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We investigate the chiral magnetic effect by lattice QCD with a chiral chemical potential. In a chirally

imbalanced matter, we obtain a finite induced current along an external magnetic field. We analyze the

dependence on the lattice spacing, the temperature, the spatial volume, and the fermion mass. The present

result indicates that the continuum limit is important for the quantitative argument of the strength of the

induced current.
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I. INTRODUCTION

Topology plays a significant role in classical and quan-
tum field theory. In quantum chromodynamics (QCD), the
nontrivial topology of the background gauge field is related
to the axial anomaly of the fermion. From the Atiyah-
Singer index theorem,

NfQ ¼ NR � NL (1)

[1]. In the QCD vacuum, the total numbers of the left-
handed and right-handed fermions are the same, and the
average topological charge is zero. However, the topologi-
cal charge strongly fluctuates in space-time. This topologi-
cal fluctuation is essential for the �0-meson mass [2,3].

The chiral magnetic effect is one possible candidate to
detect the topological fluctuation in experiments [4–7]. A
noncentral heavy-ion collision produces a very strong
magnetic field. The fermion flows along this magnetic
field, and its direction is determined from its chirality.
The topological fluctuation generates a chiral imbalance
in some local domain, and then it induces a charged flow of
the fermion, or equivalently, an electric current. When all
experimental events are averaged over, the total electric
current is zero, but its event-by-event correlation is
nonzero.

Several theoretical works have studied the chiral mag-
netic effect in lattice QCD [8–12]. These works have tried
to measure current-current correlation or charge density
distribution. In order to analyze the chiral magnetic effect
in this direction, it is necessary to take into account topo-
logical objects on the lattice; however, it is usually difficult
in practice. We overcome the difficulty by introducing
chiral chemical potential, instead of the topological
fluctuation.

In this paper, we investigate the chiral magnetic effect in
lattice QCD by extending a previous work [13]. We discuss
the theoretical background of the chiral chemical potential
in Sec. II, and the lattice QCD formalism in Sec. III. We
show the numerical result of the full QCD simulation in
Sec. IV and of the quenched QCD simulation in Sec. V.
Finally, we conclude in Sec. VI.

II. CHIRAL CHEMICAL POTENTIAL

The chiral chemical potential �5 is defined in the con-
tinuum Dirac operator as

Dð�5Þ ¼ ��ð@� þ igtaAa
�Þ þmþ�5�4�5 (2)

[14]. The Euclidean metric is used throughout this paper.
The chiral chemical potential couples to the chiral charge
density

n5 � T

V

@

@�5

lnZ ¼ � 1

V

Z
d3xh �c�4�5c i

¼ 1

V

Z
d3xhc y

Rc R � c y
Lc Li ¼ 1

V
ðNR � NLÞ: (3)

The chiral charge is the number difference between the
right-handed and left-handed fermions. Strictly speaking,
the chiral charge is not a conserved quantity in QCD
because of the axial anomaly. The chiral chemical potential
realizes a finite chiral charge in an equilibrium state,
namely, a chirally imbalanced matter. This is useful for
theoretical treatment; for example, the lattice QCD simu-
lation is possible.
The chiral chemical potential has been introduced for

analyzing the chiral magnetic effect [14–17]. The induced
vector current was derived,

J ¼ 1

2�2
�5qB; (4)

from the one-component Dirac equation coupled with the
background magnetic field [14]. (Note that the overall
factor is different from its original expression by q. This
is a matter of definition. The electric current is usually
defined as JEM ¼ qJ.) This formula is independent of the
fermion mass and the temperature.
The significant property of the chiral chemical potential

is that the sign problem does not arise. In lattice QCD, a
quark chemical potential causes the sign problem. The
naive Monte Carlo algorithm breaks down at a finite quark
number density. Although many numerical methods have
been proposed for simulating the quark chemical potential,
their applicabilities are limited within a small quark chemi-
cal potential [18]. For a large chemical potential, we can
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only simulate exceptional cases, such as the two-color
QCD and an isospin chemical potential, which can exactly
avoid the sign problem [19–23]. The chiral chemical po-
tential is an interesting possibility to study the finite density
matter in lattice QCD.

III. LATTICE QCD FORMALISM

For the numerical simulation, we used the SU(3) pla-
quette gauge action and the Wilson fermion action. We
considered the degenerate two-flavor case, in which the
two fermions have the same mass m and charge q. This
approximation simplifies the simulation algorithm, espe-
cially the hybrid Monte Carlo algorithm.

The lattice Dirac operator of the Wilson fermion is

DWð�5Þ¼1��
X
i

½ð1��iÞTiþþð1þ�iÞTi��

��½ð1��4e
a�5�5ÞT4þþð1þ�4e

�a�5�5ÞT4��
(5)

with

½T�þ�x;y � U�ðxÞ�xþ�̂;y; (6)

½T���x;y � Uy
�ðyÞ�x��̂;y; (7)

e�a�5�5 ¼ coshða�5Þ � �5 sinhða�5Þ: (8)

This Dirac operator reproduces the continuum form (2),
apart from an overall factor, in the naive continuum limit
a ! 0. This Dirac operator satisfies the ‘‘�5-Hermite’’
property

�5Dð�5Þ ¼ ½�5Dð�5Þ�y; (9)

or equivalently,

�5Dð�5Þ�5 ¼ Dyð�5Þ: (10)

From this property, the fermion determinant is real and
semipositive in the two-flavor case,

det
Dð�5Þ 0

0 Dð�5Þ
� �

¼ j detDð�5Þj2 � 0: (11)

Thus, the sign problem does not occur.
To apply an external magnetic field, we also need the

U(1) gauge field. On the lattice, the U(1) gauge field is
given as the Abelian phase factor u�ðxÞ ¼ expðiaqA�ðxÞÞ.
Since the magnetic field is external, the field strength term
of the U(1) gauge field is not introduced. The U(1) gauge
field is introduced only in the Dirac operator (5) by
replacing

U�ðxÞ ! u�ðxÞU�ðxÞ: (12)

In a finite-volume lattice with periodic boundary condi-
tions, the quantized value of the magnetic field is allowed
as

a2qB ¼ 2�

N2
s

� ðintegerÞ (13)

[24]. For a homogeneous magnetic field in the x3 direction,
the phase factors are

u1ðxÞ ¼ expð�iaqBNsx2Þ at x1 ¼ aNs; (14)

u2ðxÞ ¼ expðiaqBx1Þ; (15)

u�ðxÞ ¼ 1 for other components: (16)

The magnetic field B and the charge q do not appear
separately. The combination a2qB is an input parameter
of the simulation.

IV. FULL QCD ANALYSIS

In this section, we show the numerical results in full
QCD. To generate the dynamical gauge ensembles, we
used the hybrid Monte Carlo algorithm. The lattice spacing
a�1 ’ 1:5 GeV (a ’ 0:13 fm) and the mass ratio of pion to
�meson ismPS=mV ’ 0:5 [25]. The simulation parameters
are listed in Table I. The physical temperature is T ¼
1=ðNtaÞ ’ 400 MeV, which is in the deconfinement phase.
In Fig. 1, we plot the chiral charge density

n5 ¼ � 1

V

X
site

h �c�4�5c i: (17)

At a very large chiral chemical potential, the so-called
saturation, which is a lattice artifact, appears [13]. To avoid
this problem, we restricted the chiral chemical potential in
a�5 � 0:5. A finite chiral chemical potential generates a

TABLE I. Simulation parameters of full QCD [25].

� a�1 � mPS=mV Ns Nt

5.321 44 1.5 GeV 0.166 50 0.5 12 4
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FIG. 1 (color online). The chiral charge density n5 in full
QCD.
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finite chiral charge density. The chiral charge density is
enhanced when the magnetic field is applied. This is be-
cause the thermodynamic potential is increased by the
magnetic field [14].

We calculated the local vector current density

J ¼ 1

V

X
site

h �c�3c i (18)

along the magnetic field. The transverse components are
always zero, h �c�1c i ¼ h �c�2c i ¼ 0, because they are
irrelevant for the chiral magnetic effect [13]. The vector
current density is plotted as a function of the magnetic field
in Fig. 2 and of the chiral chemical potential in Fig. 3. The
vector current density is a linearly increasing function both
of the magnetic field and of the chiral chemical potential.
We parametrize the induced current density as

J ¼ NdofC�5qB: (19)

The factor Ndof ¼ Nc � Nf ¼ 6 is the number of fermions

with the same charge. This functional form is consistent
with the analytic formula (4). In the analytic formula, the
overall coefficient is 1=ð2�2Þ ’ 0:05. On the other hand,
the best-fit value of the lattice data is C ¼ 0:013� 0:001.
The induced current seems to be suppressed. However, in
order to compare the overall coefficients quantitatively, we
have to estimate several systematic effects, e.g., the renor-
malization. In the next section, we analyze such systematic
effects in quenched QCD.

V. QUENCHED QCD ANALYSIS

We performed the quenched QCD simulation. The
quenched approximation is to neglect the fermion deter-
minant in the Monte Carlo sampling. In quenched QCD,
the computational cost is highly reduced and the parameter
tuning is very easy. This approximation is considerably
reasonable in many cases, e.g., the hadron spectrum. We
expect the quenched approximation to work at least for a
small chiral chemical potential, and evaluate systematic
effects on the induced current. The used gauge configura-
tions are summarized in Table II [26].
We show the chiral charge density in Fig. 4 and the

vector current density in Fig. 5. The qualitative behavior is
consistent with the full QCD simulation. The induced
current shows the linearly rising behavior. We fit the
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FIG. 2 (color online). The vector current density J as a func-
tion of the magnetic field qB in full QCD.

TABLE II. Simulation parameters of quenched QCD [26].

� a�1 � mPS=mV Ns Nt

5.90 1.9 GeV 0.159 20 0.4 12, 16, 20 4

5.90 1.9 GeV 0.158 90 0.5 12 4

5.90 1.9 GeV 0.157 40 0.7 12 4, 6, 12

6.25 3.1 GeV 0.151 15 0.7 18 6, 10, 18

6.47 4.0 GeV 0.148 85 0.7 24 8
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a2qB ≈ 0.9
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FIG. 3 (color online). The vector current density J as a func-
tion of the chiral chemical potential �5 in full QCD.
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FIG. 4 (color online). The chiral charge density n5 in quenched
QCD. The physical temperature is about T ’ 500 MeV. The
meson mass ratio is mPS=mV ’ 0:4.
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induced current by Eq. (19) and analyze the parameter
dependence of the overall coefficient C.

First, we focus on the problem of the discretization. The
local vector current is not renormalization-group invariant
on the lattice. This is different from the continuum
theory, in which the local vector current is strictly
renormalization-group invariant. The conserved vector
current on the lattice is a point-split-form Green function
[27]. To obtain the renormalization-group invariant form,
we have to calculate the renormalization factor [28,29]. In
general, a large statistics is needed to calculate the renor-
malization factor of the flavor-singlet vector current be-
cause the disconnected contribution is rather noisy. Instead
of this, we analyze the dependence of the overall coeffi-
cient on the lattice spacing a. In the continuum limit
a ! 0, the renormalization factor automatically ap-
proaches to 1, and thus the ambiguity of the renormaliza-
tion factor disappears. The lattice spacing dependence is
also important to estimate other lattice discretization arti-
facts. For example, the OðaÞ term of the Wilson fermion
action explicitly breaks the chiral symmetry. Such lattice
artifacts also disappear in the continuum limit.

We calculated the induced current at� ¼ 5:90, 6.25, and
6.47. By tuning the simulation parameters, we fixed the
spatial volume, the temperature, and the meson masses. In
Fig. 6, we plot the best-fit value of the overall coefficientC.
The overall coefficient depends on the lattice spacing. Its
value is close to the full QCD result in a > 0:1 fm and
larger in a < 0:1 fm. This result indicates that it is impor-
tant to reduce the discretization effect and to take the
continuum extrapolation for more quantitative argument.
Although we cannot determine the functional form of the
extrapolation, the overall coefficient seems to be C ’
0:02–0:03 in the continuum limit.

In Fig. 7, we plot the data of � ¼ 5:90 and 6.25 as a
function of the temperature T ¼ 1=ðNtaÞ. Although the
unrenormalized values need not be the same between the

different lattice spacings, the qualitative behaviors should
be consistent. The data of � ¼ 5:90 and Nt ¼ 4
(T ’ 500 MeV) deviate from the others. The reason would
be that the discretization artifact of the unimproved fer-
mion is sizable at Nt ¼ 4, which is known in the standard
lattice QCD at finite temperature. Except for Nt ¼ 4, the
induced current is not so sensitive to the temperature. The
induced current is nonzero even below the phase transition
temperature Tc ’ 270 MeV, i.e., in the confinement phase.
Basically, the chiral magnetic effect is expected in the
deconfinement phase because colored particles cannot
flow independently in the confinement phase. Such a
real-time information is, however, not reflected in the local
value of the induced current in an equilibrium state.
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FIG. 5 (color online). The vector current density J in quenched
QCD. The simulation parameters are the same as in Fig. 4
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FIG. 6 (color online). Lattice spacing a dependence. The
physical temperature is about T ’ 500 MeV. The meson mass
ratio is mPS=mV ’ 0:7.
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FIG. 7 (color online). Temperature T dependence. The phase
transition temperature is about 270 MeV. The meson mass ratio
is mPS=mV ’ 0:7.
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Next, we show the volume dependence in Fig. 8. The
lattice simulation is performed in a finite box, not in the
infinite volume. The spatial volume should be large enough
that the obtained result is independent of the spatial vol-
ume. In order to change the spatial volume V ¼ a3N3

s , we
fixed the lattice spacing a and changed the spatial extent as
Ns ¼ 12, 16, and 20. As expected, the induced current is
independent of the spatial volume.

Finally, we analyze the dependence on the hopping
parameter, which is equivalent to the fermion mass depen-
dence. The result is shown in Fig. 9. The used hopping
parameters are � ¼ 0:159 20, 0.158 90, and 0.157 40,
which correspond to mPS=mV ¼ 0:4, 0.5, and 0.7, respec-
tively. The critical hopping parameter is �c ¼ 0:159 83,

which corresponds the chiral limit [26]. The induced cur-
rent is almost independent of the fermion mass. This is
consistent with the analytic formula (4).

VI. SUMMARYAND OUTLOOK

We have analyzed the chiral magnetic effect by the
lattice QCD simulation with the chiral chemical potential.
At the qualitative level, the induced current is consistent
with the analytic formula which is derived from the Dirac
equation coupled with an external magnetic field. At the
quantitative level, the induced current is somehow sup-
pressed compared to the analytic formula. The estimated
value of the overall coefficient is C ’ 0:02–0:03 even after
the continuum extrapolation. Although the systematic ef-
fects have been estimated in quenched QCD, the situation
will be more or less the same in full QCD. In order to
reduce the discretization effect, we should first introduce
the improved fermion action, since the fermion action has a
larger discretization error than the gauge action. More
quantitative calculation will shed light on possible QCD
corrections to the chiral magnetic effect [17].
We have not discussed chiral symmetry. Since the

Wilson fermion explicitly breaks chiral symmetry at a
finite lattice spacing, we cannot analyze chiral symmetry
in the present calculation. We show the functional forms of
other lattice Dirac operators in the Appendix. By using
lattice Dirac operators with better chiral property, we can
study the role of chiral symmetry for the chiral magnetic
effect.
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APPENDIX: LATTICE DIRAC OPERATORS

The simplest choice of the lattice Dirac operator with the
chiral chemical potential is the Wilson Dirac operator (5).
The chiral chemical potential can be implemented for other
lattice fermions with better chirality, e.g., the staggered
fermion, the domain-wall fermion, and the overlap
fermion.
In the staggered fermion, the Dirac spinor is constructed

by mixing spinorless Grassmann fields on different lattice
sites. For example, in four dimensions, a four-taste four-
component Dirac spinor is constructed from 24 lattice sites.
The gamma matrix appears as a direct product (�a � �b) of
two matrices which act on the spinor space and the taste
space, respectively. A naive choice of the staggered Dirac
operator is
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FIG. 8 (color online). Volume V dependence. The physical
temperature is about T ’ 500 MeV. The meson mass ratio is
mPS=mV ’ 0:4.
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FIG. 9 (color online). Hopping parameter � dependence.
The dotted line corresponds to the critical hopping
parameter �c ¼ 0:159 83. The physical temperature is about
T ’ 500 MeV.
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DKSð�5Þ ¼ maþ 1

2

X
i

�iðTiþ � Ti�Þ

þ 1

2
�4ðT4þea�5�5 � T4�e�a�5�5Þ; (A1)

with the staggered phase factor

½���x;y ¼ ð�1Þx1þ			þx��1�x;y: (A2)

We consider two types of �5. To construct the taste-
singlet matrix (�5 � 1), we take

�5 ¼
�Y

�

��

T�þ þ T��
2

�
sym

; (A3)

where ‘‘sym’’ means the symmetric average of the path-
ordered products. The matrix factor e�a�5�5 is a product of
hopping terms, and thus nonlocal. This is understood from
the fact that the operation of the gamma matrix corre-
sponds to mixing different lattice sites in the staggered
fermion. Such a nonlocal Dirac operator is expensive for
the numerical simulation, especially for the dynamical
simulation. For a local realization, we take

½�5�x;y ¼ ½�5�x;y � ð�1Þx1þx2þx3þx4�x;y: (A4)

This matrix �5 is converted into the taste-nonsinglet
matrix (�5 � �T

5 ). The generator (�5 � �T
5 ) defines the

Uð1Þ � Uð1Þ residual chiral symmetry, i.e., the exact chiral

symmetry of the massless staggered fermion. The above
formulation is based on four tastes, i.e., four flavors. To
implement it in the 2-flavor or (2þ 1)-flavor dynamical
simulation, we need to take the square root or fourth root of
the Dirac operator. The subtle problem arises especially in
taking the fourth root. Moreover, since this chiral chemical
potential is not taste-singlet, the interpretation of the fourth
root is nontrivial.
Since theWilson Dirac operator (5) is �5-Hermitian, it is

straightforward to formulate the domain-wall fermion and
the overlap fermion. This is different from the case of the
quark chemical potential, in which the sign function of the
non-Hermitian matrix must be introduced. The domain-
wall Dirac operator is

Ddwð�5Þ ¼ DWð�5Þ þ 1� 1� �5

2
T5þ � 1þ �5

2
T5�;

(A5)

where T5� is similarly defined to Eqs. (6) and (7) in the
fifth dimension but without the gauge field. The overlap
Dirac operator is

Dovð�5Þ ¼ 1þ �5	ð�5DWð�5ÞÞ; (A6)

where 	ðHÞ is the sign function of a Hermitian matrix H.
These Dirac operators hold the expected properties, such as
the �5-Hermite property and the Ginsparg-Wilson relation.
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