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We present a new framework for the extraction of the strong coupling from hadronic � decays through

finite-energy sum rules. Our focus is on the small, but still significant nonperturbative effects that, in

principle, affect both the central value and the systematic error. We employ a quantitative model in order

to accommodate violations of quark-hadron duality, and enforce a consistent treatment of the higher-

dimensional contributions of the operator product expansion to our sum rules. Using 1998 OPAL data for

the nonstrange isovector vector and axial-vector spectral functions, we find the nf ¼ 3 values �sðm2
�Þ ¼

0:307� 0:019 in fixed-order perturbation theory, and 0:322� 0:026 in contour-improved perturbation

theory. For comparison, the original OPAL analysis of the same data led to the values 0:324� 0:014

(fixed order) and 0:348� 0:021 (contour improved).

DOI: 10.1103/PhysRevD.84.113006 PACS numbers: 13.35.Dx

I. INTRODUCTION

In the past few years there has been a renewed interest in
the precision determination of �s from nonstrange had-
ronic � decays. One reason for this interest is the recent
calculation of the coefficient of the Oð�4

sÞ term in the
perturbative contribution to the Adler function [1]. This
contribution dominates the ratio of the hadronic � decay
width and the electronic decay rate [2],

R�¼�½��!��hadronsð�Þ�=�½��!��e
� ��eð�Þ�: (1.1)

Another reason is the existence of a number of competing
analysis methods which lead to results that are not, or only
barely, consistent with one another. In fact, the error on �s

from � decays quoted in a recent (2009) review [3] has
gone up since its 2006 version, for the simple reason that
the result of Ref. [3] was obtained by averaging the central
values of all recent � decay determinations of �s and the
error by considering the spread of these central values. All
determinations are based on data from (primarily) the
ALEPH (see Ref. [4] for their 1998 analysis and Ref. [5]
for their 2005 analysis) and (also) the OPAL (see Ref. [6])
collaborations; the differences in the results are on the
theory side.

Clearly, this is an unsatisfactory situation. There are at
least three theoretical issues related to the discrepancies
between the different determinations. Number one is the
long-standing question as to which resummation scheme,

fixed-order perturbation theory (FOPT) or contour-
improved perturbation theory (CIPT), is best used for
evaluating the perturbative contributions to R�. Many of
the recent reanalyses have focused on this question
[1,7–11]. Much less attention has been devoted to the
two other issues, both of which concern nonperturbative
contributions to R�. Because of the relatively low value of
the � mass, such contributions cannot be entirely ne-
glected, even if they are expected to be small. Issue number
two is the question of whether the operator product expan-
sion (OPE) contributions beyond perturbation theory have
been consistently taken into account. Here we are aware of
only one systematic investigation [12], in which it was
demonstrated that self-consistency problems existed for a
number of earlier analyses. Specifically, it was shown that
the OPE parameters obtained in those analyses do not
provide a good match between data and theory when the
upper limit s0 on the hadronic invariant mass squared s in
the weighted integrals over the spectral functions [which
enter the finite-energy sum rules (FESRs) employed in
these analyses] is varied away from m2

�.
1 Issue number

three concerns potential violations of ‘‘quark-hadron dual-
ity’’ not taken into account in previous FESR determina-
tions of �s. In the case of FESRs, the assumption of
quark-hadron duality amounts to presuming that all

*Permanent address: Departament de Fı́sica, Universitat
Autonòma de Barcelona, E-08193 Bellaterra, Barcelona, Spain.

1Some of the earlier analyses carried out this test for the FESR
based on the kinematic weight (the weight yielding R� when
s0 ¼ m2

�), for which it works reasonably well. Reference [12]
showed that these analyses unambiguously fail the tests for other
doubly pinched FESRs.
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nonperturbative effects are accounted for by higher-
dimensional terms in the OPE. To date, this assumption
has not seen a systematic investigation. As already ex-
plained in Ref. [12], the issues of the OPE and possible
violations of quark-hadron duality are intricately con-
nected: without a quantitative analysis of duality viola-
tions, it turns out to be difficult to treat the OPE
consistently without relying on ‘‘external’’ results. For
instance, in the analysis of Ref. [12], the dimension-4
term in the OPE had to be fixed using a result for the gluon
condensate from charmonium sum rules.

In this article, we aim to address this situation, focusing
on the nonperturbative questions. We use a recently devel-
oped model for the duality-violating (DV) part of the
ud-flavor vector (V) and axial-vector (A) spectral func-
tions [13], which makes it possible to carry out a self-
contained FESR analysis in which stability with respect to
varying s0 is checked self-consistently without reliance on
external values for any of the OPE parameters.

Since no QCD-based theory of quark-hadron duality
exists, we have to resort to a model. This means that our
results will be based on the (testable) assumption that this
model gives a good description of the DV part of the
spectral functions for values of s from s ! 1 down to a
minimum value, smin, sufficiently low to lie in the range
s � m2

� kinematically accessible in hadronic � decays. We
emphasize that the need to make such an assumption has
always been a fundamental ‘‘shortcoming’’ of the determi-
nation of �s from � decays. Assuming quark-hadron dual-
ity a priori, and therefore neglecting the effect of DVs
altogether, also amounts to employing a—probably
worse—model. In other words, in order to investigate the
systematics related to the assumption of quark-hadron
duality, one cannot avoid the adoption of a model of the
DV part of the spectral functions. In Ref. [13] it was found
that the model we intend to employ gives a reasonable
description of the spectral functions in the region
1:1 GeV2 � s � m2

�.
2 Moreover, the physics of our model

is based on a picture of the hadron resonances which are
experimentally seen in the spectral function. Resonances
are not described by perturbation theory or the OPE, and
thus should be part of any model aiming to describe
violations of quark-hadron duality.

In this work, we do not address the issue of the optimal
choice of resummation for the truncated perturbative series
in a given FESR. While this systematic, of course, forms a
potentially important part of the final theory error on �s,
we have no new elements to add to the discussion of this
issue. Moreover, we believe that the nonperturbative part
of the systematics should be understood first, in order to get
a more reliable picture of the quantitative discrepancy
between results based on FOPT and CIPT. We will

therefore carry out our whole analysis with both resumma-
tion schemes.
To date, two experiments, ALEPH [4,5] and OPAL [6],

have made the nonstrange V and A spectral functions from
their �-decay analyses publicly available. The 2005 analy-
sis of ALEPH is more recent, and based on more statistics,
and thus would be expected to have smaller experimental
errors. Unfortunately, the 2005 ALEPH data cannot be
used at present, because correlations due to unfolding
have been inadvertently omitted in the original ALEPH
analysis and hence from the publicly posted covariance
matrices [14].3 Since the reanalysis of the ALEPH data has
yet to be completed, we limit ourselves, in this article, to an
analysis employing the OPAL data.
In order to normalize the various exclusive-mode com-

ponents of the spectral functions, OPAL relied on the
branching fractions available in 1998, as well as the
then-current values of Vud and the electronic branching
fraction Be. All of these have been updated since then, and
this makes it possible to at least partially update the OPAL
inclusive spectral distributions as well. Such an update
would allow an updated, though still OPAL-based, deter-
mination of �s. Here, since our primary goal is to inves-
tigate the impact of the novel features of our treatment of
nonperturbative effects on the extracted results for �s, we
choose not to perform this update, and instead work with
the data in precisely the same form as used by OPAL [6].
We plan to devote a separate article to an adaptation of
OPAL data to recent values of the exclusive branching
fractions, Vud and Be, and an investigation of the effect
of this adaptation on the value of �s and other OPE
parameters.
This article is organized as follows. In Sec. II we present

a brief review of the application of FESRs to hadronic �
decays, with emphasis on the issue of quark-hadron
duality. In Sec. III we are then able to provide a more
thorough discussion of the various systematic errors dis-
cussed already above. Preparing for a presentation of our
results in Sec. VI, we describe the theory parametrization
we will employ in more detail in Sec. IV, and discuss the
issue of strong correlations in the integrated data, and our
resulting fitting strategies, in Sec. V. Apart from reporting
on our fits in Secs. VIA and VIB, we consider also, in
Sec. VID, the V þ A channel sum (related to the non-
strange part of R�) as well as the V � A channel difference.
In the latter case, we demonstrate that our fit results satisfy
the Weinberg sum rules [15] as well as the Das-Guralnik-
Mathur-Low-Young (DGMLY) sum rule for the � electro-
magnetic mass difference [16]. Section VII contains a
summary of our results, including a conversion of �s to
its value at the Z mass; Sec. VIII contains our conclusions.

2In the present, more detailed analysis, we will find that a
significantly larger value of smin is preferred.

3We thank members of the ALEPH Collaboration for private
communications, in which the existence of this problem has been
confirmed.
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II. THEORY SUMMARY

Our analysis will involve the correlation functions

���ðqÞ ¼ i
Z

d4xeiqxh0jTfJ�ðxÞJy� ð0Þgj0i
¼ ðq�q� � q2g��Þ�ð1Þðq2Þ þ q�q��

ð0Þðq2Þ
¼ ðq�q� � q2g��Þ�ð1þ0Þðq2Þ þ q2g���

ð0Þðq2Þ;
(2.1)

where J� is one of the nonstrange V or A currents, �u��d or

�u���5d, and the superscripts (0) and (1) label the spin.

The decomposition in the third line employs the combina-

tions �ð1þ0Þðq2Þ and q2�ð0Þðq2Þ, which are free of kine-
matic singularities. Defining s ¼ q2 ¼ �Q2 and the
spectral functions

�ð1þ0ÞðsÞ ¼ 1

�
Im�ð1þ0ÞðsÞ; (2.2)

Cauchy’s theorem and the analytical properties of

�ð1þ0ÞðsÞ, applied to the contour in Fig. 1, imply the
FESR relation

IðwÞV=Aðs0Þ �
1

s0

Z s0

0
dswðsÞ�ð1þ0Þ

V=A ðsÞ

¼ � 1

2�is0

I
jsj¼s0

dswðsÞ�ð1þ0Þ
V=A ðsÞ; (2.3)

valid for any s0 > 0 and any weight wðsÞ analytic in the
region of the contour [17]. In the present work we will
restrict ourselves to polynomial weights. Partial integration
allows the right-hand side of Eq. (2.3) to be recast in terms
of the Adler function

DðsÞ ¼ �s
d�ð1þ0ÞðsÞ

ds
: (2.4)

The spectral functions �ð1þ0Þ
V=A ðsÞ are measurable in had-

ronic � decays. Explicitly, for standard model decays

induced by the flavor ud (isovector) currents, with
wTðs;s0Þ¼ð1�s=s0Þ2ð1þ2s=s0Þ, wLðs; s0Þ ¼ 2ðs=s0Þ�
ð1� s=s0Þ2, and the scaled, nonstrange V and A widths

RV=A;ud � �½�� ! �� hadronsV=A; udð�Þ�
�½�� ! ��e

� ��eð�Þ� ; (2.5)

one has [18]

RV=A;ud ¼ RV=A;udðs0 ¼ m2
�Þ; (2.6)

in which RV=A;udðs0Þ is defined by

RV=A;udðs0Þ¼12�2jVudj2SEW 1

s0

Z s0

0
ds½wTðs;s0Þ�ð1þ0Þ

V=A ðsÞ

�wLðs;s0Þ�ð0Þ
V=AðsÞ�; (2.7)

where SEW is a short-distance electroweak correction.
Since, in the standard Model,

�ð0Þ
V ðsÞ¼O½ðmd�muÞ2Þ�;

�ð0Þ
A ðsÞ¼2f2�ð�ðs�m2

��Þ��ðsÞÞþO½ðmdþmuÞ2�; (2.8)

the differential distributions proportional to the expression
in square brackets in Eq. (2.7) provide a direct measure of

�ð1þ0Þ
V=A ðsÞ, up to numerically negligible Oðm2

u;dÞ correc-

tions.4 The second delta function in Eq. (2.8), which comes

from the kinematic singularity present in �ð0Þ, does not
contribute to the integral in Eq. (2.7) as a result of the factor
of s in the accompanying weight wLðs; s0Þ.
For sufficiently large s0, and ignoring for a moment that

the OPE is only valid for large Euclidean Q2, the right-
hand side of Eq. (2.3) can be approximated using the OPE

for �ð1þ0Þ
V=A ðsÞ. Experimental spectral data can then be used

to fit the OPE, and extract parameters such as �s [2]. In
what follows, we will denote the experimental version of
the spectral integral on the left-hand side of Eq. (2.3) by

IðwÞV=A;exðs0Þ [generically, IðwÞex ðs0Þ] and the theoretical repre-

sentation of the contour integral on the right-hand side by

IðwÞV=A;thðs0Þ [generically, IðwÞth ðs0Þ].
In the upper part of the energy region allowed by

�-decay kinematics, ½�ð1þ0Þ
V=A ðsÞ�OPE is dominated by its

FIG. 1. Analytic structure of�ð1þ0Þðq2Þ in the complex s ¼ q2

plane. The solid curve shows the contour used in Eq. (2.3).

4The � decay constant, f� ¼ 92:21ð14Þ MeV [19], is pres-
ently known very accurately. The central value of the � ! ���

branching fraction, B�, employed in the 1998 OPAL analysis
corresponds to the somewhat larger value 94.0 MeV. In order to
match exactly the OPAL treatment of the V and A spectral
functions, we employ the latter value in our analysis. Note
that, since B� was obtained by the PDG in a combined fit to
the full set of � basis modes, it would, in fact, be inconsistent to
change just B� without simultaneously changing all other
branching fractions. We will revert to the updated value f� ¼
92:21ð14Þ MeV in our later analysis employing updated OPAL
data.
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dimension D ¼ 0 contribution, i.e., the perturbative con-
tribution in the chiral limit.5 The perturbative expression
for the Adler function (2.4), which is known to order �4

s

[1], can be written as6

½DðsÞ�D¼0
OPE ¼ 1

4�2

X1
n¼0

ans ð�2ÞXnþ1

k¼1

kcnk

�
log

�s

�2

�
k�1

; (2.9)

with asð�2Þ ¼ �sð�2Þ=�. SinceDðsÞ is independent of�2,
we can choose �2 ¼ �s, indicating that only the coeffi-
cients cn1 are independent; all other cnk can be expressed in
terms of the cn1 through the renormalization group. In the

MS scheme, c01¼c11¼1, c21 ¼ 1:639 82, c31¼6:37101,
and c41 ¼ 49:075 70 [1]. We will use the guess c51 ¼ 283
of Ref. [8] for the next coefficient, assigning an uncertainty
of �283 in order to estimate the error due to truncating
perturbation theory (cf. Sec. VIC).

The freedom to choose �2 in Eq. (2.9) is at the heart of
the different prescriptions employed for evaluating the
perturbative contribution to the right-hand side of
Eq. (2.3): in FOPT �2 ¼ s0 is used in Eq. (2.9), whereas
in CIPT �2 ¼ �s is employed inside the contour integral
on the right-hand side of Eq. (2.3) [21].

Beyond perturbation theory, one may improve the ap-
proximation to the right-hand side of Eq. (2.3) by including

higher-dimension contributions to �ð1þ0Þ
OPE ðsÞ. Explicitly,

�ð1þ0Þ
OPE ðsÞ ¼ X1

k¼0

C2kðsÞ
ð�sÞk ; (2.10)

with the OPE coefficients C2k logarithmically dependent
on s through perturbative corrections. The term with k ¼ 0
corresponds to the purely perturbative, mass-independent
contributions, represented by Eq. (2.9). The C2k, with
k > 1, contain nonperturbative D ¼ 2k condensate contri-
butions, and are, in principle, different for the V and A
channels.

We will neglect C2, which is purely perturbative and
quadratic in the light-quark masses.7 It has been suggested
that a nonperturbativeD ¼ 2 term should be added in order
to account for the truncation of the perturbative series for
the D ¼ 0 term [22]. We postpone an investigation of this
issue to future work, and here set C2 ¼ 0.

Neglecting contributions of Oðm4
u;dÞ or proportional to

h �uui � h �ddi, both of which are numerically very small, the
coefficient C4 is a linear combination of the ‘‘gluon con-
densate’’ hasG��G

��i (with G�� the gluon field strength),

and the chiral condensates mih �c ic ii, i ¼ u, d, s. To

leading order in �s both contributions to C4 are the same
in the V and A channels. Differences in the D ¼ 4 V and A
light quark-condensate contributions enter beginning at
Oð�sÞ or Oðm4

u;dÞ [23].
The coefficient C6 is assumed to be dominated by four-

quark condensates, because the contribution from
hg3fabcGa�

� Gb	
� Gc�

	 i vanishes at leading order in �s [24],

and the contributions from lower-dimensional operators
are suppressed by powers of the quark mass. Coefficient
functions for the four-quark condensates were calculated to
next-to-leading order in Ref. [25]. At D ¼ 8 there is a
proliferation of operators, and very little detailed informa-
tion is available. As we will explain in Sec. IV below, we
will not need to consider terms with D> 8.
The OPE is valid when the Euclidean distance jxj in

Eq. (2.1) is small compared to��1
QCD, or, equivalently, when

Euclidean Q2 is positive and large. However, both pertur-
bation theory and the OPE are expected to break down near
the positive real q2 axis [26]. We may account for this
additional nonperturbative effect by writing the right-hand
side of Eq. (2.3) as [13]

� 1

2�is0

I
jsj¼s0

dswðsÞð�ð1þ0Þ
OPE ðsÞ þ�ðsÞÞ; (2.11)

with

�ðsÞ � �ð1þ0ÞðsÞ ��ð1þ0Þ
OPE ðsÞ: (2.12)

The difference �ðsÞ defines the duality-violating contribu-

tion to �ð1þ0ÞðsÞ.
All previous determinations of �s from hadronic � de-

cays have assumed, implicitly or explicitly, that integrated
DV contributions are small enough to be neglected for the
weights employed in the analysis. While this assumption
has sometimes been checked for self-consistency (see, e.g.,
Ref. [12]), a comprehensive quantitative estimate of the
impact of DVs on the precision with which �s can be
determined has not been provided. One of the aims of the
present work is to provide a comprehensive analysis which
takes DVs into account, and hence remedies this
shortcoming.
As shown in Ref. [13], if �ðsÞ is assumed to decay fast

enough as s ! 1, the right-hand side of the FESR relation
(2.3) can be rewritten as

IðwÞth ðs0Þ¼� 1

2�is0

I
jsj¼s0

dswðsÞ�ð1þ0Þ
OPE ðsÞþDwðs0Þ;

(2.13)

with

D wðs0Þ ¼ � 1

s0

Z 1

s0

dswðsÞ 1
�

Im�ðsÞ: (2.14)

The imaginary parts 1
� Im�V=AðsÞ can be interpreted as the

DV parts, �DV
V=AðsÞ, of the V=A spectral functions.

Following Ref. [13], we will parametrize �DV
V=AðsÞ as

5Perturbative contributions proportional to powers of the quark
masses are included in D � 2 OPE terms.

6See, for instance, Ref. [20].
7Since in the present study we are only dealing with the light

up- and down-quark correlators, the D ¼ 2 mass-squared cor-
rections are tiny. Still, one version of our analysis code has
implemented all knownm2 corrections up toOð�3

sÞ, and we have
verified that they are indeed negligible.
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�DV
V=AðsÞ ¼ 	V=Ae

��V=As sinð�V=A þ 
V=AsÞ: (2.15)

This introduces, in addition to �s and the D � 4 OPE
condensates, four new parameters in each channel. The
OPE, supplemented by the ansatz (2.15), will be assumed
to hold for s � smin, where smin will have to be inferred
from fits to the experimental data. The extended analysis,
including DVs, will of course only be possible if smin lies
significantly below m2

�.
The ansatz (2.15) is modeled on the asymptotic behav-

ior for large s of a semirealistic model for the QCD
spectrum in a given channel. This model was developed
in Ref. [27], based on earlier ideas described in Ref. [28].
It incorporates a combination of large-Nc insights (narrow
resonances with widths increasing with mass) as well as
the Regge picture for the spacing between resonances.
These ingredients lead quite naturally to the exponential
decay in Eq. (2.15) with the decay parameter �� 1=Nc, as
well as the oscillatory behavior represented by the sine
function, both with arguments (approximately) linear
in s. We favor this model over other attempts to model
DVs because of its natural connection to the resonance
structure of the spectral distributions, something that
is not evident in other models (such as those based on
instantons). For detailed discussions of the model, see
Refs. [27,29,30].

III. SYSTEMATIC ERRORS

There are three sources of systematic error affecting,
to various extents, existing FESR determinations of �s.
Since the investigation of two of these sources is the
central aim of this work, we briefly describe each of the
three sources here, before embarking on the details of our
analysis.

(1) There are (at least) two ways of partially resumming

the perturbative contribution to IðwÞth ðs0Þ, CIPT and

FOPT (cf. Sec. II). The relative merits of the two
methods have been the subject of a number of
investigations [1,7–11]. While no particular prefer-
ence is given to either scheme in Refs. [1,11], CIPT
is favored in [7,9], whereas Refs. [8,10] give argu-
ments in favor of FOPT, in the latter work through a
new CI expansion in a conformally mapped
coupling.
We will not attempt to resolve the associated sys-
tematic uncertainty in this work, but instead report
on the results of our fits using both CIPT and FOPT.
In fact, it is interesting to see what discrepancy
remains between CIPT and FOPT after other sys-
tematic errors, described below, have been properly
taken into account.

(2) With the exception of Ref. [12], the OPE has not
been treated consistently in previous extractions of
�s from � decays, in the sense we now explain.
Consider a term of order 1=sk in the OPE of

Eq. (2.10). The dominant term in the expansion in
�s of the corresponding coefficient CD,D ¼ 2k, is a
constant of order one (times the relevant conden-
sate). In the sum rule (2.3), this term in the OPE is
picked out by the term of degree k� 1 in the weight
wðsÞ. Other terms in wðsÞ will also pick up contri-
butions from CDðsÞ, because of the logarithmic
dependence of CDðsÞ on s, but such contributions
will not be dominant as they are suppressed by at
least one extra power of �s. Thus, if weight func-
tions up to degree n are used in the fits, it follows
that terms up to at least order k ¼ nþ 1 must be
kept in the OPE in order to retain all potentially
relevant contributions not suppressed by at least one
extra power of �s.
In the conventional analysis of Refs. [5–7,31] this
was not done: while weights up to degree n ¼ 7 in s
were employed [which would generally require
keeping terms in the OPE up to D ¼ 16 (k ¼ 8)],
only terms up to D ¼ 8 (k ¼ 4) were retained. As
noted earlier, it was found in Ref. [12] that this is not
self-consistent: with the parameter values found in
those fits, the s0 dependence of the theory curves
does not match that of the data for the majority of
the weights employed, as well as for alternate de-
gree 2 and 3 weights which explicitly test theD � 8
parameters obtained from the original fits.8 In this
work, we will restrict ourselves to weight functions
of degree n � 3, corresponding to keeping terms up
to D ¼ 8 in the OPE. As we will explain below, this
implies that we will have to vary s0 in the FESR
(2.3); it is not possible to restrict a consistent analy-
sis to only s0 ¼ m2

� without additional uncontrol-
lable assumptions.

(3) Typically, previous analyses neglected the presence
of duality violations.9 While in some cases this
assumption was checked for self-consistency [12],
such a check does not provide a quantitative assess-
ment of the impact of residual DV effects. It has
long been known that FESRs with a simple weight
like w ¼ 1 have sizable DVs, even at scales
�2–3 GeV2, but that switching to weights
‘‘pinched’’ (having a zero) near s ¼ s0 significantly
reduces this effect [33]. It has become a standard
assumption that using only weights which are at
least doubly pinched will suppress DVs sufficiently,
so as not to affect the value of, or error on, �s.
Clearly, in view of the quite small errors on �s

8See also Ref. [27], where it was shown in a model study that
adding a D ¼ 10 term to the OPE in an analysis like that of
Refs. [5–7] can make a significant difference.

9Exceptions are Refs. [7,32]; however, as is clear from the
results of the present work, those investigations of DVs involved
additional assumptions which we are able to avoid in the present
analysis.
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reported in the recent literature, this issue is in need
of further investigation.
The use of weights which are at least doubly
pinched, i.e., which contain at least two powers of
s0 � s, forces us to vary s0 in Eq. (2.3), if the OPE is
to be treated consistently in the sense described
above. Suppose one wants to consider only s0 ¼
m2

�, and fit �s as well as C4;...;D¼2k, i.e., k parame-

ters.10 To fit k parameters, one requires at least
kþ 1 data points, and therefore at least kþ 1
linearly independent weights if one uses only
s0 ¼ m2

�. If all weights contain the factor ðs0�sÞ2,
the minimally required highest degree will be n ¼
kþ 2. This is inconsistent with our criterion of
point 2 above, which would require terms up to
order kþ 3 to be kept in the OPE. The only way
out is to vary s0, and/or to consider weights that are
less than doubly pinched. This makes the need to
take DVs into account more urgent, because it is
certainly not justified to assume that integrated
DVs are negligible for weights which are less than
doubly pinched, over any sizable interval in s0
below m2

�.

IV. PARAMETRIZATION USED IN FITS

In this section, we describe in detail the parametrization
of the theory that we will use in our analysis of the data.

A. Selection of moments

Wewish to consider terms in the OPE only up toD ¼ 8,
for several reasons. First, we expect that small contribu-
tions to typical OPE integrals associated with these con-
densates will be potentially sensitive to residual integrated
DV contributions, making it possible to check the impact
of DVs on earlier determinations of the condensates.
Second, it appears unlikely that we can reliably determine
condensates with D> 8 from existing data. Hence we
focus on FESRs where such contributions will be strongly
suppressed. Finally, little is known about the OPE, but it is
almost certainly not a convergent expansion. One would
thus expect it to break down at some sufficiently high
order, making it prudent to limit ourselves to a relatively
low maximum order.

From the arguments in Sec. III, this restricts us to
weights with degree � 3, i.e., to at most four linearly
independent weights. Since we will be fitting up to four
OPE parameters (�s as well as the D ¼ 4, 6, and 8 con-
densates), in addition to the DV parameters in each chan-
nel, this already forces us to consider the sum rules (2.3)
with more than one value of s0 for at least one weight. We
will vary s0 over the interval ½smin; m

2
��, and explore the

stability of the fits as a function of smin.

In this work, we choose to consider the weights11

ŵ0ðxÞ¼1; ŵ2ðxÞ¼1�x2;

ŵ3ðxÞ¼ ð1�xÞ2ð1þ2xÞ¼wTðs;s0Þ; x� s=s0:
(4.1)

A key point is that we explicitly incorporate DVs in our fits,
and therefore need to use at least one weight sensitive not
only to �s and the OPE coefficients, but also to the DV
parameters. This stands in contrast to other work to date,
where a desire to neglect DVs motivated the use of
(at least) doubly pinched weights, which are known to
suppress such contributions. Such doubly pinched weights
are, in fact, too insensitive to the DV parameters to allow
for reliable fits of these parameters. In order to maximize
our sensitivity to DVs and hence improve our ability to fit
DV parameters, we include the unpinched weight ŵ0 in all
our fits. The other weights have been chosen by requiring
them to be of degree� 3, to have no term linear in s, and to
be singly pinched (ŵ2) or doubly pinched (ŵ3). Alternative
sets of weights satisfying the same requirements are ob-
tained by replacing either ŵ2 or ŵ3 with 1� x3. Our results
with these alternative sets are completely consistent with
those obtained from the set (4.1).

For constant CD, I
ðŵ2Þ
th picks out the D ¼ 6 term, while

I
ðŵ3Þ
th picks out the D ¼ 6 and D ¼ 8 terms. In practice, the

logarithmic dependence of CD on s beyond leading order
in �s implies that all terms in the OPE contribute for all
choices of wðsÞ. However, C6 and C8 will be primarily
determined by the ŵ2 and ŵ3 FESRs. In the present work,
we will represent the D � 4 contributions using effective
values C4, C6, and C8 independent of s. This implies that
C4 does not contribute to fits involving any of the moments
of Eq. (4.1). For the case of C4, we have checked, in the

case of fits to I
ŵ0
ex ðs0Þ, that the numerical effect of this

approximation is tiny, cf. Sec. VIA.
As wewill show in Sec. VI, fits to moments with weights

ŵ0, ŵ2, and ŵ3 lead to stable and self-consistent results.
One might also consider including moments with weights
containing a linear term in s, such as the weight w1ðxÞ ¼
1� x. Such moments are sensitive to the gluon condensate
and would thus allow us to estimate its size, although due
care would have to be exercised with the interpretation of
such a result since this condensate mixes with the unit
operator.12 However, renormalon-inspired model studies
of higher orders in perturbation theory along the lines of
Refs. [8,20] appear to indicate that perturbation theory,
truncated at currently known orders, may be less well

converged to the full resummed result for Iðw1Þ
th ðs0Þ than

for I
ðŵ0;2;3Þ
th ðs0Þ. This may be related to the observation that

the D ¼ 4 term, present in the OPE representation of

10Recall that we set C2 ¼ 0 in this article.

11We use hats in order to distinguish our set of weights from a
different set of weights considered in Ref. [12].
12A similar observation holds for some of the condensates in C6
and C8.
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Iðw1Þ
th ðs0Þ, is affected by the leading infrared-renormalon

ambiguity in the Borel resummation of the associated
perturbative series. In contrast, nonperturbative contribu-

tions to the OPE representations of I
ðŵ2;3Þ
th ðs0Þ depend most

significantly on the CD with D> 4, and are affected pri-
marily only by subleading ambiguities, associated with
more distant infrared-renormalon poles. This is one reason
we restrict ourselves to the weights (4.1) in this article.

We have also studied weights with a term linear in x,
such as w1ðxÞ, added to our set of weights (4.1), but find
that, with analyses of the type we present in Sec. VI, the
uncertainty on the resulting determination of the gluon
condensate remains large compared to that of other deter-
minations in the literature. We intend to further investigate
such fits, and, in particular, the determination of the gluon
condensate, in a forthcoming article. Here we just note that
fits similar to those presented in Sec. VI but also including
the weight w1 yield results consistent with the fits pre-
sented in Secs VIA and VIB. Finally, we observe that
ŵ0;2;3ðxÞ are a complete, linearly independent set of

weights of degree � 3 without a term linear in s.

B. Duality violations

We will parametrize the duality-violating part of �V and
�A as in Eq. (2.15). This introduces four new parameters in
each channel, forcing us to consider values of s0 over an
interval ½smin; m

2
��. Since our ansatz (2.15) is assumed to

hold only for sufficiently large s, smin must be large enough
to lie in the region of validity of this assumption, but low
enough to be kinematically accessible in hadronic � decay.
Our ansatz is therefore only practical if we also assume that
such an smin exists. We are then interested in a value of smin

that is small enough to maximize the data available for use
in our fits, requiring at the same time that the DV ansatz
with that choice of smin gives a good description of the
data.

A priori, there is no reason for smin to be equal in the V
and A channels. We therefore present two types of analy-
ses: one for the V channel alone, and one for the combined
V and A channels (V&A). In the latter case, we will employ
an smin common to both channels. This is equivalent to
assuming an smin <m2

� exists such that the asymptotic
behavior has set in for both the V and A channels for all
s > smin. Since it seems unlikely for the asymptotic behav-
ior in a given channel to set in below the lowest resonance
in that channel, we expect to find smin �m2

a1 or higher for

the combined V&A fits. In practice, we find an optimal
choice smin � 1:4–1:5 GeV2.

We have also considered fits to only the A channel, but
find that the data in that channel lead to a poor determi-
nation of the DV parameters, and thus also of �s. We
believe this is due to the lower quality of the A-channel
data, rather than the absence of a sufficiently low
A-channel smin, but it is impossible to decide this from
the data alone. We therefore do not discuss purely

A-channel fits, and restrict our analysis of this channel to
combined fits involving the V channel as well.

V. CORRELATIONS AND FITTING STRATEGIES

Values of the left-hand side, IðwÞex ðs0Þ, of Eq. (2.3) for
nearby values of s0 are very strongly correlated, and this
has repercussions for the choice of fitting strategies. We
describe the strong correlations in Sec. VA, and our strat-
egies in Sec. VB below. As already explained in the
Introduction, we limit ourselves to an analysis of the
OPAL data [6].

A. Correlations and errors

The data we will use are the OPAL compilation of the
nonstrange V and A spectral functions.13 These data appear

in our fits through the weighted integrals, IðwÞex ðs0Þ, appear-
ing on the left-hand sides of the FESRs (2.3), for the
various weight functions we consider. These integrals
are, of course, represented numerically by sums over the
appropriate sets of experimental bins. Since OPAL’s bin
width is 0:032 GeV2, varying s0 between approximately
1:5 GeV2 and 3:120 GeV2 (OPAL’s highest bin in the V
channel, and almost equal to m2

� ¼ 3:157 GeV2) or
3:088 GeV2 (OPAL’s highest bin in the A channel) pro-
vides about 50 data points for each integral.

The integrals IðwÞex ðs0Þ are, however, highly correlated.

For instance, if we consider I
ŵ0
ex ðs0Þ on the interval

s0 2 ½1:504; 3:136� GeV2,14 the corresponding correlation
matrix has subdiagonal or superdiagonal elements as large
as 0.998, a largest eigenvalue �33, and a smallest eigen-
value �0:000 19. Nonetheless, as we will show in
Sec. VIA, it turns out that reliable, standard �2 fits to the
data for ŵ0, using our parametrization of the right-hand
side of Eq. (2.3), are possible.
The situation changes if we consider two or more weight

functions simultaneously. Focusing on our primary fits,
with moments constructed with the weight functions
ŵ0;2;3, not only the correlations for each moment have to

be taken into account, but also the cross correlations be-
tween these different moments, because they are not inde-
pendent of each other. In fact, if we consider the full
correlation matrix for a combination of moments, for a
range of s0 values, it turns out to have zero eigenvalues at
machine precision because of the strong cross correlations.
This means that standard �2 fits, employing the full corre-
lation matrix in constructing the function to be minimized,
are not possible in this case. This remains true if we ‘‘thin
out’’ the data, i.e., if we use fewer values of s0 on a given
interval, by a factor of 2 to 4. This puts standard �2 fits out

13We would like to thank Sven Menke for making the data files
available to us.
14These numbers are at the right edges of the bins centered at
s ¼ 1:488 GeV2 and s ¼ 3:120 GeV2, respectively.
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of reach for simultaneous fits to multiple moments, forcing
us to either use a different fitting strategy, or to drop such
fits from consideration.

Because of this problem, we will perform fits to multiple
moments using a different ‘‘fit quality’’ Q2. Q2 will be a
positive-definite quadratic form in the differences between
data and theory; for a description of some possible choices,
see Sec. VB. Any such Q2 can be minimized to give an
estimate of the fit parameters, as long as we have a rea-
sonable way to estimate the parameter errors and cova-
riances associated with the fit. In this article, we will
estimate the parameter error matrix by propagating errors
through a linear fluctuation analysis starting from the full
data covariance matrix; for details, see the Appendix.

B. Fitting strategies

In this subsection, we explain three different fitting
strategies we have used, in view of the problem of strong
correlations described in Sec. VA.

(1) The simplest fit we can perform is a standard�2 fit to
a single moment. Wewill choose our single-moment
fit to be the one with weight function ŵ0ðxÞ ¼ 1,
since it does not suppress contributions from any
part of the spectrum, and is sensitive enough to the
DV part of our fitting function to give reasonably
good fits for the DV parameters. It should be noted
here that our main goal is to minimize the fit error on
�s. The only reason one cares about the ‘‘nuisance’’
parameters 	V;A, �V;A, �V;A, and 
V;A is that they

describe part of the physics, and as such have to be
taken into account in any fit. We emphasize again
that, under the assumption that our DVansatz (2.15)
gives a good description of the DVs, there are no
reasons to limit ourselves to pinched weights and, in
fact, strong arguments not to do so.
We have also considered fitting the spectral function
directly, since it is maximally sensitive to DVs in the
kinematically allowed region. Such a fit can be cast
in terms of a FESR obtained by choosing wðsÞ ¼ 1

and replacing �ð1þ0ÞðsÞ with its derivative on the

left-hand side of Eq. (2.3). It turns out that it is not
possible to determine �s from such a fit, basically
because the spectral function is much less sensitive to
�s than it is to the DV parameters.15 In contrast,
pinched weights suppress the contribution from
DVs more than ŵ0 does. We find, in fact, that fits
with a single doubly-pinched weight are not stable if
one tries to fit both theOPE and (strongly suppressed)
DV parameters. In our experience, the most stable
and precise results from a single-moment fit are
obtained using ŵ0ðxÞ ¼ 1. Fits to singly pinched
weights also appear to work well: we have checked
standard�2 fitswithweights ŵ2ðxÞ or 1� x3 and find
results in excellent agreement with those reported in
Tables I and IV below, though with somewhat larger
errors on �s.

(2) It is of course interesting to see whether simulta-
neous fits to multiple moments can be used to reduce
errors, in particular, the error on�s. However, in this
case, we run into the problem of strong correlations
described above in Sec. VA. The simplest solution
is to omit correlations in constructing the fit quality
Q2, and choose a Q2 which is diagonal in the
differences between data and theory. Working with
a set of s0, fsk0g in some fitting window, and letting

�IðwÞex ðs0Þ be the error on the weighted spectral in-

tegral IðwÞex ðs0Þ, obtained using the full data covari-
ance matrix, such a fit quality has the form

Q 2
diag ¼

X
w

X
sk
0

�
IðwÞex ðsk0Þ � IðwÞth ðsk0; ~pÞ

�IðwÞex ðsk0Þ
�
2
; (5.1)

where we have made the dependence of the
weighted theory integral on the set of fit parameters
~p explicit and the outer sum runs over the set of
weights included in the analysis.

TABLE I. Standard �2 fits to Eq. (2.3) with wðsÞ ¼ 1, V channel. FOPT results are shown above the horizontal line, and CIPT results
below. Errors are standard �2 errors; �V and 
V are in GeV�2.

smin dof �2=dof �s 	V �V �V 
V

1.3 53 0.44 0.320(23) 0.026(18) 0.42(50) 0.54(54) 2.85(30)

1.4 50 0.35 0.311(19) 0.019(13) 0.23(44) �0:29ð64Þ 3.27(33)

1.5 47 0.36 0.307(18) 0.017(11) 0.16(42) �0:52ð74Þ 3.38(38)

1.6 44 0.38 0.308(20) 0.018(15) 0.22(51) �0:47ð82Þ 3.36(41)

1.7 41 0.38 0.305(19) 0.012(12) 0.03(51) �0:61ð86Þ 3.41(41)

1.3 53 0.45 0.332(37) 0.037(27) 0.64(53) 0.57(58) 2.80(33)

1.4 50 0.36 0.326(27) 0.023(16) 0.35(48) �0:32ð64Þ 3.27(33)

1.5 47 0.37 0.322(25) 0.020(13) 0.25(44) �0:57ð73Þ 3.39(38)

1.6 44 0.38 0.323(27) 0.022(20) 0.31(57) �0:53ð81Þ 3.38(41)

1.7 41 0.39 0.320(25) 0.014(13) 0.08(53) �0:68ð85Þ 3.43(40)

15In Ref. [13] fits to the spectral function were presented, but
there �s was kept fixed. Note that contributions to �V=A from the
higher D terms in the OPE are negligibly small.
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Often, such a fit is referred to as ‘‘uncorrelated.’’
Indeed, if Q2 would be interpreted as a �2, the
standard �2 errors obtained from such a fit would
miss the effect of correlations and be (significantly)
underestimated. However, we emphasize that we
will not compute parameter errors in this way; in-
stead we will propagate errors using the linear fluc-
tuation analysis of the Appendix, thus taking into
account all correlations explicitly.16

While we will not report on fits to Eq. (5.1), but
instead rely on fits described under items 1 and 3, we
have carried out many such fits. They yield results
fully consistent with those we do report, but always
lead to larger parameter errors.

(3) A third type of fit we will consider is one in which
Q2 incorporates the correlation submatrix corre-
sponding to each individual moment employed in
the fit, but not the cross correlations between differ-
ent moments. Full correlations are again to be in-
cluded via the linear fluctuation analysis described
in the Appendix. We choose

Q2
block ¼

X
w

X
si
0
;sj
0

ðIðwÞex ðsi0Þ�IðwÞth ðsi0; ~pÞÞðCðwÞÞ�1
ij

� ðIðwÞex ðsj0Þ � IðwÞth ðsj0; ~pÞÞ; (5.2)

with Cw the covariance matrix of the set of moments
with fixed weight w and s0 running over the chosen
fit window range. The motivation for this form is
that the cross correlations between two moments
arise mainly because the weight functions used in
multiple-moment fits are, in practice, close to being
linearly dependent (even though, as a set of poly-
nomials, of course they are not). This dependency
might be reinforced by the relatively large errors on
the data for values of s toward m2

�, because it is
primarily in this region that the weights ŵ0, ŵ2, and
ŵ3 differ from each other.

A key observation is that it does not matter which fit
qualityQ2 one chooses,17 as long as errors are propagated
appropriately. Whatever the motivation for a particular
choice, such a choice is useful if it turns out to allow a
reliable fit, and to reduce errors on the fit parameters. We
note that, of course, it is not possible to use the minimum
value of diagonal or block diagonal Q2 of Eqs. (5.1) and
(5.2) obtained in such a fit in order to derive a confidence
level; only the relative size of minimum values compared
between different fits with the same choice of Q2 is
meaningful.

VI. FITS

In this section, we will present the results from our fits,
using the parametrization of the theory explained in
Sec. IV and employing the strategies of Sec. VB. All fits
are based on the original, unmodified OPAL data, includ-
ing the OPAL normalization for the �-pole contribution,
which corresponds to a central value of 94.0 MeV for f�.
Section VIA contains our ‘‘benchmark’’ fit, which is a

standard �2 fit of Iðŵ0Þ
ex ðs0Þ for the V channel. In this case,

the fit quality is the standard �2 function, which of course

employs the full Iðŵ0Þ
ex ðs0Þ covariance matrix, generated

from the covariance matrix of the original OPAL data.
We will also consider a combined fit of the same moment
to the V and A channels.

In Sec. VIB we consider simultaneous fits to Iðŵ0Þ
ex , Iðŵ2Þ

ex ,

and Iðŵ3Þ
ex , again for both the pure V channel and combined

V&A channel cases. As already discussed in Sec. VA, we
find that standard �2 fits are not possible. Our best results
in the V channel originate from minimizing the fit quality
(5.2). Our main conclusion is that, presumably because of
the strong correlations between different moments, these
types of fits do not help reduce the error on�s significantly.
They do, however, provide cross-checks, verifying that our

ansatz (2.15) also describes moments other than just Iðŵ0Þ
ex ,

including the nonstrange component of R�,

RVþA;udðs0Þ ¼ RV;udðs0Þ þ RA;udðs0Þ; (6.1)

which is proportional to I
ðŵ3Þ
ex;VþAðs0Þ. They also give access

to the V- and A-channel OPE coefficients C6;V , C6;A, C8;V ,

and C8;A.

In Sec. VIC we consider the additional errors originat-
ing from the truncation of perturbation theory, and in
Sec. VID we show that our fits both give a good descrip-
tion of RVþA;ud, and satisfy, within errors, the Weinberg

and DGMLY V � A sum-rule constraints.

A. Fits with the weight ŵ0ðxÞ
We begin with a standard �2 fit to the V-channel wðsÞ ¼

ŵ0ðxÞ ¼ 1 FESR. Fit results are presented in Table I, which
shows all fit parameters, as well as the number of degrees
of freedom (dof), and the �2 per degree of freedom. Errors
are standard �2 errors; errors computed with Eq. (A5) are
typically somewhat larger, but similar in size.
We observe that there is excellent stability for the results

with smin ¼ 1:4, 1.5, and 1:6 GeV2, with the errors getting
somewhat larger at 1:6 GeV2. At values of smin �
1:7 GeV2, �V becomes very small and tends to go nega-
tive, which is clearly unphysical. However, within errors
such fits are always consistent with those shown in the
table. We choose the results obtained at smin ¼ 1:5 GeV2

to fix our central values, and treat the spread of the fit
results for smin ranging from 1.4 to 1:6 GeV2 as an error.
From this simple fit, we obtain for �s at the � mass the
values

16We find indeed that this leads to much larger errors than naive
‘‘�2’’ errors would suggest.
17As long as Q2 is a positive-definite quadratic form in the
differences IðwÞex ðsk0Þ � IðwÞth ðsk0; ~pÞ.
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�sðm2
�Þ ¼ 0:307� 0:018� 0:004 ðFOPTÞ;

�sðm2
�Þ ¼ 0:322� 0:025� 0:004 ðCIPTÞ; (6.2)

where the second error represents the variation with smin

discussed above. We note that there is good stability over
the full range of smin values covered in Table I. Since our
fitting function is nonlinear, in general, �2 errors are ex-
pected to be asymmetric. We have therefore also computed
asymmetric errors for all the fit parameters. We find that
the error on �s is nearly symmetric, and that only errors on
	V and �V show a significant asymmetry. For instance, we
find, at smin ¼ 1:5 GeV2, that, for FOPT,

�sðm2
�Þ ¼ 0:307þ0:018

�0:021;

	V ¼ 0:017þ0:027
�0:007; �V ¼ 0:16þ0:63

�0:34 GeV�2;

�V ¼ �0:52þ0:71
�0:78; 
V ¼ 3:38þ0:40

�0:36 GeV�2: (6.3)

This shows that omitting DVs from the fit, which is equiva-
lent to setting 	V ¼ 0, would lead to a poor fit. For CIPT
the asymmetries show the same pattern.

In Fig. 2, we show the quality of the match between the

fitted I
ðŵ0Þ
th ðs0Þ and Iðŵ0Þ

ex ðs0Þ, as well as of the match between

the experimental spectral function and its theoretical coun-
terpart in which parameter values are obtained from the
FESR fit for smin ¼ 1:5 GeV2. The left panel shows the
FESR fit itself, while the right panel shows the results of
this comparison for the spectral-function case. We empha-
size that the spectral function was not part of the fit; the
agreement between the theoretical and experimental ver-
sions of �VðsÞ is an output. Agreement with data is good in
the full fit window s0 � smin ¼ 1:5 GeV2. The black
curves, in contrast, show the OPE parts of the theoretical
curves, i.e., the curves obtained by removing the DV con-
tributions from the blue and red curves. It is clear that DVs

are needed to give a good description of the data for Iðŵ0Þ
ex

and the spectral function itself, in agreement with our
conclusion based on Eq. (6.3).
There are strong correlations between the parameters

shown in Table I and Eq. (6.3). Such strong correlations
are present in all our fits, and are unavoidable, given the
number of fit parameters. We emphasize that this cannot be
resolved by simply omitting the duality-violating part from
the theory—one cannot ‘‘improve’’ fits by throwing out
physics that is known to have an impact on those fits. In
Table II we show the full parameter correlation matrix
corresponding to the FOPT result quoted in Eq. (6.2).
The analogous matrix for the CIPT result looks very
similar.
We have also considered fits like those shown in

Table I, but including the contribution coming from the
logarithmic dependence of C4 on s. For the latter, we
estimated the quark-condensate contribution from the
Gell-Mann–Oakes-Renner relation [34], and we took
hasG��G

��i ¼ 0:021 GeV4. We find that corresponding

changes in the numbers in Table I are at most a tiny fraction
of the fitting errors.
We performed a similar type of fit to the combination of

V and A channels. If we use all possible s0 values, we find
that the standard �2 fit function (involving the very strongly
correlated spectral integral covariance matrix) is very flat,
admitting not just ‘‘physical’’ solutions (consistent with
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FIG. 2 (color online). Left panel: comparison of I
ðŵ0Þ
ex ðs0Þ and Iðŵ0Þ

th ðs0Þ for the smin ¼ 1:5 GeV2 V-channel fits of Table I. Right panel:
comparison of the theoretical spectral function resulting from this fit with the experimental results. CIPT fits are shown in red (dashed)
and FOPT in blue (solid) lines. The (much flatter) black curves display only the OPE parts of the FOPT (solid) and CIPT (dashed) fit
results. The vertical dashed line indicates the location of smin.

TABLE II. Parameter correlation matrix for the FOPT fit with
smin ¼ 1:5 GeV2 shown in Table I.

�s 	V �V �V 
V

�s 1 �0:69 �0:67 0.70 �0:62
	V �0:69 1 0.99 �0:47 0.43

�V �0:67 0.99 1 �0:48 0.43

�V 0.70 �0:47 �0:68 1 �0:98

V �0:62 0.43 0.43 �0:98 1
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those in Table I), but also solutions that are clearly unphys-
ical (with, for instance, values for �s drifting down to
unacceptably low values as a function of smin). This hap-
pens for both CIPT and FOPT. Parameter errors for these
solutions can be very large, consistent with the flatness of
the �2 landscape, and there is a strong sensitivity of central
values to initial guesses for the parameter values.

However, if we thin out the s0 values, i.e., use only every

nth value of Iŵ0
ex ðs0Þ, for some value of n > 1, we find that

fits with n ¼ 2, 3, or 4 are much more stable than the one
with n ¼ 1 (no thinning) described above. In Table III we
show our results for n ¼ 3, which is the choice leading to
the most stable fits.18 The problem disappears when we use
fit quality (5.1), computing errors with Eq. (A5), but this
method leads to significantly larger errors.

Choosing again the fit with smin ¼ 1:5 GeV2, we find for
our combined V and A channel fit the results

�sðm2
�Þ ¼ 0:308� 0:016� 0:009 ðFOPTÞ;

�sðm2
�Þ ¼ 0:325� 0:022� 0:011 ðCIPTÞ; (6.4)

with the second error representing, as above, the variation
over the neighboring smin values, 1.4 and 1:6 GeV2. The
results reported in Tables I and III are in good agreement.

We note that the central values for �V shown in Table III
are very small, compared with those in Table I, but given
the errors there is no inconsistency. In Fig. 3 we show the
quality of the fit in the panels on the left, for V (top) and A
(bottom), for smin ¼ 1:5 GeV2. In the panels on the right
we show again the match between the experimental spec-
tral functions and their theoretical counterparts with pa-
rameter values obtained from the smin ¼ 1:5 GeV2 FESR
fit. As before, black curves show only the OPE parts of the
theoretical curves. Again, we see that the data clearly
confirm the presence of DVs, which are well described
by our ansatz.

B. Multiple-weight fits with the weights ŵ0, ŵ2, and ŵ3

One would naively expect that by using more moments,
more information could be extracted from the data. This
would help reduce the errors reported in Tables I and III.
Higher-degree weights, however, also require the introduc-
tion of additional OPE fit parameters. This, in combination
with the very strong correlations, may turn out to reduce
the extra constraints placed on the parameters (�s and the
DV parameters) entering the ŵ0 FESR by the additional
moments. In addition, as we already pointed out in
Sec. VA, it appears to be impossible to perform standard
�2 fits to multiple moments.
Table IV shows the results of simultaneous fits to mo-

ments with weights ŵ0, ŵ2, and ŵ3 for the V channel using
the fit quality (5.2), with errors computed from Eq. (A5);
see Fig. 4 for a visual representation of the qualities of the

TABLE III. Standard �2 fits to Eq. (2.3) for wðsÞ ¼ 1, combined V&A channels. FOPT results are shown above the horizontal line,
and CIPT results below. The first line for each smin gives the V DV parameters; the second line gives the A ones. Every third value of s0
starting at smin is included in the fits. Errors are standard �2 errors; �V;A and 
V;A are in GeV�2.

smin dof �2=dof �s 	V;A �V;A �V;A 
V;A

1.3 30 0.81 0.326(13) 0.0186(88) 0.18(35) 0.35(46) 2.95(27)

0.094(51) 1.15(35) 0.21(79) �3:42ð45Þ
1.4 28 0.69 0.317(15) 0.0140(68) 0.01(33) �0:31ð58Þ 3.29(31)

0.085(39) 1.06(30) �0:5ð1:1Þ �3:06ð61Þ
1.5 26 0.69 0.308(16) 0.0134(69) �0:01ð34Þ �0:67ð70Þ 3.46(36)

0.110(71) 1.15(35) �1:1ð1:1Þ �2:73ð59Þ
1.6 24 0.73 0.308(17) 0.0150(98) 0.06(41) �0:64ð74Þ 3.45(38)

0.15(13) 1.29(45) �1:2ð1:2Þ �2:67ð65Þ
1.7 22 0.68 0.304(18) 0.0131(99) 0.00(42) �0:80ð77Þ 3.51(38)

1.0(2.0) 2.14(84) �2:3ð2:1Þ �2:1ð1:1Þ
1.3 30 0.85 0.346(19) 0.026(12) 0.37(34) 0.40(51) 2.89(30)

0.072(35) 1.01(31) 0.10(85) �3:38ð48Þ
1.4 28 0.72 0.336(21) 0.0170(86) 0.10(35) �0:36ð56Þ 3.30(30)

0.075(33) 0.99(28) �0:5ð1:1Þ �3:04ð61Þ
1.5 26 0.71 0.325(22) 0.0152(80) 0.05(35) �0:73ð67Þ 3.48(35)

0.101(66) 1.11(35) �1:2ð1:0Þ �2:74ð58Þ
1.6 24 0.75 0.324(23) 0.017(12) 0.11(44) �0:72ð71Þ 3.47(37)

0.14(12) 1.25(45) �1:3ð1:1Þ �2:66ð62Þ
1.7 22 0.70 0.318(23) 0.014(11) 0.03(44) �0:88ð75Þ 3.54(37)

1.0(1.9) 2.11(86) �2:3ð2:1Þ �2:1ð1:1Þ

18Negative values for �V;A can appear because we use the
analytic form of the integral in Eq. (2.14). Note, however, that
all values we find in the fits are consistent with a positive value,
as physically required.
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resulting fits for the case smin ¼ 1:5 GeV2. Results are
consistent with those presented in Sec. VIA, but errors
are slightly larger.

Again, the black curves in Fig. 4 show the OPE parts of
the theoretical curves, i.e., the results obtained by remov-
ing the DV contributions from the blue and red curve

results. For the spectral function, I
ðŵ0Þ
ex and Iðŵ2Þ

ex , it is again
clear that no good description of the data can be obtained
without a model for DVs. This is not the case for the doubly

pinched moment Iðŵ3Þ
ex . In this case, one would expect that a

reasonably good fit can be obtained without DVs, for
values of smin down to somewhere below �2 GeV2. This
is consistent with the results of Ref. [12] for various doubly
pinched weights, and, for the doubly pinched kinematic
weight, also with the results of Refs. [5,6]; in those cases,
reasonably good matches for the sum of the vector and
axial channels were obtained without the inclusion of DVs.
However, one would also expect that a best fit can only be
obtained by shifting the OPE parameters relative to those
reported in Table IV.
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FIG. 3 (color online). Left panels: comparison of I
ðŵ0Þ
ex ðs0Þ and Iðŵ0Þ

th ðs0Þ for the smin ¼ 1:5 GeV2 combined V&A fits of Table III (top:
V channel; bottom: A channel). Right panels: comparison of the theoretical spectral function resulting from this fit with the
experimental results. CIPT fits are shown in red (dashed) and FOPT in blue (solid) lines. The (much flatter) black curves display
only the OPE parts of the FOPT (solid) and CIPT (dashed) fit results. The vertical dashed lines indicate the location of smin.

TABLE IV. Fits to Eq. (2.3) with weights ŵ0;2;3, V channel, using fit quality (5.2). FOPT results are shown above the horizontal line,
and CIPT fits below. Errors have been computed using Eq. (A5); �V and 
V are in GeV�2, C6;V is in GeV6, and C8;V is in GeV8.

smin dof Q2=dof �s 	V �V �V 
V 102C6;V 102C8;V

1.3 167 0.42 0.300(18) 0.050(35) 0.87(48) 0.38(77) 2.87(44) �0:39ð40Þ 0.45(68)

1.4 158 0.33 0.304(17) 0.027(18) 0.46(43) �0:48ð88Þ 3.35(48) �0:43ð31Þ 0.67(47)

1.5 149 0.33 0.304(19) 0.021(12) 0.31(38) �0:7ð1:1Þ 3.46(58) �0:46ð33Þ 0.76(51)

1.6 140 0.33 0.305(23) 0.025(17) 0.41(43) �0:6ð1:4Þ 3.41(74) �0:43ð46Þ 0.68(76)

1.7 131 0.34 0.303(25) 0.0136(95) 0.10(39) �0:8ð1:5Þ 3.47(73) �0:50ð45Þ 0.88(71)

1.3 167 0.40 0.332(47) 0.035(32) 0.60(64) 0.5(1.0) 2.84(52) �0:27ð59Þ 0.19(95)

1.4 158 0.32 0.327(31) 0.023(16) 0.34(46) �0:3ð1:0Þ 3.26(54) �0:43ð36Þ 0.58(58)

1.5 149 0.32 0.322(31) 0.020(13) 0.26(42) �0:6ð1:3Þ 3.39(66) �0:50ð37Þ 0.73(62)

1.6 140 0.33 0.323(42) 0.025(17) 0.37(47) �0:5ð1:7Þ 3.35(89) �0:48ð54Þ 0.66(98)

1.7 131 0.34 0.319(39) 0.014(10) 0.11(41) �0:7ð1:7Þ 3.43(84) �0:57ð48Þ 0.89(85)
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An estimate similar to Eq. (6.2), using the fit with smin ¼
1:5 GeV2, leads to

�sðm2
�Þ ¼ 0:304� 0:019� 0:001 ðFOPTÞ;

�sðm2
�Þ ¼ 0:322� 0:031� 0:005 ðCIPTÞ; (6.5)

which is in excellent agreement with Eq. (6.2). We see,
however, that the simultaneous fit to multiple moments
does not help reduce the error. It is an interesting question
whether fit qualities other than those of Eqs. (5.1) and (5.2)
exist that would lead to smaller errors. Fits like those
reported in Table IVusing fit quality (5.1) lead to consistent
results, but with significantly larger errors than those
shown in the table.

Finally, in Table V, we show the results of combined
V&A channel fits, similar to those of Table III, but for the
weights ŵ0, ŵ2, and ŵ3. From this table, we obtain

�sðm2
�Þ ¼ 0:302� 0:015� 0:001 ðFOPTÞ;

�sðm2
�Þ ¼ 0:322� 0:024� 0:008 ðCIPTÞ; (6.6)

with the second error again reflecting the variation over the
range smin ¼ 1:4 to 1:6 GeV2. Comparing Table V with
Table IV we see that adding the A channel gives little extra
information (apart from estimates of the axial OPE and DV
parameters). Adding the A channel increases the central

values of �V , but all parameter values are consistent be-
tween these two tables within (sometimes substantial)
errors. The fit with smin ¼ 1:7 GeV2 is clearly not mean-
ingful (in particular, for FOPT), and the errors indicate that
at this value of smin, Q2 is very flat in some directions in
parameter space. Indeed, restricting the value of �s to the
value obtained at smin ¼ 1:6 GeV2 leads to a good fit for
the remaining parameters, consistent with the unrestricted
smin ¼ 1:6 GeV2 fit, and with a value for Q2 almost equal
to the value reported in the table.
Let us next deduce some implications of the above

fits for the breaking of the factorization hypothesis in the
D ¼ 6 condensates. To begin with, we will assume that the
D ¼ 6 condensates are dominated by their leading-order
contribution. The corresponding contribution to the V=A
correlators is given by [2]

C6;V=A ¼ �8�2ashð �u��

�5

1

 !
tadÞð �d��

�5

1

 !
tauÞi

� 8

9
�2as

X
q¼u;d;s

hð �u��t
auþ �d��t

adÞð �q��taqÞi

þOða2sÞ; (6.7)

where, in the first line, the upper Dirac structure �5 corre-
sponds to the V channel and the lower 1 to the A channel.

1.0 1.5 2.0 2.5 3.0
0.025

0.030

0.035

0.040

s0 GeV2

1.0 1.5 2.0 2.5 3.0

0.020

0.022

0.024

0.026

0.028

s0 GeV2

1.0 1.5 2.0 2.5 3.0
0.013

0.014

0.015

0.016

0.017

0.018

0.019

s0 GeV2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

s0 GeV2

FIG. 4 (color online). V-channel fits of Table IV, showing the theoretical and experimental versions of the moments Iðŵ0Þ (top left
panel), Iðŵ2Þ (top right panel), and Iðŵ3Þ (bottom left panel), for smin ¼ 1:5 GeV2. Bottom-right panel: comparison of the theoretical
spectral function resulting from this fit with the experimental results. CIPT fits are shown in red (dashed) and FOPT in blue (solid)
lines. The (flatter) black curves display only the OPE parts of the FOPT (solid) and CIPT (dashed) fit results. The vertical dashed lines
indicate the location of smin.

NEW DETERMINATION OF �s FROM HADRONIC . . . PHYSICAL REVIEW D 84, 113006 (2011)

113006-13



The two four-quark condensates can be parametrized in
terms of their factorization values by

hð �qi��t
aqjÞð �qj��taqiÞi � �4

9h �qiqiih �qjqji 	 �1;

hð �qi���5t
aqjÞð �qj���5t

aqiÞi � 4
9h �qiqiih �qjqji 	 �5;

(6.8)

where the parameters �1 and �5 would be equal to 1 if the
vacuum-saturation approximation were exact. Further as-
suming that isospin breaking is small in the light u- and
d-quark sectors, that is, h �uui ¼ h �ddi � h �qqi, Eqs. (6.7) and
(6.8) imply

C6;V=A ¼ 32

81
�2ash �qqi2 2�1 � 9�5

11�1

� �
: (6.9)

Inverting Eq. (6.9), on the basis of the results of Table V,
estimates of the parameters �1;5 can be deduced. As rep-

resentative examples, for the central fits with smin ¼
1:5 GeV2, one obtains

�1 ¼ �1:4� 3:2; �5 ¼ 3:3� 1:5 ðFOPTÞ;
�1 ¼ �0:9� 3:1; �5 ¼ 3:4� 1:5 ðCIPTÞ; (6.10)

where h �qqiðm2
�Þ ¼ �ð272 MeVÞ3 [35], together with our

results for �sðm2
�Þ, has been employed. The central results

of Eq. (6.10) display sizable deviations from the factoriza-
tion values �1 ¼ �5 ¼ 1, though, given the large uncer-
tainties, the significance is not very high. The employed
perturbative resummation scheme does not seem to play a

big role for the condensate or DV parameters, suggesting
that this choice is mostly compensated for by the differing
�s values.

C. Errors from truncating perturbation theory

Oneof the uncertainties afflicting any determination of�s

is that perturbation theory needs to be truncated, irrespective
of whether the CIPT or FOPT resummation scheme is used
for the truncated series. As already mentioned in Sec. II, we
use the known values of cn1 up to n ¼ 4, together with
the estimate c51 ¼ 283. We assign a 100% error, �283, to
this estimate, using this as a measure of the truncation
uncertainty.
For the fits presented in Eqs. (6.2), (6.4), (6.5), and (6.6)

we find that this variation of c51 leads to a shift of at most
�0:006 in �sðm2

�Þ; for Eq. (6.2) the shift is �0:005. The
shifts in other parameters are also small (well within fitting
errors).

D. Consistency with the VþA and V�A
chiral sum rules

While Figs. 2–4 show that the parameter values obtained
from the fits corresponding to these figures give a good
description of the data, with those parameter values in hand
one may also consider other quantities. The total non-
strange scaled V þ A branching fraction RVþA;ud [cf.

Eqs. (2.5), (2.7), and (6.1)] has always played a central

TABLE V. Fits to Eq. (2.3) with weights ŵ0;2;3, combined V and A channels, using fit quality (5.2). FOPT results are shown above the
horizontal line, and CIPT fits below. Errors have been computed with Eq. (A5); �V;A and 
V;A are inGeV�2, C6;V and C6;A are inGeV6,

and C8;V and C8;A are in GeV8. The first line for each smin gives the V channel OPE and DV parameters; the second line gives the A
channel ones. Every third value of s0 starting at smin is included in the fits.

smin dof Q2=dof �s 	V;A �V;A �V;A 
V;A 102C6;V=A 102C8;V=A

1.3 104 0.66 0.305(11) 0.033(18) 0.57(37) �0:11ð63Þ 3.15(37) �0:36ð24Þ 0.51(38)

0.053(20) 0.78(23) �0:93ð63Þ �2:81ð36Þ 0.08(27) 0.26(52)

1.4 98 0.48 0.303(13) 0.023(12) 0.32(37) �0:76ð77Þ 3.51(43) �0:45ð23Þ 0.74(35)

0.082(41) 0.98(29) �1:30ð75Þ �2:61ð42Þ �0:12ð41Þ 0.78(91)

1.5 92 0.47 0.302(15) 0.020(10) 0.24(35) �0:97ð94Þ 3.61(51) �0:49ð25Þ 0.82(40)

0.109(84) 1.11(40) �1:50ð89Þ �2:51ð49Þ �0:24ð53Þ 1.1(1.3)

1.6 86 0.46 0.302(19) 0.024(16) 0.35(43) �0:9ð1:2Þ 3.58(66) �0:48ð36Þ 0.78(60)

0.19(20) 1.37(52) �1:7ð1:2Þ �2:44ð63Þ �0:36ð74Þ 1.6(2.0)

1.7 80 0.41 0.277(35) 0.6(1.9) 2.3(2.1) �1:6ð5:9Þ 3.9(3.1) �1:00ð85Þ 1.7(1.9)

1.0(2.3) 2.02(84) �3:1ð2:6Þ �1:7ð1:4Þ �1:6ð1:9Þ 5.7(7.0)

1.3 104 0.55 0.348(19) 0.0206(86) 0.22(30) 0.26(57) 2.98(32) �0:20ð23Þ 0.19(34)

0.073(33) 1.02(30) �0:14ð73Þ �3:41ð41Þ 0.41(23) �0:49ð43Þ
1.4 98 0.45 0.330(22) 0.0188(96) 0.18(35) �0:48ð82Þ 3.36(45) �0:43ð25Þ 0.61(40)

0.085(42) 1.03(29) �0:84ð93Þ �2:87ð52Þ 0.04(40) 0.30(86)

1.5 92 0.45 0.322(24) 0.0185(95) 0.18(34) �0:8ð1:0Þ 3.51(55) �0:52ð28Þ 0.77(47)

0.105(80) 1.11(40) �1:2ð1:0Þ �2:66ð58Þ �0:15ð55Þ 0.8(1.3)

1.6 86 0.41 0.321(31) 0.023(15) 0.31(41) �0:7ð1:4Þ 3.49(73) �0:51ð40Þ 0.73(73)

0.18(19) 1.36(52) �1:4ð1:4Þ �2:58ð76Þ �0:28ð80Þ 1.2(2.1)

1.7 80 0.42 0.317(37) 0.022(17) 0.29(43) �0:8ð1:7Þ 3.54(86) �0:55ð51Þ 0.81(96)

1.0(2.2) 2.13(88) �2:2ð2:7Þ �2:1ð1:4Þ �0:7ð1:3Þ 2.7(4.4)
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role in the study of hadronic � decays. In particular,
following Refs. [5,6], we may consider RVþA;udðs0Þ for a
hypothetical � of mass squared m2

� ¼ s0, as a function of
s0. We show our version of this quantity in Fig. 5, using the
parameter values for the fit with smin ¼ 1:5 GeV2 of
Table V, the only fit reported that simultaneously yields
all parameters needed to evaluate RVþA;udðs0Þ.19 Clearly,

our result compares well with the fits shown in Fig. 10 of
Ref. [6],20 especially keeping in mind that in Fig. 5 we only
show errors on the experimental spectral integrals, and not
on the theory curves. Both CIPT and FOPT describe the
data well down to s0 ¼ 1:5 GeV2. We used the same values
for SEW ¼ 1:0194 and jVudj2 ¼ 0:9512 as Ref. [6] in order
to plot RVþA;udðs0Þ. In view of the discussion in Ref. [12] of

the analysis of Refs. [5,6], we conclude that our fits pass
the test of RVþA;udðs0Þ much better than the original analy-

ses of Refs. [5,6], and over a wider range of s0 than the
alternate, self-consistent fits obtained ignoring DVs in
Ref. [12]. We emphasize, though, that it is not sufficient
to find a satisfactory description of this quantity only—at
the very least all FESRs used in the fits should show a
similarly good match between experiment and theory as a
function of s0, as was shown to be the case for our fits in
Secs. VIA and VIB above.

We may perform a similar test on the fits reported in
Table IV. Of course, in that case only V-channel parameters
are available, so one should consider the corresponding
ratio RV;ud as a function of s0. For the V channel, RV;udðs0Þ
coincides (up to the overall factor 12�2SEWjVudj2) with
Iðŵ3Þ
ex ðs0Þ. The corresponding match between data and the-
ory for smin ¼ 1:5 GeV2 is shown in the left bottom panel
of Fig. 4.

We can also test our results by considering how well
they satisfy the classical chiral V � A sum-rule constraints
represented by the two Weinberg sum rules [15] and the
DGMLY sum rule for the � electromagnetic mass splitting
[16]. These tests focus specifically on the DV part of our
spectral functions, since the OPE for the V � A correlator
(and hence the OPE part of the spectral ansatz) has noD ¼
0 contribution andD � 2OPE contributions to �V=AðsÞ are
tiny, and can be ignored.
Weinberg’s sum rules can be written as

Z 1

0
dsð�ð1þ0Þ

V ðsÞ � �ð1þ0Þ
A ðsÞÞ

¼
Z 1

0
dsð�ð1Þ

V ðsÞ � �ð1Þ
A ðsÞÞ � 2f2� ¼ 0;

Z 1

0
dssð�ð1þ0Þ

V ðsÞ � �ð1þ0Þ
A ðsÞÞ

¼
Z 1

0
dssð�ð1Þ

V ðsÞ � �ð1Þ
A ðsÞÞ � 2m2

�f
2
� ¼ 0;

(6.11)

where we assumed, as before, that we can neglect terms of
order mimj with i, j ¼ u, d, even though there is a term of

order mimj�
2
s linearly divergent in s0 in the second sum

rule. The fact that this term is still very small at s0 ¼ m2
�

amounts to the observation that the chiral symmetry break-
ing terms in the second of Eq. (6.11) are not visible in the
data. This means that in our test of the second sum rule we
can assume ourselves to be effectively in the chiral limit, in
which the divergence does not appear. In Fig. 6 we show
the integrals in Eq. (6.11) as a function of the ‘‘switch
point’’ ssw below which experimental spectral data are
used and above which the difference of the V and A DV
ansätze of Eq. (2.15) is employed for �V�AðsÞ. The DV
contributions were obtained using the DV parameter values
of Table V. If the DV ansatz is, as we have assumed,
reliable in the window of s0 employed in the FESR fits
which produce these DV parameter values, the V � A sum
rules should be satisfied for all values of ssw lying in this s0
fit window. We see that this condition is well satisfied for
both of theWeinberg sum rules. The errors shown are those
from the experimental (s < ssw) part of the integral on the
left-hand side of the sum rules only.
The first Weinberg sum rule is, of course, closely related

to the difference of the V and A ŵ0ðxÞ ¼ 1 FESRs.
Therefore, the very good quality of the matches between
the experimental spectral integrals and our theoretical
representations thereof precludes the first Weinberg sum
rule being badly broken by our fits. The second Weinberg
sum rule (as well as the DGMLY sum rule discussed
below) can be viewed as a prediction, because the fits of
Table V do not involve any weight with a term linear in s.
We also note that if indeed we take the second sum rule in
the chiral limit, we should omit the term �2m2

�f
2
�. The

value of this term is �0:000 34 GeV4, and it can thus
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FIG. 5 (color online). RVþA;udðs0Þ as a function of s0, with
smin ¼ 1:5 GeV2 theory curves from Table V for CIPT (dashed
red curve) and FOPT (solid blue curve).

19We included the pion-pole contribution to the longitudinal
part in Eq. (2.7) in both the data points and the theory curves in
Fig. 5.
20For an early investigation of this type, see Ref. [36].
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indeed safely be dropped from the sum rule—the differ-
ence would not be visible in the figure.

Finally, we consider the DGMLY sum rule for the �
electromagnetic mass difference. To leading order in the
chiral expansion, one has thatZ 1

0
dss logðs=�2Þð�ð1Þ

V ðsÞ � �ð1Þ
A ðsÞÞ

¼ � 8�f20
3�

ðm2
�� �m2

�0Þ; (6.12)

where � is the fine-structure constant, and f0 the � decay
constant in the two-flavor chiral limit. On the right-hand
side we take as input the values f0 ¼ 87:0� 0:6 MeV [37]
and m2

�þ �m2
�0 ¼ 0:001 26� 0:000 08 GeV2 [19].21

Because of the second Weinberg sum rule, the left-hand
side of Eq. (6.12) is, in fact, independent of the scale �. In
Fig. 7 we show the left-hand and the right-hand sides of
Eq. (6.12), as a function of ssw. The left-hand side is
represented by the data points, while the gray band repre-
sents the right-hand side, including the error resulting from
the uncertainties in f0 and the pion electromagnetic mass
difference. As for the Weinberg sum rules, the integral on
the left-hand side is computed using experimental data for
s � ssw, and the DV ansatz, with DV parameters from the
smin ¼ 1:5 GeV2 entries of Table V, for s � ssw. The errors
shown again come from the experimental data part of the
integral only. We chose �2 ¼ 2:5 GeV2, which makes the
errors in the figure relatively small. For lower values of �2

the errors are larger for larger ssw, but the results are
consistent with Eq. (6.12) being satisfied for all �2 be-
tween 1:5 GeV2 and m2

�.
One might consider using these sum rules as a further

constraint on the DV parameters.22 Of course, this can only
be done for combined V&A fits, which requires us to
assume that the larger of the two smin values for the V
and A channels still lies sufficiently far below m2

� to make
such a combined fit, using our DVansatz in both channels,
reliable. Since in this work our primary results are obtained
from purely V-channel fits, which do not require this
assumption, we postpone this possibility to a future
investigation.

VII. SUMMARY OF RESULTS

Our most stable results come from fits to only the V
channel. Moreover, since we need to include a model for
DVs, using only the V channel avoids the additional as-
sumption that our ansatz already adequately describes the
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FIG. 6 (color online). First (left panel, in GeV2) and second (right panel, in GeV4) Weinberg sum rules. Data are used for s � ssw,
while the DV ansatz (2.15) with values from Table V for smin ¼ 1:5 GeV2 has been used for s � ssw. FOPT figures are shown; CIPT
figures look essentially identical.
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0.020

0.015

0.010
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FIG. 7 (color online). The DGMLY � electromagnetic mass
difference sum rule: left-hand side (data points) and right-hand
side (gray band) of Eq. (6.12), as a function of ssw, in GeV

4. Data
are used for s � ssw, the DV ansatz (2.15), with fit parameter
values from the smin ¼ 1:5 GeV2 entries of Table V, for s � ssw.
The FOPT figure is shown; the CIPT figure is essentially
identical. The gray band represents an estimate of the error on
the right-hand side of Eq. (6.12).

21Our uncertainty on the electromagnetic contribution to the
difference m2

�þ �m2
�0 comes from an estimate of the contribu-

tion of mu �md to the pion mass difference [38].

22See, for instance, Ref. [39], where, however, the difference
V � A was modeled with an expression of the form (2.15). Given
the results of Tables III and V, such a parametrization does not
seem to be favored by the data. In the present work we avoid any
additional assumptions about the relations between the DV
parameters in the V and A channels by introducing separate
DV parameters for each channel.
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A-channel data in the interval between 1:5 GeV2 and m2
�.

We emphasize, however, that all the results from our
combined V and A channel fits are consistent with those
from our V-channel analyses. In addition, they pass several
further V þ A and V � A channel tests, as demonstrated in
Sec. VID.

In view of these observations, we will choose the fit to

Iðŵ0Þ
ex in the vector channel as our central result. Adding the
errors from the fit, the variation of smin, and the variation of
c51 in quadrature, we find

�sðm2
�Þ ¼ 0:307� 0:019 ðMS; nf ¼ 3; FOPTÞ;

�sðm2
�Þ ¼ 0:322� 0:026 ðMS; nf ¼ 3;CIPTÞ:

(7.1)

We do not average over CIPT and FOPT results, because
we believe that it is useful to see the difference between
values for �s obtained with the two resummation schemes
after all nonperturbative effects have been consistently
taken into account. Running these values up to the Z
mass MZ yields [40]23

�sðM2
ZÞ ¼ 0:1169� 0:0025 ðMS; nf ¼ 5; FOPTÞ;

�sðM2
ZÞ ¼ 0:1187� 0:0032 ðMS; nf ¼ 5;CIPTÞ; (7.2)

where we symmetrized the slightly asymmetric errors one
obtains after running up to the Z mass.

These values can be compared to those obtained by
OPAL from the same data [6]. The OPAL values at the �
mass are

�sðm2
�Þ¼0:324�0:014 ðMS;nf¼3;FOPT;OPALÞ;

�sðm2
�Þ¼0:348�0:021 ðMS;nf¼3;CIPT;OPALÞ; (7.3)

where we added the experimental and theoretical errors
quoted by OPAL in quadrature. We observe the shift to
lower central values, with somewhat larger errors that
follow from using our new framework for analyzing the
data. We also note that our CIPT and FOPT values are
somewhat closer, and that, because of the larger errors, the
difference between our two values for �s is less significant.

VIII. CONCLUSION

In this article, we provided a new framework for the
extraction of�s and other OPE parameters from hadronic �
decays. This new framework combines two elements that
have not been taken into account in the ‘‘traditional’’
analysis of hadronic � decays. One is a consistent treatment
of the OPE, as discussed in Ref. [12], and the other is a
detailed quantitative estimate of the effect of violations of
quark-hadron duality, using a parametrization proposed in
Refs. [27,29]. As explained in detail in Secs. III and IV,
these two elements are intricately intertwined.

Our new framework comes with the price of introducing
four new fit parameters for each channel, the vector and
axial-vector DV parameters. Nevertheless, we demonstrated
that our method is feasible by presenting a rather complete
analysis based on the OPAL data for the V and A spectral
functions [6].With the larger number of parameters, and the
corresponding need to vary s0 away fromm2

�, it should come
as no surprise that our errors are typically larger than those
found in earlier analyses,which simply did not takeDVs into
account quantitatively. We emphasize that this means that
the systematic errors of those earlier analyses were under-
estimated—we believe significantly so in some cases.
Our analysis leads us to a new estimate for both the

central value of �s and the error, which, in our opinion,
should be interpreted as superseding previous estimates in
the literature; for our result, based on OPAL data, see
Sec. VII. We found our most reliable fits to be those of
the V channel, although fits including also the A channel
lead to results consistent with our most precise V-channel
fits. As our primary concern in this article is with previously
underestimated nonperturbative effects, we presented re-
sults for both contour-improved as well as fixed-order
perturbation theory. Our analysis was based on the original
OPAL data, unmodified for subsequent changes in the
various exclusive branching fractions. This choice was
made in order to facilitate the interpretation of the differ-
ences in our results from those obtained by OPAL.With this
choice, these differences are solely the result of differences
in the analysis method. We plan to present an analysis of
OPAL data with updated normalizations in the near future.
The accuracy of the results presented here depends in

part on our ability to correctly model the physics present in
duality violations. Conservatively, our results can be seen as
providing a lower bound on the error introduced by ignor-
ing duality violations. However, the stability of �s, a purely
perturbative parameter, across the range of moments ana-
lyzed here provides strong support for the validity of our
ansatz. We therefore surmise that not only is the ansatz able
to accurately describe the data, but also that it provides a
reasonable quantitative description of the physics of duality
violations in the light-quark V and A channels.
In cases with multiple weights, standard �2 fits were not

possible, and we performed alternate fits, propagating er-
rors as described in the Appendix. We point out, however,
that our final result is based on a standard �2 fit to the

moment I
ðŵ0Þ
ex . All other fits yield results completely con-

sistent with this result, including the error on �s. The �2

error on�s obtained from our fit to Iðŵ0Þ
ex is very close to that

obtained with the method of the Appendix. Because our
parameter covariance matrix obtained with that method
scales linearly with the data covariance matrix, the error
on �s will be reduced once the improved spectral-function
data expected fromBABAR and/or Belle becomes available.
We observe that a difference remains between the central

values for �s obtained using CIPT and FOPT, though this is

23The specifics of the evolution to the Z mass are as discussed
in Ref. [8].
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less significant than the difference found previously by
OPAL, cf. Eq. (7.3). In this context, we note that, as men-
tioned already in Sec. IVA, a term linear in s in any of the
weights employed in Eq. (2.3) picks out the D ¼ 4 term in
the OPE, which parametrizes the leading renormalon ambi-
guity in the perturbative expansion. This, then, raises the
question of whether differences between the behavior of
CIPT and FOPT fits, including those associated with any
dependence on the choice of weight, might be used to con-
strain renormalon pole models that have been used previ-
ously to investigate the resummation of the perturbative
series for the various sum rules employed in the study of
hadronic � decays [8,11]. We plan to pursue such an inves-
tigation in a future work.
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APPENDIX: ERROR PROPAGATION

Consider a fit quality

Q 2 ¼ ½di � tið ~pÞ�C�1
0;ij½dj � tjð ~pÞ�; (A1)

in which di are the binned data, tið ~pÞ is a function that
describes this data set for a set of parameters ~p, and C0 is a

positive-definite, symmetric, but otherwise arbitrary ma-
trix. In this appendix, we use the summation convention for
repeated indices. The parameters ~p are determined by
finding the global minimum of Q2, which satisfies

@Q2

@p�

¼ �2
@tið ~pÞ
@p�

C�1
0;ij½dj � tjð ~pÞ� ¼ 0: (A2)

Varying, in this equation, the data by an amount �di and
the parameters by �p� leads to

@2tið ~pÞ
@p�@p


C�1
0;ij½dj � tjð ~pÞ��p
 þ @tið ~pÞ

@p�

C�1
0;ij

�
�
�dj �

@tjð ~pÞ
@p


�p


�
¼ 0: (A3)

If the fit is good, so that the deviations dj� tjð ~pÞ are small,

wemay ignore the termwith the second derivative, leading to

�p� ¼ A�1
�


@tið ~pÞ
@p


C�1
0;ij�dj; (A4)

or, for the covariance matrix h�p��p
i,

h�p��p
i ¼ A�1
��0A�1



0
@tið ~pÞ
@p�0

@tjð ~pÞ
@p
0

C�1
0;ikC

�1
0;j‘Ck‘; (A5)

in which

A�
 ¼ @tið ~pÞ
@p�

C�1
0;ij

@tjð ~pÞ
@p


; (A6)

and

Ck‘ ¼ h�dk�d‘i (A7)

is the data covariance matrix. This provides us with an
estimate for the full correlation matrix for the parameter set
~p. We note that, if C0;ij is chosen to be equal to the data

covariance matrix Cij, this expression simplifies to

h�p��p
i ¼ A�1
�
: (A8)

This is equal to the usual �2 error matrix estimate, given by
the inverse of one-half times the second derivative ofQ2 at
its minimum, if, again, the fit is good enough to ignore terms
proportional to di � tið ~pÞ.
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