll%), with @; complex. This fact, how-
ever, does not affect any measurable quantity [49].
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Furthermore, since the time evolution operator associ-
ated with H, U(t) = ¢ " is not unitary, one also
introduces the time evolution operator of 1, [7(1‘) =
e"'j‘”’, which satisfies UﬁT = ﬁ*U = 1. The spectral
forms of the Hamiltonian and of the operators U(z) and
U (1) are then given by

H = Z /\j|Mj><Mj|,
j=LH
U(t) = Z e MM XM, (5)
j=LH
ﬁ(l) = e_i)l;t“‘}ijjL
j=LH
respectively. Thus the time evolved of the states |M,) and
IM;) (k=L, H) at time ¢ is |My(2)) = U@®)|M,) =
e~ MM,y and |M (1)) = U(t)|M,) = e~ !|M,) and the
corresponding conjugate states are (M, (1) = (MUt (¢) =
(Myle™ and (1,1 = (T (1) = (e,
Note that the existence of a complete biorthonormal set

of eigenvectors of JH implies that FH is diagonalizable.
Thus, a matrix V exists such that V" 'HV = diag(A,, Ay),

with
V= (PL PH ))
4. —49H
V-1 — 1 dH  PH ©
q.Pu t qurL\ q. —pL
where g, = ¢, p. = CL(’\L;[Z-I[”), qn = —CH» PH =

cH(’\”;[i}[”), and c;, cy are complex constants: c;, cy €
21

C — {0}. The right and left eigenvectors of the Hamiltonian
H are (pr» CIL)T, (P _l]H)T and m(cm, PH)s

1 _ . 3 . .
m(qb pL), respectively.” The explicit expres-

sions of the mass eigenstates IM,), |My), (M,|, and
(My| in terms of the parameters ¢; and p;, j = L, H are
given in Appendix A. It is now convenient to introduce the
CP and CPT parameters and to express the meson states in
terms of these parameters. The constraints on J{ imposed
by CP and T invariance suggest adopting the following CP
and 7 violation parameter:

_lpu/aul —lac/pcl _ p/al —1la/pl
lpu/aul +lar/prl |p/al +1q/pl
_ |l = 13l
|H | + | H ol

(N

3t we impose the normalization conditions of |M ), j = 1, 2,
136, (31,1

we have |¢;| = ——L " |cy| = F—m2t
\/|AL*-7‘[22|‘+|-7‘[21|2’ \/|-7‘[22*AH|2+|-7{21|2’

and |p,[* + lqp1* = Ipyl* + lgul* = 1.
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9 _ (9198 _

p PLPH
Moreover, CPT invariance imposes the equality of the
diagonal elements of the Hamiltonian H , H |, = H 5.
Thus such an invariance can be tested by checking that the
difference H ,, — JH , is equal to zero. CPT violation

can be described conveniently by the quantity z which is
independent of phase convention:

_Z—E‘Z—Z_(sz—ﬂfn) 9
Iy dn ) -y ®
PL PH L H

where

g8
5{12

®)

4

Notice that in the standard model extension the parameter z
depends on the four-momentum of the meson [50]; more-
over, in the case of CPT invariance, p/q = p./q. =

pu/qu and z = 0.
By using Egs. (8) and (9), the mass eigenstates |M, ) and

|M ;) can be written in terms of |M°) and |M°) as

M) = pJ/1 — z|M®) + g/1 + z|MP), (10)
IMy) = pJ1 + zIlM°) — g1 — z|M©), (11)

~ ~
and, in a similar way, (M, | and (M| are expressed as

(W] = 5[V T= 2]+ pTF ], (12)
pPq

(| = %[qdl FUMY — VTG0 ] (13)
rq

Thus, at time ¢, the states |M°(¢)) and |M°(7)) in terms of
|M,) and |M;) are

|MO(1))y = %[\/1 — zIM}Ye M + \/1___|__Z|MH>efi/\Hr]’
(14)

|M0(t)> = i[vl + z|M; Ye Mt — m|MH>e_MH’],

(15)

MO0 = p[VT= 20l + VT (bl ylent]
(16)

(A%(t)l = q[\/l + z(l\'}Llei}‘L’ — V1= z([\?‘lﬁle")‘”’].
(17)

The states in Egs. (14), (15), and (17) are the correct ones
to be used in computations.
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III. MESON MIXING AND
MUKUNDA-SIMON PHASE

The main result of the paper is presented in this section;
the Mukunda-Simon phases appearing in the time evolu-
tion of mixed meson M? — M? systems are related to the
parameter describing the CPT violation, and a difference
between the noncyclic phases of particles and of antipar-
ticles signals CPT symmetry breaking. Moreover, the non-
cyclic phases due to the particle-antiparticle oscillations
are related to the parameters denoting the CP violation. A
system particularly appropriate to study such phases is the
BY — BY one.

Let us start by introducing the Mukunda-Simon phases for
Hermitian systems. Subsequently, we consider such phases
in the case of non-Hermitian systems and of mixed mesons.

Consider a quantum system whose state vector
| (1)) evolves according the Schrodinger equation
i(d/dt)| (1)) = H(t)|(2)); the Mukunda-Simon phase
is  defined as  [24] (1) = arg{yp(0)| (1)) —
S [ip ()] g (¢))dt', where the dot denotes the derivative
with respect to #'. The generalization of the above phase to
the case of a system with a diagonalizable non-Hermitian
Hamiltonian JH () is presented in Ref. [24]. Its exten-
sion to the biorthonormal basis formalism is the following.

Denoting with | (7)) and Iz yu (1)) the solution to the
Schrodinger equation i(d/dt)| vy (1)) = H yp (Ol yy (1)
i(d/dDl (1) =
H ,J{,H(t)l Y (1)), respectively, the Mukunda-Simon
phase is given by ®yy(r) = arg(yyu(0)| (1) —
I [1l v () vy ())dt'. Such a quantity is reparametri-
zation invariant and it is invariant under the complex gauge
J

and to its adjoint equation
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transforrBations |¢£H(t)> — |y (1) = ST Y yu (1)
and [y (1) = [diu(0) = W Ol (1), where
W(r) =[S~ ()]'. Therefore, ®yy(f) is a geometric phase
associated with the evolution of a quantum non-Hermitian
system.

In the particular case of mixed meson systems M° — M°
one has the following phases:

®yopp (1) = arg(MOO)IMO() — 3 [0 OO,
(18)

B joyn(1) = arg(MO(0)[M10(r)) — [0 OBt
(19)

®ypoyn(1) = arg(MOO)[M10(r)) — [0 OB ()t
(20)

Dy (1) = arg(DOO)IMO(0) — [0 "GOO
(21)

®,0,00(t) and D yp0570(2) are the phases of the particle M°
and of the antiparticle M°, respectively, and they are con-
nected to the CPT violation parameter; ®,0,0(z) and
D 70,00(7) are the phases due to particle-antiparticle oscil-
lations, and they are linked to CP violation (see below).

Let us analyze in more detail such phases by starting
with ®p0,0(1) and Pjy0(7). By using Egs. (14)—(17),
their explicit form is given by

D j0,0(1) = arg[eAT/4[(1 — Rz) cos(mp 1) — Jzsin(my1)] + e AT4(1 + Rz) cos(myt) + Iz sin(myt)]

— i[eAT4(1 — Mz) sin(my )] + Iz cos(my )] + e A4[(1 + Nz) sin(myt) — Iz cos(myt)]]

+ é(m + AmNz + %%z)

and

(22)

D poi70(1) = arg[eAT/4[(1 + Rz) cos(mp 1) + Jzsin(myt)] + e AT4(1 — Rz) cos(mpyt) — Iz sin(myt)]

— i[eAT4(1 + Mz) sin(my 1) — IJzcos(my1)] + e AT/4[(1 — Nz) sin(myt) + Iz cos(my1)]]]

t AT
+ - (m - -3
2(m AmNz > JZ),

respectively, where m = m; + my, Am = my — m;, and
AT =Ty —T';.* The symbol I' denotes I' =T, + I'y
(Appendix B). Assuming % is small, which is valid

in the range |Af] <15 ps used in the experimental

“The sign of AT is not yet established for B and B, mesons,
while A" <0 for K mesons and AI"' > 0 for D mesons.

(23)

[

analysis on the B® — B system [51,52], Eqgs. (22) and
(23) become

Dy (1) = e cos( ) + (32 = ke sin 1)

t AT
+ = Nz +—3z),
3 (Amgﬁz > Sz) (24)

and
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Amt

D 070 (1) = arg[cos(%) — (Jz — iNz) sin(T)]
t . AT
- E(Amﬂtz + 70z), (25)

respectively. These equations show the dependence of the
phases on the real and imaginary parts of the z parameter
defined in Eq. (9). In particular, the difference between

|

T

(DMOMO(I) = 5

[\

and

D050 (1) = g -t arg[%w/l - 7 sin[(Am - £>£]] + S[i%\/l - 12<Am — E)

2

For % < 1 and omitting second order terms in z, one
obtains

A
D0 () = g - m?t + arg[s sin(TmZ)]

_Amrg P _Ali«(p
2 ER(q) 2 “g<q>’ 28

and

A
D op0(1) = g - m7[ + arg[% sin(Tmt)]

_ %m(i) _ Alr 3(2) (29)
2 P 2 \p

and the phase difference is @ yj0570() — P y70440(z) # 0. On
the contrary, in the case of CP conservation one has
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q)MOMO(t) and (I)MOMO(t), Aq)(t) = (I)MOMO(t) - (I)MoMo(t),
is due to terms related to z and it is nonzero only in the
presence of CPT violation. Indeed, in the case of CPT
invariance, z=0, one has @ (1) = DT (1) =
arg[cos(424)], which is trivially equal to 0 or 7 and
Ad(r) = 0.

Coming back now to the phases @ 0570 (¢) and @ yo,00(2),
their explicit expressions are

~T arg[gmmn[(Am - ﬂ) 1]] + SI:iBM(Am - E) 1] (26)

2 )2 2 )2

q

5]. 27)

2)2 2)2

HCP (t)Z(I)CP (1)

MOMO MOMPO
T

t Amt
=5~ (m + Am)i + arg[sin(Tm):l, (30)
and there is no phase difference.

Numerical analysis

The features of the phases related to the parameter z, i.e.,
D040, oo, and AD, are analyzed in detail for the B
system. Such a system is particularly appropriate for the
study of noncyclic phases since many particle oscillations
occur within its lifetime. Another useful system for such
analysis is the neutral kaon one [53].

For the B, mesons, one takes m, = 1.63007 X
108 ps™!, Am, =17.77 ps~!, I, = 0.678 ps~!, AT, =
—0.062 ps~'. Moreover, one considers values of Nz and
Iz in the intervals, —0.1 =Mz =0.1 and —0.1 = Jz =
0.1, which are consistent with the experimental data [52].

B) ®pp(t) for values of Re z € [0, 0.1]

T T T T T T T T T T T T T T T T T T T —T

4F ]

P | NP
or
s - 0.1
-1F - 0.075
: i 0.05
-2F ™ - 0025
E s -0
-3 F R

ey ) - —

0.6 0.8 10 12 14
t(ps)

FIG. 1 (color online). Plots of ® o as a function of time ¢ for Iz = 0 and different values of Rz. In panel (A) @ popo(t) is reported
for sample values of Rez € [—0.1, 0] as indicated in the inset. In panel (B) ® ogo(7) is plotted for sample values of Rez € [0, 0.1] as

shown in the inset.
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A) q>§§(t) Jor values of Re z € [-0.1, 0]
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4 1 LN L e . A R 3 T T 3
- -0 _— ity ] ; ]
3+ 0075 \ ] 2t ]
2 k -- =0.05 A 1k A
IH_ e ] 0F
PE | IITT1 %
0 -1F
F ] fl-- 0075
-1F B -2F-- 005
i - 0025
=2t =3r
[ [|== 0
=30 L N -4 L
0.0 12 14 0.0 02
FIG. 2 (color online). Plots of ®zz as a function of time for Iz = 0 and different sample values of Mz as in Fig. 1.
A) AD(t) for values of Re z € [-0.1, 0]
6 [~ T T — T T — T T — T T T T T T T 8 T T T
[ (72T s [
[ L Fl— o1
4r v 6r
[ b [
2t 4L |- 005
0 : 2r
I a0 [T O
-2f 0
- 0,075 r ]
—4F |- 005 -2f ]
i -0.025 b A ]
[ == 0 [ o ]
B T T S T -6, P N S S R
0.0 0.2 04 0.6 0.8 0.0 0.6 0.8 1.0 12 14

t(ps)

FIG. 3 (color online).

Notice that, in such intervals for Hz and Iz, the phases
®pogo, Ppogo, and AD are weakly depending on the value
of Jz. Indeed, for example, in the time interval of the B?
lifetime, the shape variation of ®pgogo and ® o0 with Jz is
at most of the order of 0.2%, so that one can fix an arbitrary
value of Iz in the values interval [—0.1, 0.1] and study the
noncyclic phases as functions of time for different values
of Nz. In Figs. 1-3 the phases are drawn for Iz = 0. In
order to better show the behavior of the phases, the figures
contain two plots (A) and (B) of the same phase for sample
values of 9z belonging to the intervals [—0.1,0] and
[0, 0.1], respectively.

The plots show that in the case of CPT violation, the
phases ®gopo and P gogo are clearly nontrivial; in fact they
can assume values different from 0 and 7, and in particular,
the phase difference A® is nonzero.

IV. CONCLUSIONS

In the presence of T violation the effective Hamiltonian
of mixed meson systems is non-Hermitian and non-normal.

t(ps)

Plots of A® as a function of time for Iz = 0 and different sample values of )iz as in Figs. 1 and 2.

The left and right eigenstates of H are independent sets of
vectors that are not connected by complex conjugation.
Then HH cannot be diagonalized by a single unitary trans-
formation but by a complete biorthonormal set of vectors.

The correct flavor states are then derived by using the
biorthonormal basis formalism. They are used to compute
the noncyclic phases for oscillating mesons and the asym-
metries describing the CP and CPT violations (see
Appendix B). The obtained asymmetries are equivalent
to the ones achieved by the usual formalism.

The main outcome of the present work is the study of the
Mukunda-Simon phases for mixed mesons and the discov-
ery of the fact that the geometric phases appearing in the
evolution of the meson ®,,,0(7) and of its antiparticle
® 070(7) depend on the CPT violating parameter z. In
particular, only in the case of CPT symmetry breaking,
such phases are nontrivial and the phase difference A®
between the particle and antiparticle is nonzero.

The possibility of CPT violation has been investigated
in detail by analyzing the Mukunda-Simon phases for the
neutral B, system. Such a system, together with the kaon, is
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especially suitable for the study of geometric phases. The
high precision of the upcoming experiments on the BY
mesons will allow us, in the future, to completely deter-
mine the dynamics of such particles; thus such experiments
and the ones analyzing kaons dynamics might allow an
accurate analysis of the geometric phases and, in particular,
a measurement of the phase difference A® generated in the
time evolution of the particle and the antiparticle. Such
measurements might represent a completely alternative
method to test one of the most important symmetries of
the nature.

Finally, it has been also shown that the Mukunda-Simon
phases @ 070(2), ®ypop0(¢) and the Aharonov-Anandan
invariants sy050(), Sy00(t) (see Appendix C) due to
meson oscillations are related to the CP violation parame-
ters. CPT violation should not affect these phases, as the
corrections are quadratic and expected to be negligible for
small z. Thus, a study of the noncyclic phases might be
useful also for the analysis of the CP symmetry breaking.
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APPENDIX A: OTHER EXPRESSIONS OF THE
STATES |M°(¢)) AND |M°(¢))

The mass eigenstates |M, ) and |M ;) are written in terms
of |M°), |M°) as®

M) = prIM®) + q.|1M°), (A1)

My) = pyIM®) — qy|M°), (A2)

~ ~
and in a similar way, (M, | and (M| are expressed as

(b1, = (04 M%) + pu(°]], (A3

qrPu t qupL

(Bl = [0, = pu(3201] (A%)

qLPu t qupL

Then at time ¢, the states |[M°(7)) and |M°(¢)) in terms of
|M,) and |M;) are

1 . .
[MO(1)) = W[QHlML>37MLI + QL|MH>67’)‘”'],
(A5)
70 1 —iApt —iAyt
|M (f)>=m[PH|ML>€ i — prMy)e ”],
LPut qupL

(A6)

SNote that (M le it j) # 0; for example, in the kaon case, one
has <K5|KL> # 0.
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(MO(D)| = po (M yle™t + ppy(Myleis, (A7)

(MO(0)] = qriMile™" — gu{Mpyle™'. (A8)

These states can be expressed also in the bases
{IM°), 1M°), (M°], (M°l} as

IMO(0)) = [, (1) + zg_ (D]IM°) — +/T — zzgg,(r)lMOx
(A9)

110(1)) = —1 — zzgg_mlM% + [g4 () — zg_(1)]IM1°),

(A10)

MO = [32(0) + 23 ()M — VT = z2§ (0,
(Al1)

(M) = =1 — zzgg_wﬁf’l +[3,(1) — 23_ (0],

(A12)

~

g=()=5X

with  g=(1) =3 (e7 ™' ¥ ¢7!)  and
(et F giMel),

D=

APPENDIX B: CP AND CPT ASYMMETRIES

The expressions of the asymmetries Ay and Acpy de-
scribing a departure from time reversal and CPT invari-
ances, respectively, are calculated by using the states
derived in the biorthonormal formalism, Eqs. (14)-(17).
The obtained results are equivalent to the asymmetries
computed by using the usual formalism [52,54].

Let us begin by computing the 7 asymmetry. The vio-
lation of time reversal invariance can be revealed by the
comparison between the probability of transition from AM°
to M°, Pj0_,p, and the probability of transition from M°
to M°, Pyjo_ 50, in the asymmetry:

PM(»_,MO (Al‘) - PMO_,MO(AI)

Ar(Ar) =
r(A7) PMO_,MO(AI)+PM0_,M0(AI)

(BI)

with At = t, — t; denoting the time interval between the
initial time #; and the final time #;. The transition ampli-
tudes A jo_,,0(At) and Aypo_, 50 (At) are given, respectively,
by

Aoy (A1) = (MOt )| 1)) = (MO~ i#154| i70)

— % 1‘/1 _ ZZ(e—i/\LAt _ e—i/\HAt)’ (BZ)
p
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Appo_ypo (A1) = (MO(t)IMO(t;)) = (M°|e~HAI | MO)
_ % E,/l — (e iMAr — pmidyAry (B3)
q
The results in Eqgs. (B2) and (B3) are obtained by introduc-
ing the identity operator |M; }M | + |[My)}My| =1 on

the right side of the operator e 72", The corresponding
transition probabilities are then

Py (A) = (MOt )01, )2

:% I |2|,/1 _ Z2|ze—(r/2)m

1
P

X I:cosh(AIZ‘At) — cos(AmAt)], (B4)

Py (A1) = KMO(2) | MO (1))
_! IE |2|,/1 — 22/
21q

X [cosh(AgAt) — cos(AmAt)]. (B5)

The asymmetry A7 is time independent and it is given by
) B6
A AR (B6)
P

A value different from zero of the quantity in Eq. (B6)
indicates a direct T violation independent from CPT vio-
lation. The result (B6) coincides with Eq. (54) in Ref. [54].
In a similar way, the violation of CPT invariance can be
revealed by the comparison between the probability of
transition from M° to M°, Pyu_yp0, and the probability of

transition from M° to M°, Py_ 0, in the asymmetry

PMo_,Mo(At) - PMO_,MO(AI‘)

A Ar) = .
cpr(A) Prjo_p0(At) + P, 0 (A7)

(B7)

The transition amplitudes Ayo_,,0(Ar) and Ajo_,;0(Ar)
are given, respectively, by

Apgopgo (A1) = (MOt ) | MO(2)) = (MO]e~i#54| p0)

1+ ) 1 - )
= < > Z)ef“\HA‘ + (—2 Z)ef’“m, (B8)

Ao (A1) = (Tt LIty = (FT0 e #4310
1-— : 1+ .
= ( 5 Z)e*“‘HA’ + (—2 Z)ef’“m, (B9)
where again the relation |ML><1\}L| + IMH)<1\7H| =1 has

been introduced on the right side of e #2’. The corre-
sponding transition probabilities are then
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(MOt ) |MO(1)) P

1+ |zI? AT A¢
_ —(T/2)A:
¢ [( 2 )COSh< 2 )

ATA 1 — |22
- i)tzsinh( 5 t) +< 2|Z| )

PMO_,MO (At)

X cos(AmAt) + Iz sin(AmAt)], (B10)

Pyo_n(A1) = [0 ) IO,

1+ |z]? AT A¢
_ —(T/2A:
¢ [( 2 >°°Sh< 2 )

. (AT A¢ 1 —|z]?
+fﬁzs1nh( 3 )—i—( 5 )

X cos(AmAt) — Iz sin(AmAt)]. (B11)

The asymmetry Acpr is thus given by

—2Nz sinh(ALA1) + 23z sin(AmA7)
(1 + 1zI*) cosh(BLAY) + (1 — |z]?) cos(AmAt)”
(B12)

Acpr(At) =

Omitting second order terms in z and making the approxi-
mation sinh(%) ~ % which is valid in the range
|Af] <15 ps used in the experimental analysis of the
B — B systems [52,55], one has

—MNzAT' At + 23z sin(AmAt)

A At) =
cpr(&7) cosh(ALA%) + cos(AmA1)

. (BI3)

which coincides with Eq. (6) of Ref. [52]. In the case of
CPT invariance, z = 0 and Acpr = 0.

APPENDIX C: AHARONOV-ANANDAN
PHASE AND CP VIOLATION

The Aharonov-Anandan invariant is defined as [21] s =
2 [ AE(')dt’, where AE is the variance of the energy E.
The generalization to systems with a non-Hermitian
Hamiltonian is presented in Ref. [46] where the biortho-
normal basis formalism is also used. For a system with
a complete biorthonormal basis {|(2)), (¥ (1)|}, the
variance is given by AE%,(t) = (Y @)|H?| (1) —
(¢ (0)|H|(1)))?, and the Aharonov-Anandan phase is
sy =2 [ |AEyy(¢')|df’. In the particular case of the
mixed meson systems, one has the following variances:
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AE (1) = AEgoi(1) = 1(1 — 22)(Ay — A), (CD)

AE () = (MO HIIO(1))

2
__pYU=D ), (C2)
q 2
AE (1) = (OO HIMO(1))
2
_ _%7"“2“ Mg —A). (C)

Such relations show that the variances depend on z2.
Moreover, since AE;0,0(t) = AEjo0(t), then the corre-
sponding invariants for the particle and antiparticle are
equal. These facts mean that Aharonov-Anandan invariants
do not represent a good tool to test CPT invariance.
However, such phases could be useful in the study of CP
violation. Indeed, by neglecting the second order depen-
dence on the z parameter, one has

SMoMo([) = SMOMU(Z‘) = th |AEM0M0([/)|dt/
0

(AT)?

=4/(Am)* + t, (C4)

PHYSICAL REVIEW D 84, 116002 (2011)

SMOMO(Z) = 2—/-[ |AEM0M0(ZI)|dI,
0

2
— IE IW/(Am)Z L @en’, (C5)
q 4

SMOMO(t) = 2ft |AEM0M0(t/)|dtI
0

= |% H(Am)2 + gt.

The phase sy070(2) is different from s0,0(7) because of
the CP violation p # ¢, independently from CPT viola-
tion. Equations (C5) and (C6) can then be used to compute
the following quantity:

(Co)

syoie — Siowe _ |P/ql = lq/pl _ [Hipl = |Hyl
syoio + sgope |p/al +1q/pl |Hpl + |Hy |

(C7)

which coincides with the CP and T violating parameter &
defined in Eq. (7). Thus, the Aharonov-Anandan phases
could represent a completely new way to estimate the
parameter & in mixed meson systems such as the K — K°
one [53]. In the case of CP conservation one should have

SMoMo(t) = SMOMO(t) = SMoMo(t) = SMoMo(t) and ¢ = 0.
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