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We report a direct lattice calculation of the K to �� decay matrix elements for both the �I ¼ 1=2 and

3=2 amplitudes A0 and A2 on 2þ 1 flavor, domain wall fermion, 163 � 32� 16 lattices. This is a

complete calculation in which all contractions for the required ten, four-quark operators are evaluated,

including the disconnected graphs in which no quark line connects the initial kaon and final two-pion

states. These lattice operators are nonperturbatively renormalized using the Rome-Southampton method

and the quadratic divergences are studied and removed. This is an important but notoriously difficult

calculation, requiring high statistics on a large volume. In this paper, we take a major step toward the

computation of the physical K ! �� amplitudes by performing a complete calculation at unphysical

kinematics with pions of mass 422 MeVat rest in the kaon rest frame. With this simplification, we are able

to resolve ReðA0Þ from zero for the first time, with a 25% statistical error and can develop and evaluate

methods for computing the complete, complex amplitude A0, a calculation central to understanding the

� ¼ 1=2 rule and testing the standard model of CP violation in the kaon system.

DOI: 10.1103/PhysRevD.84.114503 PACS numbers: 11.15.Ha, 12.38.Gc, 14.40.Be, 13.25.Es

I. INTRODUCTION

The Cabibbo-Kobayashi-Maskawa (CKM) theory for
the weak interactions of the quarks when combined with
QCD provides a framework describing in complete detail
all the properties and interactions of the six quarks. This
framework incorporates the most general assignment of
masses and couplings and appears able to explain all
observed phenomena in which these quarks participate.
However, to date, the nonperturbative character of low-
energy QCD has obscured many of the consequences of the
CKM theory. In particular, both the direct CP violation
seen in K meson decay and the factor of 22.5 enhancement
of the I ¼ 0, K ! �� decay amplitude A0 relative to the
I ¼ 2 amplitude A2 (the�I ¼ 1=2 rule) lack a quantitative
explanation.

Wilson coefficients evaluated at a QCD scale of about
2 GeV represent the short-distance physics and can be
evaluated from the CKM theory using QCD and electro-
weak perturbation theory. However, these factors explain
only a factor of 2 enhancement of the I ¼ 0 amplitude
[1,2]. The remaining enhancement must arise from the
hadronic matrix elements which require nonperturbative
treatment.

DirectCP violation in kaon decays provides a critical test
of the standard model’s CKM mechanism of CP violation.
While 40 years of experimental effort have produced the
measured result Reð�0=�Þ ¼ 1:65ð26Þ � 10�3 [3], with
only a 16% error, there is no reliable theoretical calculation
of this quantity based on the standard model. A previous
latticeQCDcalculation using 2þ 1 dynamical domainwall
fermions failed to give a conclusive result because of the
large systematic errors associated with the use of chiral
perturbation theory at the scale of the kaon mass [4].
(However, there are ongoing efforts using chiral perturba-
tion theory [5]). Earlier quenched results [6,7] are subject to
this same difficulty togetherwith uncontrolled uncertainties
associated with quenching [8–10].
A direct lattice calculation of K ! �� decay is ex-

tremely important to provide an explanation for the �I ¼
1=2 rule and to test the standard model of CP violation
from first principles. This is an unusually difficult calcu-
lation because of the presence of disconnected graphs.
However, with the continuing increase of available com-
puting power and the development of improved algorithms,
calculations with disconnected graphs are now no longer
out of reach. In fact, our recent successful calculation of
the masses and mixing of the �0 and � mesons [11] was
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carried out in part to develop and test the methods needed
for the calculation presented here. In this paper, we present
a first direct calculation of the complete K0 ! �� decay
amplitude. At this stage, we work with the simplified
kinematics of a threshold decay in which the kaon is at
rest and decays into two pions each with zero momentum
and with mass one-half that of the kaon. The calculation
with this choice of kinematics still contains the main
difficulties we need to overcome in order to be able to
compute the physical K ! �� decay amplitudes; i.e. the
presence of disconnected diagrams coupled with the need
to subtract ultraviolet power divergences. However, as
explained below, with the pions at rest we are able to
generate sufficient statistics to explore how to handle these
difficulties. We stress that at this simplified choice of
kinematics, we compute the K ! �� amplitudes directly
and completely.

In order to calculate the decay amplitudes, we perform a
direct, brute force calculation of the required weak matrix
elements. The isospin zero �� � final state implies the
presence of disconnected graphs in correlation functions
and makes the calculation very difficult. For these graphs,
the noise does not decrease with increasing time separation
between the source and sink, while the signal does.
Therefore, substantial statistics are needed to get a clear
signal. This difficulty is compounded by the presence of
diagrams which diverge as 1=a2 as the continuum limit is
approached (a is the lattice spacing). While these divergent
amplitudes must vanish for a physical, on-shell decay they
substantially degrade the signal to noise ratio even for an
energy-conserving calculation such as this one. Studying
the properties of the 1=a2 terms and learning how to
successfully subtract them is one of the important objec-
tives of this calculation. The chiral symmetry needed to
control operator mixing is provided by our use of domain
wall fermions.

Recognizing the difficulty of this problem, we choose to
perform this first calculation on a lattice which is relatively
small compared to those used in other recent work and to
use a somewhat heavy pion mass (m� � 421 MeV) so we
can more easily collect large statistics. We concentrate on
exploring and reducing the statistical uncertainty since the
primary goal of this work is to extract a clear signal for
these amplitudes. Therefore, the quoted errors on our
results are statistical only.

The main objective of this paper is to calculate the�I ¼
1=2 decay amplitude A0. A calculation of the �I ¼ 3=2
part is included here for comparison and completeness. A
much more physical calculation of this �I ¼ 3=2 ampli-
tude alone can be found in [12]. In the case of the I ¼ 2
final state, no disconnected diagrams appear, there are no
divergent eye diagrams and isospin conservation requires
that four valence quark propagators must join the kaon and
weak operator with the operators creating the two final-
state pions. This allows physical kinematics with nonzero

final momenta to be achieved by imposing antiperiodic
boundary conditions on one species of valence quark
[13,14]. As a result, the preliminary calculation of A2

reported in Ref. [12] is performed at almost physical
kinematics on a lattice of spatial size 4.5 fm and determines
complex A2 with controlled errors of Oð10%Þ. The present
work is intended as the first step toward an equally physical
but much more challenging calculation of A0.
While we do not employ physical kinematics, the final

results for the complex amplitudes A0 and A2 presented in
this paper are otherwise physical. In particular, we use
Rome-Southampton methods [15] to change the normal-
ization of our bare lattice four-quark operators to that of the

RI/MOM scheme. A second conversion to the MS scheme
is then performed using the recent results of Ref. [16].

Finally these MS-normalized matrix elements are com-
bined with the appropriate Wilson coefficients [17], deter-
mined in this same scheme, to obtain our results for A0 and
A2. Because of our unphysical, threshold kinematics and
focus on controlling the statistical errors associated with
the disconnected diagrams, we do not estimate the size of
possible systematic errors. Similarly, we do not include the
systematic or statistical errors associated with the Rome-
Southampton renormalization factors, both of which could
be made substantially smaller than our statistical errors
when required.
This paper is organized as follows. We first summarize

our computational setup, including our strategy to collect
large statistics. Next, we discuss our results for �� �
scattering which are a by-product of the necessary charac-
terization of the operator creating the �� � final state and
are also needed to evaluate the Lellouch-Lüscher, finite-
volume correction [18]. After a section giving the details of
the K0 ! �� contractions, we provide our numerical
results for the K0 ! �� decay amplitudes for both the
�I ¼ 3=2 and 1=2 channels. The details of the operator
renormalization required by the Wilson coefficients which
we use are presented in Appendix A. Finally, we present
our conclusions and discuss future prospects.

II. COMPUTATIONAL DETAILS

Our calculation uses the Iwasaki gauge action with � ¼
2:13 and 2þ 1 flavors of domain wall fermions (DWF).
While the computational costs of DWF are much greater
than those of Wilson or staggered fermions, as has been
shown in earlier papers [6,7,19,20], accurate chiral sym-
metry at short distances is critical to avoid extensive op-
erator mixing, which would make the lattice treatment of
�S ¼ 1 processes much more difficult.
We use a single lattice ensemble with space-time volume

163 � 32, a fifth-dimensional extent of Ls ¼ 16 and light
and strange quark masses of ml ¼ 0:01, ms ¼ 0:032, re-
spectively. This ensemble is similar to the ml ¼ 0:01 en-
semble reported in Ref. [21] except we use the improved
RHMC-II algorithm of Ref. [22] and a more physical value
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for the strange quark mass. The inverse lattice spacing for
these input parameters was determined to be 1.73(3) GeV
and the residual mass is mres ¼ 0:00308ð4Þ [22]. The total
number of configurations we used is 800, each separated by
10 time units. We initially generated an ensemble one-half
of this size. When our analysis showed a nonzero result for
ReA0, we then doubled the size of the ensemble to assure
ourselves that the result was trustworthy and to reduce the
resulting error. We have performed the analysis described
below both by treating the results from each configuration
as independent and by grouping them into blocks. The
resulting statistical errors are independent of block size
suggesting that the individual configurations are essentially
uncorrelated for our observables.

We use antiperiodic boundary conditions in the time
direction, and periodic boundary conditions in the space
directions for the Dirac operator. The propagators (inverses
of the Dirac operator) are calculated using a Coulomb
gauge-fixed wall source (used for meson propagators)
and a random wall source (used to calculate the loops in
the type3 and type4 graphs shown in Figs. 5 and 6 below)
for each of the 32 time slices in our lattice volume.
The details of our choice of sources are provided in
Appendix B. For each time slice and source type, twelve
inversions are required corresponding to the possible 3
color and 4 spin choices for the source. Thus, all together
we carry out 768 inversions for each quark mass on a given
configuration. As will be shown below, this large number
of inversions, performed on 800 configurations, provides
the substantial statistics needed to resolve the real part of
the I ¼ 0 amplitude A0 with 25% accuracy.

The situation described above in which 768 Dirac propa-
gators must be computed on a single gauge background is
an excellent candidate for the use of deflation techniques.
The overhead associated with determining a set of low
eigenmodes of this single Dirac operator can be effectively
amortized over the many inversions in which those low
modes can be used. Our ml ¼ 0:01, light quark inversions
are accelerated by a factor of 2–3 by using exact, low-mode
deflation [23] in which we compute the Dirac eigenvectors
with the smallest 35 eigenvalues and limit the conjugate
gradient inversion to the remaining orthogonal subspace.

In order to obtain energy-conserving K0 ! �� decay
amplitudes, the mass of the valence strange quark in the
kaon is assigned a value different from that appearing in
the fermion determinant used to generate the ensembles,

i.e. the strange quark is partially quenched. Since the mass
of the dynamical strange quark is expected to have a small
effect on amplitudes of the sort considered here [22,24],
this use of partial quenching is appropriate for the purposes
of this paper. Valence strange quark masses are chosen
to be ms ¼ 0:066, 0.099 and 0.165, which are labeled 0,
1, and 2, respectively. The resulting kaon masses are
shown in Table I. In the following section, we will see
that by using these values for ms we can interpolate to
energy-conserving decay kinematics for both the I ¼ 2
and I ¼ 0 channels.

III. TWO-PION SCATTERING

The�� � scattering calculation requires 4 contractions
which we have labeled direct (D), cross (C), rectangle (R),
and vacuum (V) as in Ref. [25] and which are shown in
Fig. 1. For convenience, the minus sign arising from the
number of fermion loops is not included in the definition of
these contractions. The vacuum contraction should be
accompanied by a vacuum subtraction. These contractions
can be calculated in terms of the light quark propagator
Lðtsnk; tsrcÞ for a Coulomb gauge-fixed wall source located
at the time tsrc and a similar wall sink located at tsnk. The
resulting complete vacuum amplitude, including the vac-
uum subtraction, is given by

VðtÞ ¼ 1

32

X31
t0¼0

fhtr½Lðt0; t0ÞLðt0; t0Þy�tr½Lðtþ t0; tþ t0Þ

� Lðtþ t0; tþ t0Þy�i � htr½Lðt0; t0ÞLðt0; t0Þy�i
� htr½Lðtþ t0; tþ t0ÞLðtþ t0; tþ t0Þy�ig; (1)

where the indicated traces are taken over spin and color,
the hermiticity properties of the domain wall propagator
have been used to eliminate factors of �5 and we are
explicitly combining the results from each of the 32 time
slices.
Our results for each of these four types of contractions

are shown in the left panel of Fig. 2. Notice that the
disconnected (vacuum) graph has an almost constant error
with increasing time separation between the source and
sink, so it appears to have an increasing error bar in the log
plot, while the signal decreases exponentially.
These four types of correlators can be combined to

construct physical correlation functions for two-pion states
with definite isospin:

TABLE I. Masses of pion and kaons and energies of the two-pion states. Here the subscript
I ¼ 0 or 2 on the �� � energy, E��

I , labels the isospin of the state and E��0
0 represents the

isospin zero, two-pion energy obtained when the disconnected graph V is ignored. The super-
script (0), (1) or (2) on the kaon mass distinguishes our three choices of valence strange quark
mass, ms ¼ 0:066, 0.099 and 0.165, respectively.

m� E��
0 E��0

0 E��
2 mð0Þ

K mð1Þ
K mð2Þ

K

0.24 373(47) 0.443(13) 0.4393(41) 0.5066(11) 0.42 599(42) 0.50 729(44) 0.64 540(49)
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hO��
2 ðtþ t0ÞyO��

2 ðt0Þi ¼ 2ðDðtÞ � CðtÞÞ (2)

hO��
0 ðtþ t0ÞyO��

0 ðt0Þi¼2DðtÞþCðtÞ�6RðtÞþ3VðtÞ: (3)

Here, the operatorO��
I ðtÞ creates a two-pion state with total

isospin I and z-component of isospin Iz ¼ 0 using twoquark
and two antiquark wall-sources located at the time-slice t.
As in Eq. (1), we will average over all 32 possible values of
common time displacement t0 to improve statistics.

The two-pion correlation functions for isospin I and
Iz ¼ 0 are fit with a functional form CorrIðtÞ ¼
N2

I fexpð�E��
I tÞ þ expð�E��

I ðT � tÞÞ þ CIg, where the
constant CI comes from the case in which the two pions
propagate in opposite time directions. The fitted energies
are summarized in Table I. In order to see clearly the effect
of the disconnected graph, we also perform the calculation
for the I ¼ 0 channel without the disconnected graphs.
This result is given in Table I with a label with an addi-
tional prime (0) symbol. The resulting effective mass plots
for each case are shown in the right panel of Fig. 2. For
comparison, a plot of twice the pion effective mass

is also shown. This figure clearly demonstrates that the
two-pion interaction is attractive in the I ¼ 0 channel with
the finite volume, I ¼ 0 �� � energy E��

0 lower than

2m�. In contrast, the I ¼ 2 channel is repulsive with E��
2

larger than 2m�. The fitted parameters N��
I and E��

I

will be used to extract weak matrix elements from the
K0 ! �� correlation functions discussed below in which
these same operators O��

I ðtÞ are used to construct the
two-pion states.

IV. CONTRACTIONS FOR K0 ! �� DECAYS

The effective weak Hamiltonian describing K0 ! ��
decay including the u, d, and s flavors as dynamical
variables is

Hw ¼ GFffiffiffi
2

p V�
udVus

X10
i¼1

½ðzið�Þ þ �yið�ÞÞ�Qi: (4)

Throughout this paper, we follow the conventions and
notation of Ref. [6]. In Eq. (4), the Qi are the 10 conven-
tional four-quark operators, zi and yi are the Wilson co-
efficients, and � represents a combination of CKM matrix
elements: � ¼ �V�

tsVtd=VudV
�
us. To calculate the decay

amplitudes A2 and A0, we need to calculate the matrix
elements h��jQijK0i on the lattice.
We list all of the possible contractions contributing to

the matrix elements h��jQijK0i in 3–6. There are 48
different contractions which are labeled by circled num-
bers ranging from 1 to 48, and grouped into four categories
labeled as type1, type2, type3, and type4 according to
their topology. Once we have calculated all of these con-
tractions, the correlation functions hO��

I ðt�ÞQiðtopÞK0ðtKÞi
are then obtained as combinations of these contractions. In
order to simplify the following formulae, we use the am-
plitude AI;iðt�; t; tKÞ to represent three point function

hO��
I ðt�ÞQiðtopÞKðtKÞi. Using this notation, the I ¼ 2 am-

plitudes can be written

FIG. 1. The four diagrams which contribute to �� � scatter-
ing: direct (D), cross (C), rectangle (R), and vacuum (V),
arranged from the left top to right bottom.
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FIG. 2 (color online). Left: Results for the four types of contractions, direct (D), cross (C), rectangle (R), and vacuum (V)
represented by the graphs in Fig. 1. Right: Effective mass plots for correlation functions for states with isospin two (I2), isospin zero
(I0), isospin zero without the disconnected graph (I00) and twice the pion effective mass (2m�).
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A2;1ðt�; top; tKÞ ¼ i

ffiffiffi
2

3

s
fs1 �s5 g (5a)

A2;2ðt�; top; tKÞ ¼ i

ffiffiffi
2

3

s
fs2 �s6 g (5b)

A2;3ðt�; top; tKÞ ¼ 0 (5c)

A2;4ðt�; top; tKÞ ¼ 0 (5d)

A2;5ðt�; top; tKÞ ¼ 0 (5e)

A2;6ðt�; top; tKÞ ¼ 0 (5f)

A2;7ðt�; top; tKÞ ¼ i

ffiffiffi
3

2

s
fs3 �s7 g (5g)

A2;8ðt�; top; tKÞ ¼ i

ffiffiffi
3

2

s
fs4 �s8 g (5h)

A2;9ðt�; top; tKÞ ¼ i

ffiffiffi
3

2

s
fs1 �s5 g (5i)

A2;10ðt�; top; tKÞ ¼ i

ffiffiffi
3

2

s
fs2 �s6 g (5j)

and in the I ¼ 0 case,

A0;1ðt�; top; tKÞ ¼ i
1ffiffiffi
3

p f�s1 � 2 �s5 þ 3 �s9 þ 3 �s17 � 3 �s33 g (6a)

A0;2ðt�; top; tKÞ ¼ i
1ffiffiffi
3

p f�s2 � 2 �s6 þ 3 �s10 þ 3 �s18 � 3 �s34 g (6b)

A0;3ðt�; top; tKÞ ¼ i
ffiffiffi
3

p f�s5 þ 2 �s9 �s13 þ 2 �s17 þs21 �s25 �s29 � 2 �s33 �s37 þs41 þs45 g (6c)

A0;4ðt�; top; tKÞ ¼ i
ffiffiffi
3

p f�s6 þ 2 �s10 �s14 þ 2 �s18 þs22 �s26 �s30 � 2 �s34 �s38 þs42 þs46 g (6d)

A0;5ðt�; top; tKÞ ¼ i
ffiffiffi
3

p f�s7 þ 2 �s11 �s15 þ 2 �s19 þs23 �s27 �s31 � 2 �s35 �s39 þs43 þs47 g (6e)

A0;6ðt�; top; tKÞ ¼ i
ffiffiffi
3

p f�s8 þ 2 �s12 �s16 þ 2 �s20 þs24 �s28 �s32 � 2 �s32 �s40 þs44 þs48 g (6f)

A0;7ðt�; top; tKÞ ¼ i

ffiffiffi
3

p
2

f�s3 �s7 þs11 þs15 þs19 �s23 þs27 þs31 �s35 þs39 �s43 �s47 g (6g)

A0;8ðt�; top; tKÞ ¼ i

ffiffiffi
3

p
2

f�s4 �s8 þs12 þs16 þs20 �s24 þs28 þs38 �s32 þs40 �s44 �s48 g (6h)

A0;9ðt�; top; tKÞ ¼ i

ffiffiffi
3

p
2

f�s1 �s5 þs9 þs13 þ�s21 þs25 þs29 �s33 þs37 �s41 �s45 g (6i)

A0;10ðt�; top; tKÞ ¼ i

ffiffiffi
3

p
2

f�s2 �s6 þs10 þs14 þs18 �s22 þs26 þs30 �s34 þs38 �s42 �s46 g; (6j)

where the factor i comes from our definition of the inter-
polation operator for the mesons, e.g. K0 ¼ ið �d�5sÞ.

A few notes about the contractions shown in Figs. 3–6
may be useful:

(1) The contractions identified by circled numbers do
not carry the minus sign required when there is an

odd number of fermion loops. Instead, the signs are
included explicitly in Eqs. (5) and (6).

(2) The routing of the solid line indicates spin contrac-
tion while that of the dashed line indicates the con-
traction of color indices. If there is no dashed line,
then solid line indicates connections implied by the
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trace over both color and spin indices. (This will be
explained in more detail below.)

(3) A line represents a light quark propagator if it is not
explicitly labeled with ’s’. Up and down quarks and
particular flavors of pion are not distinguished in
Figs. 3–6. Instead, these specific contractions of

strange and light quark propagators are combined
in Eqs. (5) and (6) to give the I ¼ 2 and I ¼ 0
amplitudes directly.

(4) Using Fierz symmetry, it can be shown that there are
12 identities among these contractions:

s6 ¼ �s1 ; s5 ¼ �s2 ; s14 ¼ �s9 ; s13 ¼ �s10 ; (7a)

s26 ¼ �s17 ; s25 ¼ �s18 ; s29 ¼ �s22 ; s30 ¼ �s31 ; (7b)

s42 ¼ �s33 ; s41 ¼ �s34 ; s45 ¼ �s38 ; s46 ¼ �s37 : (7c)

A consequence of these identities is that Eq. (6) is
consistent with only seven of the ten operators Qi

being linearly independent and with the three usual
relations:

Q10 �Q9 ¼ Q4 �Q3 (8a)

Q4 �Q3 ¼ Q2 �Q1 (8b)

2Q9 ¼ 3Q1 �Q3: (8c)

s
V−A

V −/+ A

s
V−A

V −/+ A

s
V−A

V −/+ A

s
V−A

V −/+ A

FIG. 4. Diagrams for the eight type2 K0 ! �� contractions.

s

V−A

V −/+ A

s

V−A

V −/+ A

s
V−A

V −/+ A

s
V−A

V −/+ A

FIG. 3. Diagrams representing the eight K0 ! �� contractions of type1, where �V�A ¼ ��ð1� �5Þ. The black dot indicates a �5

matrix, which is present in each operator creating or destroying a pseudoscalar meson.
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(5) Based on charge conjugation symmetry and �5 her-
miticity, the gauge field average of each of these
contractions is real.

(6) The loop contractions of type3 and type4 are cal-
culated using the Gaussian, stochastic wall sources
described in Sec. II.

In order to make our approach more explicit, we will
discuss some examples. First consider the two contractions
of type1 identified ass1 ands2 and shown in the top half of
Fig. 3:

s1 ¼ Trf��ð1� �5ÞLðxop; t�ÞLðxop; t�Þyg � Tr
�
��ð1� �5Þ

� Lðxop; t�Þ�5

�X
~x�

Lðð ~x�; t�Þ; tKÞ
�
Sðxop; tKÞy

�
(9)

s2 ¼ Trc

�
Trsf��ð1� �5ÞLðxop; t�Þ

� Lðxop; t�Þyg � Trs
�
��ð1� �5ÞLðxop; t�Þ

� �5

�X
~x�

Lðð ~x�; t�Þ; tKÞ
�
Sðxop; tKÞy

��
; (10)

where tK is the time of the kaon wall source, t� the time at
which the two pions are absorbed and xop ¼ ð ~xop; topÞ the
location of the weak operator. The function Lðxsink; tsrcÞ is
the light quark propagator, a 12� 12 spin-color matrix,
while Sðxsink; tsrcÞ is the strange quark propagator. The
Hermitian conjugation operation, y, operates on these
12� 12 matrices. We use Trc to indicate a color trace, Trs
a spin trace, and Tr, with no subscript, stands for both a spin
and color trace. We have also used the �5 hermiticity of the
quark propagators to realize the combination of quark
propagators given in Eqs. (9) and (10), allowing both con-

s
V−A

V −/+ A

s
V−A

V −/+ A

s
V−A

V −/+ A

s

s
V−A

V −/+ A

s

s V−A V −/+ A s V−A V −/+ A

s V−AV −/+ A

s

s
V−A

V −/+ A

s

FIG. 5. Diagrams for the 16 type3 K0 ! �� contractions.
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tractions to be constructed from light and strange propaga-
tors computed using Coulomb gauge-fixed wall sources
located only at the times t� and tK. Note the sum over the
spatial components of the sink ~x� creates a symmetrical
wall sink provided that the appropriate Coulomb gauge
transformation matrix has been applied to the sink color
index of this propagator to duplicate the Coulomb gauge
transformation that was used to create the Coulomb gauge-
fixedwall source.Wewill sum over the spatial location, ~xop,

of theweak operator, to project onto zero spatialmomentum
and improve statistics. Below, we will show results as a
function of the separations between t�, top and tK.

As a third example, which illustrates the use of random
wall sources, consider contraction s19 shown in Fig. 5.
Using the notation introduced above, this contraction is
given by

s19 ¼ Trf��ð1þ �5ÞLRðxop; topÞg�ðxopÞ� � Tr
�
��ð1� �5Þ

� Lðxop; t�Þ
�X

~x0�

Lðð ~x0�; t�Þ; t�Þy
�

�
�X

~x�

Lðð ~x�; t�Þ; tKÞ
�
Sðxop; tKÞy

�
: (11)

Here, �ðxÞ is the value of the complex, Gaussian random
wall source at the space-time position x, while
LRðxsink; tsrcÞ is the propagator whose source is �ðxÞ�ðx0 �
tsrcÞ. The Dirac delta function �ðx0 � tsrcÞ restricts the
source to the time plane t ¼ tsrc. In the usual way, the
average over the random source �ð ~xÞ which accompanies
the configuration average, will set to zero all terms in
which the source and sink positions for the propagator
LRðxop; topÞ in Eq. (11) differ, giving us the contraction

implied by the closed loop in the top left panel of Fig. 5. By
using 32 separate propagators each with a random source
nonzero on only one of our 32 time slices, we obtain more
statistically accurate results than would result from a single
random source spread over all times.
An important objective of this calculation is to learn how

to accurately evaluate the quark loop integration that is
present in type3 and type4 graphs and which contains a
1=a2, quadratically divergent component. As can be rec-
ognized from the structure of the diagrams, these divergent
terms can be interpreted as arising from the mixing be-
tween the dimension-six operatorsQi (for all i but 7 and 8)
and a dimension-three ‘‘mass’’ operator of the form �s�5d.
Such divergent terms are expected and do not represent a
breakdown of the standard effective Hamiltonian written in
Eq. (4). In fact, given the good chiral symmetry of domain

s
V−A

V −/+ A

s
V−A

V −/+ A

s
V−A

V −/+ A

s s
V−A

V −/+ A

s

s
V−A

V −/+ A

s
V−A

V −/+ A

s

V−A

V −/+ A

s
s

V−A

V −/+ A

s

FIG. 6. Diagrams for the 16 type4 K0 ! �� contractions.
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wall fermions, all other operators with a dimension less
than six which might potentially mix with those in Eq. (4)
will vanish if the equations of motion are imposed.
Therefore, these operators cannot contribute to the
Green’s functions evaluated in Eqs. (5) and (6) where the
operators in HW are separated in space-time from those
operators creating the K meson and destroying the �
mesons, a circumstance in which the equations of motion
can be applied.

The problematic operator �s�5d is not explicitly removed
from the effective Hamiltonian because, again using the
equations of motion, �s�5d can be written as the divergence
of an axial current and hence will vanish in the physical
case where the weak operator HW carries no four-
momentum and is evaluated between on-shell states.
While we can explicitly sum the effective Hamiltonian
density HW over space to ensure HW carries no spatial
momentum, to ensure that no energy is transferred we must
arrange that the kaon mass and two-pion energy are equal.
We may achieve this condition, at least approximately, but
there will be contributions from heavier states, which are
normally exponentially suppressed, but which will violate
energy conservation and hence will be enhanced by this
divergent �s�5d term.

Since �s�5d will not contribute to the physical, energy-
conserving K ! �� amplitude, there is no theoretical
requirement that it be removed. The coefficient of this
�s�5d piece is both regulator-dependent and irrelevant.
The contribution of these terms in a lattice calculation of
K ! �� decay amplitudes will ultimately vanish as the
equality of the initial and final energies is made more
precise and as increased time separations are achieved.
However, the unphysical effects of this �s�5d mixing are
much more easily suppressed by reducing the size of this
irrelevant term than by dramatically increasing the lattice
size and collecting the substantially increased statistics
required to work at large time separations.

A direct way to remove this 1=a2 enhancement is
to explicitly subtract an 	i �s�5d term from each of the
relevant operators Qi where the coefficient 	i can be fixed
by imposing the condition

h0jQi � 	i �s�5djKi ¼ 0; (12)

a condition that is typically required in the chiral perturba-
tion theory for K ! �� [6]. Of course, this arbitrary
condition will leave a finite, regulator-dependent �s�5d
piece behind in the subtracted operator Qi � 	i �s�5d.
However, this unphysical piece will not contribute to the
energy-conserving amplitude being evaluated. Since it is
no longer 1=a2-enhanced, its effects on our calculation will
be similar to those of the many other energy nonconserving
terms which we must suppress by choosing equal energyK
and �� states and using sufficient large time separation to
suppress the contributions of excited states.
Following Eq. (12), we will choose the coefficient 	i

from the ratio

	i ¼ h0jQijK0i
h0j�s�5djK0i : (13)

(Note, with this definition the coefficient 	i is proportional
to the difference of the strange and light quark masses.)
Thus, we will improve the accuracy when calculating
graphs of type3 and type4 by including an explicit sub-
traction term for those operators Qi where mixing with
�s�5d is permitted by the symmetries (all but Q7 and Q8):

hO��
0 ðt�ÞQiðtopÞK0ðtKÞisub
¼ hO��

0 ðt�ÞQiðtopÞK0ðtKÞi
� 	ihO��

0 ðt�Þ �s�5dðtopÞK0ðtKÞi: (14)

We should recognize that there is a second, divergent,
parity-even operator �sd which mixes with our operators
Qi. However, we choose to neglect this effect because
parity symmetry prevents it from contributing to either
the K ! �� or K ! j0i correlation functions being eval-
uated here.
The amplitude hO��

0 ðt�Þ �s�5dðtopÞK0ðtKÞi includes two

contractions, one connected and one disconnected as
shown in Fig. 7. These terms, which arise from the mixing
of the operators Qi with �s�5d, are labeled mix3 and mix4.
To better visualize the contributions from different types of
contractions, we can write the right-hand side of Eq. (14)
symbolically as

s 5
s

5

FIG. 7. Diagrams showing the contractions needed to evaluate the subtraction terms. These are labeled mix3 and mix4 and
constructed from the type3 and type4 contractions by replacing the operator Qi and fermion loop with the vertex �s�5d.
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type1þ type2þ type3þ type4� 	 � ðmix3þmix4Þ
¼ type1þ type2þ sub3þ sub4; (15)

where sub3 ¼ type3� 	 �mix3 and sub4 ¼ type4�
	 �mix4. Note, here and in later discussions we refer to
the term being subtracted as ‘‘mix’’ and the final difference
as the subtracted amplitude ‘‘sub.’’

V. K0 ! �� �I ¼ 3=2 AMPLITUDE

As Eqs. (5) and (7a) show, the �I ¼ 3=2 K0 ! 2�
decay amplitude includes only type1 contractions and
four of the correlation functions are related

A2;10 ¼ A2;9 ¼ 3

2
A2;1 ¼ 3

2
A2;2: (16)

Therefore, we need only to calculate A2;1, A2;7 and A2;8.

The corresponding three correlation functions, C2;ið�; tÞ
for i ¼ 1, 7 and 8, with the choice of mð1Þ

K for the kaon
mass, are shown in Fig. 8. Here, we exploit our propagator
calculation for sources on each of the 32 time slices to
compute C2;ið�; tÞ from an average over all 32 source

positions:

C2;ið�; tÞ ¼ 1

32

X31
t0¼0

A2;iðt� ¼ t0 þ �; top ¼ tþ t0; tK ¼ t0Þ:

(17)

In Fig. 8, we plot C2;ið�; tÞ for 0< t < � at fixed � ¼ 12

or 16. Table I shows that mð1Þ
K is almost equal to the

energy of I ¼ 2, �� � state, so the 3-point correlation
function C2;ið�; tÞ should be approximately independent

of t in the central region where the time coordinate of the

operator is far from both the kaon and the two-pion
sources, 0 � t � �.
We fit the correlators C2;ið�; tÞ using a single free pa-

rameter M3=2;lat
i :

C2;ið�; tÞ ¼ M3=2;lat
i N��NKe

�E���e�ðmK�E��Þt; (18)

where NK, mK and N��, E�� are determined by fitting the
kaon and two-pion correlators respectively:

1

32

X31
t0¼0

hKðtþ t0ÞKðt0Þi ¼ N2
Kðe�mKt þ e�mKðT�tÞÞ (19)

1

32

X31
t0¼0

hO��
2 ðtþ t0ÞO��

2 ðt0Þi

¼ N2
��ðe�E��t þ e�E��ðT�tÞ þ CÞ: (20)

The constant C arises when the two pions join the source at
t0 and sink at tþ t0 by traveling in opposite time directions
as discussed below. The fitted results for the matrix ele-

ments M3=2;lat
i from � ¼ 12 are listed in Table II in lattice

units.
Figure 8 shows that for the operators Q7 and Q8 the

larger separation, � ¼ 16, between the kaon source and
�� � sink gives a much shorter plateau region than the
case � ¼ 12. This behavior is inconsistent with the usual
expectation that it is the contributions from excited states
of the kaon and pion, contributions which should be sup-
pressed for larger �, that cause the poor plateau. An
alternative, consistent explanation attributes the shortened
plateau region seen for � ¼ 16 to the ‘‘around-the-world’’
effect. This is the contribution to the correlation function
in which the two-pion interpolating operator at the sink
annihilates one pion and creates another (instead of

 8e+07

 1e+08

1.2e+08

1.4e+08

1.6e+08

1.8e+08

 0  2  4  6  8  10  12

Q1
Q7/12
Q8/48
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 2.5e+07
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Q8/48

FIG. 8 (color online). Plots of the �I ¼ 3=2 K0 ! �� � correlation functions for kaon source and �� � sink separations of
� ¼ 12 (left panel) and 16 (right panel). The x-axis gives the time t specifying the time slice over which the operator,Qið ~x; tÞ, i ¼ 1, 7,
8, is averaged. The results for the operator Q7 are divided by 12, and those for Q8 by 48 to allow the results to be shown in the same
graph. The correlators C2;ið�; tÞ are fit using the � ¼ 12 data with a fitting range 5 	 t 	 7. The resulting constants are shown as

horizontal lines in both the � ¼ 12 and 16 graphs. We can see that the � ¼ 16 data are consistent with those from � ¼ 12, but receive
large contributions from the around-the-world paths.
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annihilating two pions as in the K ! �� contribution we
are seeking) and the process at the weak operator is K� !
� (instead of K ! ��). While one pion travels from the
weak operator to the �� � sink, the second is created at
the sink and travels forward in time, passing through the
periodic boundary to reach the weak operator together with
the kaon. The corresponding dominant path is shown in
Fig. 9. The time dependence of this behavior can be
estimated as


M3=2;lat
i N2

�NKe
�m�Te�ðEK��m�Þt (21)

which is �independent but suppressed by the factor
expð�m�TÞ, where N� is the analogue of NK for the
case of single pion production and T ¼ 32 is the temporal
extent of the lattice. In contrast, the physical contribution
in Eq. (18) is suppressed by expð�E���Þ. Thus, the sec-
ond, standard term falls with increasing � and the two
factors are of similar size when � ¼ T=2. Therefore, we
should expect to see a large contamination from such
around-the-world effects in the � ¼ 16 case, consistent
with Fig. 8. In both panels of that figure, we plot as three
horizontal lines the fitted result from � ¼ 12 for the three

amplitudesM3=2;lat
i N��NK exp�ð�E��Þ for i ¼ 1, 7 and 8.

The agreement between these lines and the short plateaus
seen in the right-hand, � ¼ 16 panel indicates consistency
between these two values of �.
Additional evidence supporting this explanation for the

short plateau in the case of � ¼ 16 can be obtained by
examining the explicit dependence on t given by Eq. (21)
for the around-the-world contribution. Examining the ex-
ponential decay with t in the � ¼ 16 correlators plotted in
the right panel of Fig. 8, for operators Q7 and Q8 we find a
value for EK� �m� varying between 0.4 and 0.5 depend-
ing on the choice of fit range. A more accurate value of
0.498(2) can be obtained by fitting the corresponding cor-
relator for � ¼ 20 and a fit range of 5 to 11. The
strangeness-carrying state whose mass we have labeled
EK� can be formed from two quarks and must be parity-
even. Direct calculation of EK� from a scalar �sd correlator
yields EK� ¼ 0:752ð12Þ which is consistent with the sum
of the result above, EK� �m� ¼ 0:498ð2Þ, and the pion
mass m� ¼ 0:2437ð5Þ. (This energy difference is also

close to the kaon mass mð1Þ
K ¼ 0:50729 given in Table I.)

Thus, the time dependence expected from the around-the-
world path is quite consistent with that seen in Fig. 8.
We conclude that it is important to increase the lattice

extent in the time direction both to suppress this around-
the-world effect and to permit the use of a larger source-
sink separation giving a longer plateau. We will return to
discussion of the around-the-world effect below for the
�I ¼ 1=2 kaon decay where it creates even greater diffi-
culties. However, here we can begin to appreciate the
severity of this effect in the K0 ! �� system for our
temporal lattice extent of 32, given our values of the lattice
spacing and meson masses.
The Wilson coefficients and operators which appear in

Eq. (4) are typically expressed in theMS scheme. Thus, we
must change the normalization of our lattice operators Qi

to that of theMS scheme. We begin by converting our bare
lattice operators into the regularization invariant momen-
tum (RI/MOM) scheme of Ref. [15]. Here, we use the
earlier results of Ref. [26] which were obtained for the
present lattice action using the methods of Ref. [6]. In this
previous work off-shell, Landau-gauge-fixed Green’s

TABLE II. Results for the lattice �I ¼ 3=2, K ! �� transi-
tion amplitudes obtained from fitting the 3-point correlation
functions to the functional form given in Eq. (18) for the six
operators with �I ¼ 3=2 components. The second column gives

the lattice matrix elements M3=2;lat
i ð�10�2Þ while the third and

fourth column give their contributions to the real and imaginary
parts of A2.

i M3=2;lat
i ð�10�2Þ ReðA2ÞðGeVÞ ImðA2ÞðGeVÞ

1 0.4892(16) �1:737ð11Þe� 08 0

2 ¼ M1 6:665ð42Þe� 08 0

7 6.080(18) 2:422ð16Þe� 11 4:070ð26Þe� 14
8 21.26(6) �1:979ð13Þe� 10 �9:646ð61Þe� 13
9 ¼ 1:5M1 �7:917ð50Þe� 15 5:185ð24Þe� 13
10 ¼ 1:5M1 6:103ð38Þe� 12 �1:448ð9Þe� 13
Total - 4:911ð31Þe� 08 �5:502ð40Þe� 13

FIG. 9. Diagrams showing the dominant around-the-world
paths contributing to graphs of type1. The space-time region
between the kaon wall source at tK and its periodic recurrence at
tK þ T is shown, where T ¼ 32 is the extent of the periodic
lattice in the time direction. For this around-the-world path, one
pion travels directly from the pion wall source at t� to the weak
operator, represented by the grey dot at top. However, the second

pion propagates in the other direction in time, passes through the
periodic boundary and combines with the kaon before reaching
the weak operator at top.
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functions containing the lattice operators Qi are evaluated
at specific external momenta characterized by an energy
scale �. These results determine a renormalization matrix
ZRI
ij ð�; aÞ which can be used to convert the lattice normal-

ization into that of the RI scheme:

QRIð�Þi ¼
X7
j¼1

Zlat!RI
ij ð�; aÞQ0

j: (22)

As explained in Appendix A, these equalities hold only
when the operators appear in physical matrix elements.
The indices i and j take on seven values corresponding to
the seven independent operators in what will be called the
chiral basis. (The primes in this equation indicate lattice
operators defined in that basis.) This is referred to as
nonperturbative renormalization because the matrix
Zlat!RI
ij ð�; aÞ is computed using a lattice evaluation of

off-shell Green’s functions and perturbation theory is not
used.

Next, these QRIð�Þi operators are converted to the MS
scheme in which the Wilson coefficients are evaluated by

applying a conversion matrix RRI!MS
ij discussed in detail in

Ref. [16]. Finally, the matrix elements of these MS opera-
tors are combined with the Wilson coefficients obtained in

the MS scheme [17] using the scale � ¼ 2:15 GeV to
determine the results given later in this section for the
�I ¼ 3=2 amplitude A2 and in the following section for
the �I ¼ 1=2 A0. These procedures are described in
greater detail in Appendix A.

A good approximation to the infinite volume decay
amplitude can be obtained by including the Lellouch-
Lüscher factor (F) [18] which relates the K ! �� matrix
element M of the effective weak Hamiltonian of Eq. (4)
calculated using finite volume states normalized to unity to
the infinite volume amplitude A: jAj2 ¼ F2M2 where

F2 ¼ 4�

�
E2
��mK

p3

��
p
@�2ðpÞ
@p

þ q
@
ðqÞ
@q

�
: (23)

Here, p is defined through E�� ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ p2
p

, q ¼
Lp=2� and �2ðpÞ is the s-wave, I ¼ 2, �� � scattering
phase shift for pion relative momentum p. The function

ðqÞ is known analytically and given, for example, in
Ref. [18]. The I ¼ 2 phase shift �2ðpÞ is determined
from the measured two-pion energy E�� ¼ 0:443ð13Þ
given in Table I and the finite volume quantization
condition [27]


ðqÞ þ �2ðpÞ ¼ n�: (24)

For our threshold case, we set the integer n to zero and
obtain �2ðpÞ ¼ �0:0849ð43Þ. Because of the small value
of p, we assume that �2ðpÞ is a linear homogenous function
of p and write �2ðpÞ ¼ p@�2ðpÞ=@p, the quantity required
in Eq. (23) and given in Table III. (Equation (23) differs
by a factor of 2 from the expression given in the

Lellouch-Lüscher paper because of our different conven-
tions for the decay amplitude A. With our conventions, the
experimental value of ReðA2Þ ¼ 1:48� 10�8 GeV.)
In the limit of noninteracting pions, the factor F be-

comes F2
free ¼ 2ð2m�Þ2mKL

3, which reflects the different

normalization of states in a box and plane wave states in
infinite-volume. Results for F in this I ¼ 2 case and the
quantities used to determine it are given in Table III. We
should note that applying the finite-volume correction of
Eq. (23) gives us a finite-volume corrected amplitude for a
�I ¼ 3=2, K ! �� decay that is slightly above threshold
by the amount E��

2 � 2m� ¼ 33ð1Þ MeV.
We can now combine everything and calculate the

K0 ! �� decay amplitudes,

A2=0 ¼ F
GFffiffiffi
2

p VudVus

X10
i¼1

X7
j¼1

½ðzið�Þ

þ �yið�ÞÞZlat!MS
ij Mð3=2Þ=ð1=2Þ;lat

j �; (25)

where the construction of the 10� 7 renormalization

matrix Zlat!MS
ij is explained in Appendix A. For later

use, we have written Eq. (25) in a way which is applicable
for �I ¼ 1=2 decays as well as for the �I ¼ 3=2 tran-
sitions considered in this section. The results for the
complex �I ¼ 3=2 decay amplitude A2 are summarized
in Table IV, including those for the other two, energy-

non-conserving choices of kaon mass. Since mð1Þ
K differs

from the isospin-2 �� � energy by only 0.2%, we quote
this case as our energy-conserving kaon decay amplitude.
Therefore, in physical units, we obtain the energy-
conserving �I ¼ 3=2, K0 ! �� complex, threshold de-
cay amplitude for mK ¼ 877 MeV and m� ¼ 422 MeV:

Re ðA2Þ ¼ 4:911ð31Þ � 10�8 GeV (26)

Im ðA2Þ ¼ �0:5502ð40Þ � 10�12 GeV: (27)

TABLE III. The calculated quantities which appear in the
Lellouch-Lüscher factor F for I ¼ 2. The corresponding factor
for the case of noninteracting particles is Ffree ¼ 31:42. The
difference reflects the final two-pion scattering in a box.

p q @
ðqÞ
@q p @�ðpÞ

@p F

0.0690(13) 0.221(10) �0:0849ð43Þ 26.01(18)

TABLE IV. The complex, K0 ! ��, �I ¼ 3=2 decay ampli-
tudes in units of GeV.

mK ReðA2Þð�10�8Þ ImðA2Þð�10�12Þ
mð0Þ

K 4.308(28) �0:5596ð40Þ
mð1Þ

K 4.911(31) �0:5502ð40Þ
mð2Þ

K 5.916(38) �0:5316ð39Þ
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This result for ReðA2Þ can be compared with the experi-
mental value of 1:48� 10�8 GeV given above. The
larger result found in our calculation is likely explained
by our unphysically heavy kaon and pions.

VI. K0 ! �� �I ¼ 1=2 AMPLITUDE

Following the prescription given by Eq. (6), we have
calculated all of the �I ¼ 1=2 kaon decay correlation
functions,

C0;ið�; tÞ ¼ 1

32

X31
t0¼0

A0;iðt� ¼ t0 þ �; top ¼ tþ t0; tK ¼ t0Þ;

(28)

for each of the 10 effective weak operators. In the calcu-
lation, we treat each of these 10 operators as independent
and then verify that the identities shown in Eq. (8) are
automatically satisfied. Figs. 10 and 11 show two examples
of the resulting correlation functions for the operators Q2

and Q6, in the case of the lightest kaon m
ð0Þ
K . Table I shows

that the mass of this kaon is very close to the energy of the
I ¼ 0 two-pion state. Therefore, we expect to get a rea-
sonably flat plateau when the operator is far from both the
source and sink.
Given this good agreement between the energies of the

K and �� � states, we might expect that the unphysical,
dimension-three operator, �s�5dwhich mixes with the (8, 1)
operators in Eq. (4) and is itself a total divergence, will also
give a negligible contribution to such an energy and
momentum-conserving matrix element. However, as can
be seen from Figs. 10(a) and 11(a), the matrix element of
this term is large and the explicit subtraction described in
Sec. IV is necessary.
This difficulty is created by the combination of two

phenomena. First, the mixing coefficient which multiplies
the �s�5d operator when it appears in our weak (8, 1)
operators is large, of order ðms �mlÞ=a2. Second, in our
lattice calculation the necessary energy-conserving kine-
matics (needed to insure that this total divergence does not
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FIG. 10 (color online). Plots showing the t dependence of the various contractions which contribute to the �I ¼ 1=2 correlation
function C0;2ð� ¼ 16; tÞ for the operator Q2. (a) Contractions of type3, the divergent mixing term mix3 that will be subtracted and the
result after subtraction, sub3. (b) Contractions of type4, the divergent mixing term mix4 that will be subtracted and the result after
subtraction, sub4. (c) Results for each of the four types of contraction after the needed subtractions have been performed. (d): Results
for the complete Q2 correlation function C0;2ð� ¼ 16; tÞ obtained by combining these four types of contractions. The solid points

labeledQ2 are the physical result while the open points labeledQ
0
2 are obtained by omitting all the vacuum graphs, sub4. The solid and

dotted horizontal lines indicate the corresponding fitting results and the time interval, 5 	 t 	 11 over which the fits are performed.
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contribute) is only approximately valid. The required
equality of the spatial momenta of the kaon and �� �
states is assured by our summing the location of the weak
vertex over a complete temporal hyperplane. On the other
hand, the equality of the energies of the initial and final
states results only if we have adjusted the kaon mass to
approximately that of the two-pion state and chosen the
time extents sufficiently large that other states with differ-
ent energies have been suppressed. However, as can be
seen in Figs. 10(a) and 11(a) the subtraction terms mix3
and mix4 show strong dependence on the time at which
they are evaluated. This implies that there are important
contributions coming from initial and final states which
have significantly different energies. One or both of these
states is then not the intended K or �� � state but instead
an unwanted contribution which has been insufficiently
suppressed by the time separations between source, weak
operator and sink.

Thus, instead of relying on large time extents and
energy-conserving kinematics to suppress this unphysical,
Oð1=a2Þ term we must explicitly remove it. As explained
in Sec. IV, this can be done by including an explicit
subtraction which we fix by the requirement that the

kaon to vacuum matrix element of the complete subtracted
operator vanishes as in Eq. (12). Thus, we determine the
divergent coefficient of this mixing term from the ratio
	i ¼ h0jQijKi=h0j�s�5djKi and then perform the explicit
subtraction of the resulting terms, labeled 	i �mix3 and
	i �mix4 in Figs. 10 and 11.
Of course, the finite part of such a subtraction is not

determined from first principles and our choice, specified
by Eq. (12) is arbitrary. Thus, we must rely on our
identification of a plateau and the approximate energy
conservation of our kinematics to make the arbitrary part
of this subtraction small, along with the other errors asso-
ciated with evaluating the decay matrix element of interest
between initial and final states with slightly different
energies.
We now examine the very visible time dependence in

Figs. 10(a) and 11(a) for both the original matrix elements
and the subtraction terms in greater detail. As discussed
above, one might expect these divergent subtraction terms
to contribute to excited state matrix elements in which the
energies of the initial and final states are very different.
Typical terms should be exponentially suppressed as the
separation between the weak operator and the source or
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FIG. 11 (color online). The result for each type of contraction contributing to the 3-point correlation function C0;6ð� ¼ 16; tÞ for the
operator Q6 following the same conventions as in Fig. 10.
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sink is increased, with the time behavior expf�ðm�
K �

mKÞtg or expf�ðE�
�� � E��Þð�� tÞg, whichever is larger.

(The � denotes an excited state.) However, by carefully
examining the time behavior of the mix3 amplitude, we
find that the time dependence, at least in the vicinity of the
central region, is less rapid than might be expected from
such excited states suggesting that it is probably not due
primarily to contamination from excited states.

We believe that the dominant, energy-nonconserving
matrix elements which cause the significant time depen-
dence in Figs. 10 and 11 arise from the around-the-world
effects identified and discussed in the previous �I ¼ 3=2
section. In fact, for the reasons just discussed associated
with divergent operator mixing, such around-the-world
effects are a more serious problem in the �I ¼ 1=2 case.
The dominant around-the-world graphs are shown in
Fig. 12. An estimate of the time dependence of these
graphs gives,

<K0�jQij�>N�NKN�e
�m�Te�ðEK��m�Þt

þ<0jQijK0��>N�NKN�e
�mKððT��Þþð��tÞÞ; (29)

where the first term comes from the first two graphs of
Fig. 12, while the second term comes from the third
graph. (Recall that t ¼ top � tK and � ¼ t� � tK.)

Notice that these two terms involve amplitudes which are
far from energy conserving and therefore contain large
divergent contributions from mixing with the operator
�s�5d which will be removed only when combined with
the corresponding around-the-world paths occurring in the
mix3 contraction.
We conclude that it is these around-the-world matrix

elements which are the reason for the observed large diver-
gent subtraction in the type3 graph. The largest divergent
contribution is thus not the subtraction for the matrix ele-
ment we are trying to evaluate, <��jQijK0 > ; rather,
it is the divergent subtraction for the matrix elements
<K0�jQij�> and <0jQijK0��> which arise from the
around-the-world paths which are not sufficiently sup-
pressed by our lattice size. Two important lessons can be
learned from this analysis. First, it is important to perform
an explicit subtraction of the divergent mixing with the
operator �s�5d. While this term will not contribute to
the energy-conserving matrix element of interest, in a
Euclidean space lattice calculation there are in general,
other, unwanted, energy nonconserving terms which may
be uncomfortably large if this subtraction is not performed.
Second it would be wise to work on a lattice with a much
larger size T in time direction in order to suppress further
the around-the-world terms which give such a large contri-
bution in the present calculation. Using the average of
propagators computed with periodic plus antiperiodic
boundary conditions to effectively double the length in
the time direction would be a good solution.
We should emphasize that these divergent, around-the-

world contributions do not pose a fundamental difficulty.
The largest part of these amplitudes are removed by the
corresponding subtraction terms constructed from the op-
erator �s�5d. The remaining finite contributions from this
and other around-the-world terms are suppressed by the
factor expð�m�TÞ or expð�mKðT � �ÞÞ. Fortunately, the
large divergent subtraction also reduces the statistical
errors substantially, especially for the type4 vacuum
graphs, which indicates the expected strong correlation
between the divergent part of the weak operator and the
corresponding �s�5d subtraction. Our results suggest that
the separation of � ¼ 16 gives a relatively longer plateau
region, so we use that K � �� time separation in the
analysis below.
The lattice matrix elements are determined by fitting the

I ¼ 1=2 correlators Ci
0ð�; tÞ given in Eq. (28) using the

fitting form:

C0;ið�; tÞ ¼ M1=2;lat
i N��NKe

�E���e�ðmK�E��Þt: (30)

FIG. 12. The dominant around-the-world paths contributing to
graphs of type3. As in Fig. 9 we show the space-time region
between the kaon source at t ¼ tK and its periodic recurrence at
t ¼ tK þ T. The gray circle represents the four-quark operator
Qi. For the first two graphs, one of the two pions created at the
t ¼ t� source travels directly to the operatorQi while the second
pion travels in the other direction in time and reaches the kaon
and weak operator by passing through the periodic lattice
boundary. In the third diagram, it is the kaon which travels in
the opposite to the expected time direction.
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The fitted results for the weak, �I ¼ 1=2 matrix elements
of all 10 operators are summarized in Table V. To see the
effects of the disconnected graph clearly, a second fit is
performed to the amplitude from which the disconnected,
type4 graphs have been omitted and the calculated results
are shown with an additional 0 label, as in the earlier two-
pion scattering section.

The calculation of the �I ¼ 1=2 decay amplitude A0

from the lattice matrix elementsM1=2;lat
i given in Table V is

very similar to the�I ¼ 3=2 case: the values ofM1=2;lat
i are

simply substituted in Eq. (25). However, the attractive

character of the I ¼ 0, �� � interaction and resulting

negative value of p2 makes the Lellouch-Lüscher treat-

ment of finite volume corrections inapplicable. For the

repulsive I ¼ 2 case, we could apply this treatment to

obtain the decay amplitude for a two-pion final state which

was slightly above threshold corresponding to the actual

finite volume kinematics. In the present case, there is no

corresponding infinite-volume decay into two pions below

threshold and an unphysical increase of m� to compensate

for the finite-volume �� � attraction will introduce an

Oð1=L3Þ error in the decay amplitude of the same size as

that which the Lellouch-Lüscher treatment corrects. Thus,
for this �I ¼ 1=2 we do not include finite volume correc-
tions and simply use the free-field value for the factor F in
Eq. (25).
While we believe that we cannot consistently apply the

Lellouch-Lüscher finite volume correction factor to im-
prove our result for the I ¼ 0, K ! �� decay amplitude,
we might still be able to use the quantization condition of
Eq. (24) to determine the I ¼ 0 �� � scattering phase
shift �0ðpÞ. Even though Eq. (24) can be analytically
continued to imaginary values of the momentum p, its
application for large negative p2 is uncertain since the
function 
ðqÞ becomes ill defined. In fact, our value of
p2 sits very close to a singular point of 
ðqÞ. We believe
this happens because the condition on the interaction
range R � L=2 used to derive the quantization condition
in Eq. (24) is not well satisfied for our small volume. This
impediment to determining �0ðpÞ will naturally disappear
once we work with lighter pions in a larger volume.
The results for ReðA0Þ and ImðA0Þ are summarized in

Table VI and the individual contribution from each of the
operators is detailed in the last two columns of Table V.
Within a large uncertainty Table V shows that the largest

TABLE V. Fitted results for the weak, �I ¼ 1=2 kaon decay matrix elements using the kaon

mass mð0Þ
K . The column Mlat

i shows the complete result from each operator. The column M0lat
i

shows the result when the disconnected graphs are omitted while the 4th and 5th columns
show the contributions of each operator the real and imaginary parts of the physical decay
amplitude A0. These results are obtained using a source-sink separation � ¼ 16, and a fit
range 5 	 t 	 11.

i M1=2;lat
i ð�10�2Þ M01=2;lat

i ð�10�2Þ ReðA0ÞðGeVÞ ImðA0ÞðGeVÞ
1 �1:6ð16Þ �1:10ð37Þ 7:6ð64Þe� 08 0

2 1.52(61) 1.92(15) 2:86ð97Þe� 07 0

3 �0:3ð41Þ 0.3(10) 2:1ð136Þe� 10 1:1ð76Þe� 12
4 2.7(33) 3.32(78) 4:2ð44Þe� 09 1:4ð14Þe� 11
5 �3:3ð38Þ �6:81ð86Þ 3:1ð53Þe� 10 1:6ð28Þe� 12
6 �7:8ð48Þ �19:6ð9Þ �5:6ð33Þe� 09 �3:3ð20Þe� 11
7 10.9(14) 15.20(42) 5:2ð12Þe� 11 8:8ð20Þe� 14
8 35.7(28) 47.2(10) �3:66ð28Þe� 10 �1:79ð14Þe� 12
9 �2:2ð12Þ �1:79ð29Þ 3:1ð15Þe� 14 �2:01ð96Þe� 12
10 0.9(12) 1.24(29) 1:2ð11Þe� 11 �2:7ð27Þe� 13
Total - - 3:46ð78Þe� 07 �2:4ð23Þe� 11

TABLE VI. Amplitudes for �I ¼ 1=2 K0 ! �� decay in units of GeV. The energy-

conserving amplitudes are obtained by a simple linear interpolation between mð0Þ
K ¼ 0:42599

and mð1Þ
K ¼ 0:50729 to the energy of two-pion state. As in the previous tables, the 0 indicates

results from which the disconnected graphs have been omitted.

mK ReðA0Þð�10�8Þ ReðA0
0Þð�10�8Þ ImðA0Þð�10�12Þ ImðA0

0Þð�10�12Þ
mKð0Þ 36.1(78) 42.3(20) �21ð21Þ �66:1ð43Þ
mKð1Þ 45(10) 48.8(24) �41ð26Þ �74:6ð47Þ
mKð2Þ 65(15) 58.6(32) �69ð39Þ �89:6ð63Þ
Energy conserving 38.0(82) 43.4(21) �25ð22Þ �67:5ð44Þ
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contribution to ReðA0Þ comes from operatorQ2, and that to
ImðA0Þ from Q6 as found, for example, in Refs. [6,7].

Since the choice mð0Þ
K for the kaon mass is not precisely

equal to the energy of the I ¼ 0 �� state, we carried out a

simple linear interpolation between mð0Þ
K and mð1Þ

K to obtain
an energy-conserving matrix element, which is shown in
the last row of Table VI. In terms of physical units, there-
fore, our full calculation gives the energy-conserving,
K0 ! ��, �I ¼ 1=2, complex decay amplitude A0 for
mK ¼ 766 MeV and m� ¼ 422 MeV:

Re ðA0Þ ¼ 3:80ð82Þ � 10�7 GeV (31)

Im ðA0Þ ¼ �2:5ð2:2Þ � 10�11 GeV: (32)

These complete results can be compared with those ob-
tained when the disconnected graphs are neglected given
in Table VI and the experimental value for ReðA0Þ ¼
3:3� 10�7 GeV.

VII. DISCUSSION AND CONCLUSIONS

Comparing the results of ReðA2Þ in Table IVand ReðA0Þ
in Table VI, we find the �I ¼ 1=2 enhancement ratio
ReðA0Þ=ReðA2Þ to be roughly 7–9. This comparison is
degraded by our threshold kinematics which, since the
I ¼ 0 and I ¼ 2 two-pion states have different energies
in a finite volume, causes us to use a different kaon mass in
the calculations of (A2) and (A0) in order to have energy-
conserving decays in each case. These two energy-
conserving amplitudes have a ratio of 38:0=4:911 ¼ 7:7,
while if we ignore energy conservation and use the same

mð1Þ
K value for kaon mass, the ratio becomes 45:0=4:911 ¼

9:2. Of course, both estimates are far from the experimen-
tal ratio of 22.5, suggesting that our 422 MeV pion mass
and small lattice volume are far from physical.

For completeness, we also calculate the measure of
direct CP violation,

Re

�
�0

�

�
¼ !ffiffiffi

2
p j�j

�
ImðA2Þ
ReðA2Þ �

ImðA0Þ
ReðA0Þ

�
; (33)

where ! ¼ ReðA2Þ=ReðA0Þ is the inverse of the �I ¼ 1=2
enhancement factor. Using our kinematics, the kaon mass

mð1Þ
K and substituting the experimental value for �, we get

Reð�0=�Þ ¼ ð2:7� 2:6Þ � 10�3. If we instead use the
experimental value for !, we get Reð�0=�Þ ¼ ð1:11�
0:91Þ � 10�3.

Our calculation is sufficiently far from physical kine-
matics, that it is not appropriate to compare these results
with experiment.1 Instead, our objective is to show how

well our method performs. We have been able to calculate
ReðA0Þ, the key element needed to explain the �I ¼ 1=2
rule, with a 25% statistical error. Comparing our results for
ReðA0Þ obtained on subsamples of N ¼ 100, 400 and all
800 configurations we find that the statistical errors on the

quantities we measure do indeed scale as 1=
ffiffiffiffi
N

p
. Therefore,

we believe that our nonzero signal for ReðA0Þ is real and
that we could reduce this statistical error to 10% by quad-
rupling the size of our sample to 3200 configurations. It is
interesting to note the results for primed (disconnected
graphs omitted) and unprimed (all graphs included) quan-
tities contributing to ReðA0Þ have similar values suggesting
that the disconnected graphs, while contributing signifi-
cantly to the statistical error, have an effect on the final
result for ReðA0Þ at or below 25%.
In contrast, the result for ImðA0Þ has an 80% error. Thus,

it is not clear whether the size of the result will survive a
quadrupling of the sample with its statistical error reducing
to a 40% error or whether the result itself will shrink,
remaining statistically consistent with zero. Considering
the substantial systematic errors associated with our small
volume and the fact that our kinematics are far from the
physical, we present this trial calculation as a guideline for
future work and a proof of method rather than giving
accurate numbers to compare with experiment.
From our observation of the around-the-world effect, we

conclude that it is important to use the average of quark
propagators obeying periodic and antiperiodic boundary
conditions to extend the lattice size in the time direction. In
addition, explicit subtraction of the divergent mixing term
�s�5d is necessary even for kinematics which are literally
energy conserving because the around-the-world path and
possibly other excited state matrix elements are far off
shell and can be substantially enhanced by such a divergent
contribution. Finally, future work should be done using a
much larger lattice which can contain two pions without
any worry about finite size effects.
The focus of this paper is on developing techniques

capable of yielding statistically meaningful results from
the challenging lattice correlation functions involved in the
amplitude A0. However, there are other important problems
that will also require careful attention if physically mean-
ingful results are to be obtained for this amplitude with an
accuracy of better than 20%. Two important issues are
associated with operator mixing. As discussed in
Appendix A, a proper treatment of the nonperturbative
renormalization of the four independent (8, 1) four-quark
operators requires that additional operators containing
gluonic variables (some of which are not gauge invariant)
be included. While including such operators is in principle
possible and the subject of active research, controlling
such mixing using RI/MOM methods offers significant
challenges.
A second problem is operator mixing induced by

the residual chiral symmetry breaking of the DWF

1A further unphysical aspect of our kinematics is the inequal-
ity of the strange quark mass used in the fermion determinant
and the self contractions appearing in the eye graphs (ms ¼
0:032) and strange quark masses used in the valence propagator
of the K meson (ms ¼ 0:066, 0.99 and 0.165).
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formulation. The mixing of such wrong-chirality operators
should be suppressed by a factor of order mres. However,
the K ! �� matrix elements of the important (8, 1) four-
quark operators are themselves suppressed by at least one
power of m2

K, a suppression that is absent from similar
matrix elements of the induced, wrong-chirality operators.
Therefore, such mixing has been ignored in this paper
because its effect on the matrix elements of interest are
expected to be of order mres=ms � 0:08, suggesting that
these effects will be smaller than our 25% statistical errors.
To perform a more accurate calculation in the future, these
mixing effects may be further suppressed by adopting a
gauge action with smaller residual chiral symmetry break-
ing. For example, this ratio reduces to 0.04 for the DSDR
gauge action now being used in RBC/UKQCD simulations
[28] and to 0.023 for those ensembles with the smallest
lattice spacing created to date using the Iwasaki gauge
action [29]. When greater accuracy is required, either an
improved fermion action, larger Ls or explicit subtraction
of wrong-chirality mixing must be employed.

As we move closer to the physical pion mass we must
overcome a further important difficulty: giving physical
relative momentum to the two pions. This can be accom-
plished while keeping the two-pion state in which we are
interested as the ground state, if the kaon is given nonzero
spatial momentum relative to the lattice. In this case, the
lowest energy final state can be arranged to have one pion
at rest while the other pion carries the kaon momentum, as
in the �I ¼ 3=2 calculation of Ref. [30]. However, this
requires the momentum carried by the initial kaon and final
pion to be 739 MeV, which is 5.4 times larger than the
physical pion mass. Such a large spatial momentum will
likely make the calculation extremely noisy. For the �I ¼
3=2 calculation, it is possible to use antiperiodic boundary
conditions in one or more spatial directions for one of the
light quarks so that each pion necessarily carries the physi-
cal, 206 MeV momentum present in the actual decay while
the kaon can be at rest [12,13]. However, this approach
cannot be used in the case of the I ¼ 0 final state being
studied here. Instead, the use of G-parity boundary con-
ditions [31] may be the solution to this problem.
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APPENDIX A: OPERATOR NORMALIZATION

In order to combine our lattice matrix elements with the
Wilson coefficients describing the short-distance weak
interaction physics responsible for K ! �� decay, we
must convert our lattice operators into those normalized

according to that MS scheme in which the Wilson coef-
ficients are evaluated. We will discuss the details of this
procedure in this appendix.
The first step is converting the lattice operators into

those normalized according to the RI/MOM scheme [15].
We follow the procedure of Ref. [6] and make use of the
fact that the 10 operators which enter the conventional
expression given in Eq. (4) are linearly dependent and
can be reduced to a set of seven independent operators,
Q0

1, Q
0
2, Q

0
3, Q

0
5, Q

0
6, Q

0
7 and Q

0
8 defined in Eqs. 172-175 of

Ref. [6]. These have been defined so that the resulting
operators belong to specific irreducible representations
of SULð3Þ � SURð3Þ. The operator Q0

1 transforms as a
(27, 1). The four operators Q0

2, Q
0
3, Q

0
5 and Q0

6 all belong

to the (8, 1) representation, while Q0
7 and Q0

8 each trans-

form as an (8, 8). Here ðm; nÞ denotes the product of an
m-dimensional irreducible representation of SULð3Þ with
an n-dimensional irreducible representation of SURð3Þ.
We refer to the basis of these seven independent operators
as the chiral basis. Because SULð3Þ � SURð3Þ is an exact
symmetry of the large momentum, massless limit which
our nonperturbative renormalization calculation is in-
tended to approximate, the mixing matrix Zlat!RI given
in Eq. (22), which relates the lattice and RI-normalized
operators will be block diagonal, only connecting opera-
tors which belong to the same irreducible representation
of SULð3Þ � SURð3Þ.
The RI/MOM conditions which define the operatorsORI

i

and determine the 7� 7 matrix Zlat!RI are imposed on the
Green’s functions2:

Giðp1; p2Þf	��� ¼ Y4
i¼1

�Z
d4xi

�
hsðx1Þ	fðx2Þ�QRI

i ð0Þ �d�ðx3Þ

� �f�ðx4Þie�ip2ðx1þx2Þeip1ðx3þx4Þ (A1)

evaluated for p2
1 ¼ p2

2 ¼ ðp1 � p2Þ2 ¼ �2. Here 	, �, �
and � are spin and color indices. The fields �d and �f create a
down quark and a quark of flavor f ¼ u or d while s and f
destroy a strange quark and a quark of flavor f. The
RI/MOM conditions are imposed by removing the four

2While this equation agrees with Eqs. 143 and 152 of Ref. [6],
a different choice of momenta was actually used in that earlier
reference. These two equations accurately describe the earlier
kinematics only after one pair of the momenta p1 and p2 are
exchanged: p1 $ p2.
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external quark propagators from the amplitudes in
Eq. (A1), and then contracting each of the resulting seven
amputated Green’s functions obtained from Eq. (A1) with

seven projectors f�ij;f
	���g1	j	7. The matrix Zlat!RI is then

determined by requiring that the resulting 49 quantities
take their free field values, as is described in detail in
Refs. [6,16].

The choice of external momenta specified by Eq. (A1) is
nonexceptional since no partial sum of these momenta
vanish (if their signs are chosen so that all four momenta
are incoming) and is the choice used in Refs. [16,26]. Such
a choice of kinematics is expected to result in normaliza-
tion conditions which are less sensitive to nonzero quark
masses and QCD vacuum chiral symmetry breaking than
would be the case if an exceptional set of momenta had
been used [32]. The resulting matrix Zlat!RIð�; aÞ=Z2

q

obtained for � ¼ 2:15 GeV in Ref. [26] is given in
Table VII.

Since these RI/MOM renormalization conditions are
being imposed for off-shell, gauge-fixed external quark
lines, we must in principle include a larger number of
operators than the minimal set of seven independent op-
erators which can represent all gauge-invariant matrix
elements between physical states of HW . Therefore, we
must also employ a correspondingly larger set of condi-
tions to distinguish among this larger set of operators.
These additional operators are two-quark operators of
dimension three, four and six and are either gauge-
invariant or non gauge-invariant. The treatment of those
operators of dimension three and four follows closely that
given in Ref. [6]. Equations (12) and (89) of Ref. [16] give
a complete list of the corresponding gauge-invariant op-
erators of dimension six. If evaluated between on-shell
states, however, these additional operators can be ex-
pressed by linear combinations of the seven operators
Q0

i.
3 Thus, as stated in Sec. V, the relations given in

Eq. (22) between the seven lattice and the seven RI opera-
tors are valid only when those operators appear in physical
matrix elements between on-shell states. For this equation
to be valid when the operators appear in the off-shell,
gauge-fixed Green’s functions that define the RI scheme,
additional RI/MOM-normalized operators must be added.

This is the meaning of the 7� 7 matrix Zlat!RI matrix
given in Table VII: gauge symmetry and the equations of
motion must be imposed to reduce to seven the RI-
normalized operators to which the seven lattice operators
are equated. In the calculation of Zlat!RI presented in
Ref. [26] all such extra, dimension six operators are ne-
glected. For all but one, this might be justified for the
current calculation because these operators enter only at

two loops or beyond and the perturbative coefficients that
we are using in later steps are computed at only one loop. A
single operator, given in Eq. 146 of Ref. [6] and Eq. 12 of
Ref. [16] does appear at one loop but has also been ne-
glected because it is expected to give a smaller contribution
than other two-quark operators with quadratically diver-
gent coefficients whose effects are indeed small. While
these contributions of such extra operators are believed to
be small for the current calculation, care must be taken in
future calculations in which a continuum limit is attempted
that any neglected counter terms with coefficients of the
form logð�aÞ do not become important.
A final imperfection in the results presented in Table VII

is that the subtraction of a third dimension-four, two-quark
operator which contains a total derivative was not per-
formed. However, the effect of subtracting this third op-
erator is expected to be similar to those of the two operators
which were subtracted, effects which were not visible
outside of the statistical errors (see e.g. Tabs. XIV and
XVIII in Ref. [6].)
In the second step, we convert the seven RI operators

obtained above into the MS scheme:

Q0MS
i ¼ X

j

ð1þ �rRI!MSÞijQRI
j : (A2)

Here, the indices i and j run over the set f1; 2; 3; 5; 6; 7; 8g
corresponding to the chiral basis of the operators Qj de-

fined above and a set of operators Q0MS
j , with identical

chiral properties, which are defined in Ref. [16]. We use the
computational framework described in Ref. [16] and the

resulting 7� 7 matrix �rRI!MS is given in Table VIII of
that reference. As in the case of Eq. (22), the two sets of

seven RI andMS operators are related by this 7� 7matrix
only when appearing in physical matrix elements. Since
the values in this table were obtained for the case that the
wave function renormalization constant for the quark field

is the quantity Z6q
q it is that factor which we use to extract

Zlat!RI from the matrix Zlat!RI=Z2
q given in Table VII. For

our � ¼ 2:13, Iwasaki gauge ensembles Z6q
q ¼ 0:8016ð3Þ.

(Note, Z6q
q is the same as the quantity Z0

q introduced in

earlier, exceptional momentum schemes [33]).
A third and final step is needed before we can combine

the Wilson coefficients with the matrix elements deter-
mined in our calculation to obtain the physical amplitudes
A0 and A2. The 7� 7 matrix given in Table VIII of

Ref. [16] gives usMS operators defined in the chiral basis.
However, the Wilson coefficients which are available in
Ref. [17] are defined for the ten-operator basis referred to
as basis I in Ref. [16]. The conversion between the linearly
independent, seven operator basis and the conventional set
of ten linearly dependent operators is correctly given by the
application of simple Fierz identities for the case of the
lattice and RI/MOM operators. As is explained, for ex-
ample, in Ref. [16], this procedure is more complex for

3Exceptions to this statement come from the two dimension-
three, mass operators �sð1� �5Þd which do contribute indepen-
dently to on-shell matrix elements in which four-momentum is
not conserved.
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operators defined using MS normalization. Here subtleties
of defining �5 in dimensions different from four, result in

ten MS-normalized operators, QMS
i , which are not related

by the usual Fierz identities, with Fierz violating terms
appearing at order 	s.

Thus, the conventional ten MS-normalized operators

QMS
i which appear in Eq. (4) must be constructed, again

through one-loop perturbation theory, from the seven op-

erators Q0MS
i :

QMS
i ¼ X

j

ðT þ �TMS
I ÞijQ0MS

j ; (A3)

in the notation of Ref. [16]. The 10� 7 matrices, T and

�TMS
I are given in Eqs. 59 and 65 of that reference. (The

subscript I on the matrix�TMS
I identifies the particular ten-

operator, MS basis required by the Wilson coefficients of
Ref. [17].)

This entire set of nonperturbative and perturbative trans-
formations can be summarized by the following equation

which expresses the 10 MS-normalized operators QMS
i in

terms of the seven, chiral basis, lattice operators whose
matrix elements we actually compute:

QMS
i ¼ X

j

½ðT þ �TMS
I Þ10�7ð1þ �rRI!MSÞ7�7

�ðZlat!RIÞ7�7�ijQlat
j (A4)

¼ X
j

½ðZlat!MSÞ10�7�ijQlat
j ; (A5)

where the subscripts indicate the dimensions of the ma-

trices being multiplied and the matrix Zlat!MS
ij is used in

Eq. (25).
The physical matrix elements listed in Tables II and V

are obtained by using Eq. (A5) to determine the matrix

elements of the 10 conventional operators QMS
i in term of

the matrix elements of the seven lattice operatorsQj. These

10 matrix elements are then combined with the 20 Wilson
coefficients computed for the renormalization scale � ¼
2:15 GeV using the formulae in Ref. [17]. The values
obtained for these Wilson coefficients are listed in
Table VIII.
Note, there are many important details of the RI/MOM

renormalization procedure, such as the subtraction of
dimension three and four operators, which are not repeated
here because they are already discussed with some care in
Refs. [6,16].

APPENDIX B: PROPAGATOR SOURCES

The calculations presented in this paper rely on propa-
gators computed using two types of sources. The propa-
gators for the quarks which make up the initial and final
state mesons are constructed from Coulomb gauge-fixed
wall sources, while the fermion loops appearing in the eye
diagrams are formed from propagators using random
Gaussian wall sources. In this appendix, we specify how
each of these sources is constructed. (Our conventions for
the five-dimensional Dirac operator D and its coupling to
the gauge field are given in Ref. [34]t.)

TABLE VIII. Wilson Coefficients in theMS scheme, at energy
scale � ¼ 2:15 GeV.

i yMS
i ð�Þ zMS

i ð�Þ
1 0 �0:29 829
2 0 1.14 439

3 0.024 141 �0:00 243 827
4 �0:058 121 0.00995157

5 0.0102484 �0:00110544
6 �0:069 971 0.00 657 457

7 �0:000 211 182 0.0 000 701 587

8 0.000 779 244 �0:0 000 899 541
9 �0:0 106 787 0.0 000 150 176

10 0.0 029 815 0.0 000 656 482

TABLE VII. The renormalization matrix Zlat!RI=Z2
q in the seven operator chiral basis at the

energy scale � ¼ 2:15 GeV. These values were obtained from Ref. [26] by performing an error
weighted average of the values given in Tabs. 40, 41 and 42 (corresponding to bare quark masses
of 0.01, 0.02 and 0.03) and inverting the resulting matrix with an uncorrelated propagation of the
errors. Since the results given in these three tables are equal within errors, we chose to combine
them to reduce their statistical errors rather than to perform a chiral extrapolation.

1 2 3 4 5 6 7

1 0.825(7) 0. 0. 0. 0. 0. 0.

2 0. 0.882(38) �0:111ð41Þ �0:009ð12Þ 0.010(10) 0. 0.

3 0. �0:029ð69Þ 0.962(92) 0.013(22) �0:011ð25Þ 0. 0.

4 0. �0:04ð12Þ �0:01ð13Þ 0.924(42) �0:149ð35Þ 0. 0.

5 0. 0.17(18) 0.08(23) �0:042ð55Þ 0.649(63) 0. 0.

6 0. 0. 0. 0. 0. 0.943(8) �0:154ð9Þ
7 0. 0. 0. 0. 0. �0:0636ð53Þ 0.680(11)
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A Coulomb gauge-fixed wall source located at the time
tw with spin 	 and color a is a five-dimension color and
spin vector field Cð ~x; t; s; tw; 	; aÞ�;b with spinor and color

indices � and b and is given by:

C ð ~x; t; s; tw; 	; aÞ�;b ¼
��
1þ �5

2

�
�;	

�s;Ls�1

þ
�
1� �5

2

�
�;	

�s;0

�
�t;twV

Cð ~x; tÞyb;a
(B1)

where VCð ~x; tÞ is the 3� 3 local gauge transformation
matrix that transforms the gauge links Uið ~x; tÞ into links
UC

i ð ~x; tÞ in Coulomb gauge:

UC
i ð ~x; tÞ ¼ VCð ~x; tÞUið ~x; tÞVCð ~xþ êia; tÞy: (B2)

Here, êi is a unit vector in the ith direction.
The color and spinor field Cð ~x; t; s; tw; 	; aÞ�;b is used to

define a five-dimensional propagator Gð ~x; t; s; tw; 	; aÞb;�
which obeys the domain wall fermion Dirac equation:X

x0;t0;s0
fD~x;t;s; ~x0;t0;s0Gð ~x0;0 t; s0; tw; 	; aÞg�;b

¼ Cð ~x; t; s; tw; 	; aÞ�;b; (B3)

using the notation of Ref. [34]. Following those conven-
tions, we can project the five-dimensional propagator G
onto the four-dimensional walls to construct the four-
dimensional propagators L and S for the light and strange
quarks used in Eqs. (1) and (9)–(11). For example, the light
quark propagator is constructed as follows:

Lð ~x; t; twÞ�;b;	;a ¼
�
1þ �5

2
Gð ~x; t; Ls � 1; tw; 	; aÞ

�
�;b

þ
�
1� �5

2
Gð ~x; t; 0; tw; 	; aÞ

�
�;b

:

(B4)

Critical to this approach is the limited gauge covariance
of Eq. (B3) under general gauge transformations of the
underlying gauge configuration. This gauge covariance can
be seen by considering a gauge transformation

U�ðxÞ ! UV
�ðxÞ ¼ VðxÞU�ðxÞVðxþ ê�aÞy (B5)

where x ¼ ð ~x; tÞ identifies a four vector and links in the
general space-time direction � are being transformed. The
gauge covariance of Eq. (B3) can be established if we view
the Coulomb gauge transformation matrices VC½fUg�ðxÞ
which appear in the source C as functionals of the gauge
ensemble from which they were defined and observe that
candidate Coulomb gauge transformation matrices for the

transformed links can be easily constructed from the origi-
nal Coulomb gauge transformation matrices VC½fUg� as

VC½fUVg�ðxÞ ¼ GVC½fUg�ðxÞVðxÞy (B6)

where G is a 3� 3 position-independent, global gauge
transformation. If the original matrices VC½fUg�ðxÞ trans-
form the configuration fUg to Coulomb gauge, then by
construction, the new matrices VC½fUVg�ðxÞ will do the
same for the gauge-transformed links fUVg. Thus, if
Eq. (B6) holds, the left- and right-hand sides of Eq. (B3)
transform similarly under the gauge transformation of
Eq. (B5) (recall that Gðx; s; twÞ will also transform as a
color vector at x).
However, there are two issues that must be addressed.

First the global gauge transformation G transforms the
right-hand indices of the ðVCÞy on the right-hand side of
Eq. (B3) but does not appear on the left-hand side when a
gauge transformation is performed. Nevertheless, this lack
of invariance under a general gauge transformation can be
removed if the propagators Gð ~x; t; s; tw; 	; aÞ�;b always

appear in products in which the source color indices a
are arranged in gauge-invariant combinations. Second,
the Coulomb gauge transformation for the gauge-
transformed configuration can be guaranteed to be given
by Eq. (B6) only if the transformation to Coulomb gauge is
unique up to a global gauge transformation, an assumption
violated by Gribov copies. Thus, we expect hadronic
propagators constructed from these Coulomb gauge-fixed
wall sources to be affected by gauge noise generated by
Gribov copies. However, in practice we find these are
excellent sources for creating pseudoscalar mesons provid-
ing good statistics from volume averaging and long pla-
teaus when the effective mass of the mesons is examined.
The construction of the random Gaussian wall sources

is more straightforward. As described earlier, a separate
random source is generated for each spin-color pair 	, a.
Thus, a random Gaussian wall source at the time tw with
spin 	 and color a is given by the five-dimensional spin-
color vector

Rð ~x; t; s; tw;	; aÞb;� ¼ �ð ~x; tÞ�t;tw�a;b

��
1þ �5

2

�
	;�

�s;Ls�1

þ
�
1� �5

2

�
	;�

�s;0

�
(B7)

where �ð ~x; tÞ are independent Gaussian random numbers
defined for each space-time point. An independent set of
random numbers, �ð ~x; tÞ is generated each of the 12 sepa-
rate sources corresponding to the 12 possible choices of
spin (	) and color (a). The corresponding propagators
GR and LR are constructed in a fashion completely analo-
gous to that described above for G, L and S in Eqs. (B3)
and (B4).
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