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A unitary coupled-channels model is presented for investigating the decays of heavy mesons and

excited meson states into three light pseudoscalar mesons. The model accounts for the three-mesons final

state interactions in the decay processes, as required by both the three-body and two-body unitarity

conditions. In the absence of the Z-diagram mechanisms that are necessary consequences of the three-

body unitarity, our decay amplitudes are reduced to a form similar to those used in the so-called isobar-

model analysis. We apply our coupled-channels model to the three-pions decays of a1ð1260Þ, �2ð1670Þ,
�2ð2100Þ, and D0 mesons, and show that the Z-diagram mechanisms can contribute to the calculated

Dalitz plot distributions by as much as 30% in magnitudes in the regions where f0ð600Þ, �ð770Þ, and
f2ð1270Þ dominate the distributions. Also, by fitting to the same Dalitz plot distributions, we demonstrate

that the decay amplitudes obtained with the unitary model and the isobar model can be rather different,

particularly in the phase that plays a crucial role in extracting the Cabibbo-Kobayashi-Maskawa

CP-violating phase from the data of B meson decays. Our results indicate that the commonly used

isobar-model analysis must be extended to account for the final state interactions required by the three-

body unitarity to reanalyze the three-mesons decays of heavy mesons, thereby exploring hybrid or exotic

mesons, and signatures of physics beyond the standard model.
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I. INTRODUCTION

It has long been recognized that hadrons lying outside of
the conventional constituent quark model must exist within
the framework of QCD. These so-called ‘‘exotic’’ hadrons,
speculated as tetra-quark states or hybrid states or glue-
balls, have been predicted by various calculations using the
lattice QCD, the QCD sum rule, and the flux-tube model,
as reviewed in Ref. [1]. Thus, quite a few experimental
programs have been developed to search for exotic mesons
via the three-mesons production reactions, such as �N !
M�N ! ���N [2–4], �N ! M�N ! ���N, �K �KN
[5,6], and N �N ! M� ! ��� [7], where the intermediate
mesons M� could be exotic. To identify M�, the main task
is to extract the partial-wave amplitudes from the final
three-mesons distributions. So far, this has been done
mainly by using the isobar model, within which two of
the three mesons form a light flavor excited meson
R (f0, �, K

�, etc.) and the third meson is treated as a
spectator in the decays of R, as illustrated in Fig. 1(a).
There, the propagation of R is commonly described with
the Breit-Wigner parametrization or with the two-body
unitary K-matrix parameterizations [8,9] constrained by
the dispersion relations. In any case, the three-body uni-
tarity is missing in those analyses. The noninteracting cR
amplitudes, where c is a spectator light pseudoscalar
meson, and an appropriately parametrized nonresonant
amplitude are then summed coherently with multiplicative
complex parameters, which are adjusted to fit the Dalitz
plot of the measured three-mesons distributions.

In an isobar-model analysis of the ��p ! �����þp
and ��p ! ���0�0p data from the E852 experiment
[2–4], a1ð1260Þ, a2ð1320Þ, �2ð1670Þ, and a4ð2020Þ reso-
nances were identified, and the exotic JPC ¼ 1�þ meson
near 1.6 GeV [�1ð1600Þ] proposed from an earlier analysis
was ruled out. The CLAS analysis [6] of �p ! �þ�þ��n
data identified a2ð1320Þ and �2ð1670Þ, but neither
a1ð1260Þ nor exotic �1ð1600Þ at the expected levels. On
the other hand, the COMPASS experiment [10] claimed to
have observed �1ð1600Þ in the �����þ final state from a
pion scattering on a lead target. As a step to understand the
differences between the results from these analyses as well
as from the previous isobar-model analyses, it is necessary
to first examine the extent to which the isobar model is
valid. This is also needed for developing a theoretically
sound approach to analyze the three-mesons photoproduc-
tion data that will be obtained at JLab with the 12 GeV
upgrade [5].
The isobar model has also been commonly used to

analyze the data of three-mesons decays of J=c [11,12],
D [13–23], and B [24–35] mesons. The B and D decays
have been analyzed with interests in the CP violation and
physics beyond the standard model. Some B decay pro-
cesses have also been analyzed using dispersion relations
[36], neglecting the interactions between the outgoing two-
mesons subsystem and the third meson, as assumed in the
isobar model. The strong phases arising from the final state
interactions in the decay processes are essential in deter-
mining the weak decay amplitudes of these heavy mesons
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and searching for physics beyond the standard model. For
example, BABAR [18,20,21] and Belle [22,23] extracted
the Cabibbo-Kobayashi-Maskawa (CKM) CP violating
phase � from the data of B� ! D0 (or �D0) K� !
ðK0

S�
þ��ÞK�. They utilized the fact that the interference

between the decay amplitude of B�!D0K�!
ðK0

S�
þ��ÞK� and that of B�! �D0K�!ðK0

S�
þ��ÞK�

is proportional to e�i�. Clearly, the accuracy of the phases
of the partial-wave amplitudes of D0ð �D0Þ ! ðK0

S�
þ��Þ,

which were determined within the isobar model, is crucial
in extracting this fundamental parameter � from the data.
In the isobar model, the strong phases from the final state
interactions are partly accounted for by using complex
D ! �R couplings. However, the phases of the amplitudes
generally depend on kinematics and have to satisfy the
three-body unitarity, which is beyond what the isobar
model can achieve.

The above discussions strongly indicate the need for
investigating the extent to which the isobar model is valid.
Within the well-developed three-hadron scattering models,
as reviewed in Refs. [37–39], the isobar model is clearly a
simplification since one of the mesons from the decay of
the propagating resonance R can interact with the third
meson to form another R. This interaction is traditionally
called the Z diagram, as illustrated in Fig. 1(b). It was well
established in the studies of�N [37],�NN [38], and ��N
[39–41] systems that the multiple scattering due to the
Z-diagram mechanisms, as illustrated in Fig. 1(c), is es-
sential to preserve the three-body unitarity for interpreting
the data correctly. Only very limited similar attempts have
been taken recently to analyze the three-mesons decay of
heavy mesons [42,43].

The main purpose of this work is to apply the unitary
approach developed in Ref. [39] (hereafter referred to as
MSL) to investigate the importance of the Z-diagram
mechanisms in analyzing the data of three-mesons decays
from heavy mesons and excited meson states. We will
present a model that satisfies the two-body and three-
body unitarity conditions. We start with a model
Hamiltonian defined by (bare) vertex interactions fab;R
and �cR;M� and two-body interactions vc0R0;cR, where a, b,
c are physical light pseudoscalar mesons (�,K, etc.), R is a
light flavor excited state decaying to two light pseudoscalar
mesons, R ¼ f0; �; f2; K

�; . . . , and M� is a heavy meson
decaying to three light pseudoscalar mesons. The vertex
interactions fab;R are determined by fitting the empirical

ab ! ab scattering amplitudes, and are used to define the
propagation of R and to calculate the one-particle-
exchange Z-diagram amplitudes Zc0R0;cR. The cR ! c0R0

scattering amplitudes Tc0R0;cR are then calculated from

Zc0R0;cR by solving a set of coupled-channels equations to

account for the three-mesons final state interactions of
heavy-meson decays. In the absence of the Z-diagram
mechanisms, our decay amplitudes are reduced to a form
similar to those used in the isobar-model analysis. Thus,
we will be able to examine the effects of Z-diagram
mechanisms in determining the Dalitz plots and the pa-
rameters of resonances that decay strongly into three me-
sons. The model is applied to investigate the three-pions
decays of a1ð1260Þ, �2ð1670Þ, �2ð2100Þ, and D0 mesons.
The organization of this paper is as follows. In Sec. II,

we present our model Hamiltonian and describe the deri-
vation of a set of coupled-channel equations for calculating
the meson-R scattering amplitudes from the Z-diagram
mechanisms, and how these amplitudes are used to calcu-
late the three-mesons final state interactions in heavy-
meson decays. The procedures for applying our model in
practical calculations are given in Sec. III. The results
for calculations of the decays of a1ð1260Þ, �2ð1670Þ,
�2ð2100Þ, and D0 mesons are presented in Sec. IV.
Summary and outlook are given in Sec. V.

II. FORMULATION

Following the MSL formulation [39] of hadron reac-
tions, we assume that the decays of heavy mesons into
three mesons can be described by the following
Hamiltonian:

H ¼ H0 þH0; (1)

whereH0 is the free Hamiltonian of the considered degrees
of freedom: the bare heavy mesons M� ¼ a1; �2; D

0; . . . ,
the bare light flavor excited mesons R ¼ f0; �; f2; . . . , and
the physical ground pseudoscalar mesons denoted as a, b,
c ¼ �,K, etc. The interaction HamiltonianH0 is defined as
(in this section, the summation runs over the momentum,
spin, and isospin spaces of the particles)

H0 ¼ X
M�

X
cR

½�cR;M� þ �y
cR;M� � þH00; (2)

H00 ¼ X
c0R0;cR

vc0R0;cR þX
R

X
ab

½fab;R þ fyab;R�; (3)

where vc0R0;cR denotes the cR ! c0R0 transition

potentials; �cR;M� (fab;R) is the bare vertex describing

M� ! cR (R!ab) processes. Here, we note that the term
H00 does not include any interactions with theM� states and
we have neglected the interactions between the particles

M*
R

(a) (b)

+

(c)

+ + . . .Z

FIG. 1. M�-decay amplitude.
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(a, b) in the decay channels of the light flavor excited
meson states R. Throughout this paper, we will use the
‘‘right-to-left’’ ordering for the channel indices. (Note that

�M�;cR ¼ �y
cR;M� and fR;ab ¼ fyab;R for the bare vertices.)

Starting with Eq. (1), the reaction T matrix is defined by
the following equation:

TðEÞ ¼ H0 þH0 1

E�Hþ i�
H0; (4)

where E is the total scattering energy in the center-of-mass
system. Since the considered Hamiltonian is Hermitian
and energy independent, it is straightforward to show
that the S matrix SðEÞ ¼ 1� 2�i�ðE�H0ÞTðEÞ is uni-
tary SyðEÞSðEÞ ¼ 1. This is the simplicity of this formu-
lation to have a unitary reaction model. To solve Eq. (4), it
is convenient to first define a scattering equation for cal-
culating the effects only from the non-M� Hamiltonian H00
on the scattering of the ground pseudoscalar mesons c ¼
�;K from the light flavor excited meson states R ¼
f0; �; f2; . . . . Namely, we will first calculate the amplitude

T0
c0R0;cRðEÞ ¼ hc0R0jT0ðEÞjcRi;

where the non-M� scattering operator T0ðEÞ is defined by

T0ðEÞ ¼ H00 þH00 P

E� �Hþ i�
H00; (5)

with �H � H0 þH00. The intermediate states in the above
equation are restricted by the projection operator P defined
by

P ¼X
cR

jcRihcRj þX
abc

jabcihabcj: (6)

By further applying the standard projection operator
method [44,45], as detailed in Ref. [39] for a ��N
Hamiltonian, one can cast Eq. (5) into a form for practical
calculations of T0

c0R0;cRðEÞ. By simply changing the particle

labels and dropping the contributions from the direct �13,
v23, v33 interactions in Appendix B of Ref. [39], we can
obtain the scattering amplitudes for this investigation. The
resulting cR ! c0R0 amplitudes, which describe the
multiple-scattering mechanisms followed by a M� decay
as illustrated in Figs. 1(b) and 1(c), are defined by

T0
c0R0;cRðEÞ¼Vc0R0;cRðEÞ

þ X
c000R000;c00R00

Vc0R0;c000R000 ðEÞGc000R000;c00R00 ðEÞT0
c00R00;cRðEÞ:

(7)

Here, the driving term is

Vc0R0;cRðEÞ ¼ vc0R0;cR þ Zc0R0;cRðEÞ; (8)

where vc0R0;cR is the cR ! c0R0 transition potential, and the
second term is the Z diagram defined with the R ! ab
vertex as

Zc0R0;cRðEÞ¼
X
c00
fR0;cc00

1

E�Ec�Ec0 �Ec00 þ i�
fc0c00;R: (9)

Here, c00 is the exchanged meson. We have also introduced

a notation Ec ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

c þ ~p2
c

p
to denote the free energy op-

erator for a particle c with mass mc and momentum ~pc.
The Green function in Eq. (7) is defined by

½G�1ðEÞ�c0R0;cR¼�c0;c½ðE�Ec�ERÞ�R0;R��R0;RðE�EcÞ�:
(10)

The self-energy of the propagation of R in Eq. (10) is

�R0;RðwÞ ¼
X
ab

hR0jfR0;ab
Bab

w� Ea � Eb þ i�
fab;RjRi; (11)

where Bab is a factor associated with the Bose symmetry
of mesons:Bab ¼ 1=2 if a and b are the identical particles
or otherwise Bab ¼ 1.
The self-energy (11) also determines the ab ! a0b0

scattering amplitudes. In the center-of-mass system, it
has the familiar form

Ta0b0;abðwÞ¼
X
R;R0

ðBa0b0 Þ1=2fa0b0;R0 ½d�1ðwÞ�R0;RðBabÞ1=2fR;ab;

(12)

with

½dðwÞ�R0;R ¼ ðw�mRÞ�R0;R � �R0;RðwÞ: (13)

We thus can determine the massmR of bare R state and the
vertex interaction fab;R by fitting the empirical amplitudes

of the meson-meson scatterings such as �� ! �� and
�K ! �K. This then allows us to predict the Z-diagram
effects on T0

c0R0;cR through solving Eq. (7).

The transition potential vc0R0;cR can be derived from

phenomenological Lagrangian by using the method of
unitary transformation [39,46]. It can also be taken from
more fundamental modelings within QCD. This is beyond
the scope of this paper, and we set vc0R0;cR ¼ 0 in solving

Eq. (7). Thus, the final three-mesons scattering effects
predicted in this work are only the necessary consequence
of meson-meson scattering under the three-body unitarity
condition.
The amplitude for the three-mesons decay of M�,

M� ! abc, is

Tabc;M� ðEÞ ¼ h�ð�Þ
abcðEÞjH0jM�i; (14)

where the three-mesons scattering wave function is defined
by

h�ð�Þ
abcðEÞj ¼ habcj

�
1þH00 1

E� �H þ i�

�
; (15)

with habcj being the three-mesons plane-wave state. From
Eqs. (2) and (3), we see that
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H0jM�i ¼ X
cR

jcRihcRj�cR;M� jM�i;

habcjH00 ¼ Xcyclic
ða0b0c0Þ

X
R

habcjfa0b0;Rjc0Rihc0Rj:

Here, the symbol
Pcyclic

ða0b0c0Þ means taking summation over

the cyclic permutation, ða0b0c0Þ ¼ ðabcÞ; ðcabÞ; ðbcaÞ.
Because of the orthogonality conditions, hcRjM�i ¼ 0
and habcjcRi ¼ 0, the above relations allow us to write
Eq. (14) as

Tabc;M� ðEÞ¼
�
abc

��������H00
�
PD

1

E� �Hþi�
PD

�
H0
��������M�

�
; (16)

where PD is the projection operator for the space spanned
by cR states,

PD ¼ X
cR

jcRihcRj: (17)

Following the procedures in Appendix B of Ref. [39], one
can show that

PD

1

E� �H þ i�
PD

¼ X
c0R0;cR

jc0R0iGc0R0;cRðEÞhcRj þ
X

cR;c0R0

X
c000R000;c00R00

jc0R0i

�Gc0R0;c000R000 ðEÞT0
c000R000;c00R00 ðEÞGc00R00;cRðEÞhcRj; (18)

where T0
c000R000;c00R00 ðEÞ and GcR;c0R0 ðEÞ have been defined in

Eqs. (7) and (10), respectively.
Substituting Eq. (18) into Eq. (16) and using the vertex

functions of H0 defined by Eq. (2), we can write

Tabc;M� ðEÞ ¼ Xcyclic
ða0b0c0Þ

Tða0b0Þc0;M� ðEÞ; (19)

with TðabÞc;M� ðEÞ being the amplitude for the subsequent

decay of M� ! Rc ! ðabÞc expressed as

TðabÞc;M� ðEÞ ¼ TIsobar
ðabÞc;M� ðEÞ þ TFSI

ðabÞc;M� ðEÞ; (20)

where FSI stands for final state interaction, and

TIsobar
ðabÞc;M� ðEÞ¼

X
R

X
c0R0

habjfab;RGcR;c0R0 ðEÞ�c0R0;M� jM�i; (21)

TFSI
ðabÞc;M� ðEÞ ¼

X
R

X
c0R0

X
c000R000;c00R00

habjfab;RGcR;c0R0 ðEÞ

� T0
c0R0;c000R000 ðEÞGc000R000;c00R00 ðEÞ�c00R00;M� jM�i:

(22)

Equation (20) is illustrated in Fig. 2. We now note that
the commonly used isobar-model analysis corresponds to
keeping only the term TIsobar

abc;M� ðEÞ within our formulation.

The difference between different isobar-model analyses is
in the parametrization of the Green function GcR;c0R0 ðEÞ

and the vertex function fab;R. We also note that even in this

simplified case, GcR;c0R0 ðEÞ and fab;R are related through

Eqs. (10) and (11) within our formulation, but are often not
treated consistently in the isobar-model analysis.
The full decay amplitude (20) can be concisely written as

TðabÞc;M� ðEÞ ¼ X
R

X
c0R0

habjfab;RGcR;c0R0 ðEÞj ��c0R0;M� i; (23)

where the dressedM� ! cR vertex function is defined by

j ��cR;M� i¼ X
c00R00

�
�cR;c00R00 þ X

c000R000
T0
cR;c000R000Gc000R000;c00R00 ðEÞ

�

��c00R00;M� jM�i: (24)

Obviously, TIsobar
ðabÞc;M� ðEÞ of Eq. (21) can be obtained from

Eq. (23) by replacing j ��c0R0;M� i with �c0R0;M� jM�i.
For strong decays, the resonance pole positions and

decay widths of heavy mesons (M�) can be shifted by
three-mesons scattering. This can be seen by considering
the M� propagator defined by

GM� ðEÞ ¼
�
M�

�������� 1

E�H þ i�

��������M�
�
: (25)

With the projection operator method, as applied in
Ref. [39], one can show that Eq. (25) in the rest frame of
M� can be written as

G�1
M� ðEÞ ¼ E�M0

M� � �M� ðEÞ; (26)

where M0
M� is a bare mass and

�M� ðEÞ ¼ X
cR;c0R0

hM�j�M�;cRGcR;c0R0 ðEÞj ��c0R0;M� i: (27)

Here, j ��c0R0;M� i is defined in Eq. (24).

The resonance pole positions, Epole, are defined as zeros

of G�1
M� ðEÞ. They are on the unphysical sheets of the

complex-energy Riemann surface and are thus defined by
the following equation:

G�1
M� ðEpoleÞ ¼ 0: (28)

We use the analytic continuation method of Refs. [47,48]
to solve Eq. (28) and find Epole for the considered coupled-

channels model with unstable meson-R channels.

If we replace the dressed vertex j ��cR;M� i by the bare

vertex �cR;M� jM�i in calculating �M� ðEpoleÞ of Eq. (27),

+ T′

a
R′

R′

M*

R

b

c

a

b

c

R

FIG. 2. Amplitude for the three-mesons decays of M� in the
unitary coupled-channels model. The bulb labeled T0 is the
T-matrix element for the cR ! c0R0 process without M� excita-
tion [Eq. (7)]. The dressed cR Green function, yielding
GcR;cR0 ðEÞ, is indicated by the gray circle [Eq. (10)].
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then the solution of Eq. (28) is the pole position of the
isobar model, which does not include the three-mesons
final state interactions.

We now note that the Green function (26) can be related
to the excitation of M� in the cR ! c0R0 transition ampli-
tude Tres

c0R0;cRðEÞ. The matrix element of Eq. (4) between

hc0R0j and jcRi states is
Tc0R0;cRðEÞ ¼ T0

c0R0;cRðEÞ þ Tres
c0R0;cRðEÞ;

where the first term has been defined in Eq. (7). The second
term is the ‘‘resonant’’ part, and is shown to be (using the
projection operator methods)

Tres
c0R0;cRðEÞ ¼

hc0R0j ��c0R0;M� ih ��M�;cRjcRi
E�M0

M� ��M� ðEÞ ; (29)

where

h ��M�;cRj ¼
X
c00R00

hM�j�M�;c00R00

�
�c00R00;cR

þ X
c000R000

T0
c00R00;c000R000Gc000R000;cRðEÞ

�
: (30)

The self-energy�M� ðEÞ in Eq. (29) is defined in Eq. (27),
and can be related to the decay amplitude [Eq. (14)] as
follows. For a derivation, consult Appendix A. Consider the

‘‘decay’’ width �M�
tot ðEÞ of the bare M� (not the physical

resonance state) defined by

�M�
tot ðEÞ ¼ 2�

X
abc

�ðE� Ea � Eb � EcÞjTabc;M� ðEÞj2: (31)

By using the unitarity relation for T0 in Eq. (5), we can
actually show that the right-hand side of the above equation
is

2�
X
abc

�ðE�Ea�Eb�EcÞjTabc;M� ðEÞj2¼�2Im½�M� ðEÞ�:

(32)

Equation (32) is used to check the accuracy of our numeri-
cal calculations of the Dalitz plots that are calculated from
Tabc;M� ðEÞ using the formula detailed in Appendix B.

III. FORMULA FOR NUMERICAL
CALCULATIONS

For numerical calculations of decays of M� into three
light pseudoscalar mesons,M� ! abc (Fig. 2), we perform
partial-wave expansions of the equations presented in
Sec. II in the M� rest frame. The kinematics of this decay
is specified by the following:

M�ð~0;SzM� ;Tz
M� Þ!Rð ~pR;s

z
R;t

z
RÞþcð ~pc;0;t

z
cÞ

!að ~pa;0; t
z
aÞþbð ~pb;0; t

z
bÞþcð ~pc;0;t

z
cÞ;
(33)

where the variables in the parenthesis for each particle are
its momentum, z components of the spin and isospin,
respectively.
Our task in this section is to relate the partial-wave forms

of all of the equations presented in Sec. II to the basic input
that will be determined by using the available empirical
meson-meson scattering (�� ! ��, �K ! �K, etc.) am-
plitudes. In this way, the final three-meson scattering effects
can be predicted for investigating heavy-meson decays.

A. R ! ab decays

In a decay R ! ab, the spin (sR) [isospin (tR)] of the
parent R state is the same as the relative orbital angular
momentum Lab [total isospin Iab] of the two-body ab
system. Thus, the partial-wave expansion of the vertex
function fab;R in the rest frame of R is

fab;Rð ~qÞ ¼ htatzatbtzbjtRtzRiYsR;s
z
R
ðq̂Þ~fLabIab

ab;R ðqÞ: (34)

Here, ta is the isospin of meson a and tza is its z component;
hj1m1j2m2jJMi is the Clebsch-Gordan coefficient; ~q

is the relative momentum between a and b; ~fLabIab
ab;R ðqÞ

is a scalar function satisfying ~fLabIab
ab;R ðqÞ ¼ 0 for Lab � sR

and/or Iab � tR.
We use the parametrization

~fLabIab
ab;R ðqÞ ¼ �sR;Lab

�tR;Iab

gab;Rffiffiffiffiffiffiffi
m�

p
�

1

1þ ðq=cab;RÞ2
�
1þðLab=2Þ

�
�
q

m�

�
Lab

: (35)

The parameters gab;R and cab;R and the bare mass mR of R
are adjusted to fit the empirical partial-wave amplitudes.
The number of bare R states included in the model depends
on a partial wave considered and the energy region covered
in the fit.

B. The �� model

We give an expression for the amplitudes of the scatter-
ing of two light pseudoscalar mesons in the partial-wave
basis. Here, we limit ourselves to only �� scattering
because we consider only three-pion heavy-meson decays
in this work. To fit �� data up to invariant mass W ¼
2 GeV, we include �� and K �K channels. Then, Eq. (12)
with total angular momentum L and total isospin I in each
partial wave is of the following analytic form [note that
~fLabIab
R;ab ðqÞ ¼ ~fLabIab�

ab;R ðqÞ]:
TLI
��;��ðq0; q;EÞ ¼

X
R0;R

�fLI��;R0 ðq0Þ�LIR0;RðEÞ �fLIR;��ðqÞ; (36)

with

½ð�LIÞ�1ðEÞ�R0R ¼ ðE�mRÞ�R0;R � �LI
R0;RðEÞ; (37)

where mR is the bare mass of R and
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�LI
R0;RðEÞ ¼

X
ab¼��;K �K

Z 1

0
q2dq

�fLIR0;abðqÞ �fLIab;RðqÞ
E� EaðqÞ � EbðqÞ þ i�

;

(38)

and

�fLab;Iab
ab;R ðqÞ¼

8<
:

1ffiffi
2

p ~fLab;Iab
ab;R ðqÞ ðifaandbare identical particlesÞ;

~fLab;Iab
ab;R ðqÞ ðotherwiseÞ:

(39)

C. Coupled-channels equations
for cR ! c0R0 scattering

For given total angular momentum J, parity P, and total
isospin T, the partial-wave form of Eq. (7) for the cR !
c0R0 scattering can be written as

T0JPT
ðc0R0Þl0 ;ðcRÞlðp

0; p;EÞ ¼ ZJPT
ðc0R0Þl0 ;ðcRÞlðp

0; p;EÞ

þ X
ðc000R000Þl000 ;ðc00R00Þl00

Z 1

0
q2dqZJPT

ðc0R0Þl0 ;ðc000R000Þl000 ðp
0; q;EÞ

�Gðc000R000Þl000 ;ðc00R00Þl00 ðq; EÞT0JPT
ðc00R00Þl00 ;ðcRÞlðq; p;EÞ: (40)

Here, ðcRÞl denotes the cR state with the relative angular
momentum l allowed for given JPT; p (p0) is the magni-
tude of the incoming (outgoing) relative momentum of the
cR (c0R0) state. The Green function can be written as

½G�1ðq; EÞ�ðc000R000Þl000 ;ðc00R00Þl00
¼ �l000;l00�c000;c00 f½E� Ec00 ðqÞ � ER00 ðqÞ��R000;R00

� �c00
R000;R00 ðq; E� Ec00 ðqÞÞg; (41)

where the self-energy �c
R0;Rðq;wÞ is calculated from

Eq. (11) by inserting the partial-wave expansion (34) and
performing a Lorentz transformation to boost the function
~fLabIab
ab;R ðqÞ from the rest frame of R to the center-of-mass

frame of the cR system. We also need to symmetrize the
intermediate states with identical mesons. Explicitly, we
have

�c
R0Rðp;EÞ¼

X
ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mR0mR

ER0 ðpÞERðpÞ
s Z 1

0
q2dq

MabðqÞ
½M2

abðqÞþp2�1=2

�
�fLabIab
R0;ab ðqÞ �fLabIab

ab;R ðqÞ
E�EcðpÞ�½M2

abðqÞþp2�1=2þ i�
; (42)

where the summation is over all two-mesons states ab of
R ! ab decay, MabðqÞ ¼ EaðqÞ þ EbðqÞ. The partial-
wave matrix elements ZJPT

ðc0R0Þl0 ;ðcRÞlðp
0; p;EÞ in Eq. (40) of

the Z-diagrammechanisms, defined by Eq. (9), are given in
Appendix C for the case that R decays into two pseudo-
scalar mesons.

D. The M� ! abc decay amplitudes

The amplitude [Eq. (23)] for a strong three-mesons
decay is given by

TðabÞc;M� ð ~pa; ~pb; ~pc;EÞ ¼
X
R0R

fab;R0 ð ~pa; ~pbÞGcR0;cRðpc; EÞ

� ��cR;M� ð ~pc; EÞ; (43)

where the Green function GcR0;cR has been defined by

Eqs. (41) and (42).
The R ! ab vertex function in Eq. (43) is obtained from

boosting the matrix element fLabIab
ab;R ð ~qÞ, defined by Eq. (34)

in the rest frame of R, to a moving frame where ~pR ¼
~pa þ ~pb:

fab;Rð ~pa; ~pbÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mREaðqÞEbðqÞ
ERðpRÞEaðpaÞEbðpbÞ

s
htatzatbtzbjtRtzRi

� YsR;s
z
R
ðq̂Þ~fLabIab

ab;R ðqÞ; (44)

where ~q is the relative momentum between a and b in their
center-of-mass system; the relation among ~q, ~pa, and ~pb

can be seen in Appendix C [Eqs. (C5) and (C6)]. For the

strong decays, ��cR;M� in Eq. (43) for the dressedM� ! cR
vertex can be written down by using Eq. (24) as

��cR;M� ð ~pc; EÞ ¼
P

l;lz;szR

hllzsRszRjSM�SzM� ihtRtzRtctzcjTM�Tz
M� i

� Yl;lzð�p̂cÞ �FðcRÞl;M� ðpc; EÞ; (45)

where SM� and TM� are the spin and isospin of M�, and
(denoting the parity of M� as PM�)

�FðcRÞl;M� ðpc;EÞ¼FðcRÞl;M� ðpcÞ
þ X
ðc00R00Þl00 ;ðc0R0Þl0

Z 1

0
dqq2T

0SM�PM�TM�
ðcRÞl;ðc00R00Þl00 ðpc;q;EÞ

�Gðc00R00Þl00 ;ðc0R0Þl0 ðq;EÞFðc0R0Þl0 ;M� ðqÞ: (46)

We parametrize the bare vertex function FðcRÞl;M� ðpÞ as

FðcRÞl;M� ðpÞ ¼ 1

ð2�Þ3=2
CðcRÞl;M�ffiffiffiffiffiffi

�0

p � �2
ðcRÞl;M�

p2 þ�2
ðcRÞl;M�

�
2þðl=2Þ

�
�
p

m�

�
l
; (47)

where CðcRÞl;M� , �ðcRÞl;M� , and m� are the coupling, cutoff,

and the pion mass, respectively; �0 is a scale factor, and is
set to be�0 ¼ 1 GeV. The couplings CðcRÞl;M� are nonzero

only when the transition M� ! ðcRÞl is allowed by sym-
metries, e.g., those are nonzero only when l satisfies
jSM� � sRj � l � SM� þ sR and PM� ¼ PR � ð�Þlþ1,
where PR is the parity of R. Here, it is noted that for a
strong decay the bare vertex function FðcRÞl;M� ðpÞ is related
with �cR;M� as

H. KAMANO et al. PHYSICAL REVIEW D 84, 114019 (2011)

114019-6



�cR;M� ð ~pÞ ¼ X
l;lz;szR

htctzctRtzRjTM� ; tzR þ tzcihllzsRszRjSM�SzM� i

� Yl;lzð�p̂ÞFðcRÞl;M� ðpÞ: (48)

For describing the weak decays of M� such as D0, the
above expressions of theM� ! cR vertex function need to
be modified to include the isospin nonconserving �T � 0
transition. This will not be considered here. Instead, we are
interested only in the importance of three-meson scattering
after the weak decay of D0, and it is sufficient to use the
above parametrization by extending FðcRÞl;M� in Eq. (47) to

depend on JPT of the cR state.
The amplitude for the commonly used isobar model, as

defined by Eq. (21), is

TIsobar
ðabÞc;M� ð ~pa; ~pb; ~pc;EÞ ¼

X
R0R

fab;R0 ð ~pa; ~pbÞGcR0;cRðpc; EÞ

� �cR;M� ð ~pcÞ: (49)

We see from Eqs. (43) and (49) that three-mesons decay
amplitudes of these two models differ from each other only
in the functions describing the M� ! cR decay. The for-
mulas for calculating the Dalitz plots of final three-meson
distributions from these decay amplitudes [Eqs. (43) and
(49)] are given in Appendix B.

E. Determinations of resonance positions

With the partial-wave expansion (45), the resonance
pole condition G�1

M� ðEpoleÞ ¼ 0 of Eq. (28) leads to

Epole ¼ M0
M� þ�M� ðEpoleÞ; (50)

where [note that FM�;ðc0R0Þl0 ðqÞ ¼ F�
ðc0R0Þl0 ;M� ðqÞ]

�M� ðEÞ ¼ X
ðc0R0Þl0 ;ðcRÞl

Z
C
dqq2FM�;ðc0R0Þl0 ðqÞGðc0R0Þl0 ;ðcRÞlðq; EÞ

� �FðcRÞl;M� ðq; EÞ: (51)

Here, �FðcRÞl;M� ðq; EÞ has been defined by Eq. (46);
R
C dq

means the momentum integral is performed along the
complex momentum path C.

We apply the analytic continuation method developed in
Refs. [47,48] to find resonance poles from solving
Eqs. (50) and (51) for the considered model.

F. Relations of the isobar models with the
Breit-Wigner parametrization

For the isobar model defined within our formulation, we
can establish some relations with the commonly used Breit-
Wigner parametrization. If we neglect the Z-diagram
effects by setting �FðcRÞl;M� to FðcRÞl;M� and use the partial-

wave expansion (45), Eq. (29) for cR ! c0R0 scattering can
be written as (omitting the momentum variables)

Tres;JPT
ðc0R0Þl0 ;ðcRÞlðEÞ !

Fðc0R0Þl0 ;M�FM�;ðcRÞl
E�M0

M� ��ð0Þ
M� ðEÞ

; (52)

where J ¼ SM� , P ¼ PM� , T ¼ TM� for strong decays, and

�ð0Þ
M� ðEÞ¼

X
ðc0R0Þl0 ;ðcRÞl

Z 1

0
q2dqFM�;ðc0R0Þl0 ðqÞGðc0R0Þl0 ;ðcRÞlðq;EÞ

�FðcRÞl;M� ðqÞ: (53)

Equation (52) is similar to that of the commonly used
Breit-Wigner (BW) parametrization in the analysis using
the isobar model or the K-matrix model:

TBW;JPT
ðc0R0Þl0 ;ðcRÞlðEÞ¼

h
e
i�ðc0R0 Þ

l0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�BW
ðc0R0Þl0=2

q ih
ei�ðcRÞl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�BW
ðcRÞl=2

q i
E�MBW

r þ ið�BW
tot =2Þ

;

(54)

where �BW
ðcRÞl is a partial decay width forM

� ! ðcRÞl, which
is related to the total decay width as

�BW
tot ¼ X

ðcRÞl
�BW
ðcRÞl : (55)

Now, we introduce �sR and �tR that specify the spin and
isospin of R. Then, Eq. (53) can be written as

�ð0Þ
M� ðEÞ ¼

X
�sR;�tR

½�ð0Þ
M� ðEÞ��sR;�tR ; (56)

where

½�ð0Þ
M� ðEÞ��sR;�tR ¼ X

fðc0R0Þl0 jsR0¼�sR;tR0¼�tRg

X
fðcRÞljsR¼�sR;tR¼�tRg

�
Z 1

0
q2dqFM�;ðc0R0Þl0 ðqÞGðc0R0Þl0 ;ðcRÞlðq; EÞ

� FðcRÞl;M� ðqÞ: (57)

We denote a conditional sum of ðcRÞl by
P

fðcRÞljsR¼�sR;tR¼�tRg,
in which the ðcRÞl state is summed, keeping sR and tR
constant, i.e., sR ¼ �sR and tR ¼ �tR. Thus, it is reasonable
to make the following interpretations:

MBW
r ¼ M0

M� þ Re½�ð0Þ
M� ðMBW

r Þ�; (58)

�BW
tot ðMBW

r Þ ¼ �2 Im½�ð0Þ
M� ðMBW

r Þ�; (59)

�BW
�sR;�tR

ðMBW
r Þ ¼ �2 Im½½�ð0Þ

M� ðMBW
r Þ� �sR;�tR �: (60)

Equations (58)–(60) will be used in our later comparisons
with the data listed by PDG. We note here that the above
identifications are very qualitative.

IV. APPLICATION

In this section, we apply our model explained in the
previous sections to investigate the three-pions decays of
heavy mesons a1ð1260Þ, �2ð1670Þ, �2ð2100Þ, and also D0.
Our first task is to determine the parameters of our model.
To simplify the calculations, we determine the vertex
interactions R ! ab for ab ¼ ��, K �K by fitting only
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the �� scattering phase shifts up to the invariant mass
W ¼ 2000 MeV. This is clearly a simplification since the
data associated with K �K channel should in principle be
included in our fits and we must also include four-pions
channels that have been considered to be important in the
isoscalar-scalar (L ¼ I ¼ 0) partial wave. However, such a
detailed study of meson-meson scattering can only be done
rigorously by extending our formulation to account for the
direct meson-meson interactions va0b0;ab, which must be

carefully derived from effective field theory approaches,
e.g., Refs. [49–52], to make sure that the predicted ��
amplitudes near threshold have the analytic properties con-
strained by the chiral symmetry. Furthermore, the inclusion
of va0b0;ab in our model Hamiltonian H00 of Eq. (3) will
greatly complicate the scattering formulation, as can be
seen in the ��N formulation presented in Ref. [39]. For
our present limited purpose of demonstrating the impor-
tance of three-body unitarity, our simplified model that
reproduces�� phase shifts in s, p, and dwaves up toW ¼
2000 MeV is sufficient. For the same reasons, we neither
include �K �K Z diagrams nor make an attempt to estimate
the errors of the determined parameters.

In Sec. IVA, we determine the model parameters by
fitting the �� phase shifts and resonance parameters listed
in PDG. With the parameters obtained from the fit, we
determine the pole positions (Sec. IVB) and calculate the
Dalitz plots (Sec. IVC) from the M� ! ��� amplitudes
including the Z diagram [Eq. (43)] or without the Z dia-
gram [Eq. (49)] with the formula given in Appendix B. For
the calculation without the Z diagram, we either simply
turn off the Z diagram in the full calculation, or fit the
isobar model to the Dalitz plot from the full calculation.
Our main focus is to examine the effect of the Z diagram
(and thus the three-body unitarity) on these quantities by
detailed comparison of the results calculated with and
without Z-diagram mechanisms, thereby providing infor-
mation about the extent to which the commonly used
isobar-model analysis is valid for extracting the properties
of heavy meson from three-mesons decay data.

A. Determinations of model parameters

1. Fits to �� amplitudes

Our first task is to determine the R ! ab vertex function
~fLabIab
ab;R ðqÞ, defined by Eq. (34), by fitting the �� phase

shifts. We include �� and K �K channels and use the for-
mulas (35) and (36) to fit the available �� amplitude in s,
p, and d partial waves. In our fits, the number of bare R
included in each partial wave is 2, 2, 1 for ðsR; tRÞ ¼
ðLab; IabÞ ¼ ð0; 0Þ; ð1; 1Þ; ð2; 0Þ, respectively. The resulting
parameters are listed in Table I.
As shown in Fig. 3, we are able to get good fits to the

empirical partial-wave amplitudes [53–55]. The nonzero
values of the inelasticities are due to the couplings to K �K
channels. For s and p waves, ðLab; IabÞ ¼ ð0; 0Þ; ð1; 1Þ, the
high-quality fits are obtained only when two bare R states
are included. It is noted that a partial-wave analysis using
more recent data [56] has found a unique solution for
W � 1000–1800 MeV. Although our present model is rea-
sonable enough to address the question on the importance
of the Z graphs, those data should be considered for a more
quantitative application of our model.
We have also determined the resonance pole positions

by applying the analytic continuation method of
Refs. [47,48]. The results for Re½E� � 2 GeV are listed
in Table II. It is interesting to note that we have two bare R
states in s wave, but we have identified three resonance
poles on different sheets of Riemann surface: sheet II is
(up) consisting of the unphysical (u) �� and physical (p)
K �K sheet, and sheet III is (uu).
We find that the poles listed in Table II can be identified

with the �� resonances listed by PDG [58]. For the
ðL; IÞ ¼ ð0; 0Þ s-wave partial wave, our results can be
identified with f0ð600Þ (or �), f0ð980Þ, and f0ð1370Þ.
For ðL; IÞ ¼ ð1; 1Þ p wave, our results correspond to the
�ð770Þ and a higher mass �. The resonance f2ð1270Þ can
be identified with our result for the ðL; IÞ ¼ ð0; 2Þ d-wave
partial wave. Here, we note that the imaginary part of the
position ð1:00� 0:009iÞ GeV, which corresponds to hav-
ing 18 MeV of the full width, in the isoscalar-scalar L ¼
I ¼ 0 partial wave (the second row of Table II) is too small
compared with the full width 40–100MeVof f0ð980Þ listed
by PDG. This perhaps can be improved only by extending
our model to include four-pions channel and direct inter-
actions vab;a0b0 with ab, a

0b0 ¼ ��,K �K. But this is beyond
the scope of this investigation, as discussed in the begin-
ning of Sec. IV. Here, we mention that the imaginary parts
of the pole position of f0ð980Þ from some previous ��
models are also smaller than the full width, (40–100) MeV,
listed by PDG, such as 28 MeV from Ref. [59], and

TABLE I. Masses (MRi
), couplings (g��;Ri

, gK �K;Ri
), and cutoffs (c��;Ri

, cK �K;Ri
) of the i-th bare R states, Ri, in the �� partial wave

with the angular momentum L and the isospin I. The couplings and cutoffs are defined in Eq. (35).

MR1
c��;R1

cK �K;R1
MR2

c��;R2
cK �K;R2

RðL; IÞ (MeV) g��;R1
(MeV) gK �K;R1

(MeV) (MeV) g��;R2
(MeV) gK �K;R2

(MeV)

f0 (0, 0) 1220 �0:898 441 0.006 1970 2400 0.700 955 �1:179 394

� (1, 1) 891 �0:291 394 0.106 467 1840 0.021 1973 0.167 394

f2 (2, 0) 1607 �0:051 567 0.015 818 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
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29 MeV from Ref. [60]. A quark model [61] also gave only
15 MeV for the width of f0ð980Þ.

In most of the previous studies of heavy-meson
decays, only the s-wave resonances are included as reso-
nance poles while the p-wave poles are included in
Ref. [9]. The other resonances are included using the
Breit-Wigner form. In our calculations,we include all reso-
nance poles in �� s, p, and d partial waves listed in
Table II.

We evaluate the �R Green functions [Eq. (41)] and the
matrix elements of Z diagrams [Eq. (C10)] with the
parameters listed in Table I. We solve the coupled-channels
equations [Eq. (40)] to obtain the �R ! �0R0 scattering
amplitude for given JPT, TJPT

ð�0R0Þl0 ;ð�RÞlðp
0; p; EÞ, including

all allowed relative orbital angular momentum between �
and R. The resulting TJPT

ð�0R0Þl0 ;ð�RÞlðp
0; p; EÞ are then used to

calculate the M� ! ��� decay amplitudes (43) and find
resonance poles associated with M� by solving Eqs. (50)
and (51).

2. Parameters for the decays of M� states
To calculate the decay amplitudes for a1ð1260Þ,

�2ð1670Þ, �2ð2100Þ, and D0, we now need to determine
their bare masses M0

M� , and the parameters Cð�RÞl;M� ,

�ð�RÞl;M� of Eq. (47) for the M� ! �R vertex functions.

Ideally, we should determine these parameters by fitting
the Dalitz plots of��� distributions measured experimen-
tally. However, such a rather complex process is not needed
for our limited purpose here to mainly investigate the
extent to which the commonly used isobar-model analysis
is valid. It is sufficient to choose our parameters guided
by the resonance positions and branching ratios listed by

TABLE II. Pole positions of the �� partial-wave amplitudes
with the angular momentum L and the isospin I in the complex-
energy plane. We list only the poles below Re½E� � 2 GeV.
Roman numerals in the square brackets specify the Riemann
sheet on which the pole exists. We use the convention for
specifying each Riemann sheet, I—IV, which is defined in,
e.g., Ref. [57].

L I Pole positions (GeV) [Riemann sheet]

0 0 0:43� 0:27i [II] 1:00� 0:009i [II] 1:35� 0:17i [III]
1 1 0:77� 0:081i [II] 1:61� 0:12i [III] 	 	 	
2 0 1:25� 0:10i [III] 	 	 	 	 	 	
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FIG. 3 (color online). Phase shifts (upper) and inelasticities of the �� scattering (lower): (left panels) L ¼ I ¼ 0, (center panels)
L ¼ I ¼ 1, and (right panels) L ¼ 2, I ¼ 0. Data are taken from Refs. [53–55].

TABLE III. Properties ofM� ¼ a1ð1260Þ, �2ð1670Þ, �2ð2100Þ
to which our model is fitted: isospin (I), spin (J), parity (P), and
charge conjugation parity (C); pole masses; branching ratios
(BR).

a1ð1260Þ �2ð1670Þ �2ð2100Þ
IðJPCÞ 1ð1þþÞ 1ð2�þÞ 1ð2�þÞ
Pole masses (MeV) 1230� 213i 1672� 130i 2090� 313i
BRðM� ! �f0Þ (%) 23 13 45

BRðM� ! ��Þ (%) 74 31 19

BRðM� ! �f2Þ (%) 2.5 56 35
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PDG [58].1 The data for the resonances considered in this
work are listed in Table III.

We first notice that the data in Table III are the averaged
values from several analyses. Most of these analyses pa-
rametrized theM� decay amplitudes with the Breit-Wigner
form, and all of them treated the final three pions as the
paired two pions (whose correlations are described by
either the Breit-Wigner form or the K matrix) and the
noninteracting spectator. We thus assume that the �BW

tot =2
is the imaginary part of the pole masses in Table III, from
which we can use the listed branching ratiosBRðM� ! cRÞ
to calculate �BW

cR ¼ BRðM� ! cRÞ � �BW
tot .

2 The resulting
values of �BW

cR as well as the pole masses of M� are then
used as data to determine the parameters of FðcRÞl;M� ðpÞ
[Eq. (47)] andM0

M� [Eq. (26)] by using Eqs. (50), (59), and

(60). Because we have more parameters than the number of
data, we use for simplicity the same cutoff for all of
FðcRÞl;M� ðpÞ for a givenM�, and we only adjust the coupling
constant CðcRÞlmin;M

� with the lowest allowed angular mo-

mentum lmin for cR; the other CðcRÞl;M� are set to zero. The

resulting parameters for a1ð1260Þ, �2ð1670Þ, and �2ð2100Þ
are listed in Tables IV, V, and VI.

The D0 meson (1865 MeV, JP ¼ 0�) mainly decays
weakly and thus three-meson scattering effects have very
little effect on its mass and width. We thus will only

investigate the Dalitz plot for the D0 ! �þ���0 decay.
The BABAR Collaboration [19] presented the Dalitz plot
data for this process, and we utilize their observation that
the D0 ! �þ���0 decay is dominated by T ¼ 0 ��
channel for simplicity. Thus, we use the following parame-
ters: Cð�R11

1
Þ1;M� ¼ 1 (see Table IV for the notation), and

CðcRÞl;M� ¼ 0 for other partial waves;�cR;M� ¼ 1 GeV. We

are interested only in the difference between the Dalitz
plots calculated with and without Z diagram, so this simple
choice of parameters is sufficient. It turns out that this
simple choice of the parameters well reproduces the shape
of the Dalitz plot presented by the BABAR Collaboration
[19]. Clearly, the above procedure is just for a very rough
estimate of bareM� parameters. In the future, we should fit
the Dalitz plot data directly. But, the present procedure is
sufficient for our purpose in this paper.

TABLE VI. Masses (M0
M� ), cutoffs (��R;M� ), and couplings

(Cð�RLI
i Þl ;M� ) of the bare M� ¼ �2ð2100Þ. For the description of

the table, see the caption of Table. IV.

�2ð2100Þ
Unitary model Isobar-fit model

M0
M� (MeV) 2189 2280

��R;M� (MeV) 876 970

Cð�R00
1
Þ2 ;M� �0:93 �0:70

Cð�R00
2
Þ2 ;M� �0:001 �0:34

Cð�R11
1
Þ1 ;M� 2.45 1.65

Cð�R11
1
Þ3 ;M� 	 	 	 	 	 	

Cð�R11
2
Þ1 ;M� 0.51 0.41

Cð�R11
2
Þ3 ;M� 	 	 	 	 	 	

Cð�R20
1
Þ0 ;M� �11:9 �10:1

Cð�R20
1
Þ2 ;M� 	 	 	 	 	 	

Cð�R20
1
Þ4 ;M� 	 	 	 	 	 	

TABLE IV. Masses (M0
M� ), cutoffs (��R;M� ), and couplings

(Cð�RLI
i Þl;M� ) of the bare M� ¼ a1ð1260Þ. The cutoffs and cou-

plings are defined in Eq. (47). For Cð�RLI
i Þl ;M� , RLI

i means the i-th

bare R state with the spin L and the isospin I, and l denotes the
orbital angular momentum between RLI

i and �. The second
(third) column shows the parameters for the unitary (isobar-fit)
model. The center dots ( 	 	 	 ) indicate the unused parameters.
See the text for the definition of the isobar-fit model.

a1ð1260Þ
Unitary model Isobar-fit model

M0
M� (MeV) 1687 1901

��R;M� (MeV) 832 1073

Cð�R00
1
Þ1;M� 4.46 2.84

Cð�R00
2
Þ1;M� �3:41 �0:13

Cð�R11
1
Þ0;M� 16.8 13.3

Cð�R11
1
Þ2;M� 	 	 	 0.15

Cð�R11
2
Þ0;M� �0:76 �10:0

Cð�R11
2
Þ2;M� 	 	 	 �0:17

Cð�R20
1
Þ1;M� 10.4 7.37

Cð�R20
1
Þ3;M� 	 	 	 �0:06

TABLE V. Masses (M0
M� ), cutoffs (��R;M� ), and couplings

(Cð�RLI
i Þl ;M� ) of the bare M� ¼ �2ð1670Þ. For the description of

the table, see the caption of Table. IV.

�2ð1670Þ
Unitary model Isobar-fit model

M0
M� (MeV) 1877 1912

��R;M� (MeV) 874 885

Cð�R00
1
Þ2 ;M� 0.67 0.55

Cð�R00
2
Þ2 ;M� 0.99 0.97

Cð�R11
1
Þ1 ;M� �2:21 �1:67

Cð�R11
1
Þ3 ;M� 	 	 	 	 	 	

Cð�R11
2
Þ1 ;M� 0.50 3.58

Cð�R11
2
Þ3 ;M� 	 	 	 	 	 	

Cð�R20
1
Þ0 ;M� �12:2 �11:3

Cð�R20
1
Þ2 ;M� 	 	 	 	 	 	

Cð�R20
1
Þ4 ;M� 	 	 	 	 	 	

1PDG lists small but nonzero branching ratios of decay chan-
nels that we do not consider in our model; we ignore them.

2In data analyses with the Breit-Wigner parametrization of the
M� decay amplitudes, the partial width and the imaginary part of
the M� pole masses are not related by �BW

cR ¼ BRðM� ! cRÞ �
�BW
tot . We use this relation just for determining the parameters

with this rough estimate.
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B. Z-diagram effects on the pole positions
of a1ð1260Þ, �2ð1670Þ, and �2ð2100Þ

In Sec. IVA2, we solved Eqs. (50) and (51) to fit the
pole positions for a1ð1260Þ, �2ð1670Þ, and �2ð2100Þ listed
in PDG. Our fitted values are shown in the row labeled as
‘‘With Z’’ of Table VII. When the Z-diagram mechanisms
are turned off, which is achieved by replacing the dressed
vertex function �FðcRÞl;M� with the bare FðcRÞl;M� in calculat-

ing�M� ðEÞ [Eq. (51)], the solution of Eq. (50) becomes the
values shown in the row labeled as ‘‘Without Z’’ of
Table VII.

Comparing the two rows in Table VII, we see that the
Z-diagram mechanisms can change the pole positions sig-
nificantly. In particular, the imaginary parts can be changed
by 65 MeV for a1ð1260Þ and 85 MeV for �2ð2100Þ
Accordingly, we expect that the extracted residues will
also be significantly changed. The extraction of the resi-
dues for unstable particle channels is nontrivial, and is still
being investigated, as explained in Ref. [48]. We thus do
not have results for the Z-diagram effects on the branching
ratios in this work.

C. Z-diagram effects on Dalitz plots

1. D0!�þ���0

As discussed in Sec. IVA2, we only include the bare
D0 ! �� vertex with (JP ¼ 0�, T ¼ 0, l ¼ 1) in this
calculation, as guided by the analysis by the BABAR
Collaboration [19]; the �f0 and �f2 channels are coupled
only through the final state interaction. The Dalitz plot
calculated from our unitary amplitude T�þ���0;D0ðE ¼
MD0 ¼ 1865 MeVÞ from using Eqs. (19) and (43) is shown
in Fig. 4 (left panel). With an overall normalization factor,
the pattern of our Dalitz plot is similar to BABAR’s data
[19]. The sharp peaks (darker red) near the edges of dis-
tributions are due to the formation of a � resonance during
the 3-� propagation. The almost empty center part is due to
the destructive interferences along the symmetry axes,
supporting the assumption that the T ¼ 0 �� channel
dominates the decay [62].

With the same parameters and overall normalization
factor, we then calculate the Dalitz plot from
TIsobar
�þ���0;D0ðEÞ using Eqs. (19) and (49), which does not

include Z-diagrammechanisms, namely, keep only the first
term in Fig. 2. In the right panel of Fig. 4, we show the
ratios between the results obtained from calculations with
and without the Z diagram. Clearly, the Z-diagram mecha-
nisms considerably change both the magnitudes and the
shape of the Dalitz plot. In most of the area, the ratios
(measured by the darkness as indicated on the right y axis
of the figure) are about 1.6. To see this more clearly, we
show in Fig. 5 the double differential decay width distri-
bution, d2�=ðdM2

�þ�0dM
2
���0Þ defined in Eq. (B2), at

M2
�þ�0 ¼ 0:3 GeV2. We see that at the � resonance peaks,

the magnitudes can be enhanced by a factor of about 1.5
when Z-diagram mechanisms are included to satisfy the
three-body unitarity.
Our results shown in Figs. 4 and 5 indicate the need to

reanalyze the D-meson decays data, with the three-body
unitarity taken into account, to assess the results, such as
CKM matrix elements, obtained with the isobar-model
analysis [18–23].

TABLE VII. Pole masses (Epole) of a1ð1260Þ, �2ð1670Þ, and
�2ð2100Þ. Here, ‘‘With Z’’ denotes the results of the full unitary
model, while ‘‘Without Z’’ denotes the results in which the Z
diagrams are turned off from the full unitary model.

Pole masses (MeV)

a1ð1260Þ �2ð1670Þ �2ð2100Þ
With Z 1230� 213i 1672� 130i 2090� 313i
Without Z 1122� 148i 1661� 127i 2044� 398i
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2. a1ð1260Þ;�2ð1670Þ;�2ð2100Þ!�þ���0

The decays of these three mesons have been analyzed by
using the isobar models. Our objective here is twofold.
First, we want to examine the Z-diagram effects on the
Dalitz plots. Second, we regard the Dalitz plot generated
from our unitary model [Eq. (43)] as the data, and fit them
with the isobar model [Eq. (49)]. We refer to it as the
isobar-fit model. In this way, we have the two models
that reproduce the same Dalitz plot. However, the decay
amplitudes from the two models are not necessarily the

same, which we will examine. This examination is particu-
larly interesting in the context of the extraction of the CKM
phase � from B and/or D decays. This is because the
extracted � depends on the decay amplitudes, particularly
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on its phase.3 Thus, the difference in the decay amplitude
between our unitary model and the isobar-fit model does
matter. We examine this for the strong decays of a1 and�2,
which is suggestive enough for the extraction of � with the
isobar-model analysis. Also, we study how well the three-
body unitarity is satisfied in the isobar-fit model. Our
unitary model satisfies it by definition (explicitly shown
numerically later). A large violation of the unitarity raises a
concern about the reliability in extracted quantities with
the isobar-model analysis.

We calculate the Dalitz plots at E ¼ Re½Epole�, for which
we useEpole of the full model listed in Table VII. The results

from our full model [using Eq. (43)] are shown in the left
panels of Fig. 6 for a1ð1260Þ, Fig. 7 for�2ð1670Þ, and Fig. 8
for �2ð2100Þ. We see that they have rather complex struc-
ture. This is due to the resonances of �� scattering imple-
mented in the �-R Green function [Eq. (41)], and also
interference among them as a consequence of summing
coherently �R ! ��� partial-wave amplitudes as calcu-
lated in Eq. (43). For example, two bands on M2

�þ�0 �
0:6 GeV2 and M2

���0 � 0:6 GeV2 in Figs. 6–8 are due to

the�ð770Þ resonance in the p-wave�� scattering. A gap in
M2

�þ�0 þM2
���0 � 0:6 GeV2 in Fig. 6 is due to the f0ð980Þ

resonance and opening of the K �K channel. The Z-diagram
effects are rather different in different parts of the Dalitz
plots. This can be seen from the ratios between the Dalitz
plots calculated with [Eq. (43)] and without [Eq. (49)]
Z diagram, as shown in the right-hand sides of Figs. 6–8.

To see the Z-diagram effects more clearly, we show
in Fig. 9 the double differential decay width distribu-
tions [Eq. (B2)] for the decays of these three mesons
at typical kinematics. By comparing the red solid curves
and blue dashed curves, we see that the Z-diagram
effects can significantly reduce the cross sections, in par-
ticular, in the regions near the resonance peaks of ��
scattering.

Now, we examine differences between the unitary and
isobar models if both fit the same Dalitz plot. We treat the
Dalitz plots in the left sides of Figs. 6–8 as the data in fits
using the isobar model [Eq. (49)] by adjusting all the
available coupling constants, cutoffs of the vertex
FðcRÞl;M� of Eq. (47). In the fits, we assign either 5% error

for each point of the Dalitz plot larger than 0:005 GeV�3,
or error of 0:005 GeV�3 otherwise. We are able to get
reasonably good fits.4 The resulting parameters for the
isobar-fit model are rather different from the unitary model
as shown in Tables IV, V, and VI. The quality of our fits can
be seen by comparing the dotted curves and the solid
curves in Fig. 9. Accordingly, the decay widths to
�þ���0 channel calculated from two models using
Eq. (31) (keeping only abc ¼ �þ���0) agree well, as
seen in the third, fifth, and seventh columns of Table VIII.
However, we see in the second, fourth, and sixth columns
of Table VIII that the resonance pole positions from result-
ing isobar-fit models differ significantly from those of the
unitary model from which the Dalitz plot data are gener-
ated. Their imaginary parts can differ by more than
100 MeV for a1ð1260Þ and about 50 MeV for �2ð1670Þ
and �2ð2100Þ, indicating a large violation of the three-
body unitarity. Note that the bare M� mass [M0

M� in

Eq. (26)] does not enter the calculation of the Dalitz plots.
Thus, we choose M0

M� for the isobar-fit model so that the

real part of the pole is the same as that of the unitary model.
Some hadron models predict that the hybrid mesons can

have quite different branching ratios from those of the
ordinary mesons with radial excitations of the quark-
antiquark pair [66]. Thus, the parameters, C�R;M� , in

Tables IV, V, and VI can provide important information
to distinguish the hybrid and/or exotic mesons from the
ordinary mesons. The significant difference in the parame-
ters between the unitary and isobar models indicates that
we should use a unitary model to analyze the Dalitz plot
distributions to search for the exotic mesons.

TABLE VIII. The pole masses and total widths decaying to ���þ�0 states (��þ���0 ) of a1ð1260Þ, �2ð1670Þ, and �2ð2100Þ. ‘‘Full’’
(‘‘Isobar fit’’) is the results of the full unitary (isobar-fit) model.

M� a1ð1260Þ �2ð1670Þ �2ð2100Þ
Pole mass ��þ���0 Pole mass ��þ���0 Pole mass ��þ���0

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

Full 1230� 213i 375.4 1672� 130i 157.8 2090� 313i 219.0

Isobar fit 1230� 100i 371.9 1672� 97i 151.2 2090� 261i 217.0

3There exists an alternative approach in which � can be
determined model-independently [63–65] solely from data, pro-
vided a large data set is available. A feasibility study [65]
showed that, with a data set available in the near future, the
precision of � extracted with this approach is comparable to that
obtained with the isobar-model analysis. Future high statistic
experiments (super B factory, LHCb) make this approach very
interesting.

4In most Dalitz plot analyses with the isobar model, a (con-
stant) nonresonant background amplitude with adjustable
strength is included. Also, the M� ! �R couplings are in
general complex in the isobar model in order to partially take
account of the missing interaction between the spectator and the
paired mesons. Because we obtained fits good enough for the
following discussion, we do not include these degrees of
freedom.
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As discussed above, the importance of using an unitary
model can be seen more clearly in comparing the
M� ! �R amplitudes predicted by the two models. This
is shown in Fig. 10. The M� ! �R amplitudes generated
from unitary model must be complex because of multiple
scattering due to Z-diagram mechanisms, while those from
the isobar model can be chosen to be real (cf. footnote 4).
Their differences in real parts can also be very different in
some regions. The difference in the phase is more apparent.

Even though nonzero phase could have been used in the
isobar-fit model, as has been done in most isobar-model
analyses, the rather large dependence on the kinematics,
which reflects the three-body unitarity, is beyond the ca-
pability of the isobar model to simulate. As we have noted,
the phases of these amplitudes are crucial in using
D-meson decays to determine the phase � of CKM matrix
elements as a way to find physics beyond the standard
model. The previously extracted � from B� ! D0
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(or �D0) K� ! ðK0
S�

þ��ÞK� has the uncertainty from the

isobar model fitted to the D decays. It is estimated to be
8.9
 for Belle [23], 3
 for BABAR [21]. Considering the
difference in the phase, typically of 10
 � 20
 level, be-
tween the unitary and isobar models, it would be highly
desirable to analyze the data with the unitary model.

Finally, let us examine the extent to which the three-body
unitarity is satisfied by each model. We can examine this
using Eqs. (31) and (32), which are satisfied by a unitary
model. Within our current model developed for a1ð1260Þ,
�2ð1670Þ, and �2ð2100Þ decays, the total decay width
(�3�þ�K �K) is the sum of M� ! 3� (�3�) and M� ! �K �K
(��K �K) widths. In the row labeled by ‘‘Full’’ of Table IX, we
can see that the unitarity relation is satisfied within the
numerical precision, as it should be. On the other hand, for
the isobar-fit model, the unitarity is rather badly violated as
seen in the fifth rowof Table IX,which raises a concern about
the reliability of results obtained with the isobar model.

V. SUMMARYAND OUTLOOK

Starting with a model Hamiltonian with vertex interac-
tions fab;R and �cR;M� and two-body interactions vc0R0;cR,

where R andM� are the bare one-particle states and a, b, c
are light pseudoscalar mesons (�, K, etc.), we have devel-
oped a unitary coupled-channels model for three-mesons
decays of heavy mesons and excited meson states. By
fitting the empirical amplitudes for meson-meson scatter-
ing such as �� ! ��, the vertex interactions fab;R, which
can generate resonances R in meson-meson scattering, are
determined and used to predict the one-particle-exchange
Z-diagram mechanisms Zc0R0;cRðEÞ. The scattering ampli-

tudes Tc0R0;cRðEÞ are then calculated with Zc0R0;cRðEÞ by

solving a set of coupled-channels equations with the
three-body unitarity condition satisfied exactly. The final
state interactions of three mesons from the decays of heavy
mesons are then calculated from Tc0R0;cRðEÞ. In the absence
of the Z-diagram mechanisms, our decay amplitude is
reduced to a form similar to that used in the isobar model.
This allows us to investigate the extent to which the com-
monly used isobar-model analysis is valid in extracting the
properties of heavy mesons from the Dalitz plots of
the measured three-mesons distributions. For strong decays
of a heavy meson M�, we present formula and procedures

for investigating the importance of three-meson interac-
tions in determining the resonance pole positions on
complex-energy Riemann surface.
The model has been applied to investigate three-pions

decays of a1ð1260Þ, �2ð1670Þ, and �2ð2100Þ, and D0 me-
sons. It was found that the Z-diagram mechanisms can
change significantly the magnitudes and shapes of the
Dalitz plots. ForD0 ! �þ���0, the changes inmagnitudes
can be a factor of about 1.6 in most of the phase space. For
a1ð1260Þ, �2ð1670Þ, and �2ð2100Þ, the changes are about a
factor of 1:3� 1:6 in magnitudes in the regions where
meson-meson resonances f0ð600Þ, �ð770Þ, and f2ð1270Þ
dominate. We have also examined differences between the
unitary and isobar models, both of them producing the same
Dalitz plot. We have demonstrated that decay amplitudes
from the two models are significantly different, particularly
in the phase. A proper estimate of the phase is particularly
important for extracting the CKM phase � from data of
B� ! D0 (or �D0) K� ! ðK0

S�
þ��ÞK� for which the

D-decay Dalitz plot is analyzed with a model. We have
also shown that the three-body unitarity is rather largely
violated in the isobar model. Finally, the resulting bare
parameters, which can be interpreted as characterizing the
‘‘intrinsic’’ quark-gluon substructure of heavy mesons, are
also very different between the unitary and isobar models.
Our results strongly indicate the need for reanalysis of the

D-meson decays using a unitary model to assess the results,
such as the CKMmatrix elements, obtainedwith the isobar-
model analyses [18–23]. It is also important to reanalyze the
three-meson decays of all heavy mesons listed by PDG as a
necessary step for establishing meson spectroscopy and
exploring the hybrid or exotic mesons in the near future at
JLab, GSI, and other possible facilities. While the model
presented in this work is more advanced than the models
used in the previous analyses of three-meson decays pro-
cesses, improvements are needed to make quantitative
progress. We need to include the data associated with K �K
channels in determining our parameters. The approach for
extending our formulation to include effects due to four-
pions channels, which are considered to be important for
determining scalar-isoscalar (L ¼ I ¼ 0) resonances,
should be developed. For B-meson decays, an appropriate
theoretical approach must be developed to describe ��
amplitudes at high energies where no data is available.

TABLE IX. Comparison between the total decay width of bareM� (�3�þ�K �K) and twice of the imaginary part of theM� self-energy
(� 2 Im½�M� �). Both of �3�þ�K �K and �M� are calculated at E ¼ Re½Epole�, where Epole is a pole mass of a physical M� listed in

Table VIII. ‘‘Full’’ (‘‘Isobar fit’’) is the results of the full unitary (isobar-fit) model.

M� a1ð1260Þ �2ð1670Þ �2ð2100Þ
�3�þ�K �K �2 Im½�M� � �3�þ�K �K �2 Im½�M� � �3�þ�K �K �2 Im½�M� �
(MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

Full 379.8 379.7 234.7 234.8 413.7 413.4

Isobar fit 378.4 266.2 227.4 198.7 434.5 379.1
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Finally, our formulation is derived from applying a unitary
transformation [67,68] to a Hamiltonian defined within
the relativistic quantum field theory. As discussed in
Ref. [39], this method, as well as many well-studied three-
dimensional reduction methods [69], is needed to derive
tractable reaction models for solving complex reactions
involving many channels and three-particle final states,
with the unitarity maintained. Nevertheless, accuracy of
these approximations should be investigated in the future.
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APPENDIX A: RELATION BETWEEN �M� AND M�
DECAYAMPLITUDE

Here, we derive Eq. (32). In the course of the derivation,
we will see that Eq. (32) holds true only when the T matrix
(T0) satisfies the unitarity relation. We start with the decay

width �M�
tot ðEÞ of the bare M� (not the physical resonance

state) defined by

�M�
tot ðEÞ¼2�

X
abc

�ðE�Ea�Eb�EcÞjTabc;M� ðEÞj2: (A1)

The amplitude Tabc;M� is defined in Eq. (14), and it can be

written as

Tabc;M� ¼ habcjð1þ T0G0ÞH0jM�i; (A2)

where G0 is the free Green function, and the reaction T
matrix (T0) has been defined in Eq. (5). By using Eqs. (A1)
and (A2) together with the unitarity relation

T0 � T0y ¼ �2�iT0�ðE�H0ÞT0y; (A3)

and the equality

G0 �Gy
0 ¼ �2�i�ðE�H0Þ; (A4)

we arrive at Eq. (32) as

�M�
tot ðEÞ ¼ 2�

X
abc

�ðE� Ea � Eb � EcÞjTabc;M� ðEÞj2

¼ 2�
X
abc

�ðE� Ea � Eb � EcÞjhM�jH0ð1þGy
0T

0yÞjabcij2

¼ 2�hM�jH0ð1þGy
0T

0yÞ�ðE�H0Þð1þ T0G0ÞH0jM�i
¼ i½hM�jH0G0ð1þ T0G0ÞH0jM�i � hM�jH0ð1þGy

0T
0yÞGy

0H
0jM�i�

¼ �2 Im½hM�jH0G0ð1þ T0G0ÞH0jM�i�
¼ �2 Im½�M� ðEÞ�: (A5)

In the last step, we have used the definition of �M� ðEÞ
given in Eq. (27).

APPENDIX B: DALITZ PLOT

Here, we summarize the formulas for calculating Dalitz

plots. The differential decay width of a heavy meson M�

(E: mass; SM� : spin) at rest decaying to three (pseudo)

scalar mesons, M�ð~0; EÞ ! að ~paÞ þ bð ~pbÞ þ cð ~pcÞ, where
we consider only (pseudo)scalar mesons for the final state,

can be expressed as

d�M� ¼ 1

2E

d3pa

ð2�Þ32EaðpaÞ
d3pb

ð2�Þ32EbðpbÞ
d3pc

ð2�Þ32EcðpcÞ
�ð2�Þ4�ðE�EaðpaÞ�EbðpbÞ�EcðpcÞÞ
��3ð~0� ~pa� ~pb� ~pcÞ

� B
2SM� þ1

X
Sz
M�

jMabc;M� j2; (B1)

where Mabc;M� is the invariant amplitude of the decay; B
is the Bose factor for the final mesons. For example, when

the three final mesons are identical, B ¼ 1=ð3!Þ. With a
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variable transformation, we obtain the double differential

decay width distribution (Dalitz plot density) for the un-

polarized decay given by

d2�M�

dm2
abdm

2
bc

¼ 1

ð2�Þ3
1

32E3

B
2SM� þ1

X
Sz
M�

jMabc;M� j2; (B2)

where mab (mbc) is the invariant mass of the ab (bc) pair.

The invariant amplitude is related to the decay amplitude

defined in Eq. (19) and Eq. (23) or Eq. (43) by

Mabc;M� ¼ �ð2�Þ3 ffiffiffiffiffiffi
2E

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EaðpaÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EbðpbÞ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EcðpcÞ

q
Tabc;M� : (B3)

The meson labels a, b, c specify the momentum (px), the

mass (mx), and the isospin (tx) of the meson x ¼ a, b, c.
Next, we summarize relations between kinematic

variables. For a given value of m2
ab, the range of m2

bc is

determined by its values when ~pb is parallel or antiparallel
to ~pc:

ðm2
bcÞmax¼ðE�

bþE�
cÞ2�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
b �m2

b

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
c �m2

c

q �
2
;

ðm2
bcÞmin¼ðE�

bþE�
cÞ2�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
b �m2

b

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
c �m2

c

q �
2
;
(B4)

with

E�
b ¼

1

2mab

ðm2
ab �m2

a þm2
bÞ;

E�
c ¼ 1

2mab

ðE2 �m2
ab þm2

cÞ
(B5)

being the energies of the particles b and c in the center-of-
mass frame of the ab pair, respectively. For a given set of
mab and mbc, the momenta of the final particles are

pa¼ 1

2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½E2�ðmbcþmaÞ2�½E2�ðmbc�maÞ2�

q
;

pc¼ 1

2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½E2�ðmabþmcÞ2�½E2�ðmab�mcÞ2�

q
;

pb¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
b�m2

b

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE�Ea�EcÞ2�m2

b

q
;

cos	ab¼ 1

2papb

½ðE�Ea�EbÞ2�m2
c�p2

a�p2
b�;

(B6)

where 	ab is the angle between ~pa and ~pb. Taking ~pa on
the xz plane, we have

~pa¼paðsin	a;0;cos	aÞ;
~pb¼pbðcos	a sin	abcos
abþsin	acos	ab;sin	ab sin
ab;

�sin	a sin	abcos
abþcos	acos	abÞ;
~pc¼� ~pa� ~pb; (B7)

where 
ab is the azimuthal angle of ~pb0 , which is obtained
by rotating ~pb around the y axis by �	a. To calculate the
differential decay width for the unpolarized decay
[Eq. (B2)], one may set 	a ¼ 0 and 
ab ¼ 0.

APPENDIX C: Z DIAGRAMS

1. Definition

The matrix element of the Z diagram for a transition process, Rð� ~pcÞ þ cð ~pcÞ ! R0ð� ~pc0 Þ þ c0ð ~pc0 Þ, is given by

hR0ð� ~pc0 ; s
z
R0 ; t

z
R0 Þ; c0ð ~pc0 ; 0; t

z
c0 ÞjZc00 ðEÞjRð� ~pc; s

z
R; t

z
RÞ; cð ~pc; 0; t

z
cÞi

¼ hR0ð� ~pc0 ; s
z
R0 ; t

z
R0 ÞjfR0;c00cjcð ~pc; 0; t

z
cÞ; c00ð ~pc00 ; 0; t

z
c00 Þi

� 1

E� EcðpcÞ � Ec0 ðpc0 Þ � Ec00 ðpc00 Þ þ i�
hc0ð ~pc0 ; 0; t

z
c0 Þ; c00ð ~pc00 ; 0; t

z
c00 Þjfc0c00;RjRð� ~pc; s

z
R; t

z
RÞi: (C1)

Here, c00 is the exchanged meson; szR (tzR) is the z component of the spin (isospin) of the particle R; tzc is the z component of
the isospin of the particle c; ~pc00 ¼ � ~pc � ~pc0 . The vertices are expressed by

hc0ð ~pc0 ; 0; t
z
c0 Þ; c00ð ~pc00 ; 0; t

z
c00 Þjfc0c00;RjRð� ~pc; s

z
R; t

z
RÞi ¼ JRðpc0 ; pc00 ; qcÞhtc0tzc0tc00tzc00 jtRtzRiYsRs

z
R
ðq̂cÞ~fc0c00;RðqcÞ; (C2)

hR0ð� ~pc0 ; s
z
R0 ; t

z
R0 ÞjfR0;c00cjcð ~pc; 0; t

z
cÞ; c00ð ~pc00 ; 0; t

z
c00 Þi ¼ JR0 ðpc; pc00 ; qc0 Þhtc00tzc00 ; tctzcjtR0tz

R0 iY�
sR0 s

z

R0
ðq̂c0 Þ~fR0;c00cðqc0 Þ: (C3)

The above equations are the same as Eq. (44), and ~f is related to the ��model [Eq. (35)] through Eq. (39). Here, ~qc is the
meson momentum in the center of mass of the two-meson (c0c00) subsystem from the Rð� ~pcÞ ! c0ð ~pc0 Þ þ c00ð ~pc00 Þ decay.
The factor JR appears as a result of the Lorentz transformation of the vertex, and is given by
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JRðpx; pc00 ; qyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ExðqyÞEc00 ðqyÞmR

ExðpxÞEc00 ðpc00 ÞERðpyÞ

vuut ; (C4)

with x, y ¼ c or c0. Using the Lorentz transformation, we have

~q c ¼ ~pc0 � �ð� ~pc; ~pc0 Þ ~pc � �c ~pc þ �c ~pc0 ; (C5)

� ~qc0 ¼ ~pc � �ð� ~pc0 ; ~pcÞ ~pc0 � �c0 ~pc þ �c0 ~pc0 ; (C6)

where

�ð ~P; ~pxÞ ¼ 1

ð ~P; ~pxÞ
� ~P 	 ~px

ð ~P; ~pxÞ þ ExðpxÞ þ Ec00 ðj ~P� ~pxjÞ
� ExðpxÞ

�
; (C7)

and

ð ~P; ~pxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ExðpxÞ þ Ec00 ðj ~P� ~pxjÞ�2 � ~P2

q
: (C8)

The signs attached to ~pc and ~pc0 in Eqs. (C5) and (C6), and the ordering of isospins in the Clebsch-Gordan coefficients in
Eqs. (C2) and (C3), matter for the phases of the � $ �� interaction, and are taken consistently with the ��� interaction
Lagrangian. To take these phases appropriately is important for giving the correct phases to the amplitudes.

2. Partial-wave decomposition of Z potential

We define the partial-wave expansion of Eq. (C1) as

hR0ð� ~pc0 ;s
z
R0 ;t

z
R0 Þ;c0ð ~pc0 ;0; t

z
c0 ÞjZc00 ðEÞjRð� ~pc;s

z
R;t

z
RÞ;c;ð ~pc;0;t

z
cÞi

¼X
TTz

X
JJz

X
l0l0zllz

htRtzRtctzcjTTzihtR0tz
R0 tc0 t

z
c0 jTTzihllzsRszRjJJzihl0l0zsR0sz

R0 jJJziYl0;l0zðp̂c0 ÞY�
l;lzðp̂cÞZc00;JPT

ðc0R0Þl0 ;ðcRÞlðpc0 ;pcÞ: (C9)

Performing some manipulations, we obtain

Zc00;JPT
ðc0R0Þl0 ;ðcRÞlðpc0 ; pcÞ ¼ ð�1Þtc00�tRþtc0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2tR þ 1Þð2tR0 þ 1Þ

q
WðtctR0 tRtc0 ; tc00TÞð�1ÞsR0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2sR0 þ 1Þð2sR þ 1Þð2l0 þ 1Þð2lþ 1Þ

q

� X
la;lb;L

0;L00;j
ð2jþ 1Þð2L0 þ 1Þð2L00 þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2sR0 þ 1Þ!ð2sR þ 1Þ!

ð2laÞ!ð2sR0 � 2laÞ!ð2lbÞ!ð2sR � 2lbÞ!

s

� l0 la L0

0 0 0

 !
l lb L00

0 0 0

 !
sR � lb j L0

0 0 0

 !
sR0 � la j L00

0 0 0

 !

�
8<
: l0 la L0

sR0 � la J sR0

9=
;
8<
: l lb L00

sR � lb J sR

9=
;
8<
:L00 sR � lb J

L0 sR0 � la j

9=
;Fla;lb

j ; (C10)

where we have used ð�1Þlþl0þsRþsR0 ¼ 1 from the parity conservation. We have introduced Fla;lb
j and B defined by

Fla;lb
j ¼ 1

2

Z 1

�1
dx

BPjðxÞ
E� EcðpcÞ � Ec0 ðpc0 Þ � Ec00 ðpc00 Þ þ i�

; (C1)

B ¼ Jðpc; pc00 ; qc0 Þ~fsR0 tR0cc00;R0 ðqc0 ÞJðpc0 ; pc00 ; qcÞ~fsRtRR;c0c00 ðqcÞð�c0pc0 Þlað�c0pcÞsR0�lað�cpc0 ÞsR�lbð�cpcÞlbðqcÞ�sRðqc0 Þ�sR0 ; (C12)

where PjðxÞ is the Legendre function of the degree j.
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[40] B. Juliá-Dı́az, T.-S. H. Lee, A. Matsuyama, and T. Sato,

Phys. Rev. C 76, 065201 (2007).
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[43] P. Magalhães, M. R. Robilotta, K. S. F. F. Guimarães, T.
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