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We present a new calculation of the D ! �, l� semileptonic form factor fD!�þ ðq2Þ at q2 ¼ 0 based on

‘‘highly improved staggered quark’’ charm and light valence quarks on MILC Nf ¼ 2þ 1 lattices. Using

methods developed recently for HPQCD’s study of D ! K, l� decays, we find fD!�þ ð0Þ ¼ 0:666ð29Þ.
This signifies a better than factor 2 improvement in errors for this quantity compared to previous

calculations. Combining the new result with CLEO-c branching fraction data, we extract the Cabibbo-

Kobayashi-Maskawa matrix element jVcdj ¼ 0:225ð6Þexpð10Þlat, where the first error comes from experi-

ment and the second from theory. With a total error of �5:3% the accuracy of the direct determination of

jVcdj from D semileptonic decays has become comparable to (and in good agreement with) that from

neutrino scattering. We also check for second row unitarity using this new jVcdj, HPQCD’s earlier jVcsj,
and jVcbj from the Fermilab Lattice and MILC collaborations. We find jVcdj2 þ jVcsj2 þ jVcbj2 ¼
0:976ð50Þ, improving on the current PDG2010 value.

DOI: 10.1103/PhysRevD.84.114505 PACS numbers: 12.38.Gc, 13.20.Fc

I. INTRODUCTION

The Cabibbo-Kobayashi-Maskawa (CKM) matrix pro-
vides particle physicists with a wealth of opportunities to
carry out precision tests of the standard model (SM) and
look for new physics. On the one hand, each matrix ele-
ment can be determined in several ways, employing differ-
ent experimental and theory inputs, and the results
compared with each other. Three generation unitarity can

also be examined to see how well V̂CKM � V̂y
CKM ¼ Î is

satisfied. This leads to tests such as first, second, or third
row/column unitarity. It also gives rise to the important
‘‘unitarity triangle’’ (UT) relation Vud � V�

ub þ Vcd �
V�
cb þ Vtd � V�

tb ¼ 0. Consistency checks of the sides and

angles of the UT have been the focus of much of the
experimental and theoretical effort in flavor physics in
recent years. Lattice QCD is playing an increasingly
important role in CKM physics [1]. For instance, lattice
calculations of the kaon semileptonic form factor fK!�þ ð0Þ
[2,3] and the decay constant fK (or fK=f�) [4–8] have
contributed to precision determinations of jVusj and first
row unitarity tests [9].

The HPQCD Collaboration recently published a new
lattice calculation of the D ! K, l� semileptonic decay
form factor fD!Kþ ðq2Þ at q2 ¼ 0 [10] which significantly
reduced the error on this quantity compared to previous
theory results. This led to a very precise determination of
the CKM matrix element jVcsj. Features in the HPQCD
work that made this improvement possible include the use

of a relativistic quark action, the ‘‘highly improved stag-
gered quark’’ (HISQ) action [11], to simulate both light
and charm quarks, and better data analysis tools. We also
extended standard lattice QCD approaches of combining
continuum and chiral extrapolations to semileptonic de-
cays. Capitalizing on these developments, we turn here in
this article toD ! �, l� semileptonic decays. We focus on
extracting the CKM matrix element jVcdj by combining
theory results for fD!�þ ð0Þ with experimental input from
CLEO-c [12]. The first unquenched lattice studies of D
semileptonic decays were carried out several years ago by
the Fermilab Lattice and MILC collaborations [13]. In that
work lattice gauge theory was able to predict the shape of
fþðq2Þ prior to subsequent confirmation by experiment.
The theory errors for fD!�þ ð0Þ in [13] were�10%, and this
has remained the dominant error in determinations of jVcdj
from D semileptonic decays. More accurate determina-
tions have come from neutrino scattering experiments so
that the current PDG2010 [14] quotes jVcdj from neutrino
charm production with an error of about �5%. With the
new lattice calculations described in this article, the accu-
racy of jVcdj from D semileptonic decays is approaching
that from neutrino scattering and this provides an impor-
tant consistency check. We find

jVcdj ¼ 0:225ð6Þexpð10Þlat; (1)

where the first error is from experiment [12] and the second
is the theory error from the lattice QCD calculation
presented here. Equation (1) is in excellent agreement
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with the PDG value based on neutrino scattering of
jVcdj ¼ 0:230ð11Þ.

In the rest of this article we describe how the result of
Eq. (1) was obtained. We work with HISQ valence charm
and light quarks on the MILC AsqTad Nf ¼ 2þ 1 coarse

(a� 0:12 fm) and fine (a� 0:09 fm) lattices. Table I lists
the five MILC [15] ensembles employed in this work and
some simulation parameters. Compared to [10] we have
doubled the statistics on ensembles C1, C2, and F1. The
valence charm and light bare quark masses are the same as
in [10], with the former tuned to the �c mass and the latter
chosen such that the ratio of mlight to the physical strange

quark mass is approximately the same for valence and sea
quarks. In the next section we summarize the formulas for
hadronic matrix elements necessary to extract fD!�þ ð0Þ and
explain how they are related to three- and two-point corre-
lators evaluated numerically on the lattice. These relations
are the same as those described in Ref. [10] so we will be
brief. In Sec. III we describe our data analysis and fitting
procedures. We employ Bayesian fitting methods and carry
out multiexponential fits to several three-point and two-
point correlators at the same time. Section IV discusses
chiral and continuum extrapolations of lattice results to the
physical limit. We apply the modified z-expansion method
developed for D ! K semileptonic form factors in [10].
Section V presents our results for fD!�þ ð0Þ and jVcdj and
comparisons with other determinations of these quantities.
Section VI gives a brief summary, and we also include a
second row unitarity test with all theory inputs coming
from lattice QCD.

II. RELEVANT MATRIX ELEMENTS

The most efficient way to calculate fþðq2Þ at q2 ¼ 0
is to focus on the scalar form factor f0ðq2Þ and use the
kinematic identity fþð0Þ ¼ f0ð0Þ. The scalar form factor
can be determined from the matrix element of the scalar

current S ¼ ��q�c between the D meson and pion states.

fD!�
0 ðq2Þ ¼ ðm0c �m0lÞh�jSjDi

M2
D �M2

�

: (2)

The combination in the numerator of Eq. (2) does not get
renormalized. The use of absolutely normalized currents is
one of the reasons why we are able to significantly reduce
errors in our D semileptonic scalar form factor calcula-
tions, both here and in [10].
Our goal is to determine the hadronic matrix element

h�jSjDi in Eq. (2) via numerical simulations. The starting
point is the three-point correlator,

C3pntðt0; t; T; ~p�Þ ¼ 1

L3

X
~x

X
~y

X
~z

ei ~p��ð ~z� ~xÞ;

h��ð ~x; t0Þ~Sð~z; tÞ�y
Dð ~y; t0 � TÞi:

(3)

In Eq. (3) the interpolating operator�y
D creates aD meson

at time slice t0 � T. At time t (t0 � t � t0 � T) the scalar
current S converts the c quark inside the D into a light
quark and also inserts momentum ~p�. The resulting pion
then propagates to time slice t0 where it is annihilated by
��. In addition to the three-point correlator, one needs the
pion and D meson two-point correlators,

C2pnt
D ðt; t0Þ ¼ 1

L3

X
~x

X
~y

h�Dð ~y; tÞ�y
Dð ~x; t0Þi (4)

and

C2pnt
� ðt; t0; ~p�Þ ¼ 1

L3

X
~x

X
~y

ei ~p��ð ~x� ~yÞh��ð ~y; tÞ�y
�ð ~x; t0Þi:

(5)

Details on how the above three- and two-point correlators
can be expressed in terms of single component staggered
quark propagators are given in Sec. IVof Ref. [10] and will
not be repeated here. There we also show how the sums

P
~x

in Eqs. (3)–(5) can be carried out using U(1) random wall
sources.

The meson creation operators �y
D and �y

� create not
only the ground state D and pion we are interested in, but
also an arbitrary number of excited states with the same
quantum numbers. Hence the t dependence of the two- and
three-point correlators is complicated especially for stag-
gered quarks. For two-point correlators it is given by

C
2pnt
D ðtÞ ¼ XND�1

j¼0

bDj ðe�ED
j t þ e�ED

j ðNt�tÞÞ

þ XN0
D�1

k¼0

dDk ð�1Þtðe�E0D
k
t þ e�E0D

k
ðNt�tÞÞ; (6)

and similarly for C
2pnt
� ðtÞ, except that there is no opposite

parity terms for zero momentum. For three-point correla-
tors one has

TABLE I. The MILC Nf ¼ 2þ 1 ensembles used in the
D ! � semileptonic project. The fourth column gives the va-
lence HISQ light and charm quark masses in lattice units. Nconf

is the number of configurations and Ntsrc the number of time
sources used for each configuration.

Set r1=a mlðseaÞ=msðseaÞ amvalence Nconf Ntsrc L3 � Nt

C1 2.647 0:005=0:050 0.0070 1200 2 243 � 64
0.6207 1200 2

C2 2.618 0.010/0.050 0.0123 1200 2 203 � 64
0.6300 1200 2

C3 2.644 0:020=0:050 0.0246 600 2 203 � 64
0.6235 600 2

F1 3.699 0.0062/0.031 0.00674 1200 4 283 � 96
0.4130 1200 4

F2 3.712 0:0124=0:031 0.0135 600 4 283 � 96
0.4120 600 4
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C3pntðt;TÞ¼ XN��1

j¼0

XND�1

k¼0

Ajke
�E�

j te�ED
k
ðT�tÞ

þ XN��1

j¼0

XN0
D�1

k¼0

Bjke
�E�

j te�E0D
k
ðT�tÞð�1ÞðT�tÞ

þ XN0
��1

j¼0

XND�1

k¼0

Cjke
�E0�

j te�ED
k
ðT�tÞð�1Þt

þ XN0
��1

j¼0

XN0
D�1

k¼0

Djke
�E0�

j te�E0D
k
ðT�tÞð�1Þtð�1ÞðT�tÞ:

(7)

We are interested in the ground state contributions with
amplitudes

bD0 � jh�DjDij2
2MDa

3
; (8)

b�0 � jh��j�ij2
2E�a

3
; (9)

and

A00 � h��j�ih�jSjDihDj�Di
ð2E�a

3Þð2MDa
3Þ a3: (10)

So the hadronic matrix element h�jSjDi that enters into
the formula for fD!�

0 ð0Þ in (2) is given by

h�jSjDi ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MDE�

p A00ffiffiffiffiffiffiffiffiffiffiffiffi
b�0 b

D
0

q : (11)

We have accumulated simulation data for zero momentum
D correlators and for pion correlators with momenta
2�
L ð0; 0; 0Þ, 2�L ð1; 0; 0Þ, 2�L ð1; 1; 0Þ, and 2�

L ð1; 1; 1Þ. The cor-
responding three-point correlators were calculated for
T ¼ 15, 16 on the coarse ensembles and for T ¼ 19,
20, 23 on the fine ensembles. In the next section we
describe how the combination on the right-hand side of
(11) is obtained from three- and two-point correlators.

III. FITS AND DATA ANALYSIS

Extracting energies and amplitudes from numerical data
on two- and three-point correlators is one of the more
challenging but, at the same time, very important aspects
of lattice calculations. For the past decade the HPQCD
Collaboration has been employing fitting methods based
on Bayesian statistics and involving multiexponential fits
[16]. For instance, in order to obtain the ground state
energy and amplitude from a two-point correlator, we
drop the first 1–4 time slices and then fit to the form of
Eq. (6) for several values of N � ND (or N�) and N0. One
continues to increase the number of exponentials until the

fit results for E0 and b0, including their errors and the chi-
squared per degree of freedom of the fit, have stabilized.
Figure 1 shows an example of aE� versus Nexp ¼ N� for

momentum 2�
L ð1; 1; 1Þ with N0

� ¼ N�. One sees that fits

have stabilized after Nexp ¼ 3. It should be noted that as

one increases the number of exponentials and with it the
number of fit parameters, the number of data points grows
as well. Each new fit parameter adds another prior term,
i.e. additional data, to the fit function, and the number of
data points minus the number of fit parameters remains
constant [16].

The combination A00ffiffiffiffiffiffiffiffiffi
b�
0
bD
0

p is obtained from simultaneous

fits to C
2pnt
D ðtÞ, C2pnt

� ðtÞ, and C3pntðt; TÞ for 2 (or 3) T values.

0 1 2 3 4 5 6 7 8 9 10
Nexp

0.57

0.58

0.59

0.6

0.61

 a
E

pi
on

(1
,1

,1
) 

 f
or

  C
2

FIG. 1 (color online). Ground state pion energy in lattice units
for momentum 2�

L ð1; 1; 1Þ versus the number of exponentials in

the fit.

0 1 2 3 4 5 6 7 8 9 10
Nexp

0.6

0.65

0.7

0.75

0.8

 f
0(1

,1
,1

) 
 f

or
  C

2

 Sequential Fits

FIG. 2 (color online). The form factor f0ðq2Þ for pion momen-
tum 2�

L ð1; 1; 1Þ from simultaneous fits to two- and three-point

correlators versus Nexp ¼ ND ¼ N0
D ¼ N� ¼ N0

�. The sequen-

tial fitting method was employed to go from one Nexp value to the

next. In this method the fit results from the Nexp exponential fit

are inserted as initial conditions for the subsequent ½Nexp þ 1�
exponential fit.
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In order to be able to include a large number of exponen-
tials in these complicated fits, we proceed as follows. We
set N� ¼ N0

� ¼ ND ¼ N0
D � Nexp and start out with a

small value, Nexp ¼ 2 or Nexp ¼ 3. The fit results are

then inserted as initial conditions for the subsequent
Nexp þ 1 exponential fit. This procedure is repeated until

one has completed multiexponential fits with Nexp much

larger than 2. Figure 2 shows results for f0ðq2Þ on ensemble
C2 at pion momentum 2�

L ð1; 1; 1Þ versus Nexp using this

‘‘sequential fitting’’ procedure. One sees that, similar to in
Fig. 1, fit results have stabilized for Nexp > 3 [17].

In ongoing work we are investigating further methods to
deal with complicated fits with a large number of parame-
ters, in particular, fits to collections of sums of exponentials
[18]. For the calculations of this article, however, we have
found that the ‘‘sequential fitting’’ method described above
works well for all our data [19]. We are even able to fit data
on a given ensemble for all four pion momenta simulta-
neously, and this allows us to obtain correlations between
form factor results at different q2. These simultaneous fit
results for f0ð ~p�Þ are given in Table II for several pion
momenta ~p� (the latter in units of 2�

L ).

IV. CHIRAL AND CONTINUUM EXTRAPOLATION

The next step is to extrapolate the data of Table II to the
chiral/continuum limit. We do so using the ‘‘modified
z-expansion fit’’ developed in [10]. The scalar form factor
is parametrized as

f0ðq2Þ ¼ 1

Pðq2Þ�0

ða0D0þa1D1zþa2D2z
2Þð1þb1ðaE�Þ2

þb2ðaE�Þ4Þ; (12)

with

Di ¼ 1þ ci1xl þ ci2xl logðxlÞ þ diðamcÞ2
þ eiðamcÞ4 þ fið12�M2

� þ �M2
KÞ; (13)

xl ¼ M2
�

ð4�f�Þ2
; (14)

�M2
� ¼ 1

ð4�f�Þ2
ððMsea

� Þ2 � ðMvalence
� Þ2Þ; (15)

�M2
K ¼ 1

ð4�f�Þ2
ððMsea

K Þ2 � ðMvalence
K Þ2Þ: (16)

The kinematic variable z is defined as [20–22]

zðq2; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ � q2

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ � t0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ � q2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ � t0

p ; (17)

with t0 a free parameter (which we set equal to 1:95 GeV2)
and t	 ¼ ðMD 	M�Þ2. We take �0 from [21] and set
Pðq2Þ ¼ 1, where the latter relation reflects the absence
of subthreshold poles in the scalar channel.
We show results of fits to the form of Eq. (12) in Figs. 3

and 4. We plot separately the coarse and fine data points in
order to be able to better distinguish individual curves.
However, the fit was done simultaneously to all the data
in Table II, coarse and fine. The �2=dof ¼ 0:85 for this fit.

TABLE II. Results for f0ð ~p�Þ for each ensemble.

Set f0ð0; 0; 0Þ f0ð1; 0; 0Þ f0ð1; 1; 0Þ f0ð1; 1; 1Þ
C1 1.1557(74) 0.9155(93) 0.8119(68) 0.7384(209)

C2 1.1014(38) 0.8700(59) 0.7801(43) 0.7315(87)

C3 1.0398(28) 0.8787(36) 0.7922(31) 0.7326(66)

F1 1.1053(29) 0.8652(52) 0.7586(53) 0.7112(108)

F2 1.0443(28) 0.8613(31) 0.7645(53) 0.7097(70)

0 0.2 0.4 0.6 0.8 1

Eπ
2
  (GeV

2
)

0.6

0.7

0.8

0.9

1

1.1

1.2

f 0

chiral/conti. extrapolation
C3 ensemble
C2 ensemble
C1 ensemble
f
0
 at q

2
 = 0

4% error

FIG. 3 (color online). Chiral/continuum extrapolation of fD!�
0

versus E2
�. The data points are from the coarse ensembles

(C1, C2, and C3). The three individual curves and the extrapo-
lated band are from a fit to all five ensembles.

0 0.2 0.4 0.6 0.8 1

Eπ
2
  (GeV

2
)

0.6

0.7

0.8

0.9

1

1.1

1.2

f 0

chiral/conti. extrapolation
F2 ensemble
F1 ensemble
f
0
 at q

2
 = 0

4% error

FIG. 4 (color online). Same as for Fig. 3 showing, however, the
fine data points.
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In Fig. 5 we show both fD!K
0 ðq2Þ (results from [10]) and

fD!�
0 ðq2Þ versus q2 in the physical region 0 
 q2 


q2max ¼ ðMD �M�ðKÞÞ2. Note that we consider the corre-

lations between the momenta in the fits which we did not
consider in [10]. However, we find that including or ex-
cluding correlations in our chiral/continuum extrapolations
has a minimal effect on fD!�

0 ð0Þ at the physical point,

namely, a �0:04� shift in the central value and a �0:02�
change in the error.

The motivation for the ‘‘modified z-expansion fit’’ is
explained in more detail in [10]. Form factors at q2 ¼ 0 are
needed to extract the CKM matrix elements jVcdj or jVcsj.
The pion energy approaches 1 GeV in this kinematic region
and so chiral perturbation theory (ChPT) might cease to be
valid. The z expansion, on the other hand, is applicable
throughout the physical kinematic region, and our new
‘‘modified z expansion’’ allows for the expansion coeffi-
cients to be mass and lattice spacing dependent. We have
checked that fits to Eq. (12) are stable with respect to
adding further terms such as x2l , ðamcÞ6, ðaE�Þ6 or keeping
just the ci1 and c

i
2 terms in Eq. (13) (theDi’s). Such changes

in the fit ansatz led to minimal changes in both the central
value and the error for f0ð0Þ in the physical limit. We have
also verified that traditional ChPT extrapolations (see
Appendixes C and D of [10] and references therein for
relevant ChPT formulas) lead to fþð0Þ in the physical
limit, consistent with the z-expansion result and with com-
parable errors, however with worse �2=dof. In addition,
we test the extrapolations to q2 ¼ 0 with the Becirevic-
Kaidalov parametrization [23] to individual ensembles,
and obtain almost the same results as with the
z-expansion method.

V. RESULTS FOR fD!�þ ð0Þ AND jVcdj IN THE
PHYSICAL LIMIT

Our final result for the D ! � form factor at q2 ¼ 0
averaged over D0 ! �� and Dþ ! �0 is

fD!�þ ð0Þ ¼ 0:666ð20Þstatð21Þsys; (18)

where the first error is statistical and the second systematic.
Figure 6 plots our new result together with other theory
calculations [13,24,25] and experimental determinations
[12,26] [the latter use CKM unitarity values for jVcdj to
extract fD!�þ ð0Þ].
The total error in our fD!�þ ð0Þ is 4.4%, signifying a

better than factor 2 improvement over previous lattice
determinations. The full error budget is given in
Table III. The largest error is statistical followed by amc

and light quark mass dependence errors. All but the last
two entries in Table III were obtained using the methods
described in Ref. [27] and Appendix B of [10]. For in-
stance, the ‘‘light quark dependence’’ errors come from the
ci1 and ci2 terms in the fit ansatz Eq. (13), the ‘‘amc

corrections’’ from the di and ei terms, etc.
Finite volume errors were estimated by calculating a

pion tadpole integral both at finite and at infinite volume.

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2

q
2
  (GeV

2
)

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
f 0

f
0

D -> K
(q

2
)

f
0

D -> π
 (q

2
)

q
2

max
(D -> K) q

2

max
(D -> π)

FIG. 5 (color online). fD!K
0 ðq2Þ and fD!�

0 ðq2Þ versus q2 in the
physical limit.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

f
+

D->π
(q

2
=0)

Fermilab/MILC (2005)

Sum Rules (2009)

CLEO-c (2009)

Experiment + CKM Unitarity

4 % error

Belle (2006)

HPQCD (2011)

f
+

D->π
(0) = 0.666 (20)

stat.
(21)

sys.

ETMC (2011, preliminary)

FIG. 6 (color online). The D ! � form factor fD!�þ ð0Þ
from this work and comparisons with other determinations
[12,13,24–26].

TABLE III. Error budget for fD!�þ ð0Þ.
Type Error (%)

Statistical 3.1

Scale (r1 and r1=a) 0.7

Expansion coeff. ai 0.3

Ep 0.6

Light quark dependence 1.9

Sea quark dependence 0.6

amc corrections 2.0

aE� corrections 1.0

Finite volume 0.04

Charm mass tuning 0.05

Total 4.4%
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The charm mass tuning error is taken to be the same as
for D ! K, l� for which calculations at two values of
amc were carried out explicitly to estimate this error.
Effects from electromagnetism/isospin breaking and
charm sea are expected to give a negligible contribution
to the error budget compared to our other errors (see
[10]). Also note that errors due to using different fermion
actions on the sea and valence quarks are partially con-
tained in the sea quark dependence errors and the discre-
tization errors in Table III.

Finally, one can combine our result for fD!�þ ð0Þ with
CLEO-c’s measurement of jVcdj � fD!�þ ð0Þ [12] to extract
a precision value for jVcdj from D semileptonic decays.
This leads to the result quoted already in Eq. (1), which is
shown in Fig. 7 together with values from PDG2010.

VI. SUMMARY

In this article we have presented a new calculation of the
D ! �, l� semileptonic form factor fD!�þ ðq2Þ at q2 ¼ 0,
with errors a factor of 2 better than in the past. This
combined with the recent precision measurement of the
branching fraction for this process by CLEO-c has allowed
for an accurate determination of the CKM matrix element
jVcdj. Direct determination of jVcdj from D semileptonic
decays is becoming competitive with that from neutrino
scattering. The fact that these two very different processes
lead to the same jVcdj is a nontrivial consistency check of
the standard model.

Finally, using our values for jVcdj and jVcsj [10] plus the
most recent jVcbjexcl ¼ 0:0397ð10Þ from the Fermilab
Lattice and MILC collaborations [28], the most up-to-
date test of second row unitary from lattice QCD becomes

jVcdj2 þ jVcsj2 þ jVcbj2 ¼ 0:976ð50Þ: (19)

This improves on the PDG2010 value 1:101ð74Þ [14].

In the future we will be reducing the largest errors in
Table III by increasing statistics and simulating on finer
lattices [29]. Calculations of the full q2 dependence of
fD!Kþ ðq2Þ and fD!�þ ðq2Þ are also already underway [29].
Furthermore, we are working on updating HPQCD’s re-
sult for the D meson decay constant fD [5] and on
carrying out an independent extraction of jVcdj from D
leptonic decays [30].
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APPENDIX: PRIORS AND PRIOR WIDTHS FOR
TWO- AND THREE-POINT CORRELATORS

In this appendix we give sample priors and prior
widths used in the fits of Sec. III (the reader is referred
to Ref. [16] for definitions of these terms). All energies
in Table IV are given in lattice units and are appropriate

0.1 0.15 0.2 0.25
|V

cd
|

(Fermilab/MILC 2005)

PDG 2010: Neutrino exp.

HPQCD 2011

PDG 2010: Semileptonic decay

|V
cd

| = 0.225 (6)
exp.

(10)
lat.

PDG 2010: Unitarity

FIG. 7 (color online). Comparison of jVcdj from this work with
values in PDG2010 [14].

TABLE IV. Sample priors and prior widths for two- and three-
point correlator fits. Energies are in lattice units, and this
example corresponds to priors used for ensemble C2. The
notation is the same as in Eqs. (6) and (7).

Prior Prior width

ED
0 1.16 0.58

ED
j>0 � ED

j�1 0.36 0.36

E0D
0 1.52 1.52

E0D
k>0 � E0D

k�1 0.36 0.36ffiffiffiffiffiffi
bDj

q
0.01 0.5ffiffiffiffiffiffi

dDk

q
0.01 0.5

E�
0 ð000Þ 0.21 0.11

E�
0 ð100Þ 0.38 0.19

E�
0 ð110Þ 0.49 0.25

E�
0 ð111Þ 0.60 0.30

E�
1 ðall momÞ � E�

0 ðall momÞ 0.61 0.31

E�
j>1ðall momÞ � E�

j�1ðall momÞ 0.36 0.36

E0�
0 ð100Þ 0.74 0.74

E0�
0 ð110Þ 0.85 0.85

E0�
0 ð111Þ 0.96 0.96

E0�
k>0ðmom> 0Þ � E0�

k�1ðmom> 0Þ 0.36 0.36ffiffiffiffiffiffi
b�j

q
ðall momÞ 0.01 0.5ffiffiffiffiffiffi

d�k
p ðmom> 0Þ 0.01 0.5

Ajk, Bjk, Cjk, Djk 0.01 0.1
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for ensemble C2. Numbers for other ensembles can be
obtained by rescaling with corresponding lattice spac-
ings. Prior widths for amplitudes are fixed based on
exploratory initial fits. One might notice that these priors
and prior widths are not exactly the same as the setting

used in our previous work [10]. This is because we try to
use more consistent priors and prior widths across all
ensembles than Ref. [10]. We tested the current set
against the previous set and found consistency between
the two.
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