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We study an extension of the minimal supersymmetric standard model (MSSM) which includes both

new SUð2Þ triplets with hypercharge �1 and a standard model gauge singlet (à la the next-to-minimal

supersymmetric standard model [NMSSM]) which are coupled to each other. We are motivated by the

little hierarchy problem, as well as by the � problem of the MSSM. We show that the NMSSM and the

triplet-extended MSSM can successfully solve problems of one another: while triplets are responsible for

large correction to the lightest physical Higgs mass, the singlet’s vacuum expectation value (VEV)

explains why the � terms (for the Higgs doublets and the new triplets) are naturally of order the

electroweak (EW) scale. We also show that singlet-triplet coupling significantly changes the renormal-

ization group evolution of the singlet mass squared, helping to render this mass squared negative, as

required for the singlet to acquire a VEV. We analyze constraints on this scenario from EW precision

measurements and find that a relatively large region of the parameter space of this model is viable,

especially with the triplet fermions (including doubly charged) being light.
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I. INTRODUCTION

Weak-scale supersymmetry (SUSY) is a very well-
motivated extension of the standard model (SM): it
naturally explains why the electroweak (EW) symmetry-
breaking scale is much smaller than the Planck scale, it can
incorporate a dark matter candidate, and the minimal
supersymmetric SM (MSSM) predicts the unification of
the three SM gauge coupling constants. However, the
MSSM comes with its own shortcomings: it cannot fully
solve the hierarchy problem since, even with the most
optimistic assumptions, it is fine-tuned to the level of 1%
(see e.g. [1]). This residual fine-tuning originates in a tree-
level prediction that the SM-like Higgs boson in theMSSM
is always lighter than the Z boson. Although this result is
slightly modified by radiative corrections, it is hard to
comply with the LEP2 bounds [2] on the Higgs mass,
without rendering the stops unnaturally heavy.

Another puzzle of the MSSM has to do with the � term,
which is required to be of order EW scale. Since this term
is completely supersymmetric and a priori has nothing to
do with SUSY breaking, it is not easy to explain this
coincidence of scales. While the Giudice-Masiero mecha-
nism [3] can provide a solution for high-scale SUSY break-
ing, finding such a solution, for example, for low-scale
SUSY breaking is much harder.

Of course, extensions of the MSSM have been proposed
to solve these problems. For example the extension of the
MSSM by addition of a (SM) gauge singlet which is
coupled to Higgs doublets (the next-to-minimal supersym-
metric SM [NMSSM]) (see [4,5] for review) has been
proposed to solve the � problem. The idea is that a bare
� term is forbidden, while an effective � term is dynami-

cally generated by a vacuum expectation value (VEV) of
the singlet. Thus the effective � term can naturally coin-
cide with the scale of soft SUSY breaking. However, in
practice, it is typically difficult to realize a tachyonic
singlet as is required for it to get a VEV. It is true that
the above-mentioned coupling of singlet to Higgs doublet
tends to drive the singlet mass squared negative in renor-
malization group evolution (RGE), but the up-type Higgs
doublet mass squared is being driven negative in its own
RGE from UV to IR, precisely as it happens in a regular
MSSM. The tachyonic Hu tends to make the singlet mass
squared more positive in the latter’s RGE mentioned
above.1

Unfortunately the NMSSM with all the couplings being
perturbative2 up to the GUT scale also does not really
ameliorate the little hierarchy problem [7–12]. This contra-
dicts a naive expectation that the little hierarchy problem
can be addressed in the NMSSM due to the extra Higgs
quartic, which arises from the interaction with the singlet.
A reason for this ‘‘disappointment’’ is that the extra quartic
coupling for the Higgs doublets, which directly contributes
to the physical Higgs mass, is suppressed in the large tan�
limit. The problem is that these are precisely the values of
tan� where the tree-level MSSM quartic coupling
for Higgs doublets (and thus the Higgs mass) tends to
be maximized. Moreover, in the NMSSM there is an

1Of course, the resulting tachyonic Hu is otherwise a feature
(rather than a bug) since it results in radiative electroweak
symmetry breaking.

2For the discussion of the NMSSM with large coupling be-
tween singlet and doublets, see [6].
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additional negative contribution to the physical Higgs mass
squared which tends to cancel the positive effect of the
extra Higgs quartic. This effect arises due to singlet-
doublet mass mixing term, which is proportional to the
singlet-doublet coupling and singlet VEV. The point is that
the singlet mass is also proportional to the singlet VEV so
that this negative contribution does not decouple with the
singlet VEV.3 Therefore if one takes the little hierarchy
problem seriously, then we should consider another source
for the Higgs quartic coupling, which would not decouple
in the large tan� limit.

One of the models which naturally possesses such a
Higgs quartic coupling is the extension of the MSSM by
the addition of SUð2Þ triplets (dubbed TMSSM) [14–16].
This model is especially attractive when the triplets with
non-zero hypercharge are included, such that they can
couple to Hu only (unlike a NMSSM singlet or triplet
with a zero hypercharge [14,17–20]). In this case, the extra
quartic coupling for the Higgs boson is unsuppressed in the
large tan� limit such that the stops significantly lighter
than 1 TeV can be consistent with the LEP bounds on the
Higgs mass. The second bug of the NMSSM in this regard
is also avoided by the TMSSM. The triplet VEV is required
to be small, of order a few GeV (see e.g. [21]) in order to be
consistent with the � parameter, and so is the mass mixing
term between doublets and triplets (arising in analogy to
that in the NMSSM). The point is that the triplet mass term
is not proportional to its VEV, and thus can still be large so
that the resulting negative contribution to the physical
Higgs mass squared can be negligible.

In this paper we propose combining these two exten-
sions of the MSSM (namely NMSSM and TMSSM) show-
ing that they can solve one another’s problems if we couple
the triplets to the singlet. Evidently the TMSSM introduces
an additional � problem (for the triplet), but this can be
solved by the singlet VEV, along the lines of the solution to
the usual � problem. On the other hand, we show that the
couplings of the singlet to the triplet help drive the soft
mass2 of the singlet negative: what is crucial here is that the
triplet is not driven tachyonic in the IR, unlike Hu in
the case of NMSSM mentioned above. Thus we can solve
the problem of getting sufficiently large singlet VEVof the
NMSSM. We also do not run into the usual problems of
the NMSSM as far as the little hierarchy is concerned since
the singlet interactions do not play any important role in
raising the physical Higgs mass: we rely on triplets instead
in achieving this goal.

Our paper is organized as follows. In Sec. II we present
the basics of the model in terms of parameters at the weak
scale and discuss the minimization conditions of the ex-
tended Higgs potential. We show that this model indeed

addresses the little hierarchy problem such that even the
tree-level mass of the Higgs boson can easily evade the
LEP bounds. In Sec. III we perform further analysis of
the model. We start by discussing the constraints on the
model from EW precision tests, mainly the � parameter. It is
well-known that models with EW triplets in general are
subject to stringent constraints from EW precision tests
since they a priori have a new contribution to the � parame-
ter from the triplet VEV. A neutral component of the triplets
always acquires a VEV in these models. A trivial solution to
this problem is of course to render the entire triplet (super-
field) heavy, which has been discussed in detail in the
literature. We concentrate instead on another part of the
parameter space, where the soft masses of the triplet scalars
are relatively big, but the associated � term is small. We
show that the physical Higgsmass is larger in this region due
to a suppression of the negative contribution to it from
triplet-doublet mixing driven by the triplet � term. In
Sec. IV we discuss the renormalization group evolution of
this model to higher energy scales and discuss its implica-
tions. Finally in Sec. V we conclude. Important RGE equa-
tions are summarized in the Appendix.

II. THE MODEL

As in any supersymmetric theory which is broken softly,
the Lagrangian of the next-to-minimal supersymmetric
standard model with triplets (TNMSSM) (which is being
proposed here) is characterized by the superpotential, the
supersymmetric gauge interactions, and the various soft-
breaking couplings (soft masses and trilinear terms).
To begin with, we consider the terms in the superpoten-

tial of the TNMSSM. As we have already mentioned in the
introduction, the terms in the Higgs sector depend exclu-
sively on the gauge singlet superfield S, the SUð2ÞL triplet
superfields T and �T, and the MSSM Higgs doublets, Hu;d.

In addition, the model contains only dimensionless
Yukawa couplings which will be given below, i.e., there
exist no dimensionful supersymmetric parameters such as
� and �T (� terms for the doublets and triplets, respec-
tively) in the superpotential. The superpotential of the
Higgs sector is given as follows:

WHiggs ¼ Sð�Hu �Hd þ �T trð �TTÞÞ
þ �

3
S3 þ �uHu � �THu þ �dHd � THd; (1)

where �, �T , �, �u, and �d are dimensionless Yukawa
couplings. Note that compared to the MSSM, there is an
additional physical CP-violating phase coming from the
superpotential, Argð�u�d��

�
Tð��Þ2Þ. However, we defer

from studying constraints from electric dipole moments
(EDMs) (for example) on this new phase; instead, in this
paper, we simply assume CP conservation.
As usual, one should add the Yukawa couplings of the

quark and the lepton superfields,

3However, the MSSM with singlet can solve the little hier-
archy problem if one does not insist that the singlet gets a
sufficient VEV to solve the � problem [13].
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WYukawa ¼ huHu �Q �uþ hdHd �Q �dþ heHd � L �e: (2)

Here the triplet superfields with hypercharge Y ¼ �1
are defined as follows:

T � Ta�a ¼ Tþ=
ffiffiffi
2

p �Tþþ
T0 �Tþ=

ffiffiffi
2

p
 !

; (3)

�T � �Ta�a ¼ �T�=
ffiffiffi
2

p � �T0

�T�� � �T�=
ffiffiffi
2

p
 !

; (4)

where �a are the usual 2� 2 Pauli matrices, and the
respective definitions of the products between two
SUð2ÞL doublets and between a SUð2ÞL doublet and a
SUð2ÞL triplet are given as follows:

Hu �Hd ¼ Hþ
u H

�
d �H0

uH
0
d; (5)

Hu � �THu ¼ ffiffiffi
2

p
Hþ

u H
0
u
�T� � ðH0

uÞ2 �T0 � ðHþ
u Þ2 �T��; (6)

Hd � THd ¼ ffiffiffi
2

p
H�

d H
0
dT

þ � ðH0
dÞ2T0 � ðH�

d Þ2Tþþ: (7)

The soft terms in the Lagrangian include

�Lsoft ¼ m2
Hu
jHuj2 þm2

Hd
jHdj2 þm2

SjSj2 þm2
T trðjTj2Þ

þm2
�T
trðj �Tj2Þm2

QjQj2 þm2
�uj �uj2 þm2

�d
j �dj2

þm2
LjLj2 þm2

�ej �ej2ðAhuQ �Hu �u� AhdQ �Hd
�d

� AheL:Hd �eASHu �Hd þ ATS trðT �TÞ þ Ak

3
S3

þ AuHu � �THu þ AdHd � THd þ H:c:Þ: (8)

Note that, in addition to R parity, we explicitly imposed a
Z3 symmetry which forbids bare � and B� terms both for
Higgs doublets and triplets.4 The effective �, B� terms
form when S gets a VEV. We also assume that all A terms
are small for simplicity, and thus one can expect a light
pseudoscalar, the R axion, which will be discussed in detail
in Sec. III B. This assumption is also well motivated in the
context of flavor-safe mediation mechanisms for SUSY
breaking, for example, gauge mediation.

As advertised in the introduction, one can briefly see that
this model, i.e., combining the singlet and triplet exten-
sions of the MSSM, can solve both � problem(s) and little
hierarchy problem. For the � problem(s), like in the
NMSSM, a vacuum expectation value vs of singlet of the

order of the weak or SUSY-breaking scale will generate an
effective � term for the Higgs doublet and the triplet with

�eff ¼ �vs �eff
T ¼ �Tvs: (9)

For the little hierarchy problem, clearly one can see that the
coupling of triplet to up-type HiggsHu introduces the extra
quartic couplings for Higgs without any mixture with
down-type Higgs Hd in the Higgs (tree-level) potential,

VHiggs 3 ��2
uðHuÞ4: (10)

In the next section, we will see that this leads to an
enhancement of SM-like Higgs mass even in the large
tan� limit.

A. SM-like vacuum of TNMSSM

Plugging the VEVs into the full Higgs potential one gets

VHiggs¼ð2�uvuv �Tþ�vsvdÞ2þð2�dvdvTþ�vsvuÞ2
þð�v2

s��vuvd��TvTv �TÞ2þð�uv
2
uþ�TvsvTÞ2

þð�dv
2
dþ�Tvsv �TÞ2þ

g2þg02

8
ðv2

u�v2
dþ2v2

T

�2v2
�T
Þ2þm2

Hu
v2
uþm2

Hd
v2
dþm2

Sv
2
sþm2

Tv
2
T

þm2
�T
v2

�T
�2Avsvuvd�2ATvsvTv �Tþ

2

3
A�v

3
s

�2Auv
2
uv �T�2Adv

2
dvT; (11)

where g0ð� 0:35Þ and g denote Uð1ÞY and SUð2ÞL gauge
couplings, respectively. In the TNMSSM, the mass of the Z
boson has the same form as in the MSSM, but the electro-
weak symmetry breaking (EWSB) VEV for the doublets is
modified due to the presence of triplet VEVs,

M2
Z ¼ g02 þ g2

2
v2 � ĝ2v2; (12)

v2 ¼ v2
u þ v2

d þ 4v2
T þ 4v2

�T
� ð174 GeVÞ2; (13)

and tan� is defined by the ratio of vu to vd as usual:
tan� � vu=vd.

5

Since we introduced a singlet and two triplets, we have
five minimization equations including the ones for usual
up- and down-Higgses. In general, the vacuum expectation
values for the triplets must be small to avoid large �
parameter correction, which will be fully investigated in
Sec. III A. Assuming small VEVs for the triplets, i.e., vT ,
v �T � 0, one can easily derive the following relation for
the ratio of the vu, vd using minimization equations forHu

and Hd:

4For the study of NMSSM without Z3 symmetry, see [22].

5Given that in our case (v2
u þ v2

d) does not sum to the mea-
sured value of the SM Higgs VEV2 (unlike in the MSSM or even
the NMSSM), this definition might be somewhat misleading.
Nonetheless, since we know that the corrections from the triplet
VEVs are small (as required by the T parameter), we will still
loosely use this definition.
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vuvd

v2
u þ v2

d
¼ 1

2
sin2� ¼ vsð��vs þ AÞ

2ð�2
uv

2
u þ �2

dv
2
dÞ þ �2ð2v2

s þ v2
u þ v2

dÞ þm2
Hu

þm2
Hd

: (14)

Note that this relation reduces to the usual NMSSM rela-
tion in the limit �u, �d ¼ 0 as expected. In order to have
nonzero vu and vd the numerator should not vanish, i.e.,
��vs þ A � 0. Indeed, the TNMSSM accommodates such
a nonzero numerator. To see this, one notices that a large vs

is required in order to generate a sufficiently large effective
� term [see Eq. (9)] like the case of the NMSSM [4]. In
addition, since small A terms are assumed as mentioned
before, this condition for nonvanishing vu and vd is readily
attained in most of the parameter space.

One can easily find that the minimization condition for
vs reduces to the corresponding NMSSM-like form under
the assumption of small VEVs for the triplets [4],

ð2�2v2
s þ �2ðv2

u þ v2
dÞ � ��vuvd þ A�vs þm2

SÞvs ¼ 0:

(15)

One can see that for small A� and vs * vd, one should
demand m2

S < 0. Here we simply assume this condition,

but we show in Sec. IV that our model can naturally have
this feature.

B. Higgs mass in the TNMSSM

To begin the discussion of the SM-like Higgs mass in the
TNMSSM, one may consider a few interesting limits,
depending on the hierarchy between the soft mass term
and the � term for triplets. As we will discuss in more
detail in Sec. III A, one is required to have large masses for
the triplets to avoid a significant correction to the � pa-
rameter. To obtain large triplet scalar masses, either a soft
mass for triplets, or a � term for triplets, or both of them
should be large enough (again see Sec. III A for details) so
that we will discuss three distinct cases. One of them has
large �T and small triplet soft masses, which implies that
the triplets can be integrated out in the supersymmetric
limit. The opposite regime is the highly nonsupersymmet-
ric one, wheremT 	 �T , and we will find it to be the most
interesting phenomenologically. One can think about the
third regime, mT ��T as a kind of an intermediate case.

It is easy to estimate the Higgs mass in the limiting
cases, and the intermediate case can be understood as the
admixture of the two extreme limits. Let us begin with the
limit where the soft mass is dominant and the �T is small.
The tree-level Higgs mass spectra, in general, can be
obtained by diagonalizing the associated mass mixing
matrices. To find the mass of the SM-like Higgs boson
we have to (typically) find the lightest eigenvalue of the
(5� 5) mass matrix of the CP-even neutral scalars. The
associated calculations will be made numerically in our
parameter scans, but in order to develop some intuition we

can look at the following analytical upper bound on the
mass of the lightest Higgs boson [14]:

m2
h0


 M2
Z

�
cos22�þ �2

ĝ2
sin22�þ �2

d

ĝ2
cos4�

þ �2
u

ĝ2
sin4�

�
: (16)

Note that the last term in Eq. (16) is proportional to sin4�
(originating from the coupling of only the up-type Higgs to
triplet) which is good for solving the little hierarchy prob-
lem since it is maximized precisely where the SM-like
Higgs mass is in the MSSM, i.e., � ! �

2 . On the contrary,

as mentioned in the introduction, in the NMSSM, the
enhancement of the Higgs mass at the tree level is sup-
pressed in this large tan� limit [see the second term in
Eq. (16)]. Also note that the bound Eq. (16) is saturated in
the limit of small mixing between doublets and singlet or
triplets. Such mixing arises from various F terms and
reduces the mass of the Higgs boson below the bound in
Eq. (16). In the case of NMSSM [4], the doublet-singlet
mixing from the F term of Hd then results in the following
estimate for the Higgs mass (in the large tan� limit):

m2
h0
�M2

Z �
�4v2

�2
: (17)

Now let us look at the effects coming from the doublet-
triplet mixing in the TNMSSM. The effects of doublet-
triplet mixing from F terms of singlet and Hu are propor-
tional to the VEV of the triplet. Since bounds on the T
parameter require the VEV of the triplet to be very small
(see discussion in Sec. III A), this mixing is negligible.
Similarly, the doublet-triplet mixing from the F terms of
Hu;d (which is proportional to � term for doublets) is

suppressed in the large tan� limit (which is our interest
here). Thus, the most important contribution to the
doublet-triplet mixing arises from the F term of the triplet

jFTj2 � �u�T
�TyHuHu þ H:c:; (18)

which results in a shift in the Higgs mass,

	m2
h0
��ð�u�TvuÞ2

�2
T þm2

T

: (19)

However in the limit mT 	 �T this effect (which does not
depend on the triplet VEV) is suppressed and we can
estimate the overall correction to the Higgs mass to be

m2
h0
�M2

Z �
�4v2

�2
þ �2

uv
2: (20)
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We see that by choosing appropriate values of the cou-
plings �, �u, and � (for example, �u � 0:5> �� �), we
can easily be above the LEP2 bound on the Higgs mass
(even at tree level).

On the other hand, the estimate of the Higgs mass in the
opposite limit, where �T is dominant, is different. In this
case, the shift in Higgs mass given in Eq. (19) actually
cancels the last term in Eq. (16).6 An equivalent way to see
this cancellation is that, in this limit, the triplets must be
supersymmetrically integrated out, and thus their remnant
effects appear via nonrenormalizable effective superpoten-
tial [23–26]. After the supersymmetric integrating out is
performed, one finds no triplet contribution in the Higgs
mass proportional to sin4�, but rather

	m2
h0
ðtriplet onlyÞ ’ �

�T

�u�dv
2 sin2�

¼ �

�T

�u�dv
2 sin2�þ � � � ; (21)

where the dots stand for corrections, coming from hard
SUSY-breaking terms, proportional to powers of mT=�T .
Clearly, this contribution to the SM-like Higgs mass favors
moderate tan� (i.e., �� �=4), where the MSSM contri-
bution is not saturated while the NMSSM contribution is
saturated.

It is interesting to compare the size of the correction to
the Higgs mass due to the triplets only (i.e., ignoring the
singlet) in SUSY to the non-SUSY limit,

R � ð	m2
h0
ÞSUSY

ð	m2
h0
Þnon-SUSY

�
�
�T
�u�dv

2 sin2�

M2
Zð�

02
d

ĝ2
cos4�0 þ �02

u

ĝ2
sin4�0Þ

¼ r�r� sin2�

r2�cos
4�0 þ sin4�0 ; (22)

where r� ¼ �=�T and r� ¼ �d�u=�
02
u . To compare the

maximum contributions in the respective limits, one should
take � ! �=4 and �0 ! �=2 so that R is simplified to
R ¼ r�r�. Since in the SUSY limit �T is larger than the

weak scale (whereas � is at the weak scale for natural-
ness), we have r� � 1. So, unless we choose the �-type
couplings in the two limits so that r� 	 1, we see that it is

more difficult to get a larger size of Higgs mass correction
by introducing the triplets in the SUSY limit than that in
the nonsupersymmetric limit.
Figure 1 is a contour plot of SM-like Higgs mass in the

TNMSSM in the plane of triplet soft mass term versus �
term for the triplet. For the scan we take the one-loop
correction from stop into consideration [27],

	m2
h �

3

4�2
sin2�y2t m

2
t ln

�
m~t1m~t2

m2
t

�
; (23)
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FIG. 1 (color online). Contour plots of the SM-like Higgs mass (including one-loop radiative correction from stop) in the plane of
mT � m �T and �T . The relevant parameters (see text for an explanation) are chosen as follows: � ¼ 0:30, � ¼ 0:30, �T ¼ �0:60,
�u ¼ �0:30, �d ¼ �0:55,m~t ¼ 300 GeV and all A terms are assumed to vanish. The black, the red, and the orange points correspond
to the Higgs mass in the ranges ½0; 110� GeV, ½110; 114:4� GeV, and ½114:4; 120� GeV, respectively. For the remaining colors (in the
order pink, green, blue, and purple), the upper end points of this range are increased successively by 5 GeV, i.e., pink is ½120; 125� GeV
and so on. On the gray scale, black corresponds to the darkest part of the grid, while green corresponds to the brightest part. Note that
the large blank region on the plot with tan� ¼ 5 is due to the constraint from the � parameter. This constraint is weakened for the case
of tan� ¼ 2 because of an accidental cancellation between F terms of the �T and Hd which results in a smaller VEV for the triplet. The
vacant regions appearing for large soft masses are an artifact of the numerical calculation.

6See Ref. [19] for a similar discussion in the model with a
zero-hypercharge triplet.
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neglecting any stop mixing in order to be conservative.
Namely, the mixing between ~tR and ~tL pushes the Higgs
mass even higher so that we are generically underestimat-
ing the Higgs mass. We show only the points which respect
the �-parameter constraint which will be discussed in de-
tail in Sec. III A 1. Note that we completely neglect the A
terms for all of the Higgs fields in this scan. From this
figure, we see that (as expected from the estimates above) it
is easier to get large enhancement of the physical Higgs
mass (namely mh > 120 GeV) when tan� is large and
when there is a large hierarchy between the soft triplet
mass term and the � term for the triplet. It does not
necessarily mean that moderate tan� is excluded by the
Higgs mass limit, but gettingmh > 120 GeV in this case is
difficult.

C. Remarks about mass spectrum

Analysis of a full mass spectrum (i.e., including squarks
and sleptons) is highly model dependent and heavily relies
on underlying assumptions about the mediation scheme.
Here we just make several comments regarding the spec-
trum of EW Higgses, charginos, and neutralinos, which
directly follows from our previous considerations of the
Higgs sector.

We begin with the spectrum of the neutral scalars and
pseudoscalars. One can easily derive the relevant
mass matrix elements ðM2

0Þij in the basis of (H0
u, H

0
d, T

0,
�T0, S). We notice that in the limit of the vanishing A terms
and gaugino masses our Lagrangian is invariant under extra
Uð1ÞR symmetry under which all the chiral fields carry a
charge 2=3. This leads to the appearance of the light

pseudoscalar, i.e., the pseudo-Nambu-Goldstone boson as-
sociated with the spontaneous breaking of this symmetry.
More detailed discussion of this R axion is left to Sec. III B.
Moving onto charged scalar particles, in the TNMSSM

these are of two types: singly charged and doubly charged.
In the singly charged Higgs sector, i.e., ðM2�Þij, the basis

consists of Hþ
u , H

��
d , Tþ, �T��. For the doubly charged

Higgs sector, there are contributions only from triplets (i.e.,
Tþþ and �T��� ¼ �Tþþ), and thus the associated mass
matrix ðM2

2�Þij is simply a 2� 2 matrix.

Similarly, the fermionic mass matrices can be con-
structed. The EW gauginos contribute in the neutral and
singly charged sectors, but not in the doubly charged sector
(where only the triplet contributes, just like for scalars
above).
As an illustration we show in Fig. 2 representative

spectra of Higgses, charginos, and neutralinos in all the
three different cases that we mentioned above. In all these
cases we take 200 GeV and 220 GeV for the Uð1ÞY and
SUð2ÞL gaugino masses, respectively, and the other input
parameters are tabulated in Table I. Regarding the Higgs
mass correction, we again include a one-loop correction
from the stop for the SM-like Higgs mass. Conforming to
the usual convention, we denote scalars and fermions by
dashed lines and solid lines, respectively. States labeled H
correspond to CP-even or charged Higgses depending on
their electric charge. In the same manner, the labels A, N,
and C correspond to CP-odd Higgses, neutralinos, and
charginos, respectively.
Of course, we can choose the gaugino masses to be

larger than what we assumed here, i.e., closer to the TeV
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FIG. 2 (color online). Sample particle spectra for the three cases in the TNMSSM. The dashed and the solid lines denote scalars and
fermions. H, A, N, and C stand for CP-even/charged Higgses, CP-odd Higgses, neutralinos, and charginos, respectively (with
superscripts indicating electric charges). The mass spectrum for the lightest CP-even Higgs boson includes the one-loop radiative
correction from stop (we assumed m~tR ¼ m ~Q3

¼ 300 GeV), whereas the other masses are tree level. The light state A1 corresponds to

the R axion which is further discussed in Sec. III B.
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scale, since they do not (at least directly) enter the consid-
eration of the little hierarchy problem that we had so far.
Gauginos contribute to neutralino and singly charged fer-
mion spectra so that some of these particles can be heavier
than shown in Fig. 2. However, in the non-SUSY limit, �T

is always at the weak scale and the triplet has an admixture
in all three (i.e., neutral, singly charged, and doubly
charged) fermionic sectors, so that (at least) one eigenvalue
in all three sectors is always at the weak scale. In the SUSY
limit, �T is larger, but the � term for doublets (which
contribute to the neutral and singly charged fermionic
sectors) is still at the weak scale (based on the usual
consideration of naturalness of the weak scale). Thus, (at
least) one eigenvalue in the neutralino and singly charged
chargino sector is always at the weak scale in this case, but
the doubly charged fermions are always heavier.

III. ANALYSIS OF THE MODEL

A. Electroweak precision tests in the models
with triplets

One of the most stringent tests on new physics models
comes from the EW precision observables. The VEVof the
electroweak triplet will modify the relation between the
masses of the W and Z bosons from the one in the SM and
is thus constrained to be very small. On the other hand,
once the MSSM doublet Hu and singlet S get VEVs, the F
term of the triplet inevitably leads to the tadpole term for
the triplet,

jF �Tj2 � �u�THuHuS
yTy: (24)

So even in the case when the triplet soft mass is not
tachyonic, this tadpole will result in the triplet VEV of
the order

hTi � �u�Tv
2
u

ðm2
T þ�2

TÞ
; (25)

where �T is the triplet effective � term �T ¼ �TvS.
7 So

we can see that the only way to accommodate the experi-

mental data is to make the total mass
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

T þm2
T

q
of the

scalar triplet large.8 The limit where only �T is large
corresponds to the supersymmetric integrating out of the
triplet considered in [24,25] and discussed in Sec. II. This
limit was shown to be viable and it can ameliorate the little
hierarchy problem.
As mentioned in Sec. II, here we will be interested in a

different region, when �T is of order soft masses or even
smaller. This can give large corrections to the Higgs quartic
for any tan� (as discussed in Sec. II), but we should of
course check the constraint from the T parameter which we
do in detail in this section. A similar model with triplets but
without singlet (TMSSM), where the � terms for Higgses
and triplets are just bare terms, has very similar properties
in the EW symmetry-breaking sector. So, in order to under-
stand better the qualitative features of the parameter space
of the TNMSSM, we will first analyze the EW precision
physics in the TMSSM.

1. EW precision in TMSSM

We first review the bounds on the VEV of the triplet
coming from � parameter. For example, the triplet with
hypercharge �1 will have a VEVof the following form:

hTi ¼ 0 0
vT 0

� �
: (26)

Then the contribution to the Peskin-Takeuchi T parameter
will be

	T ¼ 1




m2
W1

�m2
W3

m2
W

¼ � 1




2v2
T

v2
; (27)

so that the constraint T * �0:1 requires

v2
T & ð4 GeVÞ2: (28)

On the other hand, we estimated in (25) a triplet VEV in
large tan� limit,

vT � 4� ð�T

130Þ
ðmT

600Þ2 þ ð�T

130Þ2
�
�u

0:4

��
vu

174

�
2
: (29)

TABLE I. Parameter sets chosen for the three cases.

Items in GeV2 m2
Hu

m2
Hd

m2
S m2

T m2
�T

�2
T

Non-SUSY limit �1322 1772 �1812 6012 6012 2522

SUSY limit �2452 4012 �4042 3122 3122 5702

Intermediate case �2122 3382 �3402 4722 4722 4802

SUSY parameters �u ¼ �0:25, �d ¼ �0:55, � ¼ 0:3, � ¼ 0:3, �T ¼ �0:6
A terms (GeV) Au ¼ �0:1, Ad ¼ 0:1, A ¼ 0:9, A� ¼ 0:5, AT ¼ �0:1

7There is also a tadpole for a triplet from the F term of Hu;d,
which is proportional to the � term for doublets, but it is
suppressed in the large tan� limit (which is our interest here).
See also Ref. [19] for a similar discussion, including a detailed
analysis of constraint from the T parameter, in the model with
zero-hypercharge triplet.

8Note that demanding a small triplet VEV does not necessarily
mean tuning because this VEV is triggered by a dynamical
tadpole (and not by a tachyonic mass). We will further justify
this point using Eq. (29).
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So we can see that with the soft mass of the order
�600 GeV9 and smaller �T (i.e., with only a mild hier-
archy between the two triplet mass terms), we can accom-
modate the bound from the T parameter. In this case, the
estimate for Higgs mass is given by Eq. (16), except that
we drop the singlet contribution (second term) here. Thus,
we obtain a large enhancement of the SM-like Higgs mass.
Another possibility for obtaining small vT is �T being

larger than weak scale (and smaller mT). Here, the en-
hancement in Higgs mass is smaller; see Eq. (21). We have
checked these estimates by numerical calculations shown
in Fig. 3 for ðtan� ¼ 10Þ, where one can indeed see that
points with small �T for triplets and large triplet soft
masses are preferred. In fact, this plot is similar to that
for the TNMSSM, i.e., adding the singlet, shown in Fig. 1
so that the lesson here is that the singlet is not so relevant
for consideration of the little hierarchy problem and the T
parameter.

2. One-loop analysis

So far we have been focusing only on the tree-level
effects in EW precision tests arising from the VEV of the
scalar triplet. Let us see now what will happen at one-loop
level. We know that the new fermionic and bosonic states
will also contribute at the loop level to the S and T
parameters. This contribution arises from the diagrams,
where components of the triplet and doublet fields mix
due to the Higgs VEV. However in the non-SUSY limit that
is our focus, the one-loop contributions with doublet-triplet
scalar mixing are suppressed by the large soft mass of the
triplets, but the same is not true for the fermions as follows.
In order to maximize the increase in Higgs mass, we need
to be in the region of the parameter space with small �T so
that generically contributions of the fermion loops with
triplet fermion-Higgsino mixing are important. The mass
matrix for the neutralino fields (treated as two-component/
Weyl spinors) will be given by

Ĥ TMmfĤ ¼ ð ~H0
u; ~H

0
d;

~T0; ~�T
0
; �1; �

3
2Þ

�2�uv �T �� 0 �2�uvu
� g0vuffiffi

2
p � gvuffiffi

2
p

�� �2�dvT �2�dvd 0 � g0vdffiffi
2

p gvdffiffi
2

p

0 �2�dvd 0 ��T

ffiffiffi
2

p
g0vT � ffiffiffi

2
p

gvT

�2�uvu 0 ��T 0 � ffiffiffi
2

p
g0v �T

ffiffiffi
2

p
gv �T

g0vuffiffi
2

p � g0vdffiffi
2

p
ffiffiffi
2

p
g0vT � ffiffiffi

2
p

g0vT M1 0

� gvuffiffi
2

p gvdffiffi
2

p � ffiffiffi
2

p
gvT

ffiffiffi
2

p
gvT 0 M2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

~H0
u

~H0
d

~T0

~�T
0

�1

�3
2

0
BBBBBBB@

1
CCCCCCCA
:

(30)

We need to know the couplings of these spinors in the
mass eigenstate basis and in our analysis we will follow the
discussion of Majorana spinors presented in [28,29]. The
mass eigenstates will be related to the weak interaction
eigenstates by orthogonal transformation O,

Ĥ i ¼ Oi
N
; (31)

where N
 are Majorana mass eigenstates, such that

OT:Mmf:O (32)

is a diagonal matrix. Then using properties of the Majorana
fields one can show that the couplings of the mass eigen-
states to the gauge bosons will be given by

A� �Hi
L��G

i
AĤ

i
L ¼ � 1

2
A� �N
���5N

�ðOTGOÞ
�;

GW3
:
g

2
Diagð�1; 1;�2; 2; 0; 0Þ;

GB:
g0

2
Diagð1;�1; 2;�2; 0; 0Þ:

(33)

where GW;B is gauge coupling matrix in the EW basis (for

the left-handed fermion fields).

200 250 300 350
ΜT
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800

T

FIG. 3 (color online). Sample viable points of the TMSSM in
the plane of soft SUSY breaking (mT � m �T) and supersymmet-
ric mass terms for triplets (�T). Every point on the plot has a
tree-level T parameter consistent with data and tree-level Higgs
mass above 110 GeV. The other parameters (see text for an
explanation) are varied in the following ranges: �u;d 2
½�0:5; 0:5�, � terms—2 ½150; 400� GeV, and B� terms for
doublets and triplets: 2 ½�5002; 5002� GeV2, tan� ¼ 10.

9Further discussion of such a size of a soft mass term for triplet
relative to those for doublets is in Sec. IV.
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The charge-one fields have the following mass matrix:

ðH�
d ; T

�; ��ÞR
�

ffiffiffi
2

p
�dvd gvdffiffiffi

2
p

�uvu �T

ffiffiffi
2

p
gv �T

gvu

ffiffiffi
2

p
gvT M2

0
B@

1
CA

Hþ
u

Tþ
�þ

0
@

1
A

L

:

(34)

These charge-one fermions have the following vectorlike
couplings to neutral gauge bosons:

B:
g0

2
Diagð1; 2; 0Þ W3:

g

2
Diagð1; 0; 2Þ: (35)

Similarly we can calculate the couplings of the fermions to
the charged gauge bosons. Now we calculate the contribu-
tion of the Higgsino-triplet fermion sector to the S, T
parameters. Results are presented on Figs. 4 and 5. In these
plots we have included only the contribution of the fermion
sector. One can see that contribution to the T parameter is
almost always positive, compared to the tree-level contri-
bution which was always negative, so we will have some
relaxation of the tree-level bounds. Also it is interesting to
note that a significant part of the parameter space predicts
negative S parameter, which relaxes EW precision bounds
even more.

Finally, we would like to mention the one-loop contri-
butions of the triplet might raise the Higgs mass even
beyond the tree-level effect, as calculated by Ref. [19]
for the model with zero-hypercharge triplet. Since in our

model it is rather easy for the tree-level Higgs mass to be
beyond the LEP2 limit, we defer such study of loop effects
of the triplet on Higgs mass for future work. We also notice
that the contribution to the Higgs mass from this effect is
expected to be subdominant to that of the tree-level effects
already discussed above.

B. Light pseudoscalar

So far in our analysis we always assumed that soft
SUSY-breaking A terms are small. This assumption was
motivated by low-scale gauge mediation which we consid-
ered as a possible UV completion of our model. As briefly
discussed in Sec. II B, in the limit when all A terms are zero
the potential is invariant under Uð1ÞR symmetry,

Hu;Hd; T; �T; S ! ei�RHu;Hd; T; �T; S: (36)

This symmetry is broken spontaneously by the VEVs of
the Hu, Hd, T, �T, S so that our spectrum contains a
massless pseudoscalar, the pseudo-Nambu-Goldstone bo-
son of spontaneous breaking of Uð1ÞR symmetry of the
model (called the R axion). This Uð1ÞR is explicitly broken
by the nonvanishing A terms so that the mass of the R axion
will be suppressed by the value of the A terms. In the limit
where the soft masses of the triplets are large such that the
VEVs of the triplet are small (vT , v �T ! 0), i.e., the triplet
plays a negligible role in Uð1ÞR breaking, the R axion is an
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FIG. 5 (color online). Same as the previous figure, except M1 ¼ M2 ¼ 500 GeV.
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FIG. 4 (color online). Contour plot of S (blue, solid line) and T (red, dashed line) parameters in the ð�u; �dÞ plane with �T ¼
� ¼ 150 GeV, M1 ¼ M2 ¼ 200 GeV contributed by the fermions at one loop (see text for an explanation of the parameters).
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admixture of the singlet and SM doublet, just like in the
usual NMSSM,

Raxion �
vsSI þ 2vc�s�ðc�HuI þ s�HdIÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
s þ v2sin22�

p : (37)

In the limit when A terms are small and tan� is large we
will get the following expression for the axion mass:

m2
axion � �3ASvs � 14Avuvd

vs

� 2A���vdð�8v2
s�

2 þ 2v2
uðg2 þ g02 þ 8�2

uÞÞ
vsvuð�8�4 þ 4�2ðg2 þ g02 þ 8�2

uÞÞ
:

(38)

As expected, tree-level mass of the axion vanishes for the
zero values of A terms.

The couplings of R axion to the SM fermions in the limit
of large vS, large tan�, and small values of triplet VEVs
vT , v �T are given by the same formula as in the NMSSM
[30],

�
ffiffiffi
2

p
vs

�
mu

tan2�
�u�5uþmd

�d�5d

�
iRaxion: (39)

In the case when maxion <m�, the decays of � !
�Raxion at B factories can provide an important test of the
model, but it is possible to evade this bound by simply
making the R axion a bit heavier than m�. Bounds from
Z ! Raxion� are very weak (see for example [30] and
references therein) due to the effective coupling involved
in this decay arising from a loop of SM fermions, com-
bined with the suppressed nature of the R-axion couplings
to the SM fermions (as above). The LEP searches for the
eþe� ! Z� ! hA0 in MSSM [31] can be reinterpreted as
searches for the light axion. However, these bounds are
expected to be rather weak because the axion is always
mostly singlet [see Eq. (37)]. In the large tan� limit, there
is a further suppression due to the dependence on tan� in
the admixtures ofHu;d in the R axion relative to those in the

lightest CP-even Higgs boson. Thus, in this limit, the

Zðh@$RaxionÞ coupling is estimated to be

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

q �
2v

vs

1

tan�2

�
: (40)

Numerical calculations show that this coupling is indeed is
very small. For a more detailed analysis of the constraints
on the light axion interactions in NMSSM, which applies to
TNMSSM as well, we refer interested readers to [4,30].

C. Neutrino mass

In the TNMSSM, gauge invariance and renormalizabil-
ity actually allow one more superpotential term other than
the terms shown in Eqs. (1) and (2),

W ¼ L � TL: (41)

This is potentially dangerous because it could lead to too
large Majorana mass for neutrinos once the triplet with
Y ¼ þ1 acquires its vacuum expectation value. Indeed, the
Lagrangian contains the following mass term:

L 3 1

2
ð2vTc �c � þ H:c:Þ; (42)

i.e., the neutrino mass, which must be sufficiently small, is
given by 2vT .
Even if we are required to have the triplet VEVs not

more than�4 GeV by the constraint from the � parameter
(see Sec. III A 1), it would need an enormous tuning in
order to suppress vT much belowOð1 GeVÞ, as required to
approach the scale of neutrino masses: see the issue of
tadpole for triplets in Sec. III A. We assumed that the
coupling  isOð1Þ in the above argument. In order to avoid
large neutrino masses, it is of course technically natural to
choose this coupling  to be very small. Indeed, we can
forbid the superpotential given in Eq. (41) by imposing a
symmetry. One possibility is a Z6 under which the super-
multiplets in the TNMSSM are charged as follows:

þ 1 for L; þ3 for �e; þ2 for other fields:

(43)

Even though this discrete symmetry is not anomaly free,
one can think about it as an effective symmetry which
holds up to very high energy scales.
Under this symmetry, all terms in the TNMSSM that we

had earlier survive except for the (unwanted) large
Majorana mass term for neutrinos in Eq. (41).
Nevertheless, the (different) Majorana mass term, arising
from the usual seesaw mechanism and thus naturally
highly suppressed

W � 1

Ms

ðHuLÞ2; (44)

is allowed. Note that this symmetry forbids the usual
renormalizable lepton-number violation operators (W 3
LL �e, LQ �d, and LHu), allowing only the operator W 3
�u �d �d . Thus, an intriguing possibility is that we do not
impose R parity, allowing the above baryon-number vio-
lating term. Note that such baryon-number violating cou-
plings (i.e., appearing without the lepton-number violating
terms) are relatively poorly constrained since they do not
induce proton decay. This would completely change the
phenomenology of our model, but studying this possibility
is beyond the scope of our paper.

IV. EVOLUTION OF PARAMETERS
TO HIGH SCALES

In the previous section we discussed preferred values of
TNMSSM parameters at the EW scale based on minimiz-
ing fine-tuning and EW precision tests. In this section, we
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will renormalization group evolve these parameters to
higher energy scales in order to determine if there are
any additional UV considerations. It is well known that
the MSSM has two remarkable features when extrapolated
beyond the EW scale: all its parameters stay perturbative
up to very high scale (practically, the Planck scale) and in
fact the three gauge couplings meet rather precisely at
�1016 GeV. In this sense TNMSSM (by itself) is less
appealing since (as we show below) it lacks the nice feature
of gauge coupling unification. Nonetheless, we will show
that a simple modification of the TNMSSM has hints of
unification. On top of that we show that all the couplings
which are important for the solution to the little hierarchy
and � problems that we presented here can be kept per-
turbative up to the GUT scale.

Let us start with gauge couplings unification. When the
triplets are added to the MSSM the one-loop �-function
coefficients for the three gauge couplings are modified
from the MSSM: ðb1; b2; b3Þ ¼ ð515 ; 5;�3Þ [we are using

SUð5Þ normalization for the g1 coupling]. With these co-
efficients, we find the SUð2ÞL �Uð1ÞY gauge couplings
meet around the usual GUT scale, i.e., �1016 GeV.
However the value of the gauge couplings at this scale
(
 � 1) cannot quite be regarded as perturbative so that
one-loop RGE equations might not suffice.10 The SUð3Þc
gauge coupling does not unify with these two couplings,
but it can attain a similar value (albeit large) at the GUT
scale if eight color triplets—inert under SUð2ÞL �Uð1ÞY
[16]—are added not far from the EW scale. Thus, even
though perturbative/one-loop unification is lost in the
TNMSSM, with a suitable modification, there is the pos-

sibility of a ‘‘strong’’ unification right below the Planck
scale.
Next, we consider the RGE of the new couplings (rela-

tive to the MSSM) which we introduced in order to address
the little hierarchy problem and the � problem of the
MSSM, i.e., the couplings involving the singlet, triplet,
and the usual Higgs doublet fields. A full set of relevant
equations is given in the Appendix. As seen there, all these
couplings tend to grow in the UV due to contributions from
these couplings themselves. In addition, for the couplings
involving Higgs doublets, the contribution of the (large)
third-generation Yukawa couplings make matters worse
here. On the other hand, as is well known, the (EW) gauge
contributions have the opposite effect on the RGE of
these couplings. The point is that the Casimir invariant
involved in these asymptotically free effects is larger for
the triplet couplings than for the others.
In the light of the above properties of the RGE, we

expect � and � (the couplings of the NMSSM part of our
model) to hit Landau poles before the other couplings (�u;d

and �T) if they all have similar values at the weak scale.
However, note that we only need �’s to be relatively large
at the weak scale in order to solve the little hierarchy
problem, i.e., we are not using the � coupling to enhance
the Higgs mass (unlike in the NMSSM). In fact, we would
like � to be relatively small since the � term for the
doublets (� �vS) should be at the weak scale for natural-
ness. Thus, Landau poles should not be a problem for our
model.
For illustration purposes we consider a sample point in

parameter space, described in Table II. This point is fairly
representative and one gets very similar results considering
other values in parameter space consistent with naturalness
and EW precision measurements. Running of the Yukawa
couplings is depicted in the left panel of Fig. 6 which

TABLE II. Values of parameters at the weak scale for a sample point.

Gauge couplings Yukawa couplings VEVs ( tan� ¼ 5) (GeV) A terms (GeV)

g1 ¼ 0:45 � ¼ 0:294 vu ¼ 170:6 A ¼ �7:48
g2 ¼ 0:65 � ¼ 0:360 vd ¼ 34:1 A� ¼ 1:46
g3 ¼ 1:18 �T ¼ �0:615 vs ¼ �519:4 AT ¼ 5:22

�u ¼ �0:242 vT ¼ 2:85 Au ¼ �2:25
�d ¼ �0:430 v �T ¼ �0:96 Ad ¼ 4:62

Aht ¼ �335
Ahb ¼ �40
Ahe ¼ �45

Gaugino mass (GeV) Soft mass (light scalars) (GeV2) Soft mass (heavy scalars) (GeV2) Soft mass (Higgses) (GeV2)

M1 ¼ 90 m2
Q1

¼ 5252 m2
Q3

¼ 4702 m2
Hu

¼ �1542

M2 ¼ 100 m2
u1 ¼ 5102 m2

u3 ¼ 3902 m2
Hd

¼ 3722

M3 ¼ 570 m2
d1

¼ 5052 m2
d3

¼ 5002 m2
S ¼ �2662

m2
L1

¼ 1802 m2
L3

¼ 1802 m2
T ¼ 6572

m2
e1 ¼ 1152 m2

e3 ¼ 1102 m2
�T
¼ 6562

10Adding extra matter charged under these gauge groups only
makes the couplings more strong at the GUT scale.
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confirms the above expectations. In particular, we can see
that the values of � required in order to enhance the Higgs
mass remain rather easily perturbative up to GUT scale.

Let us now briefly discuss the running of the soft masses
in the Higgs sector. The running for the same reference
point is illustrated in the right panel of Fig. 6 (renormal-
ization group equations are again given in the Appendix).
Recall that we assumed that the soft masses squared forHu

and S are negative at the weak scale (as required for these
scalars to acquire VEVs), but those for triplet are positive
(and of course similarly for squarks and sleptons). A very
attractive scenario would be that all of these soft masses
squared renormalization group evolve to positive (and
roughly similar) values in the UV, i.e., radiative symmetry
breaking (as happens for EW symmetry, i.e., Hu in the
MSSM).

From the right panel of Fig. 6, we see that (not surpris-
ingly) this indeed happens for Hu just like in the MSSM.
What is more remarkable (compared to the usual NMSSM)
is that singlet behaves similarly.11 We would like to stress
that this difference between the TNMSSM and the
NMSSM is due to the interaction of the singlet with triplets
giving an additional negative contribution to the running
(from UV to IR) of m2

S. Thus, by (radiatively) generating a

sufficiently large VEV for the S, the singlet-triplet cou-
pling significantly enlarges the viable parameter space.
Note that driving the singlet mass squared negative this
way does require the singlet-triplet coupling to be larger

than �0:1. Combining this condition with �T being weak
scale (or �100 GeV) implies that singlet VEV should be
less than �1 TeV. On the other hand, the soft masses
squared of the triplets undergo very moderate change in
renormalization group evolving to the UV, mainly because
positive Yukawa contributions are largely compensated by
negative terms proportional to the gauge couplings (which
again come with a large Casimir invariant). This feature is
crucial in allowing for the possibility that the soft masses
squared for the triplet and doublet are (roughly) similar in
the UV.12

V. CONCLUSIONS/DISCUSSIONS

In this paper, we have presented an extension of the
MSSM, based on adding SUð2ÞL triplet fields and a SM
gauge singlet (as in the NMSSM) coupled to each other,
which solves the little hierarchy and � problems of the
MSSM. Our focus was on presenting a complete model,
performing a thorough analysis of electroweak precision
tests, and providing an origin for all mass scales in the
model. We have started from a completely scaleless super-
potential, such that the only scale in the problem is a soft
mass scale, and showed that one can get a completely
viable model which dynamically generates all the neces-
sary scales, including effective � and B� terms for the
doublet and triplet fields.
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FIG. 6 (color online). On the left, evolution of Yukawa/superpotential couplings between the Higgses up to the GUT scale. [black/
thin solid line, blue/dashed line, red/thick solid line, green/thick dashed line, and purple/dot-dashed line] correspond (respectively) to
[�, �, �T , �u, and �d]. On the right, evolution of soft masses in the Higgs sector. [black/thin solid line, blue/dashed line, red/dot-dashed
line, green/thick dashed line, and purple/thick solid line] correspond (respectively) to [m2

Hu
,m2

Hd
,m2

S,m
2
T ,m

2
�T
] and�0 ¼ 100 GeV. No

new particles between the weak and the GUT scale are assumed in either case.

11Note that, in the context of gauge mediation of SUSY break-
ing, the renormalization group scale where singlet mass squared
vanishes can be taken to the messenger scale.

12In the context of gauge mediation of SUSY breaking, the mild
hierarchy between the soft masses in the UV, i.e., at the mes-
senger scale, for triplet and doublets (see the right panel of
Fig. 6) can arise due to the larger Casimir invariant for triplet
versus doublet.
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As the first step we reanalyzed the TMSSM (triplet-
extended MSSM) as a good candidate for solving the little
hierarchy problem. We explicitly showed that in this model
the triplet inevitably gets a VEV (even if it is not ta-
chyonic), which is of course severely constrained by the
� parameter. This problem has usually been circumvented
in the literature by assuming a large � term for the triplet
and thus analyzing a model where these fields can be safely
integrated out supersymmetrically, and all the interesting
effects can be incorporated in the MSSM Lagrangian
augmented by higher-dimensional operators. This ap-
proach has the important drawbacks that the correction to
the Higgs quartic is small in the large tan� limit and
decouples with the � term for the triplet.

In this paper we took another approach, showing that the
part of parameter space with relatively heavy triplet scalar
and light triplet fermions (i.e., big soft masses, but small�
term) can be even more attractive. It solves the little
hierarchy problem for any tan� and even for very large
soft mass for the triplet. At the same time the S and T
parameters are well under control since the largest (poten-
tially) dangerous contribution (to the T parameter) comes
from the triplet scalar VEVat the tree level, which however
is suppressed by the large soft mass. We also note that
adding a zero-hypercharge triplet, whose VEV gives an
opposite contribution to T parameter, can also potentially
ameliorate a tension with EW precision tests [32–35].

We then analyzed a full singlet plus triplet extension of
the MSSM (TNMSSM). We showed that coupling the
singlet to the triplet has two major advantages. First, it
naturally generates a weak-scale � term for the triplet, just
like the singlet-doublet coupling of the NMSSM solves the
doublet � problem. On the other hand, the triplet-singlet
coupling helps to render the soft mass squared of the
singlet negative along the RGE trajectories thus enabling
the singlet to acquire a VEV. In summary, we discover that
the ‘‘sum’’ of NMSSM and TMSSM is significantly more
appealing than each of its components, taken separately.

Finally let us comment on the issue of how the current
LHC searches for SUSY might apply to this model. It is
well known that these searches put very stringent bounds
on squarks and gluinos below the TeV scale. However,
these bounds heavily rely on several highly model-
dependent assumptions. First, in order to put strong bounds
on squark mass one needs the squarks of different gener-
ations to be (roughly) degenerate in order to have big
production cross sections. Superpartners are much harder
to find if the third generation is somewhat special such that
the stops and sbottoms are (much) lighter than rest of the
squarks. It is also well known that one can ‘‘hide’’ SUSY
by squeezing the superpartner spectrum so that the energy
available to SM particles in superpartner decays is small.
Usually this possibility is considered to be marginal.
However in the TNMSSM one finds lots of new EW scale
particles (including scalars and fermions) which are ex-

pected to be at the EW scale, thus making it easier to hide
superpartners. To the best of our knowledge the bounds on
these kinds of spectra are not well understood. Moreover,
as we have already mentioned this entire scenario can be
easily accompanied by R parity (in particular baryon-
number, but not simultaneously lepton-number) violation,
which would significantly complicate the study. This
would result in collider signatures without large missing
transverse energy since the lightest SUSY particle would
just decay into jets. Needless to say that such searches are
much more difficult than standard SUSY searches and the
current bounds on such a scenario are expected to be rather
mild.
It would be very interesting to understand better these

bounds, as well as the phenomenology of our model in
general. The latter can be of special interest (however, also
possibly experimentally challenging) due to the enlarged
neutralino, chargino, and Higgs sectors. In particular, there
is a light doubly charged fermion (coming from the triplet)
in the non-SUSY limit that was our focus, unlike in the
SUSY limit of this model or in the MSSM, NMSSM and
extension of the MSSM with zero-hypercharge triplet.
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APPENDIX A: RENORMALIZATION GROUP
EQUATIONS

In this appendix we provide the renormalization group
equations in the DR scheme for the parameters of the
TNMSSM. The notations are t ¼ lnð�=�0Þ with � the
renormalization group scale, and g2 ¼ g, g21 ¼ 5

3g
02 (with

e ¼ g sin�W ¼ g0 cos�W).
Running of the new (relative to the MSSM) couplings is

given by the following equations:

16�2 d�

dt
¼ �

�
3h2t þ 3h2b þ h2� þ 4�2 þ 6�2

d þ 6�2
u

þ 3�2
T þ 2�2 � 3g22 �

3

5
g21

�
(A1)

16�2 d�

dt
¼ �½6�2 þ 9�2

T þ 6�2� (A2)

16�2 d�T

dt
¼ �T

�
2ð�2

d þ �2
u þ �2 þ �2Þ þ 5�2

T

� 8g22 �
12

5
g21

�
(A3)
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16�2 d�u

dt
¼ �u

�
6h2t þ 2�2 þ 14�2

u þ �2
T � 7g22 �

9

5
g21

�

(A4)

16�2 d�d

dt
¼ �d

�
6h2b þ 2h2� þ 2�2 þ 14�2

d þ �2
T

� 7g22 �
9

5
g21

�
: (A5)

Running of the A terms associated with the above new
couplings is given by

16�2dA�

dt
¼A�

�
3h2t þ3h2bþh2�þ12�2þ6�2

dþ6�2
uþ3�2

T

þ2�2�3g22�
3

5
g21

�
þ�

�
6htAht þ6hbAhb

þ2h�Ah� þ12�dAdþ12�uAu

þ6�TATþ4�A�þ6g22M2þ6

5
g21M1

�
(A6)

16�2 dA�

dt
¼ 3A�½2�2 þ 3�2

T þ 6�2�
þ 3�½4�Aþ 6�TAT� (A7)

16�2dAT

dt
¼AT

�
2�2þ2�2

dþ2�2
uþ15�2

Tþ2�2

�8g22�
12

5
g21

�
þ�T

�
4�Aþ4�dAdþ4�uAu

þ4�A�þ16g22M2þ24

5
g21M1

�
(A8)

16�2 dAu

dt
¼ Au

�
6h2t þ 2�2 þ 42�2

u þ �2
T � 7g22 �

9

5
g21

�

þ �u

�
12htAht þ 4�Aþ 2�TAT þ 14g22M2

þ 18

5
g21M1

�
(A9)

16�2 dAd

dt
¼ Ad

�
6h2b þ 2h2� þ 2�2 þ 42�2

d þ �2
T � 7g22

� 9

5
g21

�
þ �t

�
12hbAhb þ 4h�Ah� þ 4�A

þ 2�TAT þ 14g22M2 þ 18

5
g21M1

�
: (A10)

In order to describe the running of the soft masses, it is
convenient to define following quantities:

Xt � h2t ðm2
Hu

þm2
Q3

þm2
�u3
Þ þ A2

ht
(A11)

Xb � h2bðm2
Hd

þm2
Q3

þm2
�d3
Þ þ A2

hb
(A12)

X� � h2�ðm2
Hd

þm2
L3

þm2
�e3
Þ þ A2

h�
(A13)

X � �2ðm2
Hu

þm2
Hd

þm2
SÞ þ A2 (A14)

XT � �2
Tðm2

T þm2
�T
þm2

SÞ þ A2
T (A15)

Xu � �2
uð2m2

Hu
þm2

�T
Þ þ A2

u (A16)

Xd � �2
dð2m2

Hd
þm2

TÞ þ A2
d (A17)

X� � 3�2m2
S þ A2

� (A18)

S � m2
Hu

�m2
Hd

þ 3m2
T � 3m2

�T

þ tr½m2
Q �m2

L � 2m2
�u þm2

�d
þm2

�e�; (A19)

wherem’s denote squark and slepton soft mass matrices in
the generation space.
The renormalization group flows for the soft masses in

the Higgs sector are then given by

16�2
dm2

Hu

dt
¼ 6Xt þ 2X þ 12Xu � 6g22M

2
2

� 6

5
g21M

2
1 þ

3

5
g21S (A20)

16�2
dm2

Hd

dt
¼ 6Xb þ 2X� þ 2X þ 12Xd

� 6g22M
2
2 �

6

5
g21M

2
1 �

3

5
g21S (A21)

16�2 dm
2
T

dt
¼ 4Xd þ 2XT � 16g22M

2
2 �

24

5
g21M

2
1 þ

6

5
g21S

(A22)

16�2
dm2

�T

dt
¼ 4Xu þ 2XT � 16g22M

2
2 �

24

5
g21M

2
1 �

6

5
g21S

(A23)

16�2 dm
2
S

dt
¼ 4X þ 6XT þ 4X�: (A24)

The running of the other Yukawa couplings (for example,
that of top quark) and soft masses (for example, that of
stop) changes accordingly, i.e., taking into account the
effect of the new couplings and soft masses. We find that
these changes are typically not important for our purposes
so that we do not provide a complete list here. One can
easily obtain these equations using the generic formula
given in Refs. [27,36].
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