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Chiral effective field theory can provide valuable insight into the chiral physics of hadrons when used in

conjunction with nonperturbative schemes such as lattice quantum chromodynamics (QCD). In this

discourse, the attention is focused on extrapolating the mass of the � meson to the physical pion mass in

quenched QCD. With the absence of a known experimental value, this serves to demonstrate the ability of

the extrapolation scheme to make predictions without prior bias. By using extended effective field theory

developed previously, an extrapolation is performed using quenched lattice QCD data that extends outside

the chiral power-counting regime. The method involves an analysis of the renormalization flow curves of

the low-energy coefficients in a finite-range regularized effective field theory. The analysis identifies an

optimal regularization scale, which is embedded in the lattice QCD data themselves. This optimal scale is

the value of the regularization scale at which the renormalization of the low-energy coefficients is

approximately independent of the range of quark masses considered. By using recent precision, quenched

lattice results, the extrapolation is tested directly by truncating the analysis to a set of points above

380 MeV, while temporarily disregarding the simulation results closer to the chiral regime. This tests the

ability of the method to make predictions of the simulation results, without phenomenologically motivated

bias. The result is a successful extrapolation to the chiral regime.
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I. INTRODUCTION

In lattice quantum chromodynamics (QCD), the calcu-
lation of observables with light dynamical quarks is com-
putationally intensive, and only in recent times have there
been successful attempts to perform calculations of any
observable at the physical point (m� ¼ 140 MeV) [1–3].
Usually, some extrapolation scheme is needed if one is to
compare theoretical calculations with the corresponding
physical observables. Utilizing lattice QCD results spread
over a larger range of quark masses naturally enables
greater statistical precision in the extrapolation.

Quenched QCD (QQCD) was introduced as a way to
ameliorate the computational difficulty of simulating dy-
namical fermions on the lattice. Quenched simulations
typically have been superseded by the wide availability
of dynamical configurations. Nevertheless, they can still be
used as an efficient testing ground. This is particularly true
of the chiral extrapolation problem, where the experimen-
tally known values may introduce a prejudice on a chosen
form. In QQCD, the physical target point does not exist,
and an extrapolation of moderate-mass points to the chiral
regime provides an unbiased test of the procedure.

In order to discuss the chiral behavior of the � meson in
QQCD, one first constructs an effective field theory
describing the relevant low-energy degrees of freedom.

The mass of the �meson is described by a chiral expansion
in the quark mass (mq), which includes analytic terms that

are polynomial in mq, and nonanalytic terms arising from

chiral loop integrals. These loop integrals are commonly
divergent, and thus it is necessary to introduce a regulari-
zation procedure. Finite-range regularization (FRR) is se-
lected as a regularization scheme, which introduces a
momentum cutoff scale � into the loop integrals. The
properties of FRR allow it to be used with data extending
outside the power-counting regime (PCR), at the expense
of complete scheme independence. As has been demon-
strated, an optimal choice of regularization scale, �scale,
can be extracted from the lattice simulation results [4]. A
systematic uncertainty in �scale can also be estimated,
which provides a range of suitable values for the scale
obtained from the data [5]. Thus the scheme dependence
in using data extending outside the PCR can be quantified
in an unbiased fashion.

II. EXTENDED EFFECTIVE FIELD THEORY

In chiral effective field theory (�EFT), the diagrammatic
formulation can be used to identify the major contributions
to the � meson mass in QQCD [6,7]. The leading-order
diagrams are the double and single �0 hairpin diagrams
as shown in Figs. 1 and 2, respectively. The constant
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coefficients of these loop integrals are endowed with an
uncertainty to encompass the possible effects of smaller
contributions to order Oðm4

�Þ.
Interactions with the flavor singlet �0 are the most

important contributions to the � meson mass in QQCD.
This is an artifact of the quenched approximation, where
the �0 also behaves as a pseudo-Goldstone boson, having a
‘‘mass’’ that is degenerate with the pion. The dressing of
the �meson by the �0 field is illustrated in Figs. 3–5. Since
the hairpin vertex must be a flavor singlet, the mesons that
can contribute are the �0 meson, and the ! meson. The
contributions from the ! meson are insignificant due to
Okubo-Zweig-Iizuka suppression and the small �-! mass
splitting. However, in QQCD, the �0 loop behaves much as
a pion loop, yet with a slightly modified propagator.

In full QCD however, the�0 does not play any role in the
low-energy dynamics. The physical �0 acquires a finite
mass—which survives in the chiral limit—by resumming
the chain of vacuum insertions as depicted in Fig. 6. As a
‘‘heavy’’ degree of freedom, the �0 can then be integrated
out of the of the effective field theory.

A. Loop integrals and definitions

Using the Gell–Mann-Oakes-Renner Relation connect-
ing quark and pion masses (assuming negligible anomalous
scaling), mq / m2

� [8], the � meson mass extra-

polation formula in QQCD can be expressed in a form
that contains an analytic polynomial in m2

� plus the chiral
loop integrals (�Q)

m2
�;Q ¼ a0 þ a2m

2
� þ a4m

4
� þ �Q

�0�0 ðm2
�;�Þ

þ �Q
�0 ðm2

�;�Þ þOðm5
�Þ: (1)

The coefficients ai are the ‘‘residual series’’ coefficients,
which correspond to direct quark-mass insertions in the
underlying Lagrangian of chiral perturbation theory.
However, the nonanalytic behavior of the expansion arises
from the chiral loop integrals. Upon renormalization of the
divergent loop integrals, these will correspond with low-
energy constants of the quenched �EFT. The extraction of
these parameters from lattice QCD results will now be
demonstrated.
By convention, the nonanalytic terms from the double

and single hairpin integrals are �1m� and �3m
3
�, respec-

tively. The coefficients �1 and �3 of the leading-order
nonanalytic terms are scheme-independent constants that
can be estimated from phenomenology. The low-order

FIG. 2. Single hairpin �0 diagram.

FIG. 3. Double hairpin quark flow diagram.

FIG. 4. Alternative double hairpin quark flow diagram.

FIG. 5. Single hairpin quark flow diagram.

FIG. 6. Diagrammatic representation of �0 propagator terms.

FIG. 1. Double hairpin �0 diagram.

J.M.M. HALL et al. PHYSICAL REVIEW D 84, 114011 (2011)

114011-2



expansion of the loop contributions takes the following
form:

�Q
�0�0 ¼ b

�0�0
0 þ �1m� þ b

�0�0
2 m2

� þ �
�0�0
3 m3

�

þ b�
0�0

4 m4
� þOðm6

�Þ; (2)

�Q
�0 ¼ b

�0
0 þ b

�0
2 m2

� þ �
�0
3 m3

� þ b
�0
4 m4

� þOðm6
�Þ: (3)

The coefficient �3 is obtained by adding the contributions

from both integrals, �3 ¼ �
�0�0
3 þ �

�0
3 . Each integral has a

solution in the form of a polynomial expansion analytic in
m2

� plus nonanalytic terms, of which the leading-order
term is of greatest interest. The coefficients bi are scale-
dependent and therefore scheme-dependent. In order to
achieve an extrapolation based on an optimal FRR scale,
first the scale dependence of the low-energy expansion
must be removed through renormalization. The renormal-
ization program of FRR combines the scheme-dependent
bi coefficients from the chiral loops with the scheme-
dependent ai coefficients from the residual series at each
chiral order i. The result is a scheme-independent coeffi-
cient ci

c0 ¼ a0 þ b
�0�0
0 þ b

�0
0 ; (4)

c2 ¼ a2 þ b
�0�0
2 þ b

�0
2 ; (5)

c4 ¼ a4 þ b
�0�0
4 þ b

�0
4 ; etc: (6)

That is, the underlying ai coefficients undergo a renormal-
ization from the chiral loop integrals. The renormalized
coefficients ci are an important part of the extrapolation
technique. A stable and robust determination of these
parameters forms the core of determining an optimal scale
�scale.

The loop integrals can be expressed in a convenient form
by taking the nonrelativistic limit and performing the pole
integration for k0. Renormalization is achieved by subtract-
ing the relevant terms in the Taylor expansion of the loop
integrals and absorbing them into the corresponding low-
energy coefficients, ci

~�Q
�0�0 ðm2

�; �Þ ¼ ���0�0

3�2

Z
d3k

ðM2
0k

2 þ 5
2A0k

4Þu2ðk; �Þ
ðk2 þm2

�Þ2
� b�

0�0
0 � b�

0�0
2 m2

� � b�
0�0

4 m4
�; (7)

~�Q
�0 ðm2

�; �Þ ¼ ��0

2�2

Z
d3k

k2u2ðk; �Þ
k2 þm2

�

� b�
0

0

� b�
0

2 m2
� � b�

0
4 m4

�: (8)

The tilde (~) denotes that the integrals are written out in
renormalized form to chiral order Oðm4

�Þ. The coefficients
��0�0 and ��0 are related to the coefficients of the leading-

order nonanalytic terms by

�1 ¼ M2
0��0�0 ; (9)

�3 ¼ �
�0�0
3 þ �

�0
3 ¼ A0��0�0 þ ��0 : (10)

These couplings are discussed in detail below. The func-
tion uðk; �Þ is a finite-range regulator with cutoff scale �,
which must be normalized to 1 at k2 ¼ 0, and must ap-
proach 0 sufficiently fast to ensure convergence of the
loop. Different functional forms of uðk; �Þ are equivalent
within the PCR [9,10]. Different choices of uðk; �Þ for this
investigation are discussed in Sec. II B.
With the loop integrals specified, Eq. (1) can be rewrit-

ten in terms of the renormalized coefficients ci

m2
�;Q ¼ c0 þ c2m

2
� þ c4m

4
� þ ~�Q

�0�0 ðm2
�; �Þ

þ ~�Q
�0 ðm2

�; �Þ þOðm5
�Þ (11)

� c0 þ �1m� þ c2m
2
� þ �3m

3
� þ c4m

4
� þOðm5

�Þ: (12)

Equation (11) will be used as the extrapolation formula for
m�;Q at infinite lattice volume. The fit coefficients are c0,

c2 and c4, andm�;Q is obtained by taking the square root of

Eqs. (11) and (12). It is important to note that the formula
in Eq. (12) is equivalent to Eq. (11) only as � is taken to
infinity.
Since lattice simulations are necessarily carried out on a

discrete spacetime, any extrapolations performed should
take into account finite-volume effects. The low-energy
effective field theory is ideally suited for characterizing
the leading infrared effects associated with the finite vol-
ume. In order to achieve this, each of the three-dimensional
integrals can be transformed to its form on the lattice using
a finite sum of discretized momenta, following Armour
et al. [7], for instance,

Z
d3k ! ð2�Þ3

LxLyLz

X
kx;ky;kz

: (13)

Each momentum component is quantized in units of 2�=L,
that is ki ¼ ni2�=L for integers ni. Finite-volume correc-
tions �FVC can be written simply as the difference between
the finite sum and the corresponding integral. It is known
that the finite-volume corrections saturate to a fixed result
for large values of the regularization scale [4]. Following
the example set by this article, the value �0 ¼ 2:0 GeV is
chosen to evaluate all finite-volume corrections indepen-
dent of the FRR cutoff scale � in Eqs. (7) and (8). The
finite-volume version of Eq. (11) can thus be expressed

m2
�;Q¼c0þc2m

2
�þc4m

4
�þð~�Q

�0�0 ðm2
�;�Þþ�FVC

�0�0 ðm2
�;�

0ÞÞ
þð~�Q

�0 ðm2
�;�Þþ�FVC

�0 ðm2
�;�

0ÞÞþOðm5
�Þ: (14)

The convention used for defining the values of �1, �3,
and the various coupling constants that occur in each,
follows Booth [11]. For the possible different values that
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coupling constants can take, definitions by Chow and Rey
[6], Armour et al. [7] and Sharpe [12] are used. The types
of vertices available are shown in Fig. 7, where g2 and g4
occur explicitly in the two diagrams considered here.
Booth suggests naturalness for g2 � 1, and that g4 �
1=Nc. These quenched coupling constants can be con-
nected with the experimental value of g!�� as per

Lublinsky [13] by the relation

g2 ¼ 1

2
g!��f�; (15)

where g!�� ¼ 14� 2 GeV�1 and the pion decay constant

takes the value f� ¼ 0:0924 GeV. Thus g2 is chosen to be
0:65� 0:09 GeV and g4 is chosen to be approximately
g2=3. The coupling between the separate legs of the double
hairpin diagram are approximated by the massive constant
M2

0 / m2
�0 . The next-order correction toM0 in momentum k

defines the coupling to be �M2
0 þ A0k

2. These constants

can be connected to the full QCD �0 meson mass m�0 by

considering the geometric series of terms as previously
illustrated in Fig. 6. For the value of M0, Booth suggest
M0 � 400 MeV by comparing the estimate from a hairpin
insertion to the result from the Witten-Veneziano formula
[11]. In a paper by Duncan et al. a value ofM0 � 900 MeV
is obtained if the coupling constant A0 is natural.
Furthermore, an analysis of the topological susceptibility
leads to an estimate M0 ¼ 1:1� 0:2 GeV [14]. In this
analysis, an average valueM0 ¼ ð400þ 900þ 1100Þ=3 ¼
800 MeV is sensible as a first approximation. As a further
check, consider the formula from Ref. [14], using our
normalization for the pion decay constant (f2� ¼ 2f2�;Duncan)

� ¼ A0M
2
0

48�2f2�
: (16)

This formula relates the couplings A0 andM
2
0 to the anoma-

lous scaling parameter of the pion mass in quenched QCD,
defined by

m2
� � m1=1þ�

q : (17)

The parameter � is found to be small (and the Gell–Mann-
Oakes-Renner Relation a good approximation), with a

maximum value estimated by Duncan to be �max ¼ 0:03
[14]. Booth comments that the parameter A0 is small, and
vanishes in the limit Nc ! 1. Nevertheless, Sharpe uses a
finite value A0 � 0:2 [12]. By using these finite values for �
and A0, Eq. (16) leads to a value of M2

0 � 0:6 GeV2. As a

result,M2
0 is taken to be 0:6� 0:2 GeV2 and A0 is taken to

be 0� 0:2.
The coefficients ��0�0 and ��0 can be specified in terms

of the relevant coupling constants

��0�0 ¼ �2m
�
�

g22
4�f2�

; ��0 ¼ �2m
�
�

g2g4
6�f2�

; (18)

where the couplings are defined relative tom
�
� representing

the � meson mass in the chiral limit, which is taken to be
770 MeV.

B. Finite-range regularization

In FRR, regulator functions uðk; �Þ with characteristic
scale � are inserted into the loop integrals to control the
ultraviolet divergences that occur in the loop integrals
encountered. For some choices of regulator, extra
regulator-dependent nonanalytic terms arise in the chiral
expansion of Eq. (12). Since the correct nonanalytic terms
of the chiral expansion are regularization scale-
independent terms, the extra nonanalytic terms within
working chiral order must be removed. All scale depen-
dence should be absorbed into the analytic fit parameters
ai. For example, if a dipole regulator is chosen, the extra

terms bð1Þ3 m3
�, ðbð1Þ5 þ bð3Þ5 Þm5

� and higher-order terms oc-

curring at odd powers of m� feature in Eq. (12). One can
avoid this by choosing a regulator that does not generate
these extra terms, up to working-order Oðm4

�Þ. Since the
step function u2ðk; �Þ ¼ �ð�� kÞ introduces inconven-
ient finite-volume artifacts, a ‘‘triple-dipole’’ form factor
will be chosen, defined by

uðk; �Þ ¼
�
1þ

�
k2

�2

�
3
��2

: (19)

III. LATTICE SIMULATION DETAILS

The calculation is performed on a 203 � 32 lattice with
197 gauge configurations generated with the Iwasaki gauge
action [15] at � ¼ 2:264, and the quark propagators are
calculated with overlap fermions and a wall source tech-
nique. The lattice spacing is 0.153 fm, as determined from
the Sommer scale parameter.
The massive overlap Dirac operator is defined [16] in the

following way so that at tree level there is no mass or wave
function renormalization [17]:

DðmÞ ¼ �þm

2
þ

�
��m

2

�
�5	ðHÞ; (20)

where 	ðHÞ is the matrix sign function of an Hermitian

operator H. 	ðHÞ � HW=jHW j ¼ HW=ðHy
WHWÞ1=2 is

FIG. 7. Coupling types following convention introduced by
Booth [11].
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chosen, where HWðx; yÞ ¼ �5DWðx; yÞ. Here DW is the
usual Wilson-Dirac operator on the lattice, except with a
negative mass parameter �� ¼ 1=2
� 4 in which 
c <

 < 0:25. Taking 
 ¼ 0:19 in the calculation corresponds
to � ¼ 1:368 [18,19].

In Fig. 8 the simulation results for the vector meson mass
are shown for a range of quark masses.

The data displayed in Fig. 8 are split into two parts. All
the data left of the solid vertical line are unused for
extrapolation and kept in reserve. Indeed, the authors
performing the extrapolation were blind to these data.
This is so that the extrapolation can be checked against
these known data points once the extrapolation is estab-
lished. In other words, the results of the chiral extrapola-
tion are genuine predictions of the hidden lattice results.
Only the data points to the right of the solid vertical line are
used for extrapolation. The full set of data is also listed in
Table I, which also includes the bare quark-mass values. In

addition, effective mass plots corresponding to four lighter
pion masses are included, in Figs. 9–12.
To estimate finite-volume effects using overlap fermi-

ons, quenched lattices of volumes 163 � 28 and 123 � 28
with a ¼ 0:2 fm are used. For a pion mass of 180 MeV,
mPSL � 3, and the finite-volume correction is approxi-
mately 2.7 MeV: about 1.5% of the pion mass [18]. The
current 203 � 32 lattice with a ¼ 0:153 fm is about the
same physical size as that of a 163 � 28 lattice and a
similar finite-volume correction is expected. To estimate
the finite-volume correction of the lowest �meson mass at
m� � 200 MeV, the same percentage of error is used, and
a shift of �Lm� � 13 MeV to the � mass is calculated for

the �meson mass ofm� � 917 MeV. This is about half of

the statistical error of the lattice data. It should be noted
that the data that will be used in chiral extrapolations are
those with pion mass greater than 400 MeV, with mPSL >
6:2. The predictions are extended to the region with pion
mass less than 400MeVand compared with the lattice data.

FIG. 8 (color online). Quenched lattice QCD data for the �
meson mass. The dashed vertical line indicates the physical pion
mass and the solid vertical line shows how the data set is split
into two parts. The lower-mass portion of the data was not
known at the time of extrapolation.

TABLE I. Quenched lattice QCD data for the � meson mass
m� at various pion mass squared values m2

�. The statistical

uncertainty of the m2
� is negligible. The values of the bare quark

mass mq are also included for comparison. The lattice size is

203 � 32, with a lattice spacing of 0.153 fm. Entries below the
line (underneath m2

� ¼ 0:143 GeV2) remained hidden until the
extrapolation was determined.

mq (GeV) m2
�ðGeV2Þ m� (GeV) m�L

1.032 3.150 2.001(1) 27.53

0.774 2.187 1.700(2) 22.94

0.645 1.742 1.548(2) 20.47

0.516 1.329 1.399(2) 17.88

0.477 1.212 1.354(2) 17.08

0.426 1.062 1.294(2) 15.98

0.356 0.867 1.214(3) 14.44

0.309 0.743 1.162(4) 13.37

0.284 0.676 1.133(4) 12.75

0.258 0.610 1.103(5) 12.12

0.219 0.515 1.060(5) 11.13

0.181 0.422 1.016(6) 10.07

0.148 0.347 0.985(7) 9.13

0.123 0.288 0.960(8) 8.32

0.102 0.241 0.938(8) 7.62

0.085 0.204 0.926(9) 7.00

0.071 0.172 0.914(11) 6.43

0.058 0.143 0.908(14) 5.87

0.045 0.114 0.899(15) 5.24

0.036 0.094 0.899(16) 4.75

0.030 0.080 0.896(18) 4.38

0.025 0.068 0.898(20) 4.04

0.021 0.059 0.902(22) 3.77

0.018 0.053 0.903(26) 3.58

0.015 0.047 0.907(28) 3.37

0.013 0.041 0.913(32) 3.15
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FIG. 9 (color online). Effective mass plot corresponding to the
simulation at m2

� ¼ 0:143 GeV2. Only the wall source results
are plotted. The point source results are not used in the analysis.
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With regard to possible lattice artifacts, the lattice results
analyzed are based on the overlap fermion on quenched
gauge configurations at one lattice spacing. Even though
the overlap fermion has relatively smaller OðaÞ errors, the
Oða2Þ correction toward the continuum limit has not been
taken into account. With a spatial size of 3.06 fm,m�a� 3
for the smallest pion mass at 200 MeV is somewhat smaller
than m�a ¼ 4, beyond which the finite-volume effect has
been considered to be small. For m�a� 3, the previous
study described in Ref. [18] estimates that the finite-
volume correction is approximately 3% which is smaller
than the statistical error of the pion mass.

The enhancement of zero modes effects in QQCD pri-
marily affects the pseodoscalar and scalar mesons. Since
all the zero modes appear in one chiral sector in each gauge
configuration, the pseodoscalar and scalar mesons will
have a leading 1=m2 singularity from the zero modes.
These appear in both the quark and antiquark propagators
in the meson correlator [17]. Nevertheless, the vector and

axial vector mesons have only a 1=m singularity, which is a
less dramatic effect. In either case, the quantity that deter-
mines the size of the zero mode effects is m�V in the
p-regime [20]. It has been demonstrated that when
m�V * 5, the zero mode effect is hardly detectable
[18,21]. For all pion masses displayed in Fig. 12, m�V >
7. Therefore, there is no reason to suggest that there is a
zero mode contribution to the � meson correlators being
studied.

IV. EXTRAPOLATION RESULTS

A. Renormalization flow curves

In order to produce an extrapolation to each test value of
m2

�, a finite-range regularization scale � must be selected.
As an example, one can choose a triple-dipole regulator at
� ¼ 1:0 GeV. By using Eq. (14), finite- and infinite-
volume extrapolations are shown in Fig. 13. Note that the
m2

� values selected for the finite-volume extrapolations
exactly correspond to the ‘‘missing’’ low-energy data
points set aside earlier. The physical point m2

� ¼
0:0196 GeV2 is included as well.
Now the regularization scale dependence of low-energy

coefficients c0, c2 and c4 is investigated for various upper
limits of the range of pion masses. The renormalization of
these low-energy coefficients is considered for a series of
� values. The aim is to obtain renormalization flow curves,
each corresponding to a different value of maximum pion
mass, m2

�;max. Thus the behavior of the renormalization of

the low-energy coefficients can be examined as lattice data
extend further outside the PCR. Figures 14–16 show the
renormalization flow curves for each of c0, c2 and c4. Note
that each data point plotted has an associated error bar, but
for the sake of clarity only a few points are selected to
indicate the general size of the statistical error bars. Using
the procedure described in Ref. [4], the optimal regulari-
zation scale is identified by the value of � that minimizes

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10

m
ef

fa

t

FIG. 10 (color online). Effective mass plot corresponding to
the simulation at m2

� ¼ 0:080 GeV2. Only the wall source
results are plotted. The point source results are not used in the
analysis.
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FIG. 11 (color online). Effective mass plot corresponding to
the simulation at m2

� ¼ 0:053 GeV2. Only the wall source
results are plotted. The point source results are not used in the
analysis.
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FIG. 12 (color online). Effective mass plot corresponding to
the simulation at m2

� ¼ 0:041 GeV2. Only the wall source
results are plotted. The point source results are not used in the
analysis.
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the discrepancies among the renormalization flow curves.
This indicates the value of regularization scale at which the
renormalization of c0, c2 and c4 is least sensitive to the
truncation of the data. Physically, this value of � can be
associated with an intrinsic scale related to the size of the
source of the pion cloud.

By examining Figs. 14–16, increasing m2
�;max leads to

greater scheme dependence in the renormalization, since
the data sample lies further from the PCR. Complete
scheme independence would be indicated by a horizontal
line at the physical point. Since the effective field theory is
calculated to a finite chiral order, complete scheme inde-
pendence across all possible values of � will not occur in
practice. Note that an asymptotic value is usually observed
in the renormalization flow as � becomes large, indicating
that the higher-order terms of the chiral expansion are
effectively zero. However, these asymptotic values of the
low-energy coefficients are poor estimates of their correct
values, as previously demonstrated in a pseudodata model
[4]. Instead, the best estimates of the low-energy coeffi-
cients lie in the identification of the intersection point of

the renormalization flow of the low-energy coefficients. It
is also of note that, for small values of �, FRR schemes
break down. The regularization scale must be at least large
enough to include the chiral physics being studied.

B. Optimal regularization scale

The optimal regularization scale �scale can be obtained
from the renormalization flow curves using a chi-square
analysis described below. In addition, the analysis will
allow the extraction of a range for �scale. Knowing how
the data are correlated, the systematic uncertainties from
the coupling constants and �scale will be combined to
obtain an error bar for each extrapolation point. Of par-
ticular interest are the values of m�;Q at the values of m2

�

explored in the lattice simulations but excluded in the
chiral extrapolation.
To obtain a measure of the uncertainty associated with

an optimal regularization scale, a �2
dof function is con-

structed. This function should allow easy identification of
the intersection points in the renormalization flow curves,
and a range associated with this central regularization
scale. The first step is to plot �2

dof against a series of �
values. The relevant data are the extracted low-energy

FIG. 13 (color online). A test extrapolation based on the four
lightest original data points (excluding the low-energy set) as
shown. Both the finite- and infinite-volume results are shown for
a triple-dipole regulator at � ¼ 1:0 GeV. The dashed vertical
line indicates the physical pion mass.

FIG. 14 (color online). behavior of c0 vs �. A few points are
selected to indicate the general size of the statistical error bars.

FIG. 15 (color online). behavior of c2 vs �. A few points are
selected to indicate the general size of the statistical error bars.

FIG. 16 (color online). behavior of c4 vs �. A few points are
selected to indicate the general size of the statistical error bars.
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coefficients with differing values of m2
�;max. A plot of �2

dof

is constructed separately for each renormalized coefficient
c (with uncertainty �c)

�2
dof ¼

1

n� 1

Xn
i¼1

ðcði; �Þ � cTð�ÞÞ2
ð�cði; �ÞÞ2 ; (21)

for i corresponding to fits with differing values of m2
�;max

(n ¼ 8). The theoretical value cT is given by the weighted
mean

cTð�Þ ¼
P

n
i¼1 cði; �Þ=ð�cði; �ÞÞ2P

n
j¼1 1=ð�cðj; �ÞÞ2 : (22)

The �2
dof plots using a triple-dipole regulator are shown in

Figs. 17–19. The optimal regularization scale �scale is
taken to be the central value�central of each plot. The upper
and lower bounds obey the condition �2

dof <�2
dof;min þ

1=ðdofÞ. The results for the optimal regularization scale
and the upper and lower bounds are shown in Table II. It is
remarkable that each low-energy coefficient leads to the
same optimal value of �, i.e. �central ¼ 0:67 GeV. By
averaging the results among c0, c2, and c4, the optimal

regularization scale �scale for the quenched � meson mass
can be calculated for this data set: �scale ¼ 0:67þ0:09

�0:08 GeV.
The result of the final extrapolation, using the estimate

of the optimal regularization scale�scale ¼ 0:67þ0:09
�0:08 GeV,

and using the initial data set to predict the low-energy data
points, is shown in Fig. 20. The extrapolation to the physi-
cal point obtained for this quenched data set is:
mext

�;Qðm2
�;physÞ ¼ 0:925þ0:053

�0:049 GeV, an uncertainty of less

than 6%.
Note that each extrapolation point displays two error

bars. The inner error bar corresponds to the systematic
uncertainty in the parameters only, and the outer error bar
corresponds to the systematic and statistical uncertainties of
each point added in quadrature. Also, the infinite-volume
extrapolation curve is displayed in order to illustrate the
effect of finite-volume corrections to the loop integrals.
In Fig. 21, the extrapolation predictions are compared

against the actual simulation results, which were not in-
cluded in the fit. Note that both the extrapolations and the
simulation results display the same nonanalytic curvature
near the physical point. Figure 22 shows the data plotted
with error bars correlated relative to the lightest data
point in the original set, m2

� ¼ 0:143 GeV2. This aids in
clarifying the plot from Fig. 21 by removing much of the
correlated statistical error in the lattice data, and allows us
to be even more stringent in determining whether the
extrapolation is successful. It is notable that the extrapo-
lated results are consistent with the lattice data even after
having removed the correlated statistical error. To highlight
the importance of this application of an extended �EFT, a

FIG. 17 (color online). �2
dof for c0 versus �, corresponding to

the renormalization flow curves displayed in Fig. 14.

FIG. 18 (color online). �2
dof for c2 versus �, corresponding to

the renormalization flow curves displayed in Fig. 15.

FIG. 19 (color online). �2
dof for c4 versus �, corresponding to

the renormalization flow curves displayed in Fig. 16.

TABLE II. Values of the central, upper and lower regulariza-
tion scales, in GeV, obtained from the �2

dof analysis of c0, c2 and
c4, displayed in Figs. 17–19.

scale (GeV) c0 (Fig. 17) c2 (Fig. 18) c4 (Fig. 19)

�central 0.67 0.67 0.67

�upper 0.78 0.75 0.75

�lower 0.58 0.59 0.60
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simple linear fit is included in Fig. 22. By ignoring low-
energy chiral physics, the linear fit is statistically incorrect
at the physical point. Note also that all of the missing
original data points are consistent within the extrapola-
tions’ systematic uncertainties. After statistical correla-
tions are subtracted, the extrapolated points correspond to
an error bar almost half the size of that of the lattice data
points. In order to match this precision at low energies, the
time required in lattice simulations would increase by
approximately 4 times.

In order to check if scheme independence is recovered
using data within the PCR, the low-energy data that were
initially excluded from analysis can now be treated in the
same way. That is, renormalization flow curves can be

constructed as a function of � for sequentially increasing
m2

�;max. The results are shown in Figs. 23–25. Clearly, the

renormalization flow curves for each plot corresponding to
c0, c2 and c4 are flatter than those of the initial analysis,
indicating a reduction in the regularization scale depen-
dence due to the use of data closer to the PCR. One is not
able to extract an optimal regularization scale from these
plots, as shown in the behavior of �2

dof , displayed in

Figs. 26–28. However, each �2
dof curve provides a lower

bound for the regularization scale, where FRR breaks down
[4], as discussed in Section IVA. These lower bounds are:
�

c0
lower ¼ 0:39 GeV, �c2

lower ¼ 0:52 GeV and �c4
lower ¼

0:59 GeV.
The statistical error bars of the low-energy coefficients

corresponding to a small number of data points in

FIG. 20 (color online). Extrapolation at �scale ¼
0:67þ0:09

�0:08 GeV based on Kentucky Group data, and using the

optimal number of data points, corresponding to m̂2
�;max ¼

0:35 GeV2. The inner error bar on the extrapolation points
represents purely the systematic error from parameters. The
outer error bar represents the systematic and statistical error
estimates added in quadrature.

FIG. 21 (color online). Comparison of chiral extrapolation
predictions (blue diamond) with Kentucky Group data (red
cross). Extrapolation is performed at �scale ¼ 0:67þ0:09

�0:08 GeV,
and using the optimal number of data points, corresponding to
m̂2

�;max ¼ 0:35 GeV2. The inner error bar on the extrapolation

points represents purely the systematic error from parameters.
The outer error bar represents the systematic and statistical error
estimates added in quadrature.

FIG. 22 (color online). Comparison of chiral extrapolation
predictions (blue diamond) with Kentucky Group data (red
cross), with errors correlated relative to the point at m2

� ¼
0:143 GeV2. This is done simply to clarify the plot in Fig. 21
by removing much of the correlated statistical error.
Extrapolation is performed at �scale ¼ 0:67þ0:09

�0:08 GeV, and using

the optimal number of data points, corresponding to m̂2
�;max ¼

0:35 GeV2. The error bar on the extrapolation points represents
the systematic error only. A simple linear fit, on the optimal pion
mass region, is included for comparison.

FIG. 23 (color online). behavior of c0 vs � including the
initially excluded low-energy data. A few points are selected to
indicate the general size of the statistical error bars.
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Figs. 23–25 is large, and a statistical difference among the
curves does not appear until m2

�;max � 0:11 GeV2. Thus

the identification of an optimal regularization scale will be
aided by incorporating data corresponding to even larger

values of m2
�;max. By considering all of the available data,

the behavior of �2
dof , as displayed in Figs. 29–31, resolve

precise optimal regularization scales: �
c0
central ¼ 0:72 GeV,

�c2
central ¼ 0:71 GeV and�c4

central ¼ 0:71 GeV. The system-

atic errors obtained from each �2
dof curve seem arbitrarily

constrained as a consequence of including more data
points, which extend well outside the chiral regime, and
possibly outside the applicable region of FRR techniques.
This issue is addressed in the ensuing section.

C. Optimal pion mass region

In this section, a robust method for determining an
optimal range of pion masses is presented. This range
corresponds to an optimal number of simulation results
to be used for fitting. First, consider the extrapolation of the
quenched � meson mass, which can now be completed.
The statistical uncertainties in the values of c0, c2, c4 are
dependent on m2

�;max. As a consequence, the uncertainty in

the extrapolated � meson mass mext
� must also be depen-

dent on m2
�;max. Since the estimate of the statistical uncer-

tainty in an extrapolated point will tend to decrease as more

FIG. 24 (color online). behavior of c2 vs � including the
initially excluded low-energy data. A few points are selected to
indicate the general size of the statistical error bars.

FIG. 25 (color online). behavior of c4 vs � including the
initially excluded low-energy data. A few points are selected to
indicate the general size of the statistical error bars.

FIG. 26 (color online). �2
dof , for c0 versus �, corresponding to

the renormalization flow curves displayed in Fig. 23. A lower
bound for the regularization scale is found: �

c0
lower ¼ 0:39 GeV.

FIG. 27 (color online). �2
dof , for c2 versus �, corresponding to

the renormalization flow curves displayed in Fig. 24. A lower
bound for the regularization scale is found: �c2

lower ¼ 0:52 GeV.

FIG. 28 (color online). �2
dof , for c4 versus �, corresponding to

the renormalization flow curves displayed in Fig. 25. A lower
bound for the regularization scale is found: �c4

lower ¼ 0:59 GeV.
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data are included in the fit, one might naı̈vely choose to use
the largest m2

�;max value possible in the data set. However,

at some large value of m2
�;max, FRR �EFT will not provide

a valid model for obtaining a suitable fit. At this upper
bound of applicability for FRR �EFT, the uncertainty in an
extrapolated point is dominated by the systematic error in
the underlying parameters. This is due to a greater scheme
dependence in extrapolations using data extending outside

the PCR, meaning that the extrapolations are more sensi-
tive to changes in the parameters of the loop integrals. Thus
there is a balance point m2

�;max ¼ m̂2
�;max, where the statis-

tical and systematic uncertainties (added in quadrature) in
an extrapolation are minimized.
In order to obtain this value m̂2

�;max, consider the behav-

ior of the extrapolation of the �meson mass to the physical
point mext

�;Qðm2
�;physÞ, as a function of m2

�;max. Treating the

parameters: �scale, g2, g4,M
2
0 and A0 as independent, their

systematic uncertainties from these sources are added in
quadrature. In addition, the systematic uncertainty due to
the choice of the regulator functional form is roughly

FIG. 29 (color online). �2
dof , for c0 versus �, corresponding to

all available data, including the low-energy set.

FIG. 30 (color online). �2
dof , for c2 versus �, corresponding to

all available data, including the low-energy set.

FIG. 31 (color online). �2
dof , for c4 versus �, corresponding to

all available data, including the low-energy set.

FIG. 32 (color online). behavior of the extrapolation of the
quenched � meson mass to the physical point mext

�;Qðm2
�;physÞ vs

m2
�;max using the initial data set, which excludes the lowest mass

data points. In each case, c0 is obtained using the scale �central

(for a triple-dipole regulator) as obtained from the �2
dof analysis.

The error bars include the statistical and systematic uncertainties
in c0 added in quadrature. The optimal value m̂2

�;max ¼
0:35 GeV2.

FIG. 33 (color online). behavior of the extrapolation of the
quenched � meson mass to the physical point mext

�;Qðm2
�;physÞ vs

m2
�;max using the complete data set, which includes the lowest

mass data points. In each case, c0 is obtained using the scale
�central (for a triple-dipole regulator) as obtained from the �2

dof

analysis. The error bars include the statistical and systematic
uncertainties in c0 added in quadrature. The optimal value
m̂2

�;max ¼ 0:20 GeV2.
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estimated by comparing the results using the double-dipole
and the step function. These functional forms are the two
most different forms of the various regulators considered,
since the dipole was excluded due to the extra nonanalytic
contributions it introduces. The results for the initial and
complete data sets are shown in Figs. 32 and 33, respec-
tively. Note that the systematic uncertainty due to �scale is
included for chiral order Oðm4

�Þ.
Figure 32 indicates an optimal value m̂2

�;max ¼
0:35 GeV2, which will be used in the final extrapolations,
in order to check the results of this method with the

low-energy data. By using only the data contained in the
optimal pion mass region, constrained by m̂2

�;max, an esti-

mate of the optimal regularization scale may be calculated
with a more generous corresponding systematic uncer-
tainty. The value �scale ¼ 0:64 GeV is the average of
�scale

c0 , �scale
c2 and �scale

c4 using this method. The �2
dof analy-

sis does not provide an upper or lower bound at this value
of m̂2

�;max. Note that these two estimates of the optimal

regularization scale are consistent with each other. Both
shall be used and compared in the final analysis. Figure 33
indicates an optimal value m̂2

�;max ¼ 0:20 GeV2 for the

TABLE III. Results for the quenched � meson mass for different values of m2
�;max, extrapo-

lated to the physical point, corresponding to Figs. 32 (for the original data set) and 33 (for the
complete data set). The uncertainty in mext

�;Qðm2
�;physÞ is provided in the following order:

the statistical uncertainty, the systematic uncertainty due to the intrinsic scale, g2, g4, M
2
0, A0

and the regulator functional form, respectively.

m2
�;max (GeV2) mext

�;Qðm2
�;physÞ (GeV): original set mext

�;Qðm2
�;physÞ (GeV): complete set

0.059 � � � 0.956(234)(1)(0)(0)(1)(0)(0)

0.068 � � � 0.938(139)(1)(1)(0)(1)(0)(0)

0.080 � � � 0.934(87)(1)(1)(0)(1)(0)(0)

0.094 � � � 0.939(64)(2)(1)(0)(1)(0)(1)

0.114 � � � 0.930(47)(3)(2)(0)(2)(0)(0)

0.143 � � � 0.932(34)(5)(3)(0)(4)(1)(0)

0.172 � � � 0.929(31)(6)(4)(0)(5)(1)(0)

0.204 � � � 0.929(29)(9)(5)(0)(6)(1)(0)

0.241 0.930(110)(27)(14)(0)(17)(4)(6) 0.927(27)(12)(7)(0)(9)(2)(0)

0.288 0.899(62)(31)(1)(0)(1)(1) 0.933(24)(17)(10)(0)(12)(3)(1)

0.347 0.922(43)(37)(11)(0)(13)(28)(17) 0.932(23)(21)(11)(0)(13)(3)(4)

0.422 0.948(29)(45)(23)(1)(28)(7)(8) 0.930(20)(29)(14)(0)(16)(4)(8)

0.515 0.932(23)(51)(19)(1)(23)(6)(19) 0.929(19)(37)(15)(0)(18)(4)(13)

0.610 0.921(18)(63)(18)(1)(22)(5)(25) 0.926(16)(54)(18)(0)(21)(5)(22)

0.676 0.915(12)(74)(18)(1)(22)(6)(32) 0.926(14)(66)(19)(1)(23)(6)(25)

0.743 0.919(13)(79)(22)(1)(26)(7)(29) 0.922(12)(74)(21)(1)(26)(7)(27)

0.867 0.933(9)(103)(32)(1)(39)(12)(35) 0.923(8)(100)(29)(1)(35)(11)(38)

1.062 0.928(7)(115)(32)(1)(38)(12)(43) � � �
1.212 0.926(7)(121)(31)(1)(37)(12)(38) � � �
1.329 0.921(6)(132)(31)(1)(37)(12)(43) � � �
1.742 0.915(5)(146)(30)(1)(37)(13)(48) � � �
2.187 0.910(4)(175)(30)(1)(37)(14)(55) � � �
3.150 0.902(3)(197)(29)(1)(36)(14)(61) � � �

TABLE IV. The values of c0, c2 and c4 as obtained from both the original data set and the complete set, which includes the low-
energy data. In each case, the coefficients are evaluated using the scale �central (for a triple-dipole regulator) as obtained from the �2

dof

analysis. The value of m2
�;max used is that which yields the smallest error bar in adding statistical and systematic uncertainties in

quadrature. For the initial data set, m̂2
�;max ¼ 0:35 GeV2. For the complete data set, m̂2

�;max ¼ 0:20 GeV2. The statistical uncertainty is

quoted in the first pair of parentheses, and the systematic uncertainty is quoted due to the parameters, in the following order: �scale, g2,
g4, M

2
0, A0 and the regulator functional form.

c0 (GeV2) c2 c4 (GeV�2)

original set 1.31(5)(10)(4)(0)(5)(4)(8) 7.9(4)(25)(2)(0)(2)(1)(4) �16:2ð7Þð382Þð3Þð0Þð3Þð1Þð4Þ
complete set 1.35(4)(3)(36)(16)(60)(166)(113) 6.8(5)(17)(13)(1)(17)(14)(11) �3:3ð16Þð359Þð23Þð1Þð28Þð12Þð1Þ
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complete data set, which includes the low-energy data. A
higher density of data in the low-energy region serves to
decrease the statistical error estimate of extrapolations to
the low-energy region. The corresponding value of�scale is
unconstrained in this case, since the data lie close to the
PCR. The breakdown of the systematic error bar into its
constituent uncertainties is listed in Table III.

The values of c0, c2 and c4 for both the original data set
and the complete data set are shown in Table IV, with
statistical error estimate quoted first and systematic uncer-
tainty due to the parameters �scale, g2, g4, M

2
0, A0, and the

regulator functional form quoted second, in this order. In
the case of the original data set, the value of c4 is not well-
determined, due to the small number of data points used. In
the case of the complete data set, the results are dominated
by statistical uncertainty and also result in an almost un-
constrained value of c4. Even if �scale is quite well-
determined, as observed in Figs. 17–19, the value of c4
itself is sensitive to changes in the regularization scale �,
as evident from Fig. 16. The coefficients of the complete
set are less well-determined due to the fact that m̂2

�;max ¼
0:20 GeV2, leaving only low-energy results with large
statistical uncertainties for fitting.

The result using the estimate of the optimal regulariza-
tion scale �scale ¼ 0:64 GeV, with the systematic uncer-
tainty calculated by varying � across all suitable values,
and using the initial data set, is shown in Fig. 34. The
extrapolation to the physical point obtained for this
quenched data set is mext

�;Qðm2
�;physÞ ¼ 0:922þ0:065

�0:060 GeV,

an uncertainty of approximately 7%. Figure 35 shows the
data plotted with error bars correlated relative to the light-
est data point in the original set, m2

� ¼ 0:143 GeV2, using
�scale ¼ 0:64 GeV, and varying � across its full range of

values. This naturally increases the estimate of the system-
atic uncertainty of the extrapolations, but also serves to
demonstrate how closely the results from lattice QCD and
�EFT match.

V. CONCLUSION

A technique for isolating an optimal regularization
scale, established in Ref. [4], was tested in quenched
QCD through an examination of the quenched � meson
mass. The result is a successful extrapolation based on an
extended effective field theory procedure. By using
quenched lattice QCD results that extended beyond the
power-counting regime, an optimal regularization scale
was obtained from the renormalization flow of the low-
energy coefficients.
An optimal value of the maximum pion mass to be used

for fitting was also calculated, and this resulted in an
alternative estimate of the value of the optimal regulariza-
tion scale, which was consistent with the first result. The
mass of the � meson was calculated in the low-energy
region, including the physical point, using each estimate of
the optimal regularization scale, and both results were
compared. The results of extrapolations using �EFT, and
the results of lattice QCD simulations, were demonstrated
to be consistent. The extrapolation correctly predicts the
low-energy curvature that was observed when the low-
energy lattice simulation results were revealed.
In full QCD, using dynamical fermions, the process � !

�� contributes to the � meson mass. This means that near
the chiral limit, the �� component of the � necessarily
involves a hard momentum scale, and therefore is not

FIG. 34 (color online). Comparison of chiral extrapolation
predictions (blue diamond) with Kentucky Group data (red
cross). Extrapolation is performed at �scale ¼ 0:64 GeV, varied
across the whole range of � values, and using the optimal
number of data points, corresponding to m̂2

�;max ¼ 0:35 GeV2.

The inner error bar on the extrapolation points represents purely
the systematic error from parameters. The outer error bar repre-
sents the systematic and statistical error estimates added in
quadrature.

FIG. 35 (color online). Comparison of chiral extrapolation
predictions (blue diamond) with Kentucky Group data (red
cross), with errors correlated relative to the point at m2

� ¼
0:143 GeV2. This is done simply to clarify the plot in Fig. 34
by removing much of the correlated statistical error.
Extrapolation is performed at �scale ¼ 0:64 GeV, varied across
the whole range of � values, and using the optimal number of
data points, corresponding to m̂2

�;max ¼ 0:35 GeV2. The error

bar on the extrapolation points represents the systematic error
only. A simple linear fit, on the optimal pion mass region, is
included for comparison.
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amenable to the standard methods of low-energy expan-
sions, as entailed by �PT. Therefore, one needs to resort to
alternative techniques in such instances.

However, since there exists no experimental value for
the mass of a particle in the quenched approximation, this
analysis demonstrates the ability of the technique to make
predictions without phenomenologically motivated bias.
The results clearly indicate a successful procedure for
using lattice QCD data outside the power-counting regime
to extrapolate an observable to the chiral regime.
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