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Extensions of the standard model with gauge symmetry SUð3Þc � SUð4ÞL � Uð1ÞX (3-4-1 extensions)

where anomaly cancellation takes place between the fermion families (three-family models) predict the

existence of two new heavy neutral gauge bosons which transmit flavor changing neutral currents at tree

level. In this work, in the context of a three-family 3-4-1 extension which does not contain particles with

exotic electric charges, we study the constraints coming from neutral meson mixing on the parameters of

the extension associated to tree-level flavor changing neutral current effects. Taking into account

experimental measurements of observables related to K and B meson mixing and including new

CP-violating phases, we study the resulting bounds for angles and phases in the mixing matrix for the

down-quark sector, as well as the implications of these bounds for the modifications in the amplitudes of

the clean rare decays Kþ ! �þ ���, KL ! �0� ��, KL ! �0lþl� (l ¼ e, �) and Bd=s ! �þ��.
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I. INTRODUCTION

Flavor violating couplings of ordinary fermions to extra
neutral gauge bosons and to new scalar fields arise in many
extensions of the standard model (SM). Two simple and
interesting examples are the 3-3-1 model in which the SM
gauge symmetry is enlarged to SUð3Þc � SUð3ÞL �Uð1ÞX
[1–5], and the 3-4-1 extension where the enlargement is
done to the gauge group SUð3Þc � SUð4ÞL �Uð1ÞX [6–10].
These extensions share the important feature of addressing
the problem of the number of fermion families in nature in
the sense that anomaly cancellation among the families
(three-family models) takes place only if we have an equal
number of left-handed triplets and antitriplets (in the 3-3-1
model) or an equal number of 4-plets and 4�-plets (in the
3-4-1 extension), taking into account the color degree of
freedom. As a consequence, the number of fermion fami-
lies Nf must be divisible by the number of colors Nc of

SUð3Þc. Moreover, since SUð3Þc asymptotic freedom re-
quires Nc < 5, it follows that Nf ¼ Nc ¼ 3. Cancellation

of chiral anomalies among the families thus forces one
family of quarks, in the weak basis, to transform differently
from the other two under SUð4ÞL �Uð1ÞX. As a result, the
chiral couplings of quarks to the new neutral gauge bosons
are, in general, nonuniversal and, when rotating to the
quark mass eigenstate basis, flavor changing neutral cur-
rents (FCNC) induced by fermion mixing arise.

In particular, the 3-4-1 extension predicts the existence
of two heavy neutral gauge bosons Z0 and Z00 which, in
general, mix up with the ordinary Z boson of the SM. In
contrast with the SM where FCNC processes occur only at
the loop level, in the 3-4-1 extension these new gauge
bosons can transmit FCNC at tree level and, consequently,
the study of these processes can set stringent bounds on the
Z0 and Z00 masses and mixing. Moreover, since in general

each flavor couples to more than one Higgs 4-plet, FCNC
coming from the scalar sector can also be present.
For simplicity, in this work we will restrict ourselves to

3-4-1 extensions without exotic electric charges in the
fermion sector, that is, without electric charges different
from�2=3 and �1=3 for exotic quarks and different from
0 and�1 for exotic leptons. The systematic analysis of the
3-4-1 gauge theory carried out in [8] has shown that the
restriction to fermion field representations with only ordi-
nary electric charges allows for eight different anomaly-
free extensions. Four of them are three-family models and
can be classified according to the values of the coefficients
b and cwhich appear in the most general expression for the
electric charge generator in SUð4ÞL �Uð1ÞX [see Eq. (1)
below]. The allowed simultaneous values for these coef-
ficients are b ¼ c ¼ 1 and b ¼ 1, c ¼ �2. Two of the four
three-family models belong to the b ¼ c ¼ 1 class; the
other two belong to the b ¼ 1, c ¼ �2 class.
In 3-4-1 extensions without exotic electric charges the

Z� Z0 � Z00 mixing can be constrained to occur between
Z and Z0 only, which leaves Z00 � Z3 as a heavy mass
eigenstate [7–10]. The diagonalization of the Z� Z0
mass matrix produces a light mass eigenstate Z1 which
can be identified as the neutral gauge boson of the SM, and
a heavy Z2. After the breakdown of the 3-4-1 symmetry
down to SUð3Þc �Uð1ÞQ, and since we have one family of

quarks transforming differently from the other two under
the gauge group, one important difference between the
aforementioned two classes of 3-4-1 extensions appears:
even thought in both classes the Z1 current remains flavor
diagonal, in the b ¼ c ¼ 1 class the new Z2 gauge boson
couples nonuniversally to ordinary quarks thus transmit-
ting tree-level FCNC at low energies, while the couplings
to Z3 are universal and Z3 couples only to exotic fermions.
In the b ¼ 1, c ¼ �2 class, instead, it is the new Z3 gauge
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boson the responsible for this effect because couples non-
universally to ordinary quarks, while the Z2 current re-
mains flavor diagonal and universal.

The study of the bounds on the Z2 and Z3 masses coming
from electroweak precision data and from FCNC processes
has shown that extensions for which b ¼ 1, c ¼ �2 are
preferred in the sense that they give lower bounds on these
masses smaller than the bounds predicted by extensions in
the b ¼ c ¼ 1 class [9]. In fact, in the latter class a �2 fit to
Z-pole observables and atomic parity violation data pro-
duces mZ2

* 2 TeV, a bound that is further increased to

mZ2
* 11 TeV when the constraints coming from neutral

meson mixing in the study of the tree-level FCNC effects
are taken into account. In the b ¼ 1, c ¼ �2 class, instead,
the same fit gives the lower bound mZ2

* 0:8 TeV and the

analysis of the constraints arising from neutral meson
mixing provides mZ3

* 6:5 TeV. This means that exten-

sions in the b ¼ 1, c ¼ �2 class have a better chance to be
tested at the LHC facility or further at the ILC. Here
however we must point out that, as it has been noted
repeatedly in the literature, the bounds from neutral meson
mixing are always clouded by the lack of knowledge of the
entries in the quark mixing matrices Vu

L and Vd
L involved in

the new physics contribution, which forces to adopt well
motivated but ad hoc textures for these matrices.

In this work, in the context of a 3-4-1 extension belong-
ing to the b ¼ 1, c ¼ �2 class (the so-called ‘‘model F’’ in
Ref. [8]), we re-examine the issue of tree level FCNC
transmitted by the new Z3 gauge bosons but, due to the
uncertainties associated with our ignorance of the quark
mixing matrices, we will not search for bounds on the Z3

mass, but rather we set this mass at fixed values in the range
1–5 TeV (to be justified below) and search for information
about the size of angles and phases in the Vd

L mixing
matrix. To this purpose we will use several well measured
�F ¼ 2 (F ¼ S, B) observables in the down sector,
namely �MK, �Md=s, "K, and sin�d, associated to the

KL � KS and the B0
d=s � �B0

d=s mass differences, the Kaon

CP-violation parameter and the B0
d � �B0

d mixing phase,

respectively. We will also study the implications of the
obtained bounds for the modifications in the amplitudes of
the clean rare decays Kþ ! �þ� ��, KL ! �0� ��, Bd=s !
�þ�� and KL ! �0lþl� (l ¼ e, �). In this context our
mail goal will be to obtain upper and lower bounds for the
corresponding branching ratios (BR) and to study their
compatibility both with the experimental data and the
SM predictions.

Another well-known FCNC rare process that deserves
attention due to its sensitivity to new physics, is the radia-
tive decay b ! s�. In general, this decay receives contri-
butions both from the new charged and neutral gauge
bosons and from the new scalar fields and can be used to
put limits on these sectors of the 3-4-1 extension. As can be
seen from the 3-4-1 scalar structure in Eq. (3) below, and as
it is done in the 3-3-1 model, the scalar contributions can

be accounted for by an effective two-Higgs-doublet model.
This, however, demands the identification of the physical
scalar fields and their couplings and, therefore, the diago-
nalization of the full scalar sector. It is then clear that the
study of this decay requires a particular and dedicated
analysis. Moreover, as in the SM, b ! s� is also a loop
process in the 3-4-1 construction and since, as declared
above, we are mainly interested in the analysis of the more
stringent tree-level FCNC processes that receive contribu-
tions from Z3 exchange, the detailed study of this decay in
the context of the present SM extension will be postponed
to a future work.
This paper is organized as follows. In Sec. II, we in-

troduce the 3-4-1 extension to be considered and present its
most important features for our purposes. In Secs. III and
IV, we study the theoretical expression for the observables
associated to neutral meson mixing and for the rare decays
that will be analyzed, in such a way that the tree-level
FCNC contributions of the extra neutral gauge boson enter
as corrections to the SM expressions. In Sec. V, we nu-
merically evaluate the theoretical expressions obtained in
the two previous sections, fromwhich some information on
structure of the Vd

L mixing matrix can be obtained and the
implications for the rare decays can be calculated. In the
last section we summarize our results.

II. THE 3-4-1 EXTENSION

Let us begin by introducing the most relevant features of
the 3-4-1 extension we are interested in. Several details
of their phenomenology have been already worked out
in [10].
The extension is based on the local SUð3Þc � SUð4ÞL �

Uð1ÞX gauge symmetry which contains SUð3Þc �
SUð2ÞL �Uð1ÞY as a subgroup, and belongs to the b ¼ 1,
c ¼ �2 class, where b and c are parameters appearing in
the most general expression for the electric charge genera-
tor in SUð4ÞL �Uð1ÞX

Q ¼ aT3L þ 1ffiffiffi
3

p bT8L þ 1ffiffiffi
6

p cT15L þ XI4; (1)

where TiL ¼ �iL=2, with �iL the Gell-Mann matrices
for SUð4ÞL normalized as Trð�i�jÞ ¼ 2�ij, I4 ¼
diagð1; 1; 1; 1Þ is the diagonal 4� 4 unit matrix, and
a ¼ 1 gives the usual isospin of the electroweak interaction.
The anomaly-free fermion content of this extension has

been discussed in Ref. [8] and is given in Table I where
i ¼ 1, 2 and � ¼ 1, 2, 3 are generation indexes. The
numbers inside brackets match the SUð3Þc, SUð4ÞL and
Uð1ÞX quantum numbers, respectively. Ui and U3 are
exotic quarks of electric charge 2=3, Di and D3 are also
exotic quarks with electric charge�1=3, while E�

� and N0
�

are exotic leptons with electric charges �1 and 0,
respectively.
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The symmetry breaking occurs in three steps

SUð3Þc � SUð4ÞL �Uð1ÞX!V
0
SUð3Þc � SUð3ÞL

�Uð1ÞZ!V SUð3Þc � SUð2ÞL �Uð1ÞY !vþv0
SUð3Þc

�Uð1ÞQ; (2)

a task that is done by the following four Higgs fields with
vacuum expectation values (VEV) aligned as

h	T
1 i ¼ hð	0

1; 	
þ
1 ; 	

0þ
1 ; 	00

1 Þi ¼ ðv; 0; 0; 0Þ � ½1; 4�; 1=2�;
h	T

2 i ¼ hð	�
2 ; 	

0
2; 	

00
2 ; 	

0�
2 Þi

¼ ð0; v0; 0; 0Þ � ½1; 4�;�1=2�;
h	T

3 i ¼ hð	�
3 ; 	

0
3; 	

00
3 ; 	

0�
3 Þi

¼ ð0; 0; V; 0Þ � ½1; 4�;�1=2�;
h	T

4 i ¼ hð	0
4; 	

þ
4 ; 	

0þ
4 ; 	00

4 Þi ¼ ð0; 0; 0; V 0Þ � ½1; 4�; 1=2�:
(3)

This scalar structure consistently gives masses for all the
gauge bosons and it is also enough to produce the observed
fermion mass spectrum for the charged fermion sector
(quarks and leptons) provided the hierarchy V, V 0 	 v,
v0 ’ 174 GeV is satisfied, where V 0 and V set the mass
scales for exotic fields [10].

The gauge couplings g4 and gX, associated with the
groups SUð4ÞL and Uð1ÞX, respectively, are defined
through the covariant derivative for 4-plets as: iD� ¼
i@� � g4�L�A

�
�=2� gXXB

�. When the 3-4-1 symmetry
is broken to the SM, we get the gauge matching conditions

g4 ¼ g; and
1

g02
¼ 1

g2X
þ 1

g2
; (4)

where g and g0 are the gauge coupling constants of the
SUð2ÞL and Uð1ÞY groups of the SM, respectively.
Clearly, FCNC in this extension can arise from the

mixing of ordinary and exotic fermions. These FCNC
and violation of the unitarity of the Cabibbo-Kobayashi-
Maskawa (CKM) mixing matrix can be avoided by the
introduction of the following Z2 discrete symmetry which
assigns charges qZ to the fields as [10]

qZðQ�L; u
c
�L; d

c
�L; L�L; e

þ
�L;	1; 	2Þ ¼ 0;

qZðU�L;D
c
�L; E

þ
�L;	3; 	4Þ ¼ 1;

(5)

where � ¼ 1, 2, 3 is a family index as above.
The gauge invariance and the Z2 symmetry allow for the

following Yukawa Lagrangian in the quark sector

L Q
Y ¼ X2

i¼1

QT
iLC

�
	�

2

X3
�¼1

hui�u
c
�L þ	�

1

X3
�¼1

hdi�d
c
�L

þ	�
3

X3
�¼1

hUi�U
c
�L þ	�

4

X3
�¼1

hDi�D
c
�L

�

þQT
3LC

�
	1

X3
�¼1

hui�u
c
�L þ	2

X3
�¼1

hd3�d
c
�L

þ	4

X3
�¼1

hU3�U
c
�L þ	3

X3
�¼1

hD3�D
c
�L

�
þ H:c:;

(6)

where the h0s are Yukawa couplings and C is the
charge conjugation operator. From this Lagrangian we
get, for the up- and down-type quarks in the basis
ðu1; u2; u3; U1; U2; U3Þ and ðd1; d2; d3; D1; D2; D3Þ, respec-
tively, 6� 6 block diagonal mass matrices of the form

MuU ¼ Mu
3�3 0

0 MU
3�3

 !
and

MdD ¼ Md
3�3 0

0 MD
3�3

 !
;

(7)

where, for V � V0 and v� v0, the entries in the subma-
trices are

Mu
�
 ’ hu�
v and MU

�
 ’ hU�
V;

Md
�
 ’ hd�
v and MD

�
 ’ hD�
V:
(8)

For the charged leptons we get the Yukawa terms

L L
Y ¼ X3

�¼1

X3

¼1

LT

LC½	2h

e
�
e

þ

L þ	3h

E
�
E

þ

L� þ H:c:

(9)

From this equation we find a block diagonal mass matrix in
the basis ðe1; e2; e3; E1; E2; E3Þ given by

TABLE I. Anomaly-free fermion content.

QiL ¼
di
ui
Ui

Di

0
BBB@

1
CCCA

L

dciL uciL Uc
iL Dc

iL

½3; 4�; 16� ½3�; 1; 13� ½3�; 1;� 2
3� ½3�; 1;� 2

3� ½3�; 1; 13�

Q3L ¼
u3
d3
D3

U3

0
BBB@

1
CCCA

L

uc3L dc3L Dc
3L Uc

3L

½3; 4; 16� ½3�; 1;� 2
3� ½3�; 1; 13� ½3�; 1; 13� ½3�; 1;� 2

3�

L�L ¼
�0
e�

e��
E�
�

N0
�

0
BBB@

1
CCCA

L

eþ�L Eþ
�L

½1; 4;� 1
2� ½1; 1; 1� ½1; 1; 1�
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MeE ¼ Me
3�3 0
0 ME

3�3

� �
; (10)

where now the entries in the submatrices are

Me
�
 ¼ he�
v

0 and ME
�
 ¼ hE�
V: (11)

The mass matrices in (7) and (10) exhibit a simple mass
splitting between ordinary and exotic charged fermions,
and show that all the charged fermions in this extension
acquire masses at the three level. Clearly, by a judicious
tuning of the Yukawa couplings a consistent mass spectrum
in the ordinary charged sector can be obtained. In the
exotic charged sector all fermions acquire masses at
the scale V � V0 	 vEW ¼ 174 GeV. We also remark
that the tensor product form of the mass matrices MuU

and MdD in (7) implies that they are diagonalized by
unitary matrices which are themselves tensor products of
unitary matrices. So, the discrete Z2 symmetry also avoids
violation of unitarity of the CKM mixing matrix. The
neutral leptons �0

e� and N0
e� (� ¼ 1, 2, 3) remain massless

as far as we use only the original fermion fields shown in
Table I. However, their masses and mixing can be imple-
mented by introducing one or more Weyl singlet states
N0

L;n � ½1; 1; 0�, n ¼ 1; 2; . . . , without violating our as-

sumptions, neither the anomaly constraint relations, be-
cause singlets with no X charges are as good as not being
present as far as anomaly cancellation is concerned.

A look at the Yukawa Lagrangians in Eqs. (6) and (9)
shows that each flavor couples to more than one Higgs
4-plet and, consequently, scalar mediated FCNC also arise.
However, since all the processes we will consider in this
work involve external light quarks and leptons, these con-
tributions are suppressed by the small Yukawa couplings
associated to these fields. Notice that, for these processes,
this will also be the case even in the absence of the discrete
Z2 symmetry introduced in Eq. (5) because the Yukawa
couplings will now be suppressed by small mixing angles.
In the charged boson sector there are SM-like W� gauge
bosons that do not mix with the other charged bosons
and acquire a squared mass M2

W� ¼ ðg24=2Þðv2 þ v02Þ
so that, with MW ¼ 80:399� 0:023 GeV [11], we haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ v02p

’ vEW ¼ 174 GeV. The ten remaining physical
charged gauge bosons, namely: K�, V�, Y�, X0ðX00Þ, and
K0ðK00Þ, acquire masses at the large scale V 0 � V and, at
tree level, couple always to at least one exotic fermion [10].
This means that, for low energy processes involving ordi-
nary fermions, the contribution of the new charged gauge
bosons will be present only at loop level. Thus, we expect
that the tree-level FCNC effects transmitted by the exotic
neutral gauge bosons will dominate.

Our main interest, therefore, is in the neutral gauge
boson sector which consists of four physical fields: the
massless photon A� and three massive gauge bosons which

come from the diagonalization of the mixing Z� � Z0
� �

Z00
�. In terms of the electroweak basis, they are given by

A� ¼ SWA
�
3 þCW

�
TWffiffiffi
3

p
�
A
�
8 � 2

A�
15ffiffiffi
2

p
�
þ ð1� T2

WÞ1=2B�

�
;

Z� ¼ CWA
�
3 � SW

�
TWffiffiffi
3

p
�
A�
8 � 2

A
�
15ffiffiffi
2

p
�
þ ð1� T2

WÞ1=2B�

�
;

Z0� ¼ 1ffiffiffi
3

p ð1� T2
WÞ1=2

�
A�
8 � 2

A�
15ffiffiffi
2

p
�
� TWB

�;

Z00� ¼ 2A�
8 =

ffiffiffi
6

p þ A�
15=

ffiffiffi
3

p
: (12)

Since we are interested in the low energy phenomenol-
ogy, we can choose V ’ V 0. If we also take v ’ v0, the
current Z00� � Z�

3 decouples from the other two and ac-

quires a squared mass M2
Z3

¼ ðg24=2ÞðV2 þ v2Þ [7–10].

This fact produces an enormous simplification in the study
of the low energy deviations of the Z couplings to the SM
families which now come from the diagonalization of the
mass matrix

MðZ;Z0Þ ¼ g24
C2
W

v2 �v2SW
�v2SW

�2

S2W
ðV2C4

W þ v2S4WÞ
 !

; (13)

where � ¼ gX=g4, and SW ¼ �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2 þ 1

p
and CW are the

sine and cosine of the electroweak mixing angle, respec-
tively. The corresponding mass eigenstates are: Z�

1 ¼
Z� cos�þ Z0� sin� and Z

�
2 ¼ �Z� sin�þ Z0� cos�,

where the mixing angle � is given by

tanð2�Þ ¼ v2S2W
ffiffiffiffiffiffiffiffiffi
C2W

p
v2ð1þ S2WÞ2 þ V2C4

W � 2v2
; (14)

with C2W ¼ C2
W � S2W . Since V 	 v this mixing angle is

expected to be very small.

A. Neutral currents

The Lagrangian for the neutral currents J�ðEMÞ, J�ðZÞ,
J�ðZ0Þ, and J�ðZ00Þ, in the basis in which all the fields are

gauge eigenstates, is given by

�LNC ¼ eA�J�ðEMÞ þ g4
CW

Z�J�ðZÞ þ gXZ
0�J�ðZ0Þ

þ g4

2
ffiffiffi
2

p Z00J�ðZ00Þ; (15)

where e ¼ gSW ¼ gXCW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T2

W

q
> 0. Calling qf the

electric charge of the fermion f in units of e, the currents
are given by
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J�ðEMÞ¼2

3

�
�u3��u3þ �U3��U3

þX2
i¼1

ð �ui��uiþ �Ui��UiÞ
�

�1

3

�
�d3��d3þ �D3��D3

þX2
i¼1

ð �di��diþ �Di��DiÞ
�

�X3
�¼1

ð �e����e
�
� þ �E�

���E
�
� Þ¼

X
f

qf �f��f; (16)

J�ðZÞ ¼ J�;LðZÞ � S2WJ�ðEMÞ
¼ 1

2
½ �u3L��u3L � �d3L��d3L

�X2
i¼1

ð �diL��diL � �uiL��uiLÞ

þ X3
�¼1

ð ���L����L � �e��L��e
�
�LÞ� � S2WJ�ðEMÞ;

(17)

J�ðZ0Þ ¼ J�;LðZ0Þ � TWJ�ðEMÞ
¼ ð2TWÞ�1½T2

W �u3L��u3L � T2
W
�d3L��d3L

� �D3L��D3L þ �U3L��U3L

�X2
i¼1

ðT2
W
�diL��diL � T2

W �uiL��uiL

� �UiL��UiL þ �DiL��DiLÞ

þ X3
�¼1

ðT2
W ���L����L � T2

W �e��L��e
�
�L

� �E�
�L��E

�
�L þ �N0

�L��N
0
�LÞ� � TWJ�ðEMÞ;

(18)

and

J�ðZ00Þ ¼ X2
i¼1

ð� �diL��diL � �uiL��uiL

þ �UiL��UiL þ �DiL��DiLÞ þ �u3L��u3L

þ �d3L��d3L � �D3L��D3L � �U3L��U3L

þ X3
�¼1

ð ���L����L þ �e��L��e
�
�L

� �E�
�L��E

�
�L � �N0

�L��N
0
�LÞ: (19)

Equation (17) shows that we can identify Z� as the neutral

gauge boson of the SM because J�ðZÞ is just the general-
ization of the SM neutral current. Moreover, from (18) it is

straightforward to see that the neutral gauge boson Z0
� does

not transmit FCNC at low energy since it couples diago-
nally and universally to ordinary fermions.
Notice, on the other hand, that J�ðZ00Þ is a pure left-

handed current and that, notwithstanding the neutral gauge
boson Z00

� � Z�
3 does not mix neither with Z� nor with Z0

�

(in the case V 0 ’ V and v0 ’ v), it still couples nonuniver-
sally to ordinary fermions. As a matter of fact, even though
the Z00

� couplings are diagonal, its couplings to the third

family of quarks are different from the ones to the first two
families. Thus, at low energy, we will have tree-level
FCNC transmitted by Z00

� which are induced by fermion

mixing. This means that in the corresponding low energy
effective Lagrangian the chiral Z00

� couplings will in gen-

eral explicitly depend on the entries of the unitary matrices

Vc
L;R that diagonalize the quark Yukawa matrices. So, in the

analysis of these FCNC effects a convenient parametriza-

tion of the Vc
L;R matrices must be chosen.

At this point we must notice that if the mass splitting
between Z2 and Z3 is so large as the constraints from
neutral meson mixing suggest, we must be aware about
the fact that the loop contributions coming from the ex-
change of Z2 can compete with the tree-level effects trans-
mitted by Z3. But, as already discussed, these constraints
are rather unreliable, and since the mass matrix in (13) can
be exactly diagonalized we can estimate this mass splitting
in the case we are considering, that is V ’ V 0 	 v0 ’ v
which, in turn, implies a small mixing. So, neglecting the
mixing we have: m2

Z2

 g24�

2V2=T2
W ¼ g24V

2=ð1� T2
WÞ

which, compared with m2
Z3

¼ ðg24=2ÞðV2 þ v2Þ 

ðg24=2ÞV2, shows that in our approximation these masses
are of the same order V and, consequently, tree-level
FCNC mediated by Z3 will dominate.

B. The effective Lagrangian

We will use the formalism developed in Ref. [12] where
general expressions for calculating FCNC effects in mod-
els predicting the existence of one extra neutral gauge
boson are presented. We start by generalizing this formal-
ism to the case of N � 1 extra neutral gauge bosons and
then we restrict ourselves to the case N � 1 ¼ 2.
The Lagrangian for neutral currents in Eq. (15) can be

rewritten and generalized as

L NC ¼ �eA�J
�ðEMÞ � g1Z

0
1;�J

ð1Þ�

� XN�1

�¼2

g�Z
0
�;�J

ð�Þ�; (20)

where Z0
1 � Z denotes the neutral gauge boson of the SM

and Z0
� are the new heavy Z bosons (which in general mix

with Z0
1).

Following the notation of Ref. [12], the currents can be
written as
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JðmÞ
� ¼ X

c

X
i;j

�c i��½�c ðmÞ
Lij

PL þ �c ðmÞ
Rij

PR�c j; (21)

where the sum extends over all quarks and leptons c i;j and

PR;L ¼ ð1� �5Þ=2. �c ð1Þ
R;Lij

¼ �R;LðiÞ�ij denotes the SM chi-

ral couplings and �c ðmÞ
R;Lij

ðm � 1Þ denotes the chiral cou-

plings of the heavy gauge bosons.
After the spontaneous symmetry breaking the physical

massive bosons Z� are linear combinations of the gauge
eigenstates Z0

�:

Z� ¼ XN

¼1

U�
Z
0

; (22)

where U is an orthogonal N � N matrix.
The chiral Z0

� couplings to fermions in the fermion mass
eigenstate basis read

Ec ð�Þ
L;R � Vc

L;R�
c ð�Þ
R;L Vcy

L;R; (23)

where the CKMmixing matrix is given by the combination

VCKM ¼ Vu
LV

dy
L : (24)

The four-fermion effective Lagrangian, for the general
case of N neutral gauge bosons, reads [13]

�Leff ¼ 4GFffiffiffi
2

p XN
�¼1

�

�XN

¼1

U�


g

g1

J�


�
2
; (25)

where � � m2
W=ðm2

�cos
2�WÞ and m� is the mass of Z�.

Using Eqs. (21) and (23) into (25) a general expression
for the effective Lagrangian, written in a way useful for
further calculations, is obtained as

�Leff ¼ 4GFffiffiffi
2

p X
c ;�

X
k;l

X
i;j;m;n

X
X;Y

Wkl;ijmn
XY ð �c i��PXc jÞ

� ð ��m�
�PY�nÞ; (26)

where k, l ¼ 1, 2, 3; X and Y run over the chiralities L, R;
c and � represent classes of fermions with the same SM
quantum numbers, i.e. u, d, e�, �, while i, j, m, n are

family indexes. Wkl;ijmn
PQ is given by

Wkl;ijmn
XY ¼ gkgl

g21

�XN
r¼1

rUrkUrl

�
Ec ðkÞ
Xij

E
�ðlÞ
Ymn

; (27)

where, in order to have a compact expression for the
Lagrangian in Eq. (26), the summation is written so that
takes elements of the matrix U.

Another way of writing Eq. (26), using the notation of
Ref. [12], is

�Leff ¼ 4GFffiffiffi
2

p X
c ;�

X
i;j;m;n

½Cij
mnQ

ij
mn þ ~Cij

mn
~Qij
mn

þDij
mnO

ij
mn þ ~Dij

mn
~Oij
mn�; (28)

with the local operators given by

Qij
mn ¼ ðc i�

�PLc jÞð�m��PL�nÞ;
~Qij
mn ¼ ðc i�

�PRc jÞð�m��PR�nÞ;
Oij

mn ¼ ðc i�
�PLc jÞð�m��PR�nÞ;

~Oij
mn ¼ ðc i�

�PRc jÞð�m��PL�nÞ;

(29)

and the coefficients are

Cij
mn ¼

X
kl

Wkl;ijmn
LL ; ~Cij

mn ¼ X
kl

Wkl;ijmn
RR ;

Dij
mn ¼

X
kl

Wkl;ijmn
LR ; ~Dij

mn ¼ X
kl

Wkl;ijmn
RL :

(30)

The former expressions are perfectly general for any
number of new Z bosons. In the case of only one extra Z
boson, from the these expressions and using an orthogonal
2� 2 transformation matrix U parametrized by a mixing

angle �, it is straightforward to obtain the formulae for Cij
kl,

~Cij
kl, D

ij
kl and

~Dij
kl in Ref. [12].

1. The N ¼ 3 case

Let us now restrict ourselves to the case N � 1 ¼ 2
corresponding to the 3-4-1 extension so that in Eq. (20)
we have Z0

2 � Z0, Z0
3 � Z00, and a comparison with

Eq. (15) gives: g1 ¼ g4=CW , g2 ¼ gX and g3 ¼
g4=ð2

ffiffiffi
2

p Þ. These gauge couplings are expressed in terms
of the SUð2ÞL �Uð1ÞY couplings of the SM by the gauge
matching conditions in Eq. (4) and, as it is done in studies
of low energy FCNC effects associated to extra neutral
gauge bosons when only SM particles are present in the
effective theory, we neglect their renormalization group
evolution from the high scale V 0 ’ V down to theMW scale
(see, for example, Refs. [14,15]).
Since in our case the Z� Z0 � Z00 mixing occurs be-

tween Z and Z0 only, the matrix U takes the form

U ¼
cos� sin� 0
� sin� cos� 0

0 0 1

0
@

1
A: (31)

Now, as already stated, the couplings of Z00
� to the third

family of quarks are different from the ones to the first two
families, thus allowing FCNC at tree level induced by
fermion mixing. These FCNC have consequences on the
predictions of �S ¼ 2 and �B ¼ 2 observables in the
down-quark sector as the well-measured �MK, �Md=s,

"K and sin�d. In order to build the theoretical expressions
both for these observables and for the related rare decays
we will study let us extract, from Eq. (19), the couplings of
Z00
� to ordinary down-type quarks. In the gauge eigenstate

basis Qd ¼ ðd1d2d3ÞT the interaction Lagrangian can be
written as
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�Ld
NC ¼ g4

2
ffiffiffi
2

p X3
ij¼1

½ �Qd
i �

�ð�dð3ÞLij PL þ �dð3ÞRij PRÞQd
j �Z00

�;

(32)

where �dð3ÞL ¼ �I3�3 þ 2diagð0; 0; 1Þ and �dð3ÞR ¼ 0. Then,
the chiral Z3 couplings, in the mass eigenstate basisQd ¼
ðdsbÞT , are
Edð3Þ
L ¼ �I3�3 þ 2Vd

Ldiagð0; 0; 1ÞVdy
L ; Edð3Þ

R ¼ 0:

(33)

Clearly, FCNC arise in this extension from the non-

diagonal elements in the 3� 3 matrix Edð3Þ
L . That is, the

coefficients which determine the contribution of Leff to

�S ¼ 2 and �B ¼ 2 processes are Edð3Þ
Lij

with i � j.

Therefore, using (26) and (33), the corresponding effective
interaction Lagrangian is given by

�Leff ¼ 4GFffiffiffi
2

p
�
g3
g1

�
2
3ð �Qd

i ��E
dð3Þ
Lij

PLQd
j Þ

� ð �Qd
m�

�Edð3Þ
Lmn

PLQd
nÞ: (34)

The nondiagonal elements of Edð3Þ
L in Eq. (33) read

Edð3Þ
Lij ¼ 2Vd

Li3V
d�
Lj3; (35)

whereas the ratio (g3=g1) can be written in terms of the
Weinberg angle as

�
g3
g1

�
2 ¼ cos2�W

8
: (36)

As it is well known, in the SM the matrix entries in Vd
L

are not observables while the observable quantities only
concern the entries in the VCKM matrix. However, from
Eq. (34) it is clear that the new physics contributions will
be proportional to the entries Vd

Li3 in the down-quark mix-

ing matrix. We must, then, conveniently parametrize the
Vd
L matrix so that we can estimate the size of its entries.

This, in turn, requires to determine the number of indepen-
dent parameters in Vd

L. An unitary 3� 3 matrix has, in
general, nine independent parameters: three real angles and
six complex phases. In the CKMmixing matrix five phases
can be absorbed in redefinitions of the quark fields, which
leaves us with three real angles and one complex phase. In
the case of the Vd

L matrix, by analogous redefinitions of the
three ordinary down-type quarks, we can absorb three
complex phases so that we remain with three real angles
and three complex phases. The Vd

L matrix can consequently
be conveniently parametrized as the product of three rota-
tions each one of them containing a complex phase [16].
We thus get

Vd
L ¼

1 0 0
0 cd23 sd23e

�i�d
23

0 �sd23e
i�d

23 cd23

0
B@

1
CA cd13 0 sd13e

�i�d
13

0 1 0
�sd13e

i�d
13 0 cd13

0
B@

1
CA cd12 sd12e

�i�d
12 0

�sd12e
i�d

12 cd12 0
0 0 1

0
B@

1
CA: (37)

Performing the product we have

Vd
L ¼

cd12c
d
13 sd12c

d
13e

�i�d
12 sd13e

�i�d
13

�sd12c
d
23e

i�d
12 � cd12s

d
23s

d
13e

ið�d
13
��d

23
Þ cd12c

d
23 � sd12s

d
23s

d
13e

ið�d
13
��d

12
��d

23
Þ sd23c

d
13e

�i�d
23

sd12s
d
23e

ið�d
12
þ�d

23
Þ � cd12c

d
23s

d
13e

i�d
13 �cd12s

d
23e

i�d
23 � sd12c

d
23s

d
13e

ið�d
13
��d

12
Þ cd23c

d
13

0
B@

1
CA (38)

Another way Vd
L can be parametrized is [17]

Vd
L ¼ P ~VK; (39)

where P ¼ diagðei�1 ; 1; ei�3Þ, K ¼ diagðei�1 ; ei�2 ; ei�3Þ
while, using the standard parametrization, the unitary ma-
trix ~V can be written in terms of three mixing angles �12,
�23 and �13 and one phase ’ [11]. Note that this parame-
trization includes six complex phases but again, by redefi-
nitions of the ordinary down-type quarks, we can absorb
three of them.

It is easy to show that the theoretical expressions result-
ing from both parametrizations are equivalent via redefi-
nition of phases [See Eqs. (62)–(64) below and Ref. [5]].

III. �F ¼ 2 OBSERVABLES

We now proceed to build the theoretical expressions for
the �F ¼ 2 (F ¼ S, B) neutral meson mixing observables
�MK, �Md=s, "K and sin�d in such a way that the Z00

�

contributions enter into the expressions as corrections to
the SM predictions, following a similar procedure as for
the minimal 3-3-1 model in Ref. [4] and for the economical
3-3-1 model in Ref. [5]. These expressions are functions of
the matrix element

MP
12 �

hP0jH eff j �P0i
2mP

; (40)

where P stands for K, Bs, or Bd. In our case MP
12 receives

both SM contributions arising from standard one-loop
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diagrams and contributions coming from tree-level Z3

exchange, that is

MP
12 ¼ MPðSMÞ

12 þMPð3�4�1Þ
12 : (41)

The expressions for the �F ¼ 2 observables are

�mK ¼ 2ReðMK
12Þ; (42)

�md ¼ 2jMBd

12 j; (43)

�ms ¼ 2jMBs

12 j; (44)

"K ¼ ei	" sin	"

�
ImðMK

12Þ
�mK

þ P0

�
; (45)

�d ¼ argðMBd

12 Þ; (46)

where the term P0 is due to long-distance contributions to
Kaon mixing. The experimental values for these observ-
ables are consigned in Table II. It is customary to set	" ¼
�=4 and to neglect P0 [23,24]. For this reason a multi-
plicative correction factor for "K, that accounts for 	" �
�=4 and P0 � 0, is introduced [18,25]. Then, the expres-
sion for "K becomes

"K ¼ �" exp

�
i
�

4

�
ImðMK

12Þffiffiffi
2

p
�mK

: (47)

The well-known SM contributions to MP
12 are given by

[23,24]

MKðSMÞ
12 ¼ G2

F

12�2
f2KBKmKm

2
W½��2

c �1S0ðxcÞ þ ��2
t �2S0ðxtÞ

þ 2��
c�

�
t �3S0ðxc; xtÞ�; (48)

and

M
BqðSMÞ
12 ¼ G2

F

12�2
f2Bq

BBq
�BmBq

m2
WS0ðxtÞðV�

tqVtbÞ2; (49)

where q stands for d or s. fP is the P-meson decay
constant, BP is the corresponding renormalization scale
and scheme invariant bag parameter and the basic electro-
weak loop contributions, without QCD corrections, are
expressed through the functions S0ðxiÞ (xi ¼ m2

i =m
2
W),

namely

S0ðxcÞ ¼: xc; (50)

S0ðxtÞ ¼ 4xt � 11x2t þ x3t
4ð1� xtÞ2

� 3x3t lnxt
2ð1� xtÞ3

; (51)

S0ðxc; xtÞ ¼ xc

�
ln
xt
xc

� 3xt
4ð1� xtÞ �

3x2t lnxt
4ð1� xtÞ2

�
: (52)

Renormalization group short-distance QCD effects are
described through the renormalization scheme independent
factors �1, �2, �3 and �B [19–22], and the CKM factors
are given by �i ¼ V�

isVid.
Now, from the effective Lagrangian in Eq. (34) the

expressions for the 3-4-1 contributions can be obtained.

TABLE II. Values of the experimental and theoretical quanti-
ties used as input parameters.

Input Value Reference

GF [GeV] 1:16637ð1Þ � 10�5

� 7:297 352 537 6ð50Þ � 10�3

�s ðmZÞ 0.1184(7)

sin2�W ðmZÞðMSÞ 0.23116(13) [11]

jVudj 0.9728(30)

jVusj 0.2250(27)

jVubj 0.00427(38)

jVcdj 0.230(11)

jVcsj 0.98(10)

jVcbj 0.0415(7)

jVtdj 0.0084(6)

jVtsj 0.0387(21)

jVtbj 0.88(7) [11]

mW [GeV] 80.399(23)

mZ [GeV] 91.1876(21)

mc [GeV] 1.268(9)

mt [GeV] 172.4(1.2) [11]

� 78(12) [18]

fK
ffiffiffiffiffiffiffi
BK

p
[GeV] 133ð55Þ � 10�3

fBd

ffiffiffiffiffiffiffiffi
BBd

p
[GeV] 216ð15Þ � 10�3

fBs

ffiffiffiffiffiffiffiffi
BBs

p
[GeV] 275ð13Þ � 10�3 [18]

�1 1.32(32) [19,20]

�2 0.5765(65) [19,20]

�3 0.47(4) [20,21]

�B 0.551(7) [19,22]

�" 0.92(1) [18]

mK0 [GeV] 497:614ð24Þ � 10�3

mBd
[GeV] 5279:50ð30Þ � 10�3

mBs
[GeV] 5366:3ð6Þ � 10�3

�mK ½ps�1� 0:5292ð9Þ � 10�2

�mBd
½ps�1� 0.507(5)

�mBs
½ps�1� 17.77(12)

j"Kj 2:228ð11Þ � 10�3

sin�d 0.673(23) [11]
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Since only left-left (LL) operators appear in the effective
Lagrangian, the QCD renormalization group evolution of
the Wilson coefficients Cð�Þ after including the Z3 con-
tributions is exactly the same as in the SM. Then, the
relevant elements of the evolution matrix Uð�;�3Þ from
the high scale �3 ¼ mZ3

down to the scale �, in the

notation of Ref. [26], can be calculated from

½�ð�;�3Þ�VLL ¼ ½�ð�;�tÞ�VLL½�ð�t;�3Þ�VLL; (53)

where �t ¼ OðmtÞ.
In general, for �<�0, the correction factor

½�ð�;�0Þ�VLL in an effective theory with f active quark
flavors is given by

½�ð�;�0Þ�VLL ¼ ½�ð0Þð�Þ�VLL þ �ðfÞ
s ð�Þ
4�

½�ð1Þð�Þ�VLL;
(54)

where ½�ð0Þð�Þ�VLL and ½�ð1Þð�Þ�VLL are the leading order
(LO) and the next-to-leading order (NLO) factors, respec-
tively, and in the right-hand side we have suppressed the
high scale �0.

For K and B meson mixing the factor ½�ð�;�tÞ�VLL in
Eq. (53) has been calculated in Ref. [26] using �t ¼
mtðmtÞ ¼ 166 GeV. The results are: ½�Kð�L;�tÞ�VLL ¼
0:788, for K0 � �K0 mixing with �L ¼ 2 GeV the lattice
scale where the matching with the lattice results of the
associated hadronic matrix elements is done, and
½�Bð�b;�tÞ�VLL ¼ 0:842, for B0

d=s � �B0
d=s mixing with

�b ¼ 4:4 GeV the mass scale of the bottom quark. In order

to calculate ½�ð�t;�3Þ�VLL we first evaluate �ðfÞ
s ð�3Þ to

LO in the MS scheme in an effective theory with f ¼ 6
quark flavors and we impose the continuity relation

�ð6Þ
s ð�tÞ ¼ �ð5Þ

s ð�tÞ. To this purpose we use

1

�ð5Þ
s ð�tÞ

¼ 1

�ð5Þ
s ðmZÞ

þ 
ð5Þ
0

4�
ln
�2

t

m2
Z

;

1

�ð6Þ
s ð�3Þ

¼ 1

�ð5Þ
s ð�tÞ

þ 
ð6Þ
0

4�
ln
�2

3

�2
t

;

(55)

where 
ðfÞ
0 ¼ 11� ð2=3Þf and for �ð5Þ

s ðmZÞ we use the

central value �ð5Þ
s ðmZÞ ¼ 0:1184. In this way

½�ð�t;�3Þ�VLL can be obtained from Eq. (54) with [26]

½�ð0Þð�tÞ�VLL ¼ �6=21
6 ;

½�ð1Þð�tÞ�VLL ¼ 1:3707ð1� �6Þ�6=21
6 ;

(56)

where �6 ¼ �ð6Þ
s ð�3Þ=�ð6Þ

s ð�tÞ. The numerical value of
½�ð�t;�3Þ�VLL depends of the value of the high energy
scale �3 ¼ mZ3

. Since in our approximation the Z2 and Z3

mass scales are of the same order (see Sec. II), we will
select values for mZ3

in the typical range 1–5 TeV.

With this in mind and defining

UK
VLL � ½�Kð�L;�tÞ�VLL½�ð�t;�3Þ�VLL;

UB
VLL � ½�Bð�b;�tÞ�VLL½�ð�t;�3Þ�VLL;

(57)

the 3-4-1 contribution to MP
12 is given by

MPð3-4-1Þ
12 ¼ 8

ffiffiffi
2

p
GF

3
UP

VLL3

�
g3
g1

�
2
mPf

2
PB̂P�

2
P; (58)

where

�K ¼ sd13s
d
23c

d
13e

i	00
; (59)

�Bd
¼ sd13c

d
23c

d
13e

i	0
; (60)

�Bs
¼ sd23c

d
23ðcd13Þ2e�i	3 ; (61)

and the phases are defined as

	0 ¼ ��d
13; (62)

	00 ¼ �ð�d
13 � �d

23Þ; (63)

	3 ¼ 	00 �	0: (64)

As can be seen from Eq. (58), the 3-4-1 contributions

MPð3-4-1Þ
12 are given in terms of five unknown independent

parameters, namely, the mass of the Z3 gauge boson, the
angles �d13, �

d
23 and the two complex phases 	0 and 	00,

where the last four parameters come from the Vd
L mixing

matrix.
The �F ¼ 2 observables discussed in this Section are,

in principle, sufficient to set bounds on the relevant pa-
rameters of Vd

L in Eq. (38).

IV. THEORETICAL EXPRESSIONS FOR
RARE DECAYAMPLITUDES

In the next Section, using the observables related to
meson mixing, the bounds on the parameter space associ-
ated to the relevant entries of the down-quark mixing
matrix will be established. Our next task will be to study
the implications of these bounds on several rare decay
amplitudes following a similar approach as in Ref. [4].
The decays we will study are the theoretically very clean
rare decays Kþ ! �þ� ��, KL ! �0� ��, and the clean rare
decays Bd=s ! �þ��, KL ! �0lþl� (l ¼ e, �).

As it is known, the rare decays we are interested in are
governed both by electroweak- and photon-penguins and
by leptonic box diagram contributions. In the SM these
contributions are described, in the LO, by the correspond-
ing Inami-Lim functions C0ðxtÞ, D0ðxtÞ and B0ðxtÞ which,
in the expressions for the decay amplitudes, always appear
in the gauge invariant combinations: X0ðxtÞ ¼ C0ðxtÞ �
4B0ðxtÞ, Y0ðxtÞ ¼ C0ðxtÞ � B0ðxtÞ, Z0ðxtÞ ¼ C0ðxtÞ þ
ð1=4ÞD0ðxtÞ [27]. In the NLO these combinations will be
written as XðxtÞ, YðxtÞ and ZðxtÞ. Since the Z3 contribution
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to the effective Hamiltonians for the rare decays we are
considering have the same operator structure than the ones
in the SM, that is they have a ðV � AÞðV � AÞ form, its
effects on the various decays can be encoded by appropri-
ate redefinitions of the XðxtÞ, YðxtÞ and ZðxtÞ functions in
the form

X0ðxtÞ ¼ XðSMÞðxtÞ þ�X;

Y0ðxtÞ ¼ YðSMÞðxtÞ þ �Y;

Z0ðxtÞ ¼ ZðSMÞðxtÞ þ �Z:

(65)

As we will see, in the 3-4-1 extension the redefined func-
tions are in general complex. We will write them as they
appear in Ref. [23] so that the modifications lead to the
correct results in the 3-4-1 extension including the corre-
sponding imaginary part. For the decays KL ! �0lþl�, in
which there is also a right-handed contribution, the Z3

effects will be absorbed into the matching conditions of
the Wilson coefficients.

A. K ! �� ��

For K ! �� �� there exists a charged decay Kþ !
�þ� ��, and a neutral one KL ! �0� �� [28]. For both of
them the NLO effective Hamiltonian is given by

HSM
eff ¼ GFffiffiffi

2
p �

2�sin2�W

X
l¼e;�;�

ðV�
csVcdX

l
NL þ V�

tsVtdXðxtÞÞ

� ð �sdÞV�Að ��l�lÞV�A; (66)

where the functions XNL and XðxtÞ represent the charm and
top-loop contributions, respectively. Summing over the
three neutrino flavors and collecting the charm contribu-
tions in PcðXÞ ¼ 0:41� 0:05 [29], the BR for Kþ !
�þ� �� can be expressed as

BRðKþ ! �þ� ��Þ
¼ �þ �

��
Im

�
�t

�5
XðxtÞ

��
2 þ

�
Re

�
�c

�
PcðXÞ

�

þ Re

�
�t

�5
XðxtÞ

��
2
�
; (67)

where [30]

�þ ¼ rKþ
3�2BRðKþ ! �0eþ�Þ

2�2sin4�W
�8

¼ ð5:26� 0:06Þ � 10�11

�
�

0:225

�
8
: (68)

For KL ! �0� �� it is found

BR ðKL ! �0� ��Þ ¼ �L �
�
Im

�
�t

�5
XðxtÞ

��
2
; (69)

with

�L ¼ �þ
rKL

rKþ

�ðKLÞ
�ðKþÞ ¼ ð2:29� 0:03Þ � 10�10

�
�

0:225

�
8
;

(70)

where � is a parameter of the Wolfenstein parametrization
of the CKM matrix [31] and is set equal to s12 of the
standard parametrization [11].
For both decays the contribution from the 3-4-1 exten-

sion to the effective Hamiltonian comes from a tree dia-
gram transmitted by the Z00 boson and has the form

HZ00
eff ¼

X
l¼e;�;�

2GFffiffiffi
2

p
�
g3
g1

�
2
3V

d
L23V

d�
L13ð�sdÞV�Að ��l�lÞV�A:

(71)

This contribution can be included as a modification �X of
the function XðxtÞ which reads

�XK��� ¼ 4�sin2�W
�

�
g3
g1

�
2
3

Vd
L23V

d�
L13

V�
tsVtd

: (72)

B. Bd=s ! �þ��

These decays are entirely determined by the top contri-
bution so that the SM effective Hamiltonian in the NLO is
given by

H
Bd=s��

eff ¼ �GFffiffiffi
2

p �

2�s2W
ðV�

tbVtd=sÞYðxtÞð �bqÞV�Að ���ÞV�A:

(73)

From here, the expressions for the branching fractions are
obtained as

BRðBq ! �þ��Þ ¼ �Bq

G2
F

�
mBq

� �fBq
m�

4�sin2�W

�
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

m2
�

m2
Bq

vuut jV�
tbVtqYðxtÞj2: (74)

The 3-4-1 contribution to Bd=s ! �þ�� is found to be

HZ00
eff ¼

2GFffiffiffi
2

p
�
g3
g1

�
2
3V

d
L33V

d�
L13=23ð �bqÞV�Að ���ÞV�A; (75)

which we now absorb into a modification of YðxtÞ as

�YB�� ¼ � 4�sin2�W
�

�
g3
g1

�
2
3

Vd
L33V

d�
L13=23

V�
tbVtd=ts

: (76)

C. KL ! �0lþl�

In the SM the CP-violating part of the effective
Hamiltonian, after neglect QCD penguin operators, is
given by

HK�ll
eff ¼ �GFffiffiffi

2
p V�

tsVtdðy7VQ7V þ y7AQ7AÞ; (77)
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where Q7V ¼ ð �sdÞV�A �e�
�e and Q7A ¼ ð �sdÞV�A �e�

��5e
are the vector- and axial-vector operators which contribute
and that originate from �- and Z-penguin and box dia-
grams. The matching conditions of the Wilson coefficients
y7V and y7A are given by

y7V ¼ �

2�

�
Y0ðxtÞ
sin2�W

� 4Z0ðxtÞ þ P0

�
; (78)

and

y7A ¼ � �

2�

Y0ðxtÞ
sin2�W

: (79)

In y7V a small term PE has been neglected and we use the
normalization P0 ¼ 2:89� 0:06 [32,33].

For these decays the contributions from new physics
lead to the effective Hamiltonian

HZ00
eff ¼

2GFffiffiffi
2

p
�
g3
g1

�
2
3V

d
L23V

d�
L13ðQ7V �Q7AÞ: (80)

Following [4], instead of absorbing these new contribu-
tions into modifications of the Inami-Lim functions, they
will be absorbed into the matching conditions of the
Wilson coefficients in the form

�y7V ¼ �2

�
g3
g1

�
2
3

ðVd
L23V

d�
L13Þ

V�
tsVtd

; (81)

�y7A ¼ 2

�
g3
g1

�
2
3

ðVd
L23V

d�
L13Þ

V�
tsVtd

: (82)

The expressions for the BR, including the long-distance
indirectly CP-violating terms and their interference with
the short-distance contributions, are [34]

BrðKL ! �0‘þ‘�Þ ¼ ðC‘
dir � C‘

intjasj þ C‘
mixjasj2

þ C‘
CPCÞ � 10�12; (83)

where

Ce
dir ¼ ð4:62� 0:24Þð!2

7V þ!2
7AÞ;

C�
dir ¼ ð1:09� 0:05Þð!2

7V þ 2:32!2
7AÞ;

(84)

Ce
int ¼ ð11:3� 0:3Þ!7V; C

�
int ¼ ð2:63� 0:06Þ!7V;

(85)

Ce
mix ¼ 14:5� 0:05; C�

mix ¼ 3:36� 0:20; (86)

Ce
CPC ’ 0; C�

CPC ¼ 5:2� 1:6; (87)

jasj ¼ 1:2� 0:2; (88)

with w7A;7V ¼ Imð�ty7A;7VÞ=Im�t.

V. CONSTRAINTS AND IMPLICATIONS FOR
RARE DECAYS

In this Section we numerically evaluate the theoretical
expressions obtained in the two previous sections. As noted

above, the 3-4-1 contributions MPð3-4-1Þ
12 to the matrix

elements in Eqs. (42)–(46) are given in terms of the five
unknown independent parameters mZ3

, the angles �d13, �
d
23

and two complex phases, 	0 and 	00. We perform two
related numerical analysis: in the first one, we use the
well-measured observables �MK, �Md=s, "K and sin�d

to constrain the angles and phases appearing in the Vd
L

mixing matrix for selected values of the Z3 mass. In the
second analysis we study the implications of these bounds
on the rare decays previously mentioned. In this context we
are mainly interested in obtaining upper and lower bounds
for these decays as a function of the Z3 mass in order to
confront them with the present experimental data and with
the SM predictions. The updated experimental data for the
input parameters are also given in Table II.

A. Constraints from K0 � �K0 and B0
q � �B0

q mixing

We start by focusing on the bounds on the parameter
space of the 3-4-1 extension associated to the downlike
quark mixing parameters. Two possible analyses can be
carried out. The first one, followed in several works both in
3-3-1 models [2] and in 3-4-1 extensions [7,9,10], consist
in to assume a texture for the mixing matrix in order to
obtain bounds on the mass of the heavy gauge bosons. In
the opposite approach, one can fix these masses and obtain
some information on the size of the corresponding mixing
matrix elements [3–5]. Here we follow this second ap-
proach with fixed values of mZ3

in the range 1–5 TeV.

In previous studies on flavour physics observables in
different models, the numerical analysis was simplified
by setting all input parameters to their central values and
allowing instead �MK, "K, �Md, �Ms, j"Kj, and sin�d to
differ from their experimental values by �50%, �40%,
�40%, �40%, �20% and �8%, respectively. This sim-
plifying assumption was justified in order to determine the
size of possible effects on observables that have not been
well measured so far. In recent analysis, however, an
improved error analysis has been done that enable us to
draw more accurate conclusions in view of the recent
significant improvements in the experimental constraints
and in the lattice determinations of the nonperturbative
parameter. Therefore, in what follows, we will take all
input parameters to be flatly distributed within their 1�
ranges indicated in Table II. At the same time, we require
the observables j"Kj,�Md,�Ms and sin�d, resulting from
the SM and the 3-4-1 contributions, to lie within their
experimental 1� ranges. In the case of �MK, where the
theoretical uncertainty is large due to unknown long-
distance contributions, we allow the generated value to
lie within �30% of its experimental central value.
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FIG. 1. Allowed sd23 �	3 region for sd13 ¼ 0, and mZ3
¼ 1 TeV (Left), mZ3

¼ 5 TeV (right).
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FIG. 2. Allowed sd13 �	0 region for mZ3
¼ 1 TeV and for different values of 	00 and increasing values of sd23: 0.001 (left), 0.002

(center) and 0.005 (right).

ALEJANDRO JARAMILLO AND LUIS A. SÁNCHEZ PHYSICAL REVIEW D 84, 115001 (2011)

115001-12



In dealing with the values of the CKMmatrix parameters
quoted in Table II, instead of using the full CKM angle fits,
we take only the values related to direct experimental
measures with the largest uncertainties taken into account.
In this way we avoid possible modifications from the 3-4-1
contributions to the one-loop SM processes included in the
global fits and leave the largest room available for possible
new physics effects, respecting the well-measured values.
For the CP-violating parameter � we take its direct deter-
mination from the model-independent UTfit analysis of

B ! Dð�ÞKð�Þ decays.
We then proceed to scan the parameter space fixing mZ3

and generating a large number of points that we call an
‘‘effective’’ parameter space. For each fixed value of the Z3

mass, this space consists of more than 1� 106 points that
fulfil the requirements listed above, where all angles are
varied in the interval ½0; �=2�, all phases between 0 and
2�, and all input parameters are varied in their 1� ranges.

With these data we can plot contours setting bounds on
some of the parameters. For example, let us take the
mixing angle �d13 ¼ 0. In this case, Eq. (61) determines

the allowed region in the sd23 �	3 plane, which is shown in

Fig. 1 for mZ3
¼ 1 TeV and mZ3

¼ 5 TeV. These plots

allows us to set upper bounds on jsd23j which depend on the
value ofmZ3

. It is seen that the upper bound for sd23 increase

for increasing values of mZ3
. Figure 1 also shows that, at

the 1� confidence level, there is a large and typical region
which is excluded and that prefers values for 	3 around
48� and 136� independently of the Z3 mass.

Now we explore, for several values of mZ3
, the allowed

regions in the plane sd13 �	0 using nonzero values of sd23
and selected values of 	00. This is shown in Fig. 2 for
mZ3

¼ 1. We have taken values for sd23 consistent with the

ones in the allowed sd23 �	3 plane and we have fixed	
00 at

the values 0�, 45�, 90�, and 135�. This figure shows that
for increasing values of sd23 and depending of the	

00 value,

the allowed region reduces considerably involving both the
selection of very specific values of	0 and a decrease in the
upper bound for sd13.
With the data from the effective parameter space we can

estimate the order of magnitude of the upper limits for �d13
and �d23 for several values of the Z3 mass. The results are

collected in Table III which shows that these upper bounds
increase for increasing values of mZ3

. This allow us to

elucidate the size of the allowed region in the parameter
space.

B. Implications for rare decays

In order to study the implications of the obtained bounds
for the modification in the rare decay amplitudes given in
Section IV, we move over all the effective parameter space
for each selected value of mZ3

, and we calculate the am-

plitudes for the different decays. At difference with the
analysis in Ref. [4], our procedure allows us to set not only
upper bounds but also lower bounds on the corresponding
BR as a function of the Z3 mass. The present experimental
data for these decays [11] and the SM predictions
[29,34,35] are given in Table IV. Our goal will be to
determine these upper and lower bounds and establish their
compatibility with the data in this Table.
For the decays Kþ ! �þ ��� and KL ! �0� ��, using

Eqs. (67), (69), and (72) and the effective parameter space,
the bounds are given in Fig. 3. For the decay Kþ ! �þ ���
we see from Table IV that the experimental central value is
greater than the SM prediction. Figure 3 shows that for low
values of mZ3

the upper limit reaches the experimental

central value, but for larger mZ3
both the upper and lower

limits go closer to the SM prediction. For the decay KL !
�0� �� we can see that big enhancements are expected for
low mZ3

. The bigger enhancements are expected for mZ3

values less that�2:5 TeV. For the decay Kþ ! �þ ��� the
greatest contributions come from the CP-conserving case
and for KL ! �0� �� come from the CP-violating case in
accordance with the setting in [4], but with the difference
that we have used all the effective parameter space which
includes the CP-conserving, the CP-violating and the
mixed cases.
To appreciate more clearly the departures from the SM,

the ratios BRðKþ ! �þ� ��Þ=BRðKþ ! �þ� ��ÞSM and
BRðKL ! �0� ��Þ=BRðKL ! �0� ��ÞSM vs mZ3

are shown

TABLE III. Upper limit for �13 and �23 for different values
of mZ3

.

mZ3
�13;max �23;max

1 TeV 8:73� 10�4 3:14� 10�2

3 TeV 2:97� 10�3 9:42� 10�2

5 TeV 5:06� 10�3 1:75� 10�1

TABLE IV. Present experimental data and SM predictions for the rare decays considered in this work.

Label Decay Experimental SM

BRðKþÞ BRðKþ ! �þ� ��Þ ð1:7� 1:1Þ � 10�10 ð7:81þ0:80
�0:71 � 0:29Þ � 10�11

BRðKL�Þ BRðKL ! �0� ��Þ <6:7� 10�8 (90% C.L.) ð2:43þ0:40
�0:37 � 0:06Þ � 10�11

BRðBsÞ BRðBs ! �þ��Þ <1� 10�7 (90% C.L.) ð3:35� 0:32Þ � 10�9

BRðBdÞ BRðBd ! �þ��Þ <3� 10�8 (90% C.L.) ð1:03� 0:09Þ � 10�10

BRðKLeÞ BRðKL ! �0eþe�Þ <28� 10�11 (90% C.L.) ð3:54þ0:98
�0:85Þ � 10�11

BRðKL�Þ BRðKL ! �0�þ��Þ <38� 10�11 (90% C.L.) ð1:41þ0:28
�0:26Þ � 10�11
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in Fig. 4. For the decay Kþ ! �þ ��� we find enhance-
ments around 2.8 times the SM prediction for low values of
mZ3

, but small departures from the SM for large Z3 mass.

For KL ! �0� ��, enhancements of around 7.6 times the
SM value are found for low values of mZ3

.

Comparing the upper and lower bounds on both decays
we see that the possibility of enhancement is always larger
than the possibility of suppression, except for large mZ3

where both of them are comparable.
The plane BRðKL ! �0� ��Þ � BRðKþ ! �þ ���Þ is

shown in Fig. 5. The upper and lower branches correspond
mainly to the CP-violating case and the horizontal branch
to the CP-conserving case. It is implicit in this figure that
the mixed case is very restricted making the expressions in
Eqs. (72), (76), (81), and (82) mainly real or imaginary.
Notice that the pattern seen is similar to the one obtained in
the Littlest Higgs model with T parity in Ref. [36] and in
the minimal 3-3-1 model in Ref. [4].

For the decays Bs ! �þ�� and Bd ! �þ��, using
Eqs. (74) and (76), the limits are shown in Fig. 6. From the
data in Table IV we see that, for all the selected range of
values of mZ3

, the upper bounds are smaller than the

experimental upper limit. For the decay Bd ! �þ�� the
upper and lower bounds are lower than the SM predictions.
BRðBs ! �þ��Þ=BRðBs ! �þ��ÞSM and BRðBd !

�þ��Þ=BRðBd ! �þ��ÞSM vs mZ3
are shown in Fig. 7.

For Bs ! �þ�� we see that both enhancements and
suppressions are possible but both of them decrease with
increasing values of mZ3

and are very small with respect to

the SM prediction for mZ3
¼ 5 TeV. For Bd ! �þ��

suppression of around 0.87 times the SM value is possible
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FIG. 3. Upper and lower bounds on the BR for the decay Kþ ! �þ ��� (left), and for the decay KL ! �0� �� (right).

FIG. 4. BRðKþ ! �þ� ��Þ=BRðKþ ! �þ� ��ÞSM (left) and BRðKL ! �0� ��Þ=BRðKL ! �0� ��ÞSM (right). Upper and lower bounds
for different values of mZ3

are shown.

FIG. 5. BRðKL ! �0� ��Þ � BRðKþ ! �þ ���Þ plane for
mZ3

¼ 1 TeV.
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for mZ3

 1 TeV, but for higher mZ3

the suppression can

reach 0.92 times the SM prediction.
Going back to Fig. 6 it is interesting to note that, due to

the small difference between the upper and lower bounds
for BRðBs ! �þ��Þ and BRðBd ! �þ��Þ, they are sup-
pressed in this 3-4-1 extension even with the inclusion of
new CP-violating phases, as compared with the case for

the decays in Fig. 3. A similar behavior is reported in [4]
for the minimal 3-3-1 model. It is important to remark that,
as in the 3-3-1 model, a strong enhancement of this BR
would rule out the extension we are studying.
We conclude analyzing the results for the decays KL !

�0eþe� and KL ! �0�þ��. Using Eqs. (81)–(83), the
resulting limits are shown in Fig. 8. At this point it is
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FIG. 6. Upper and lower bound on the BR for the decay Bs ! �þ�� (left), and for the decay Bd ! �þ�� (right) as a function
of mZ3

.

FIG. 7. BRðBs ! �þ��Þ=BRðBs ! �þ��ÞSM (left) and BRðBd ! �þ��Þ=BRðBd ! �þ��ÞSM (right) for different values of
mZ3

, including upper and lower bounds.
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FLAVOR CHANGING NEUTRAL CURRENTS, CP . . . PHYSICAL REVIEW D 84, 115001 (2011)

115001-15



important to clarify that the upper bound is built using the
þ sign in Eqs. (83) and the lower bound is obtained using
the� sign. From the data in Table IV we can see that these
limits are lower than the SM predictions, but consistent
with the upper experimental bounds. Notice also that the

upper and lower limits are both almost independent of the
Z3 mass.
BRðKL ! �0eþe�Þ=BRðKL ! �0eþe�ÞSM and

BRðKL!�0�þ��Þ=BRðKL!�0�þ��ÞSM vs mZ3
are

shown in Fig. 9 from which we can see that these decays
are suppressed compared to the SM prediction. Moreover,
a comparison with Fig. 7 shows that, in the 3-4-1 extension,
these BR are more suppressed than the ones for the Bs !
�þ�� and Bd ! �þ�� decays.
In the spirit of [32], we plot the plane

BRðKL ! �0�þ��Þ-BRðKL ! �0eþe�Þ for mZ3
¼

1 TeV in Fig. 10. This shows the correlation between these
decays. It can be seen that they are very restricted.
Comparing Fig. 10 with the corresponding figures in
Refs. [32,34], it is noted that they are very close to the
plots for the SM in these works. This fact can also be
observed from a comparison between the two plots in
Fig. 8.
In Fig. 11, the planes BRðKL!�0eþe�Þ-

BRðKL ! �0� ��Þ and BRðKL ! �0�þ��Þ-
BRðKL ! �0� ��Þ are shown. We find that, as it happens
in many other models, the decays KL ! �0�þ�� and
KL ! �0eþe� are subject to weaker modifications than

FIG. 9. Upper and lower bounds for the ratios BRðKL ! �0eþe�Þ=BRðKL ! �0eþe�ÞSM (left) and BRðKL !
�0�þ��Þ=BRðKL ! �0�þ��ÞSM (right), for different values of mZ3

.

FIG. 10. BRðKL ! �0�þ��Þ-BRðKL ! �0eþe�Þ plane for
mZ3

¼ 1 TeV.

FIG. 11. BRðKL ! �0eþe�Þ-BRðKL ! �0� ��Þ plane (left) and BRðKL ! �0�þ��Þ-BRðKL ! �0� ��Þ plane (right) for mZ3
¼

1 TeV.
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the decay KL ! �0� ��. We remark that this is contrary to
the result found in [4] for the minimal 3-3-1 model. This
result, then, can allow to test the 3-4-1 extension studied
here when more accurate measurements of both decays
become available.

VI. SUMMARY

In this work, in the framework of a 3-4-1 extension of
the SM characterized by the values b ¼ 1, c ¼ �2 in the
most general expression for the electric charge generator
and with chiral anomalies cancelling between the families,
we have analyzed the effects of FCNC transmitted by one
of the two extra neutral gauge bosons predicted by this
construction in the case in which this new gauge boson Z3

does not mix with the other two neutral gauge bosons. In
this context we have studied in detail the constraints that
well-measured �F ¼ 2 observables (F ¼ S, B) impose on
the parameter space associated to the Vd

L matrix describing
mixing in the down-quark sector. This parameter space
consists of five variables, namely, the angles �d13, �

d
23 and

the CP-violating phases 	0, 	00, related to the Vd
L mixing

matrix, and the Z3 mass, and we have used the well-
measured quantities�MK,�Md=s, "K and sin�d. For fixed

values of some of the relevant Vd
L parameters, allowed

regions for the remaining parameters were plotted in
Figs. 1 and 2 when mZ3

is allowed to vary in the typical

range 1–5 TeV. A calculation of the upper limits for �13
and �23, for different values ofmZ3

, is presented in Table III

which shows that these bounds increase when mZ3
in-

creases. This allowed us to appreciate the behavior of the
parameter space for selected values of the Z3 mass.

We have then taken these results to obtain upper and
lower bounds for the BR of several clean rare decay
processes, namely Kþ ! �þ ���, KL ! �0� ��, KL !
�0lþl� (l ¼ e, �) and Bd=s ! �þ��. We find sizeable

enhancements and/or suppressions with respect to the SM
prediction mainly for mZ3

values in the range 1–2 TeV. In

this range large enhancements, as compared with the sup-
pressions, are predicted for the BR of the decays Kþ !
�þ ��� and KL ! �0� ��. For BRðBs ! �þ��Þ we find

enhancements slightly larger than suppressions, while for
BRðBd ! �þ��Þ we find suppression for all the consid-
ered range of values of mZ3

. Finally, for BRðKL !
�0lþl�Þ we find upper and lower bounds smaller than
the SM prediction but consistent with the upper experi-
mental limit. These departures from the SM, presented in
Figs. 4, 7, and 9, can be considered as signals of the 3-4-1
extension under consideration when looking at the data.
From these plots is clear that the decays Kþ ! �þ� �� and
KL ! �0� �� show the greatest differences with the SM
predictions, but the decays KL ! �0lþl� (l ¼ e, �) and
Bd=s ! �þ�� are very restricted in the 3-4-1 extension.

It is important to note that, as in the minimal 3-3-1 model,
a strong enhancement of the BR for the decays
Bd=s ! �þ�� would rule out the 3-4-1 extension studied

here.
The plane BRðKL ! �0� ���Þ � BRðKþ ! �þ ���Þ in

Fig. 5 allowed us to compare our results with the ones in
the littlest Higgs model with T parity [36] and with the
ones in the minimal 3-3-1 model [4], and it also helped us
to better understand the structure of the expressions in Eqs.
(72), (76), (81), and (82). It is important to remark that,
contrary to what it is done in [4], our results are obtained
without the need of forcing a zero value neither for the real
part nor for the imaginary part of these expressions.
In Figs. 10 and 11 we also plotted the planes

BRðKL ! �0�þ��Þ-BRðKL ! �0eþe�Þ, BRðKL !
�0eþe�Þ-BRðKL ! �0� ��Þ and BRðKL ! �0�þ��Þ-
BRðKL ! �0� ��Þ. It can be seen that the decays KL !
�0�þ�� and KL ! �0eþe� are subject to weaker mod-
ifications than the decayKL ! �0� ��. When these plots are
compared with similar ones obtained in other models, we
find clear differences. In this sense, these results can allow
to test the 3-4-1 extension under study here when more
accurate measurements of the corresponding decays be-
come available.
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