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A system of two heavy fermions, leptons, or quarks of the fourth generation, which are bound together

via the Higgs boson exchange is studied. The conventional Yukawa-type interaction produced by this

exchange is accompanied by several important corrections. We derived the Hamiltonian, which describes

the correction arising from the retardation (compare the Breit correction in QED); we also calculated the

relativistic and radiative corrections. The Higgs-induced bound state appears for the fermion mass m>

mcr � 500 GeV. When the long-range Coulomb interaction or the gluon exchange is included, the bound

states exist for any mass, but the Higgs exchange drastically increases the binding energy of these states

when m is approaching mcr. In the region m>mcr the gluon exchange gives a sizable correction to the

Higgs-induced binding energy. This correction greatly exceeds typical binding energies in the states

produced via the gluon exchange only. The final results for the binding energies are presented as analytical

functions of the Higgs and fermion masses. The possibility of detection of the considered bound states at

LHC is discussed.
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I. INTRODUCTION

Heavy fermions with masses 300–500 GeV and even
heavier have been suggested recently to explain new re-
sults on CP violation in B decays [1]. The bags with heavy
fermions and bosons may play a crucial role in the baryo-
genesis [2,3]. The nature of bound states made of such
heavy particles is different from that for usual hadrons. The
strength of the attraction between heavy particles due to the
Higgs boson exchange increases with the particle mass.
This may lead to formation of a new type of bound states.
The Higgs-induced bags made of heavy fermions and
bosons have been considered in numerous publications;
see e.g. [2,4–27]. An alternative, but relative line of recent
research addressed the problem of a possible dynamical
electroweak symmetry breaking that may take place if the
fourth generation is present [28].

In several our previous works we concentrated mainly
on a ‘‘magic’’ bag consisting of 6 heavy quarks and 6
antiquarks (altogether N ¼ 3� 2� 2 ¼ 12 particles) oc-
cupying the 1s shell. Its advantage is that it gives arguably
the lowest limit on the fermion mass, which guarantees the
binding. Besides, such multifermion bags may play a role
in baryogenesis. However, these fermion bags are very
difficult targets for possible observation at accelerators.
Having this in mind in the present paper we consider the
Higgs-induced bound states of only two fermions. The
problem has recently been addressed in Ref. [29], where
the relativistic as well as radiative corrections induced by
the fermion polarization were considered. To make our
calculations accurate and reliable we consider a number
of important corrections including the relativistic and re-

tardation corrections, as well as the radiative corrections. It
should be emphasized that the retardation plays an essen-
tial role in the problem, which makes it necessary to
consider it alongside the relativistic correction. To describe
the joint contribution of the relativistic and retardation
corrections, we derive the nonrelativistic Hamiltonian for
the Higgs-induced potential, which includes all v2=c2

relativistic corrections. This approach is similar in nature
to the way the Breit correction is usually accounted for in
QED. Our Hamiltonian-based treatment provides the con-
venient flexibility which allows it to be applied to a variety
of similar problems in the future.
To calculate the radiative corrections we employ the

conventional methods developed previously to calculate
the Lamb shift in atoms; see e.g. [30]. Following the
calculations of [27] we express the radiative correction in
terms of the renormalized Higgs vertex correction, which
gives the fermion self-energy, and the renormalized Higgs
polarization operator for the fermion loops. It should be
stressed that the vertex correction derived for the first time
in [27] proves to be very large and has the sign opposite to
the polarization correction, which makes it necessary to
include it in the calculations. (Compare the Lamb shift
problem, where the self-energy correction dominates). We
solve the Schrödinger equation with an effective
Hamiltonian which includes the nonrelativistic Yukawa
Hamiltonian, the Breit-type relativistic terms, and the ra-
diative corrections, and find the ground state.
Because of the short-range character of the interaction,

the Higgs-induced bound state is formed only if the particle

mass exceeds the limit, which is found to be m>mcr �
ðmh=100 GeVÞ1=3500 GeV. When the long-range
Coulomb interaction or the gluon exchange is included,
the bound states exist for an arbitrary mass. We found
that the Higgs-induced interaction produces an interesting
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effect on these states even form<mcr. The Higgs-induced
interaction dramatically increases the binding energy and
reduces the size of the bound state. For m ¼ mcr the
binding energy increases �h=� times and the size
decreases �h=� times where �h is the constant of
the Higgs exchange potential and � is the constant of the
long-range potential.

II. NONRELATIVISTIC APPROXIMATION

A. Yukawa potential

It is convenient to start from the simple nonrelativistic
approximation. In the center-of-mass reference frame the
interaction between two fermions due to the Higgs boson
exchange may be described by the following Hamiltonian
(ℏ ¼ c ¼ 1):

H0 ¼ p2

m
þ VYðrÞ; (2.1)

where VYðrÞ is the Yukawa-type interaction induced by the
Higgs exchange

VYðrÞ ¼ ��h

r
expð�mhrÞ: (2.2)

Here mh is the Higgs mass, and �h ¼ g2h=ð4�Þ is the

effective constant describing the strength of the interaction.
Within the standard model gh ¼ m=v, where v ¼
246 GeV is the Higgs vacuum expectation value.

Numerical solution of the Schrödinger equation with the
Hamiltonian (2.1) gives the bound state for �hm=2mh >
0:84. This corresponds to the particle mass

m>mcr ¼ 2vð2:64mhv
2Þ1=3 � 2:76ðmhv

2Þ1=3: (2.3)

A similar estimate was made previously in [28]. For mh ¼
100 GeVwe obtainmcr � 503 GeV. This is larger than the
critical mass mcr;bag ¼ 320 GeV, which was found in [4]

for the bag of 12 fermions, but the distinction is not
dramatic. To put it in perspective it is instructive to com-
pare it with the situation when the bound state of the pair is
produced by the heavy fermion interacting with some
known, relatively light particle, when the critical mass
proves to be much larger. For example, when the heavy
fermion interacts with the t-quark the critical mass of the
heavy particle is over 2 TeV. In the present work we do not
consider so heavy particles.

B. Adding Coulomb and gluon potentials

The Higgs potential may be important even form<mcr.
Indeed, the bound state for m<mcr may be produced by a
relatively weak long-range interaction,

VlrðrÞ ¼ � a

r
; (2.4)

where a ¼ � for the electrostatic interaction between
charged leptons or

a ¼ 4
3�s; (2.5)

due to the gluon-exchange [31]. We restrict our attention
here by the color singlet state of the pair. Generally speak-
ing, the pair of quarks can be in the octet state as well.
However, it is known that the effective potential for the
octet is repulsive, and what is worse, the octet pair of heavy
quarks cannot exist by itself; its colored state needs the
presence of additional, probably light quarks, which would
compensate it.
The constant a in Eqs. (2.4) and (2.5) is substantially

smaller than �hðmcrÞ ¼ 0:33. It is shown below that when
the particle mass m is approaching mcr, the binding energy
increases �h=a times.
To estimate the energy we start from the variational

approach, which gives accuracy about 10% (below we
will perform accurate numerical calculations). Take the
variational ground-state wave function in the hydrogenlike
form,

c ðrÞ ¼ ��1=2q3=2 expð�qrÞ: (2.6)

Then from the Hamiltonian (2.1) one finds the following
expectation value for the energy:

E0ðqÞ ¼ q2

m
� 4�hq

3

ðmh þ 2qÞ2 : (2.7)

The minimization of E0ðqÞ gives the equation on q,

@E0ðqÞ
@q

¼ 2q

m
� 12�hq

2

ðmh þ 2qÞ2 þ
16�hq

3

ðmh þ 2qÞ3 ¼ 0: (2.8)

Let us first find the critical condition for the bound state to
appear. Combining Eq. (2.8) with E0ðqÞ ¼ 0 one finds

qcr ¼ mh=2; (2.9)

ð�hmÞcr=2 ¼ mh: (2.10)

A similar estimate was made previously in [28]. The last

condition allows one to find for the critical mass mcr ¼
2ð�mhv

2Þ1=3 � 2:93ðmhv
2Þ1=3, which only slightly, by

6%, exceeds the corresponding value in (2.3) extracted
from numerical calculations.
Let us add to the energy the contribution of the long-

range potential Vlr ¼ �a=r. Then we need to find the
eigenvalue E of the Hamiltonian H ¼ H0 þ Vlr.
Following the variational approximation we find then

EðqÞ ¼ q2

m
� 4�hq

3

ðmh þ 2qÞ2 � aq; (2.11)

@EðqÞ
@q

¼ 2q

m
� 12�hq

2

ðmh þ 2kÞ2 þ
16�hq

3

ðmh þ 2kÞ3 � a ¼ 0:

(2.12)

In the absence of the short-range potential, when
�h ¼ 0, these equations obviously reproduce the exact
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Coulomb-type wave function with q ¼ ma=2 and energy
E ¼ EC ¼ �a2m=4.

An interesting phenomenon takes place in the opposite
case, when�h � a. Let us choose q ¼ qcr ¼ mh=2, where
qcr is critical value, which was obtained in Eq. (2.9) for the
problem without the long-range interaction. With this q the
energy equals E ¼ �aq ¼ �amh=2 ¼ ��ham=4, where
Eq. (2.10) was used. Thus the Higgs exchange increases the
binding energy of the system by a factor E=EC ¼ ah=a.
Correspondingly, the size of the system decreases by the
same amount. We conclude that the Higgs contribution
proves to be very important even well before the Higgs
exchange alone would lead to the binding. For leptons
bound by the Coulomb attraction the Higgs exchange
produces �30 times enhancement of the binding near the
critical mass.

C. Confining potential

The variational approach may also be used to estimate
the contribution of other interaction terms. In particular, in
the region of large separation between the quarks, the
effect of the confinement could become essential. Note
though that the region of large separations produces only
small corrections to the energy. Therefore with the suffi-
cient accuracy we can approximate an influence of the
confinement using the simple approximation, by applying
the confining potential in its most transparent linear form
Vconf ¼ �r, where � ¼ 0:2 GeV2 [31]. We find then that
the contribution to the energy equals �Ecorr ¼ 3�=q. For
q > qcr ¼ mh=2 this contribution is by 3 orders of magni-
tude smaller than the effect produced by the pure gluon
exchange, which equals ð4=3Þ�sq.

D. Z-boson contribution

The weak interaction produces the short-range potential
via the Z-boson exchange, which with the sufficient for our
purposes accuracy can be approximated as follows:

VZðrÞ � ��Z

r
expð�mZrÞ: (2.13)

Deriving this expression the low-energy, nonrelativistic
scattering of the pair was considered in the unitary gauge.
Using the variational approach one finds that (2.13) gives
the following contribution to the energy:

VZðqÞ � � 4�Zq
3

ðmZ þ 2qÞ2 : (2.14)

For q > qcr ¼ mh=2 it is comparable to the contribution
due to the photon exchange (which can be approximated by
the electrostatic interaction) since the short-range suppres-
sion factor ðmZ=2qþ 1Þ�2 is close to 1. Hence the effect
produced by the Z-boson exchange is much smaller than
the one originating from the Higgs boson exchange. One of
the consequences is that a bound state of heavy neutrinos
(from the hypothetical fourth generation) may be formed

only if m> 500 GeV, and this bound state would be al-
most entirely due to the Higgs boson exchange.

E. Higgs contribution for m <mcr=2

If mass of the particle is significantly smaller than mcr

the system is dominated by the long-range interaction, i.e.
q � ma=2 � mh=2, and the short-range Higgs exchange
is suppressed by the factor ð�h=aÞðma=mhÞ2. The Z-boson
contribution has a similar suppression.

F. Binding energy for m >mcr

A relatively accurate result in the area of m>mcr may
be obtained by using the expansion in powers of mh=2q.
Indeed, near the minimum the energy EðqÞ is not sensitive
to minor variations of q, and it is sufficient to find an
approximate value of q. The error produced in this ap-
proximation of q may be smaller than the error of the
variational approach itself. Keeping three leading terms
in the mh=ð2qÞ expansion of the Higgs contribution in
Eqs. (2.11) and (2.12), we derive an approximate value

q � m

2
ð~�h þ aÞ; (2.15)

where ~�h is the effective value of the interaction strength
suppressed by the short-range character of the Higgs ex-
change,

~� h ¼ �h

�
1þ 3

m2
h

m2ð�h þ aÞ2
��1

: (2.16)

Substituting q from Eq. (2.15) into (2.11) we find the
energy, which for m> 0:75 TeV differs from the results
of direct numerical solution of the Schrödinger equation
only at the percent level.

G. Binding energy in the limit m � mh

In the limit m � mh the nonrelativistic energy tends to

E0 � �ð�h þ aÞ2m=4: (2.17)

However, the relativistic corrections ( / �2
h) become large

in this limit since �h / m2. For example, �h ¼
m2=4�v2 ¼ 1 at m ¼ 0:87 TeV. In the following sections
we will improve our results to account for this fact.

III. RELATIVISTIC CORRECTIONS

A. Relativistic and retardation effects

It is convenient to combine the relativistic corrections
for the propagation of fermions and the retardation correc-
tion for the propagation of the intermediate Higgs boson.
We rely on the conventional technique, similar to the one
applied for derivation of the Breit corrections in QED.
Consider first the scattering process for the two fermions
interacting through the Higgs boson exchange; see the
diagram in Fig. 1, derive for this process the necessary
relativistic and retardation corrections, and after that
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reformulate the result to make it applicable to the bound
state problem.

The analytical expression for the amplitude of the scat-
tering process illustrated by Fig. 1 can be written as the
matrix element,

M ¼ hu01; u02jVðqÞju1; u2i; (3.1)

in which juii and hu0ij are spinors that describe the incom-
ing and outgoing fermions, while V represents the Higgs
propagating in the intermediate state

VðqÞ ¼ g2h
�1�2

!2 � q2 �m2
h

� �g2h
�1�2

q2 þm2
h

�
1þ !2

q2 þm2
h

�
: (3.2)

Here �i, i ¼ 1; 2 are the conventional Dirac matrices for
the two fermions, which arise due to the scalar nature of the
fermion-Higgs interaction (our notation for spinors pre-
sumes that huj � uy). Considering the retardation as a
correction we expanded the amplitude in powers of the
transferred energy !2. This energy and the transferred
momentum q are related to the fermion energies and
momenta ! ¼ "01 � "1 ¼ "2 � "02, q ¼ p0

1 � p1 ¼
p2 � p0

2.
As was mentioned, the term / !2 in Eq. (3.2) represents

a correction that describes the retardation. Neglecting in
this correction the relativistic effects we can use in this
term the approximation �i � 1, i ¼ 1; 2. We also can
apply the nonrelativistic approximation relating ! to the
fermion momenta

! � ðp1 þ qÞ2 � p2
1

2m
¼ p2

2 � ðp2 � qÞ2
2m

: (3.3)

Consequently we can rewrite (3.2) as follows:

VðqÞ � �g2h

�
�1�2

q2 þm2
h

� ðq2 þ 2p � qÞ2
4m2ðq2 þm2

hÞ2
�
: (3.4)

Here we use the center-of-mass reference frame, p ¼ p1 ¼
�p2, which is natural for the bound state problem ad-
dressed below.

The second term in the brackets in Eq. (3.4) is the
contribution of the retardation to the relativistic correction.
Let us simplify now the main, first term in the brackets in
Eq. (3.4) using the nonrelativistic approximation. With the

help of the Foldy-Wouthuysen transformation we can re-
late the four-spinors u with the nonrelativistic two-
spinors w,

u ¼
�
1� 1

8m2 p
2

�
w

1
2m� � pw

0
@

1
A: (3.5)

As a result we can use instead of the matrices �1, �2 the
following expressions:

�i � 1� ðpþ q=2Þ2
2m2

� i
ðq� pÞ � �i

4m2
; (3.6)

deriving after that

�1�2 � 1� ðpþ q=2Þ2
m2

� i
ðq� pÞ � s

2m2
: (3.7)

Here

s ¼ 1
2ð�1 þ �2Þ (3.8)

is the operator of spin of the fermion pair.
Combining Eqs. (3.4) and (3.6) we find

VðqÞ ¼ � g2h
q2 þm2

h

�
1þ 3m2

h

4m2
� p2 þ 2p � q

m2

� i
ðq� pÞ � s

2m2
�m4

h � 4m2
hðq � pÞ þ 4ðq � pÞ2

4m2ðq2 þm2Þ
�

þ g2h
2m2

: (3.9)

In order to apply this result to the bound state problem, we
identify here p with an operator of the momentum p ¼
�ir and fulfill the Fourier transformation over the trans-
ferred momentum q. The coordinate r, which appears as
the result of this transformation, should be kept on the left
side of the operator p. This machinery is very similar to the
one, which is conventionally applied for the derivation of
the Breit interaction in QED; see Sec. 83 in [30]. As a
result, after straightforward calculations we find the fol-
lowing potential, which includes all relativistic and retar-
dation corrections for two fermions interacting via the
Higgs boson exchange:

Wrel ¼ �Trel þ Vrel; (3.10)

�Trel ¼ � p4

4m3
; (3.11)

Vrel ¼ 2��h

m2
�ðrÞ � �h

m2r
expð�mhrÞ

�
�
3

4
m2

h

�
1�mhr

6

�
þ�þ�

�
; (3.12)

where

1p

2'p

1'p

2p

,q

FIG. 1. Higgs boson exchange. The scattering process for two
fermions is used in the text as a tool, which allows one to
calculate the retardation and relativistic corrections.
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� ¼
�
1�mhr

2

�
@2

@r2
þ

�
1� 2mhrþm2

hr
2

2

�
1

r

@

@r
;

(3.13)

� ¼ ð1þmhrÞl � s� 3lðlþ 1Þ
2r2

: (3.14)

It is presumed here that the state possesses the orbital
momentum l and spin s, and consequently the r operator
was transformed into expressions with @=@r. The first term
�Trel in (3.12) describes the conventional relativistic cor-
rection to the kinetic energy, while Vrel originates from
VðqÞ. This term is written in a nonunitary form, which is
similar to the way the Breit correction is often presented in
QED, though in both cases this fact produces no compli-
cations in the first order of the perturbation theory.
However, if necessity arises the potential can be amended

to make the unitarity transparent, Vrel ! V 0
rel ¼

ðVrel þ Vy
relÞ=2. Note that the term � vanishes for zero

angular orbital momentum l ¼ 0. It is also interesting to
note that the coefficient �h=m

2 ¼ ð4�v2Þ�1 in front of
�ðrÞ and expð�mhrÞ terms in Eq. (3.12) does not contain
the mass m.

Remember that deriving VðqÞ in (3.9) we treated the
retardation correction, which stems from the second term
in the brackets in (3.2), by using the most simple non-
relativistic approach and also rewrote the first term from
the brackets in (3.2) using the Foldy-Wouthuysen trans-
formation. However for some applications it may be useful
to treat the problem using the relativistic four-spinors. The
calculations presented in the Appendix show that with this
purpose VðqÞ can be presented as follows:

VðqÞ ¼ �g2h

�
�1�2

q2 þm2
h

þ ð�1 � ð2pþ qÞÞð�2 � ð2pþ qÞÞ
ðq2 þm2

hÞ2
�
:

(3.15)

We verified that when the Foldy-Wouthuysen transforma-
tion is fulfilled to replace the Dirac � and � matrices by
their nonrelativistic approximations then Eq. (3.15) is re-
duced to Eq. (3.9). Note though that an attempt to fulfill the
Fourier transform over q directly in Eq. (3.15) should be
treated with care since the matrix elements of �matrices in
(3.15) effectively depend on q. However, we will not dwell
on this issue here since Eqs. (3.9), (3.12), and (3.15) con-
stitute a reliable basis to treat the relativistic effects.

B. Variational approach

For the S state, in which l ¼ 0, the last term in Eq. (3.12)
is absent, � ¼ 0. Taking the variational wave function c
from (2.6) we find the expectation value for the relativistic
correction from Eq. (3.10),

hWreli � hc jWreljc i ¼ q4

m3

�
� 5

4
þ 6�hm

2qþmh

�
: (3.16)

Here the first and second terms in the brackets originate
from the kinetic correction �Trel and the potential correc-
tion Vrel, respectively. The condition defining q and the
corresponding nonrelativistic approximation for the energy
E0ðqÞ were presented in Eqs. (2.11) and (2.12). The total
energy E can be found from E ¼ E0ðqÞ þ hWreli.
It is instructive to present this correction in relation to

the kinetic energy T ¼ q2=m,

hWreli
T

¼ q2

m2

�
� 5

4
þ 6�hm

2qþmh

�
: (3.17)

C. Relativistic corrections to critical mass

Taking the critical condition for the formation of the
bound state from Eqs. (2.9) and (2.10) we find that the
right-hand side in (3.17) reads

hWreli
T

¼ 19

64�2=3

�
mh

v

�
4=3 � 0:042: (3.18)

Here the value mh ¼ 100 GeV was adopted in the last
identity.
Obviously this small correction should result in a small

variation of the critical mass. Let us find it, but first note
that the considered relativistic correction represents only
one of the different perturbations which influence the
critical mass. It is worth therefore presenting an important
simple formula for the shift of the critical mass in the
general case, for an arbitrary perturbation �V. Within the
variational approach the necessary equation reads

�mcr

mcr

¼ �
�
@E0

@m

��1 h�Vi
mcr

¼ h�Vi
3T

: (3.19)

Here E0ðmÞ is the variational energy calculated without
any corrections, while h�Vi is the perturbation potential
averaged over the variational wave function. To justify the
first equality in Eq. (3.19) one expands the condition for
the critical mass E0ðmcr þ �mcrÞ þ h�Vi ¼ 0 over �mcr in
the vicinity of the mass mcr, which satisfies the nonper-
turbed critical condition E0ðmcrÞ ¼ 0. To prove the last
identity in Eq. (3.19) one differentiates over m the energy
E0 specified in Eq. (2.7). Remembering that �h ¼
m2=ð4�v2Þ is a function of m, one finds

@E0

@m
¼ � q2

m2
� 8�hq

3

mðmh þ 2qÞ2 ¼ �3
q2

m2
; (3.20)

where the last identity is derived from the critical condition
E0 ¼ 0. Thus one concludes that @

@mE0 ¼ �3T, which

justifies the last identity in (3.19).
Return now to the case of the relativistic correction.

Substituting the mentioned energy derivative into
Eq. (3.19), specifying there that the perturbation is due to
relativistic effects, �V ! Vrel, we find the relative increase
of the critical mass due to the relativistic and retardation
corrections
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�mcr

mcr

¼ h�Wreli
3T

� 0:014: (3.21)

In the last identity here Eq. (3.18) was used. In absolute
units �mcr � 0:014mcr � 7 GeV.

We will see that the radiative corrections (calculated in
the next section) reduce this mass shift by 30%, resulting in
the following total mass shift: �mcr � 0:09m � 5 GeV.
More accurate numerical results are mentioned below.

D. Relativistic corrections for m � mh

The relativistic correction rapidly increases with mass
m. For large masses m � mh, where q � ð~�h þ aÞm=2
approaches q ¼ �hm=2 ¼ m3=ð8�v2Þ, we obtain

hWreli
T

� 1:2~�2
h �

�
m

3:4v

�
4 �

�
m

0:84 TeV

�
4
: (3.22)

Thus, the naive perturbative treatment of the relativistic
corrections based on Wrel from Eq. (3.10) definitely fails
for m> 0:8 TeV.

Moreover, the more accurate numerical treatment shows
that this correction may be significant even at smaller
masses. This perturbation has a positive sign, as can be
picked up from the positive term / �ðrÞ in Eq. (3.12),
which gives significant contribution (� 60%). The repul-
sion produced by this correction may be so strong that it
destabilizes the bound state.

There is though a way around this difficulty. It will be
discussed in Sec. VIA in detail. Speaking briefly, the idea
is to allow the wave function the freedom to adjust itself in
such a way that it is reduced at small separations r, where
the relativistic correction is dominant. This diminishing of
c ð0Þ reduces the relativistic correction and makes the
perturbative approach sound, and the bound state stable.

To prepare ourselves for this treatment of the relativistic
correction we need to simplify Eq. (3.12). With this pur-
pose we first consider for our discussion the most interest-
ing case of S-states, when the last term in this expression is
absent,� ¼ 0. Second, we take into account that the Higgs
mass is relatively small,mh � m. As a result, in the region
of small separation between the two fermions r & 1=m the
Higgs mass is negligible. Having this in mind we simplify
the relativistic correction setting mh ¼ 0 in the term �,
which gives (3.12) for

� ¼ @2

@r2
þ 1

r

@

@r
¼ �� 1

r

@

@r
: (3.23)

Here the last identity takes into account that we consider
S-states. Hence we find that for mh ¼ l ¼ 0 Eq. (3.12)
gives

Vrel ¼ r0
m

�
2��ðrÞ þ 1

r2
@

@r
� 1

r
�

�
: (3.24)

To simplify notation the new parameter

r0 ¼ �h

m
(3.25)

is introduced here (compare the classical radius of a fer-
mion in QED, rclas ¼ �qed=m). To simplify (3.24) let us

treat the sum of the first and second terms there as a
perturbation. An inspiration comes from an identity

hc j�ðrÞþ 1

2�r2
@

@r
jc i¼ c 2ð0Þþ2

Z 1

0
c ðrÞdc ðrÞ

dr
dr¼0;

(3.26)

which implies that if one neglects these two terms from
(3.24) and then contemplates the perturbation theory over
them, one can be certain that the first order of this pertur-
bation is absent. Neglecting the higher-order contribution
of these terms (see discussion at the end of this subsection)
we suppress these terms deriving from Eq. (3.24)

Vrel � � r0
m

1

r
�: (3.27)

We can combine now this relativistic correction with the
nonrelativistic Hamiltonian H0 from (2.1) and write the
corresponding eigenvalue problem Ec ¼ ðH0 þ VrelÞc .
Multiplying this differential equation by the factor r=ðrþ
r0Þ we present the result as follows:

r

rþ r0
Ec ¼

�
p2

m
� �h

rþ r0
e�mhr

�
c : (3.28)

Clearly Eq. (3.28) can be considered as the eigenvalue
problem of the Sturm-Liouville type. It has a very clear
structure, but can be simplified further. Take into consid-
eration that for not too large m, say m & 1 TeV, r0 is
expected to be smaller than the typical size of the bound
state. Hence we can use the simplification r=ðrþ r0Þ � 1
for the factor on the left-hand side of (3.28). For large
separation r � r0 the validity of this approximation is
obvious. In the opposite case of small distances r & r0
the term with E is much smaller then the potential energy
and can be ignored in the differential equation anyway.
Thus the replacement r=ðrþ r0Þ � 1 does not stir things
up.
We conclude that the wave function, which describes the

binding of two heavy fermions satisfies the Schrödinger-
type eigenvalue problem Ec ¼ H0þrelc , in which the
Hamiltonian

H0þrel ¼ p2

m
� �h

rþ r0
e�mhr (3.29)

accounts for the conventional nonrelativistic interaction
and takes into account the relativistic and retardation
corrections.
A notable simplicity and clear physical nature of this

result make it attractive. The only distinction of (3.29) from
the nonrelativistic Hamiltonian (2.1) lies in the factor r0,
which effectively cuts the Yukawa-type potential off at
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small distances. As a result at small distances there arises
an effective repulsion, which is in line with the repulsive
nature of the relativistic correction mentioned previously.

It is worth summarizing the set of approximations em-
ployed for the derivation of (3.29). First, the Higgs mass
was neglected in the relativistic term. Second, the approxi-
mation r=ðrþ r0Þ � 1 on the left-hand side of (3.28) was
used. Both these approximations are justified by the pa-
rameters of the problem. Third, the sum of the first two
terms in Eq. (3.24) was neglected. We can see now the
qualitative reason, which makes this approximation sound.
The perturbation theory over these two terms starts from
only the second order, as (3.26) shows. Meanwhile the
repulsion at small separations caused by the relativistic
correction is well accounted for in the Hamiltonian
H0þrel. This repulsion reduces the wave function at small
distances and hence suppresses the impact of the omitted
terms in the problem. Consequently, their contribution is to
be suppressed. This implies, in particular, that the sign of
the correction to (3.29) is defined by the second-order
perturbation theory [over the terms omitted from (3.24)],
and hence is definitely negative.

IV. RADIATIVE CORRECTIONS

To calculate the radiative corrections we use the con-
ventional method which originally was developed to cal-
culate the Lamb shift in atoms—see e.g. [30]. For the
problem at hand the necessary corrections were calculated
in [27]. It was shown there that the most important con-
tributions give two diagrams, shown in Fig. 2. One de-
scribes the Higgs polarization operator produced by the
fermion loop, another the vertex correction to the Higgs-
fermion interaction.

Note that the diagram with the virtual fermion annihila-
tion does not contribute to the energy shift for the non-
relativistic fermions since the annihilation vertex of the
fermion and antifermion into the Higgs boson vanishes for
p2 ¼ 0. The reason is that the Higgs boson is a scalar. This
is in contrast to a similar annihilation processes with the
virtual annihilation of the positronium into a photon, vector
particle, which gives a nonzero contribution in QED [30].
We also neglect the diagram with crossed Higgs legs in the
two-Higgs exchange since it is not enhanced by a large

number of different fermions (�) in the loop [compare with
the polarization operator Eq. (4.1)].

A. Polarization operator

In the approximations k � m and mh � m, the polar-
ization operator represented in Fig. 2(a)equals [27]

Pðk2Þ � ��
g2hðk2 �m2

hÞ2
80�2m2

¼ � �

8�2

ðk2 �m2
hÞ2

10v2
: (4.1)

Here � is the number of heavy fermions with mass m �
mh (recall the factor Nc ¼ 3 for quarks). Importantly, the
fermion massm is canceled out in the final expression here
since gh ¼ m=v. Hence the contributions of all heavy
fermions are summed up. For one heavy lepton � ¼ 1,
for the whole fourth generation � ¼ 8, and � ¼ 11 when
the top quark is also counted. We neglect the contributions
ofW	, Z0, and Higgs boson in the loop since the condition
m � mh is not valid for them. The radiative correction to
the Higgs potential Vh is given by

�VP
h ðkÞ ¼

Pðk2ÞVhðkÞ
k2 �m2

h

� ��
g2hðk2 �m2

hÞVhðkÞ
80�2m2

: (4.2)

In the coordinate representation this gives a potential pro-
portional to the � function (similar to the radiative correc-
tion to the energy in the positronium or hydrogen).

B. Vertex

Consider now the diagram Fig. 2(b), which describes
correction � to the vertex of the fermion-Higgs interaction.
The expansion of �ðkÞ in powers of k2=m2 gives [27]

1

g
�ðk2Þ � 1þ g2h

8�2
�
k2

m2
¼ 1þ �

8�2

k2

v2
; (4.3)

where � is an expansion coefficient, which was calculated
in [27]. The analytical expression found there for � is
lengthy, but a simple fitting proposed in this work,

� � �fit ¼ 1

3

�
ln
mþmh

mh

� 7m

4mþ 5mh

�
; (4.4)

reproduces � with percent accuracy. The correction to the
Higgs-fermion vertex constant is �gh ¼ �ðk2Þ � gh.
We find from this the correction to the Higgs exchange
potential

�V�
h ðkÞ ¼

2�gh
gh

VhðkÞ ¼ �h�k
2VhðkÞ

�m2
: (4.5)

C. Radiative potential and correction to energy

Summing up the contributions of the polarization opera-
tor �VP

h and the vertex �V�
h , we find for them the following

result, which is convenient to deal with using the coordi-
nate representation:

p1
p2

(a) (b)

k k

k

FIG. 2. Two most important radiative processes: (a) the vac-
uum polarization produced by heavy fermions, which affects
propagation of the Higgs boson, and (b) the vertex correction for
the Higgs-fermion interaction; solid and dashed lines are fer-
mion and Higgs fields.
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VradðrÞ ¼ 4�h

m2

�
�h

�
�� �

20

�
�ðrÞ þ �m2

hVhðrÞ
�
: (4.6)

Using the variational wave function c ðrÞ from Eq. (2.6),
we obtain the radiative correction to the ground-state
energy

hVradi ¼ 4�2
hq

3

�m2

�
�� �

20
� 4��m2

h

ðmh þ 2qÞ2
�
: (4.7)

For q ¼ qcr ¼ mh=2 and the number of heavy fermions in
the polarization loop � ¼ 11, we obtain the ratio of the
radiative correction to the kinetic energy

hVradi
T

� �0:015: (4.8)

We see that the radiative correction is about 3 times smaller
than the relativistic correction, Eq. (3.18), and is opposite
in sign. For higher mass m there are significant cancella-
tions between different terms in the radiative correction,
Eq. (4.7). As a result the radiative correction at
m� 800 GeV is about 5 times smaller than the relativistic
correction and has the opposite sign.

V. VARIATIONAL ENERGYAT LARGE MASSES

A. Relativistic kinetic energy

We used previously the perturbation theory to account
for the relativistic correction �p4=ð4m3Þ to the kinetic
energy. This can be improved if we calculate explicitly

the matrix element of the relativistic kinetic energy Trel ¼
2hðm2 þ p2Þ1=2 �mi on the probing wave function (2.6),
which can be written as follows:

hTreli ¼ 2
Z
ððm2 þ p2Þ1=2 �mÞc 2ðpÞ d3p

ð2�Þ3 ; (5.1)

where c ðpÞ ¼ 8�1=2q5=2ðq2 þ p2Þ�2 is the Fourier trans-
form of the wave function (2.6). Straightforward integra-
tion yields

hTreli
m

¼ 4

�

�
xð3� 4x2 þ 4x4Þ

3ð1� x2Þ2 þ ð1� 2x2Þ arccosx
ð1� x2Þ5=2

�
� 2;

(5.2)

where x ¼ q=m. The asymptotes of this expression are
hTreli=m � x2ð1� 5x2=4þ 128x3=15Þ when x ! 0 and
hTreli=m � 16x=ð3�Þ � 2 for x ! 1. One verifies also
that a very simple interpolating formula hTreli � mx2=ð1þ
0:3x2Þ reproduces the accurate expression for hTreli with
errors below 12% provided q 
 2m. Equation (5.2) for the
kinetic energy allows one to include the relativistic correc-
tions into the variational procedure outlined below. This
contrasts the naive perturbative correction �p4=4m3,
where the negative sign results in an unlimited increase
of the momentum p during the minimization of the energy.

B. Improved variational energy

We can formulate now an improved version of the varia-
tional energy, which incorporates the relativistic, retarda-
tion, long-range, and radiative corrections,

EðqÞ ¼ hTreli þ hVYi � aqþ hVreli þ hVradi: (5.3)

Here all terms on the right-hand side are functions of q.
The first term hTreli defined in (5.2) represents the kinetic
energy modified by the kinematic relativistic correction.
The second one takes into account the Yukawa-type attrac-
tion,

hVYi ¼ �hc jð�h=rÞe�mhrjc i ¼ � 4�hq
3

ðmh þ 2qÞ2 ; (5.4)

being identical to the second term from Eq. (2.7). The term
�aq comes from the long-range potential, gluon, or pho-
ton exchange. The term hVreli incorporates the relativistic
corrections and the effect of retardation. Note that cur-
rently we include the kinematic relativistic correction
into hTreli. In our previous arrangements, the kinematic
relativistic correction was taken into account in h�Treli
via Eq. (3.11). This correction shows itself as the first
term in the brackets in Eq. (3.16), hTreli ¼ �5q4=ð4m3Þ.
We do not need to include this term here since it is covered
by hTreli. The second term in the same brackets in (3.16)
represents the correction to the potential, which stems from
the relativistic and retardation effects and contributes to
Eq. (5.3),

hVreli ¼ 6�hq
4

m2ð2qþmhÞ
: (5.5)

The last term hVradi in (5.3) represents the radiative cor-
rection calculated in Eq. (4.7). It is suppressed by a small
factor �h=� in comparison to the relativistic correction.
All five terms on the right-hand side of Eq. (5.3) are
functions of the variational parameter q. Minimizing the
total energy EðqÞ over q, one can find the variational
estimate for the ground state of the two fermions.
Numerical results are discussed below.

VI. NUMERICAL DATA

A. Perturbation theory

To evaluate and study the behavior of the ground-state
energy for two heavy fermions bound together, we employ
the conventional approach based on the Schrödinger-type
eigenvalue problem,

Ec ðrÞ ¼ Hc : (6.1)

We divide the total Hamlitonian into two parts, H ¼ H1 þ
�V, and solve the Schrödinger equation (6.1) accurately for
H � H1 while applying the first order of the perturbation
theory to the term �V.
In problems of this type the term �V often accounts for

the relativistic and radiative corrections, which is the case
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in many atomic and nuclear problems. However, in the
problem at hand we are facing a surprising deviation from
this rule; the relativistic correction turns very large and
repulsive. The repulsion is so strong that it is difficult to
formulate the problem by choosing the naive Yukawa-type
approximation, which ignores this repulsion at the initial
step. If one tries to implement this naive approach and
identifies H1 � H0, where H0 (2.1) includes the pure
Yukawa potential VYðrÞ from (2.2), then the bound state
found on the first step of such analyses would be destabi-
lized, pushed into the continuum by the first-order correc-
tion over the relativistic potential �V � Wrel (3.10).

To overcome this difficulty let us have in mind that the
relativistic correction is large predominantly in the region
of small separation r between the fermions. The difficulty
introduced by the naive Yukawa-type interaction is that it
makes the wave function too large at the origin. As a result,
the repulsion produced by the relativistic corrections gains
strength.

The necessary remedy is clear. One needs to choose the
initial approximation for H1, which allows the wave func-
tion to be further extended in the region of large r, and
correspondingly reduced at small r. Having this in mind we
include into the Hamiltonian H1 the modified Yukawa
interaction from (3.29),

H1 ¼ H0þrel ¼ p2

m
� �h

rþ r0
e�mhr: (6.2)

Compared with the pure Yukawa interaction, its modified
version used here is not singular at the origin, and hence
produces an effective repulsion at small r. Consequently it
pushes the wave function out of the origin. An additional
advantage of this approximation is that it has a clear
physical meaning accounting for the relativistic correction,
albeit in the simplified form.

Equation (6.2) neglects the long-range potential VlrðrÞ in
(2.4), which stems from the possible gluon and photon
exchange. The photon-induced interaction should be con-
sidered as a small perturbation. The neglect of the gluon
exchange is obviously justified for leptons. For the quarks
the problem is addressed in Sec. VI C.

In the first order of the perturbation theory we subtract
the approximate form for the interaction introduced in
(6.2), adding instead the necessary pure Yukawa-type po-
tential and also adding the accurate relativistic potential

�V ¼ Vrel;res þ Vrad; (6.3)

Vrel;res ¼ Wrel � �h

�
1

r
� 1

rþ r0

�
e�mhr: (6.4)

Here the term Vrel;res can be called the residual relativistic

correction. It includes the proper relativistic correctionWrel

from (3.10) and the additional term / � expð�mhrÞ, which
include the difference between the modified Yukawa inter-

action and the proper Yukawa potential. On top of it, the
radiative correction Vrad from Eq. (4.6) is added into �V.
Let us show now that Eqs. (6.1), (6.2), (6.3), and (6.4)

provide a sensible approach to the problem. To do this we
calculated the binding energy " of the pair of heavy
fermions. Figure 3 presents this energy versus the mass
of the fermion. The negative energy means that the bound
state exists. The Higgs mass in this calculation was chosen
as mh ¼ 100 GeV, and the number of fermions contribut-
ing to the loop in the polarization operator was taken as
� ¼ 11.
Observe first of all that the way the perturbation theory is

formulated, Eqs. (6.1), (6.2), (6.3), and (6.4) make sense.
Compare the thick dotted and thick dashed lines in Fig. 3.
The first one (thick dotted line) represents the eigenvalue
"1 derived from Eq. (6.1) when H ! H1. The second one
(thick dashed line) shows " ¼ "1 þ �", where �" origi-
nates from the residual relativistic correction Vrel;res from

(6.4). Note a reasonable agreement between the two sets of
data; their discrepancy is 29–38% for all the regions
shown, which makes the perturbation theory applicable.
Hence, the accuracy of the found binding energy can be
roughly estimated as�15%. The found residual relativistic
correction is negative, which is due to the negative sign of
the second, additional term / � expð�mhrÞ in Eq. (6.4).
This contrasts the positive sign produced by the proper
relativistic correction Vrel in this equation.
Importantly, the bound state is definitely stable; it is not

destabilized by the relativistic corrections. The calcula-
tions in Fig. 3 demonstrate this fact in the first order of
the perturbation theory. Moreover, if the second order of
the perturbation theory over Vrel;res would be implemented

(we do not fulfill these calculations, only contemplate the
expected outcome), then the negative contribution of the
second-order correction would make the bound state only
tighter. Thus, the way the perturbation theory is introduced

0.6 0.7 0.8 0.9 1.0 1.1
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0.20

0.15

0.10

0.05

0.00

m, TeV c2
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FIG. 3. Binding energy " of two quarks versus the fermion
mass m; thick dotted, dashed, and solid lines are: the eigenvalue
of the Hamiltonian H1 (6.2); the residual (see text) relativistic
correction �� ¼ hVrel;resi (6.4) is added; the full correction

�� ¼ h�Vi, which includes the radiative correction is accounted
for. Thin lines: the variational energy "var from (6.5) with
(solid line) and without (dashed line) the radiative correction;
mh ¼ 100 GeV, � ¼ 11.
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makes the relativistic correction manageable. This is in
contrast to the naive formulation of the problem, in which
the pure Yukawa-type potential is taken as a starting point,
while the relativistic correction becomes a problem.

The total ground-state energy, which is shown in Fig. 3
by the thick solid line, includes also the radiative correc-
tion calculated from Vrad in Eq. (6.3). Observe that the
latter is small and negative; compare the difference be-
tween the solid and dashed thick lines.

Let us find the critical mass of fermions, which guaran-
tees an existence of the bound state. Figure 4, which shows
the rescaled version of our data, allows us to state that
mcr � 515 GeV. Remember that Eq. (2.3) predicts mcr �
503. It was mentioned that the pure Yukawa-based ap-
proach is not reliable; that the relativistic repulsion is
strong. Nevertheless, we have to resign to the conclusion
that the naive estimate of the critical mass based on the
Yukawa-type approximation, Eq. (2.3), is reasonably
accurate.

The discussed physical arguments and numerical results
are self-consistent, and hence look reliable. However, we
are to keep in mind that the problem considered is unusual;
the relativistic corrections are strong and repulsive. It is
fortunate therefore that there is a way to verify our results
by independent calculations discussed in the next
subsection.

B. Variational approach

The wave function of the nonrelativistic problem has a
very simple shape, possesses one maximum, and shows no
nodes. One should expect therefore that the simplest, one-
parameter approximation for this function in Eq. (2.6)
provides a steady basis for the variational approximation.
Following this path, we considered the energy EðqÞ found
in Eq. (5.3) as a function of the parameter q introduced in
the wave function (2.6). Minimizing this function, one
finds the binding energy

"var ¼ min
q
EðqÞ: (6.5)

In accord with the previous discussion let us neglect the
term in �aq in EðqÞ, which accounts for the gluon ex-
change (it is discussed in some detail below). The found
variational binding energy is shown in Fig. 3 by two thin
lines. The thin solid line takes into account the total energy
from (5.3), while the thin dashed line neglects the
radiative correction, i.e. discards the last term hVradi in
this equation.
Figure 3 shows that the two approaches to the problem,

one based on the perturbation theory, another on the varia-
tional approach, are close. The discrepancy is below 21%
in all the region shown. This discrepancy does not contra-
dict the accuracy of the quantum mechanical calculation
�15%. It also complies with the accuracy of the variational
approach, which in the problems of this type should be
better than �20%. It is interesting that the two approaches
also agree on the corrections. Compare the radiative cor-
rection, which is shown by the discrepancy of the solid and
dashed lines, (the two lines are thick for quantum mechani-
cal and thin for variational calculation). The observed
agreement of two so differently formulated approaches is
satisfying.
Figures 5 and 6 illustrate the role played by different

perturbations in the problem (Fig. 5 is for mh ¼ 100 GeV
and Fig. 6 is for mh ¼ 600 GeV). We start our discussion
from Fig. 5. The solid line there shows the total binding
energy, which is same as in Fig. 3, and is repeated here to
provide the general scale of energies. The dashed and
dotted lines show the relativistic and radiative corrections,
which are given by the terms hVreli and hVradi from
Eq. (5.3). Note that the relativistic correction is positive
and very large. Remember that this point was an obstacle,
which was overcome using the approach to the perturba-
tion theory formulated in the previous subsection. (Note
also that here the proper relativistic correction hVreli is
considered. It should not be confused with the residual
interaction Vrel;res, which arises in the perturbation theory;
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FIG. 4. The square root of the binding energy ð�"Þ1=2 for two
quarks versus the quark mass m; " is extracted from Eqs. (6.1),
(6.2), (6.3), and (6.4) and includes the relativistic and radiative
corrections (same data are shown by thick solid line in Fig. 3);
dots are calculations; the solid line is interpolation.
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FIG. 5. From bottom to top: thick solid, thin solid, dotted,
dash-dotted, and dashed lines: total binding energy ", the radia-
tive correction hVradi, the gluon correction �aq, pure kinematic
relativistic correction �p4=ð4m3Þ, and relativistic correction
hVreli, respectively, all calculated using the variational approxi-
mation based on Eq. (5.3); mh ¼ 100 GeV, � ¼ 11 (compare
Fig. 6, which illustrates the case of mh ¼ 600 GeV).
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see Eq. (6.4). As was mentioned, the latter is smaller and
has the negative sign; see Fig. 3.) It is interesting that the
major contribution to the relativistic correction gives the
potential energy hVreli in Eq. (5.3). The simple kinematic
correction,�p4=ð4m3Þ, which is accounted for by the term
hTreli in this equation proves to be very small; see the dot-
dashed line.

The radiative correction shown in Fig. 5 is negative and
small. To emphasize the point we extended data up to very
large fermion masses, m ¼ 2 TeV, and found that the
correction remains very small even in this mass interval.
The found minor role of the radiative corrections in the
two-fermion system complies with our previous results for
the fermion bags [26,27]. The situation for a large Higgs
mass is different. The radiative corrections are significantly
more important there; see Fig. 6.

C. Gluon exchange

The numerical examples presented previously neglected
the processes with the gluon exchange, which is acceptable
provided the two heavy leptons are considered. However,
for two heavy quarks the role of the gluon exchange needs
to be examined. For simplicity let us approximate the
impact of the gluon exchange by the long-range potential
VlrðrÞ from Eq. (2.4). Then the relative strength and impact
of the gluon exchange can be estimated by comparing the
effective coupling constant a ¼ 4�s=3 in this potential
with the Higgs coupling �h ¼ m2=ð4�v2Þ. Taking for
estimation �s ¼ �sðMZÞ � 0:12 one finds that the mass
after which the Higgs exchange dominates is mh-dom �
349 GeV. Meanwhile, as was mentioned, the critical mass
that makes the bound state due to the Higgs exchange
possible is mcr � 515 GeV. Hence �h at this mass
substantially exceeds �s, �hðmcrÞ � 2:2ð4�s=3Þ, becom-
ing dominant at larger masses. For example, at
m ¼ 1100 GeV they differ by an order of magnitude,
�hð1100 GeVÞ � 10ð4�s=3Þ.

One concludes from the mentioned numbers that the
gluon exchange plays the role of a perturbation, but one
which may give a sizable contribution. In order to calculate
it we use the variational approach based on Eq. (5.3), in
which we include now the contribution of the long-range
potential hVlri ¼ � 4

3�sq (omitted in our previous

discussion).
The results found for the binding energy are shown in

Fig. 7. Several engaging features can be observed there.
First, the discrepancy between the binding energy calcu-
lated with and without the gluon exchange is quite sizable.
Second, the relative discrepancy between these binding
energies is obviously falling with the fermion mass, which
agrees with the fact that the ratio �s=�h is diminishing.
However, their absolute discrepancy remains approxi-
mately constant. Third, it is interesting that the shift of
the binding energy produced by the gluon exchange greatly
exceeds the typical binding energy observed when the
Higgs exchange is neglected. In the latter case one can
roughly estimate the spread of binding energies due to the
gluon exchange alone in the Coulomb-type model "g �
"c ¼ � m

4 ð43�sÞ2. Figure 7 shows that this energy is much

smaller than the shift of the binding energy when the gluon
exchange is added to the Higgs exchange.
There is a clear physical reason behind this phenome-

non. The gluon exchange alone keeps two quarks at a
typical separation that is comparable with the effective
Coulomb radius. In contrast, the Higgs exchange is able
to bring the quarks much closer, which makes the gluon
exchange more effective.
A similar physical phenomenon takes place in the region

m 
 mcr. Here the Higgs exchange alone is not able to
produce the bound state, but when combined with the
gluon exchange it increases the binding energy
significantly.
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FIG. 6. From bottom to top: thick solid, thin solid, dotted,
dash-dotted, and dashed lines: total binding energy ", the radia-
tive correction hVradi, the gluon correction �aq, pure kinematic
relativistic correction �p4=ð4m3Þ, and relativistic correction
hVreli, respectively, all calculated using the variational approxi-
mation based on Eq. (5.3); mh ¼ 600 GeV, � ¼ 11 (compare
Fig. 5, which illustrates the case of mh ¼ 100 GeV).
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FIG. 7. The gluon exchange in the binding energy of two
quarks; solid line is Higgs exchange only, the energy " with
the relativistic and radiative corrections (same as the thin solid
line in Fig. 3); dot-dashed line, additionally, the gluon contribu-
tion into the energy is included; dotted line is a naive Coulomb-
type estimate of the binding energy produced by gluons;
calculations are based on the variational approach; mh ¼
100 GeV, � ¼ 11.
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VII. ANALYTICAL SOLUTION AT SMALL
HIGGS MASS

For a wide range of fermion masses discussed in the data
presented in Figs. 3–7 both the fermion mass and typical
momenta of quarks in the bound state exceed the Higgs
mass. Consequently it makes sense to investigate the limit
mh ¼ 0. Moreover, the same data show that the radiative
correction and the relativistic kinematic correction are
small; see Fig. 7. In the simplest approximation we can
therefore safely neglect these corrections. Making these
simplifications in Eq. (5.3) we find a clear analytical ex-
pression for the energy,

EðqÞ � EaðqÞ ¼ q2

m
� �hqþ 3

�hq
3

m2
: (7.1)

Remember that the second and third terms here originate
from the Yukawa-type interaction (2.2) and relativistic
correction (3.11), correspondingly. To present the argu-
ment in the most clear form we neglected in Eq. (7.3) the
potential, which stems from the gluon exchange. (The way
to account it is discussed at the end of this subsection).

The value of the variational parameter q, which provides
the minimum of EaðqÞ is

qmin ¼ m

9�h

ðð1þ 9�2
hÞ1=2 � 1Þ: (7.2)

The corresponding value of the energy reads

Ea ¼ �m

9

�
2
ð1þ 9�2

hÞ3=2 � 1

27�2
h

� 1

�
: (7.3)

Remember that �h ¼ m2=ð4�v2Þ is a function of m.
Hence, Eq. (7.3) provides the binding energy of the two-
fermion state presenting it as a simple analytical function
of m. Its asymptotic behavior at small values of �h < 1 is

Ea � � m5

64�2v4

�
1� 3m4

32�2v4
þ � � �

�
: (7.4)

At large �h > 1 we find

Ea � � m3

18�v2

�
1� 2�v2

m2
þ � � �

�
: (7.5)

It is instructive to compare these results with the case when
the relativistic correction, the last term in Eq. (7.1), is
neglected. Then clearly the resulting two terms constitute
the Coulomb-like problem. Their minimization gives the
conventional Coulomb-type energy,

EC ¼ � m5

64�2v4
: (7.6)

Compare now Eqs. (7.3) and (7.6). The first takes into
account the repulsive relativistic correction; the second
neglects it. Equation (7.4) shows that at small �h there is
little difference between the two cases. However, with the
increase of the mass the distinction becomes prominent;

compare (7.3) and (7.6). Figure 8 illustrates this discrep-
ancy. The dashed and solid lines there both represent the
variational energy, in which the relativistic correction is
included. The difference is that the solid line is taken for
mh ! 0, when analytical Eq. (7.3) is valid, while the
dashed one is for mh ¼ 100 GeV, and was calculated
numerically previously; see the data shown by the dashed
line in Fig. 3. The dotted line in Fig. 8 shows the energy
from Eq. (7.6), which neglects the relativistic correction.
From Fig. 8 we see again, this time basing the argument

on clear analytical results, that the relativistic correction is
important; it substantially reduces the binding energy of
the two fermions. As a result the system remains in the
nonrelativistic state for much larger masses than one could
have anticipated. To illustrate this point let us find the value
of m, at which the energy in (7.3) equals the fermion mass.
The condition jEaj ¼ m implies �h � 4:97, which corre-
sponds to the huge mass m � 15 TeV. For masses beyond
this limit, the relativistic physics takes over, and the ap-
proach developed in the present work, which is constructed
on the nonrelativistic basis, is not applicable. Remember
though the more conservative estimate (3.18) for the mass,
which limits the applicability of our results at m &
0:8 TeV. The just-presented arguments make it tempting
to contemplate the possibility that the theory presented
remains valid for masses beyond the �1 TeV limit, but
in order to support this claim one should apply more
sophisticated methods, possibly the Bethe-Salpeter equa-
tion, than the ones developed in the present work.
Figure 8 shows that the dependence of the binding

energy on mh is sizable, but still can be considered as a
perturbation. There is an interesting implication.
Remember that previously it was found also that the gluon
exchange, the radiative correction, and the kinematic

0.6 0.7 0.8 0.9 1.0 1.1
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0.4

0.3

0.2

0.1

0.0

m, TeV c2

,T
eV

FIG. 8. The role of relativistic correction. Solid line is the
variational energy from (7.3), which presumes mh ¼ 0 and
accounts for the relativistic correction; dashed line is the varia-
tional energy calculated from (6.5) presuming mh ¼ 100 GeV
and taking the relativistic correction into account (but without
the radiative correction; same data are shown by the thin dashed
line in Fig. 3); dotted line is the variational energy (7.6), in which
mh ¼ 0 and the relativistic correction is neglected.
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correction �p4=ð4m3Þ are all either very small, or at least
not pronounced. Hence, we can treat them all as perturba-
tions. In order to develop the first-order perturbation the-
ory, we can take qmin, which was found neglecting these
perturbations, and substitute it into the complete expres-
sion for the variational energy, which takes all these cor-
rections into consideration.

Remembering that our variational approximation
matches well the quantum mechanical calculations
( 
 20%), we can state that a reliable estimate for the
energy " of the two heavy quarks bound via the Higgs
boson exchange provides a simple, transparent analytical
formula

" � EðqminÞ; (7.7)

in whichEðqÞwas found in (5.3) while qmin is given in (7.2).
A more accurate value of qmin which takes into accountmh

and the long-range (gluon) potential may be obtained using
the results of Sec. II,

qmin ¼ m

9b
ðð1þ 9b2Þ1=2 � 1Þ; (7.8)

where b ¼ ð~�h þ aÞ; see Eq. (2.15). For mh ¼ a ¼ 0 this
result coincides with (7.2).

VIII. CONCLUSION

We discuss the binding of two heavy fermions due to the
Higgs boson exchange. Since the effective coupling con-
stant increases with the fermion mass, the relativistic cor-
rections are important. We find that they are positive and
significantly reduce the binding energy. However, their
influence on the critical mass mcr for the fermion binding
proves to be insignificant.

The radiative corrections are found to play a minor role
for all the interval of energies studied, at least up to m ¼
2 TeV. In the case of heavy charged leptons, the Higgs
exchange dramatically increases the binding energy when
mass m approaches mcr. A very significant increase also
happens for quarks when m>mcr. The shift of energy,
which is produced by the gluon exchange in the system
bound mostly due to the Higgs exchange, exceeds greatly
the scale of energies typical to the systems bound due to the
gluon exchange alone.

The Higgs exchange also strongly increases the bound
fermion density c 2ð0Þ and consequently the creation and
annihilation widths for the bound state. The width calcu-
lation will be performed in a separate publication.
However, there is no fundamental reason which would
make impossible the detection of the bound states consid-
ered at LHC if the heavy fermions do exist.

Note that we did not calculate the splitting of the spin
S ¼ 1 and S ¼ 0 bound states. The relative value of this
splitting �E=2m should be significantly smaller then the
leading relativistic corrections since it does not appear in
the order v2=c2 in the Higgs exchange interaction, which is

different from systems bound via the interactions produced
by photon and gluon exchanges.
Note also that if there exist different heavy fermions,

they all contribute approximately equally to the polariza-
tion operator and vertex in Eqs. (4.1) and (4.3). This
unusual property may be used to measure the number of
heavy particles via the Higgs-dependent radiative
corrections.
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APPENDIX: RETARDATION AND
RELATIVISTIC CORRECTIONS

Taking Eq. (3.2) for the relativistic and radiative correc-
tion we apply the conventional technique for these prob-
lems, replacing !2 in the matrix element of the interaction
by the two commutators of the scalar interaction vertex
with the Hamiltonian (compare e.g. [30], Sec. 83; [32],
Sec. 38; one can also compare the quantum approach with
the classical description in [33], Sec. 65),

!2hp0
1j�1e

iqr1 jp1ihp0
2j�2e

�iqr1 jp2i
¼ �hp0

1j½H1; �1e
iqr1�jp1ihp0

2j½H2; �2e
�iqr1�jp2i: (A1)

Here jp0
ii and jpii, i ¼ 1; 2 are the Dirac wave functions

describing the scattering states of the two fermions, and
Hi ¼ �i � pi þ �im are the Hamiltonians for these
fermions.
Calculating the commutators in (A1), one finds for the

matrix element, which describes the scattering

Vðp1;p2;qÞ ¼ �g2h

�
�1�2

q2 þm2
h

� ð�1 � ð2p1 þ qÞÞð�2 � ð2p2 � qÞÞ
ðq2 þm2

hÞ2
�
:

(A2)

In the center-of-mass reference frame p ¼ p1 ¼ �p1 it is
reduced to VðqÞ in Eq. (3.15). The potentials in (A2) and
(3.15) should be sandwiched between the Dirac spinors
describing the two fermions. Fulfilling the Foldy-
Wouthuysen transformation (3.5) we find that the matrix
elements of the beta matrices in the nonrelativistic region
can be replaced by the following expressions:

�1 ! 1� p2
1

2m2
� p1 � q

2m2
� q2

8m2
� i

ðq� p1Þ � �1

4m2
; (A3)

�2 ! 1� p2
2

2m2
þ p2 � q

2m2
� q2

8m2
þ i

ðq� p2Þ � �2

4m2
: (A4)

In (3.6) these expressions are presented in the center-of-
mass reference frame. Similarly we find that the matrix
elements of gamma matrices can be replaced as follows:

TWO HEAVY FERMIONS BOUND VIA HIGGS BOSON EXCHANGE PHYSICAL REVIEW D 84, 114024 (2011)

114024-13



� 1 � ð2p1 þ qÞ ! �q � ð2p1 þ qÞ
2m

; (A5)

� 2 � ð2p2 � qÞ ! q � ð2p2 � qÞ
2m

: (A6)

Note the dependence of the matrix elements of gamma
matrices on q. Another notable feature is an absence of the
spin dependence. Generically, the spin variable is certainly
present in the matrix elements of gamma matrices �j !
�ð�qþ ið2pj 	 qÞ � �jÞ=ð2mÞ, the upper and lower signs
here are for j ¼ 1; 2, respectively. However, the scalar
products with the vectors 2pj 	 q, which appear in (A5)

and (A6), eradicate this dependence. This complies with
the scalar nature of the Higgs boson. It also explains why
the simplified version of the discussion, which is adopted
in Sec. III A and does not appeal to the traditional
commutator-based technique (A1), is able to match the
results of a more robust approach taken here. The only

spin dependence available in the problem arises from the
beta matrices in Eqs. (A3) and (A4) and eventually leads to
the spin-orbit interaction in Eq. (3.14).
We substitute Eqs. (A3)–(A6) into (A2) deriving

Vðp1;p2;qÞ ¼ �g2h

�
1

q2 þm2
h

�
1� p2

1 þ p2
2

2m2

� q2

4m2
� ðp1 � p2Þ � q

2m2

� i
ðq� p1Þ � �1 � ðq� p2Þ � �2

4m2

�

þ ðq � ð2p1 þ qÞÞðq � ð2p2 � qÞÞ
4m2ðq2 þm2

hÞ2
�
: (A7)

After that we adopt the center-of-mass reference frame and
perform the Fourier transform over q to the coordinate
representation r. Straightforward though lengthy calcula-
tions lead to Eqs. (3.12), (3.13), and (3.14).
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