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We discuss how the experimental neutrino oscillation data can be realized in the framework of the

baryon triality (B3) constrained supersymmetric standard model. We show how to obtain phenomeno-

logically viable solutions, which are compatible with the recent Wilkinson Microwave Anisotropy Probe

observations. We present results for the hierarchical, inverted and degenerate cases which illustrate the

possible size and structure of the lepton number violating couplings. We work with a new, as-yet

unpublished version of SOFTSUSY where we implemented full one-loop neutrino masses. Finally, we

shortly discuss some phenomenological implications at the LHC.
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I. INTRODUCTION

Experimentally, it is well established that the standard
model (SM) of particle physics requires an extension to
accommodate the neutrino oscillation data [1–7]. The data
indicate that at least two neutrinos are massive and that the
neutrino mixing angles are large. Many mechanisms have
been proposed to explain the neutrino mass pattern. The
simplest is to introduce small Dirac mass terms. However,
in order to be compatible with observations, the Yukawa
couplings can at most be of Oð10�12Þ, which appears
highly unnatural. Furthermore, this requires additional
right-handed neutrinos and the corresponding Majorana
mass terms are unconstrained by SM gauge symmetries.

Alternatively, one can allow for the Majorana mass
terms, this is the so-called (type I) seesaw mechanism
[8–13]. By setting the arbitrary Majorana mass scale to
be large, light neutrinos with mass of order Oð0:1 eVÞ can
be obtained even with Oð1Þ Yukawa couplings. There are
other seesaw mechanisms [12,14–20], which involve dif-
ferent additional particles that determine/control the see-
saw scale. Some models, involving a seesaw mechanism,
determine the detailed neutrino masses from a broken
(gauge) symmetry [20–27].

In this paper we consider a natural mechanism in super-
symmetric extensions of the SM, which does not require
any right-handed, gauge singlet, neutrinos, or a corre-
sponding new mass scale. We restrict ourselves to the
minimal particle content, consisting of the SM particles,

an additional Higgs SUð2ÞL doublet, and their superpart-
ners, i.e. the supersymmetric standard model (SSM)
[28–30]. The most general gauge invariant and renorma-
lizable SSM Lagrangian contains lepton number violating
(LNV) operators which mix the left-handed neutrinos
with the neutralinos. The neutralino mass provides a see-
saw scale, of Oð100 GeVÞ, for the generation of light
Majorana neutrino masses [31–41].
In the generic SSM, there exist LNVand baryon number

violating operators. We thus restrict our model to conserve
baryon triality (B3) [42–46]. This prohibits all baryon
number violating terms while allowing for lepton number
violation, and the proton is stable. Furthermore, we work in
the constrained baryon triality SSM (B3 cSSM) in order to
limit the number of free (lepton number conserving) pa-
rameters at the unification scale. The relevant details of this
model are presented in the next section. It is well known
that in the B3 cSSM, only one light neutrino is massive at
tree level [31–33,37–40,47]. Higher order corrections need
to be included to give mass to at least one more neutrino in
order to be consistent with the nonzero values of the
neutrino mass-squared differences, �m2

21 and �m2
31. The

radiative origin of the second neutrino mass scale implies
that a strong hierarchy of Oð100Þ between the neutrino
masses is to be expected, cf. Ref. [41]. However, the data
require a neutrino mass ratio of the heaviest two neutrinos
of at most Oð5Þ.
Thus a mechanism is needed to suppress the tree-level

mass scale for viable models. In Ref. [41], sets of five
parameters (two trilinear LNV couplings together with
three mixing angles that describe the charged lepton
Yukawa matrix) defined in a cSSM were found to repro-
duce the oscillation data. The LNV parameters were

*dreiner@th.physik.uni-bonn.de
†hanussek@th.physik.uni-bonn.de
‡jongsoo.kim@tu-dortmund.de
§kom@hep.phy.cam.ac.uk

PHYSICAL REVIEW D 84, 113005 (2011)

1550-7998=2011=84(11)=113005(24) 113005-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.84.113005


chosen such that their contributions to the tree-level neu-
trino masses partially cancel against each other. Another
possibility, first mentioned in Ref. [48], is that the tree-
level neutrino mass can vanish in a more generic fashion in
certain regions of cSSM parameter space, specified by the
trilinear soft supersymmetry breaking parameter A0. A
detailed explanation of how this situation arises, including
a discussion on loop contributions in this parameter space
was presented in Ref. [49].

In this paper, we focus especially on these parameter
regions, and aim to reproduce the neutrino oscillation data
using a small set of LNV couplings. Compared with
Ref. [41], these regions might be considered more prefer-
able in the sense that they avoid suppression of tree-level
neutrino masses through specific cancellations between
LNV parameters. Our setup is also different from
Ref. [41], in that we specify the LNV parameters in a basis
where the lepton Yukawa couplings are diagonal. We con-
sider this advantageous, as this allows for a more transpar-
ent understanding and better control of how different LNV
parameters contribute to the neutrino mass matrix. Here we
also improve on the numerical calculation performed in
Ref. [41] by including a full one-loop calculation for the
sneutrino vacuum expectation values, on top of the
one-loop corrections to the neutral fermion masses. This
computation is implemented as an extension to the mass
spectrum calculational tool SOFTSUSY [50,51].

Our aim is to obtain the correct masses and mixing
angles with a small number of LNV parameters. We fur-
thermore wish to analyze the general structures that lead to
potential solutions, since it is not possible to systematically
list all solutions. This work is an extension of Ref. [49],
where single coupling bounds from the cosmological limit
on the neutrino mass, Eq. (9), were determined. By intro-
ducing parameters coupled to different generations, we
attempt to understand how different trilinear LNV terms
interplay with each other to generate the observed mass
pattern.

The generation of neutrino masses through nonzero
LNV parameters directly at the electroweak scale (there-
fore without the complications from renormalization group
effects) has been studied in Refs. [39,47]. Generation of
neutrino masses via bilinear LNV couplings and the cor-
responding collider signatures have also been studied. We
refer interested readers to Refs. [52–66] and references
therein.

The outline of this paper is as follows. In Sec. II, we
introduce the B3 cSSM model, and highlight the most
relevant ingredients, including the choice of benchmark
scenarios and (low-energy) observables that could con-
strain the LNV parameters, for our present study. In
Sec. III we examine in detail sets of LNV parameters
that can reproduce the neutrino oscillation data.
Section IV is devoted to the numerical fitting procedure
used in our analysis. We discuss our best-fit parameter sets

and possible collider phenomenology in Secs. V and VI,
before concluding in Sec. VII.

II. NEUTRINO MASSES IN THE BARYON
TRIALITY (B3) CSSM

A. Experimental neutrino data

The best fit of the combined global analysis of atmos-
pheric, solar, reactor and accelerator data in terms of three
active oscillating neutrinos is given by [67,68],

sin 2½�12� ¼ 0:31� 0:02; (1)

sin 2½�23� ¼ 0:51� 0:06; (2)

sin 2½�13�< 0:03; (3)

�m2
21 ¼ 7:59� 0:2� 10�5 eV2; (4)

�m2
31 ¼

��2:34� 0:1� 10�3 eV2

2:45� 0:1� 10�3 eV2
; (5)

where the errors are given at the 1� level, and

�m2
ij � m2

i �m2
j : (6)

The data indicate large mixing angles �12 and �23 and a
small or possibly even vanishing angle �13. This implies
that at least two neutrinos have nonzero mass. The (as-yet)
undetermined sign of �m2

31 means that two mass orderings

are possible. They are known as the normal (�m2
31 > 0)

and the inverted (�m2
31 < 0) hierarchies.

For illustrative purposes, we often use the tribimaximal
mixing (TBM) approximation [69], where

sin 2½�12� ¼ 1
3; sin2½�23� ¼ 1

2 ; sin2½�13� ¼ 0 (7)

is assumed. Note that these are all within 1� of the best-fit
experimental values given in Eqs. (1)–(3). The first two
quantities differ from their best-fit values by 7% and 2%,
respectively. In the TBM approximation, the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) mixing matrix [70–72] is
explicitly given by

UTBM �

ffiffi
2
3

q ffiffi
1
3

q
0

�
ffiffi
1
6

q ffiffi
1
3

q ffiffi
1
2

q
ffiffi
1
6

q
�

ffiffi
1
3

q ffiffi
1
2

q

0
BBBBBB@

1
CCCCCCA: (8)

Since the defining equations in Eq. (7) involve squares,
more than one phase convention exists for the resulting
mixing matrix.
The observations and measurements from neutrino oscil-

lations determine the differences of neutrinomasses squared,
cf. Eqs. (4) and (5). Direct laboratory measurements restrict
the absolute masses of the neutrinos to be below
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Oð10 MeV� 1 eVÞ [68,73–78]. Limits dependent on the
Majorana nature of neutrinos also exist from nonobservation
of neutrinoless double beta decay (0���), which is of
Oð0:5 eVÞ [79–82]. Note, there is a claim of evidence for a
neutrino mass of 0.39 eV in a 0��� experiment [83].

A stringent upper limit can be obtained from cosmologi-
cal restrictions on the sum of the neutrino masses, with the
exact limit dependent on details of the analysis. Typically
these analyses include data from the Wilkinson Microwave
Anisotropy Probe (WMAP) [84], large scale structure
[85,86], and type Ia supernovae [87]. For our purpose,
we use

X
m�i

& 0:4 eV; (9)

at 99.9% confidence level, obtained from Refs. [88,89].
In our numerical fitting procedure, we make use of three

limiting cases of neutrino mass hierarchies. In the first two
cases, we assume that the lightest neutrino is massless and
impose normal and inverted hierarchy, respectively. In the
third case, we consider almost-degenerate neutrino masses
with normal hierarchy mass ordering, saturating the cos-
mological limit stated in Eq. (9).

For the normal (m1 <m2 <m3) and inverted (m3 <
m1 <m2) hierarchies, neutrino masses are, respectively,
given by

(i) Normal hierarchy (NH):

m1 � 0 eV;

m2 ¼ 8:71� 10�3 eV;

m3 ¼ 4:95� 10�2 eV;

m3=m2 � 5:7:

(10)

(ii) Inverted hierarchy (IH):

m1 ¼ 4:84� 10�2 eV;

m2 ¼ 4:92� 10�2 eV;

m3 � 0 eV;

m2=m1 � 1:

(11)

In our fits, we use the masses given in Eqs. (10) and (11) as
central values for the three neutrino masses for the NH and
IH cases, respectively. For the degenerate case (m1 �
m2 � m3), we assume that the sum of the three active
neutrino masses equals 0.4 eV.

B. Baryon triality (B3) cSSM

With the field content of the SSM, the most general
gauge invariant superpotential at the renormalizable level
can be written as [90–92]

W ¼ WRp
þW 6Rp

; (12)

where W Rp
(W 6Rp

) contain terms that conserve (violate)

the discrete symmetries R parity (Rp) as well as proton

hexality (P6). In a notation that follows Ref. [93] and
SOFTSUSY [50,51] closely, they are

W Rp
¼ �ab½ðYEÞjkHa

dL
b
j
�Ek þ ðYDÞjkHa

dQ
b
j
�Dk

þ ðYUÞjkQa
jH

b
u
�Uk ��Ha

dH
b
u�; (13)

W 6Rp
¼ �ab½12�ijkL

a
i L

b
j
�Ek þ �0

ijkL
a
i Q

b
j
�Dk

þ �00
ijk

�Ui
�Dj

�Dk � �iL
a
i H

b
u�; (14)

where i, j, k 2 f1; 2; 3g are generation indices, a, b 2 f1; 2g
(�12 ¼ 1) are indices of the SUð2ÞL fundamental represen-
tation, while the corresponding SUð3Þc indices are
suppressed. To avoid operators that could result in danger-
ously fast proton decay [90,92,94,95], we impose the
discrete symmetry baryon triality (B3) [42–46]. Under this
symmetry, baryon number is conserved while we have lep-
ton number violation (LNV). The superpotential is given by

WB3
¼ WRp

þWLNV; (15)

where the last term on the right is obtained by setting
�00 ¼ 0 in W 6Rp

. We note that Rp, B3 and P6 are the only

discrete symmetries which can be written as a remnant of a
broken anomaly free gauge symmetry [42–45]. In the rest of
this paper, B3 is assumed to be conserved.
The LNV soft supersymmetry (SUSY) breaking inter-

action Lagrangian is given by

�LLNV ¼ �ab½12hijk~lai ~lbj ~ek þ h0ijk~l
a
i ~q

b
j
~dk � ~Di

~lai h
b
u�

þm2
LiHd

~lyiahad þ H:c:; (16)

where the tilde denotes a superpartner of the more familiar
standard model field. The completeRp soft SUSY breaking

Lagrangian can be found in Ref. [50].
The B3 SSM model has more than 200 free parameters

[96]. In order to perform concrete numerical studies, we
restrict our discussion to the cSSM framework [28]. The
cSSM model is specified by the parameter set

M0; M1=2; A0; sgnð�Þ; tan�; (17)

denoting the universal scalar mass, the universal gaugino
mass, the universal trilinear scalar coupling, the sign of the
bilinear Higgs mixing parameter � and the ratio of Higgs
vacuum expectation values (VEVs) vu=vd at the electro-
weak scaleMZ. Except for tan�, all parameters are defined
at the unification scale MX.
Additionally, we allow for a subset of B3 conserving (but

Rp-violating) parameters

� � f�ijk; �
0
ijkg (18)

that will be specified in later sections. Note that we
allow for trilinear but not bilinear LNV parameters at the
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unification scale, because we work in a basis where the
bilinear LNV couplings �i and ~Di are both zero at MX.
This is possible for universal SUSY breaking [93] via a
basis transformation of the lepton and Higgs superfields
[31,97]. However, at lower energy scales �i and ~Di

are generated via the renormalization group equations
(RGEs) [37].

C. Neutrino and charged lepton masses

Since the lepton number is violated, the lepton doublet
superfields Li carry the same quantum numbers as the
down-type Hd superfield doublet. As a result, the neutra-
linos and neutrinos mix:

LMN
¼ � 1

2
ð�i;�i ~B;�i ~W3; ~hd; ~huÞMN

�j

�i ~B

�i ~W3

~hd
~hu

0
BBBBBBBB@

1
CCCCCCCCA
: (19)

In the above expression, MN is a 7� 7 mass matrix. As
we are interested in models with a strong hierarchy be-
tween the mass scales of the neutralinos and the neutrinos,
it is convenient to write MN as

MN ¼ m� m

mT M	0

 !
; (20)

where m� is the 3� 3 mass matrix in the neutrino sector
andM	0 is the 4� 4 mass matrix in the neutralino sector.

m denotes the 3� 4 mixing matrix which arises through
R-parity violation. An effective neutrino mass matrixMeff

�

can then be defined via the seesaw mechanism

M eff
� � m� �mM�1

	0 m
T: (21)

At tree level, in which m� ¼ 0, it is given by [32,33]

ðMeff
� Þtreeij ¼ �ðM1g

2
2þM2g

2Þ
2vuvdðM1g

2
2þM2g

2Þ�2�M1M2

�i�j; (22)

where

�i � vi � vd

�i

�
; i ¼ 1; 2; 3: (23)

Here vi and vd are VEVs of the sneutrino and (Hd) Higgs
fields. An effective neutrino mixing matrix U� can then be
defined via the relation

UT
�Meff

� U� ¼ diag½m�i�; i ¼ 1; 2; 3: (24)

The rank 1 structure of ðMeff
� Þtree leads to only one nonzero

neutrino mass. In order to fit neutrino oscillation data,
which implies at least two massive neutrinos, higher order
corrections must be included. In fact, these corrections
must be sizable as the mass ratio of the two heaviest
neutrinos is of order one, cf. Sec. II A.

In this paper, we therefore include the full one-loop
contributions to the neutrino-neutralino sector. Our calcu-
lation follows closely that of Refs. [39,41]. However we go
beyond their approximations by including also the
one-loop LNV corrections to the VEVs vi, vd and vu.
This is discussed in more detail in Sec. IVA.
Beyond tree level, the matrix m� is filled by the loop

contributions to the neutrino masses. A good measure of
this loop scale is set by contributions from so-called ��
loops (see Sec. II E):

ðm��
� Þij ¼

X
k;n

ð�ikn�jnkA
l
kn þ nc�

0
ikn�

0
jnkA

d
knÞ; (25)

where nc ¼ 3 is the color factor, and

Af
kn ¼

1

32
2
mfk sin2

~�f
n ln

�m2
~f1n

m2
~f2n

�
(26)

� 1

16
2
mfkmfn

ðA0��tan�Þ
m2

~fLn
�m2

~fRn

ln

�m2
~fLn

m2
~fRn

�
(27)

are loop functions for the kth generation fermion and nth
generation sfermions. Here f ¼ ‘, d denotes a charged

lepton or a downlike quark. Af
kn depends on the fermion

mass mfk , the mixing angle ~�f
n for the rotation of the left-

and right-handed sfermion current eigenstates to the two
mass eigenstates, and the sfermion masses m~f1n

and m~f2n
.

The approximate expression is valid when the sfermion
left-right mixing is small.
The charged lepton-chargino mass matrix MC can be

treated in a similar fashion. In particular an effective
charged lepton mass matrixMeff

‘ as well as its correspond-

ing charged lepton mixing matrices U‘LðRÞ can be defined,

which rotate the left- (right-) handed charged leptons.
Consistent with our notation, MC is defined in the same
way as in Ref. [51]. To an excellent approximation, the
charged lepton masses can be obtained by

Uy
‘LM

eff
‘ U‘R ¼ diag½m‘i�; i ¼ 1; 2; 3: (28)

Finally, the observable PMNS mixing matrix UPMNS is
defined to be

UPMNS ¼ UT
‘LU�: (29)

To obtain a complete one-loop description of the PMNS
matrix, one-loop corrections to U‘L are needed. However,
the scale of the (tree and loop level) seesaw contributions to
Meff

‘ are expected to be similar to the contributions to the

neutrino mass matrix, since the mass scales involved are the
same. Also, since the charged leptons conserve lepton
number, one-loop contributions to the 3� 3, charged lep-
ton part of MC involving potentially large LNV couplings
must be through wave function renormalization. This leads

to contribution to the masses of order m‘
j�ð�0Þj2
ð4
Þ2 , which are
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suppressed compared withm‘ forOð1Þ LNV couplings. We
therefore expect the one-loop corrections to be tiny com-
pared with current experimental uncertainties on neutrino
oscillation observables, and neglect them in the rest of this
paper.

D. Choice of flavor basis

Since experimentally only the PMNS and Cabbibo-

Kobayashi-Maskawa (CKM) (UCKM ¼ Uy
uLUdL) [98,99]

mixing matrices are known, simplifying assumptions pa-
rameterizing (left- and right-handed) quark and lepton
flavor mixing matrices are needed. Following SOFTSUSY

[50,51], our computation assumes left-right symmetric
mixings in the quark sector, and we work in a basis where
the charged lepton Yukawa matrix is diagonal.

Since we neglect the tiny one-loop corrections to U‘L,
UPMNS is determined by the form of the effective neutrino
mixing U�. For the quark mixings, there are two extreme
cases that could be considered:

(i) Up-type mixing: UCKM ¼ Uy
uL, and UdL ¼ 1

(ii) Down-type mixing: UCKM ¼ UdL, and UuL ¼ 1

In the first case, YU is non- and YD is diagonal, whereas the
second case is reversed. The choice of mixing can have
significant impact on the required magnitude of the �0

ijk

couplings at the unification scale, especially for the case
j � k. This is because in our model the bilinear LNV
couplings, �i, that enter the tree-level mass ðMeff

� Þtree via
Eq. (23) are generated via renormalization group evolu-
tion. For example, there are contributions of the form

d�i

dt
/ ��0

ijk � ðYDÞjk; (30)

where t ¼ lnðQ=�0Þ, withQ the renormalization scale and
�0 an arbitrary reference scale. We see that the relative
index structure of the nonvanishing R-parity violating and
conserving Yukawa couplings is essential for the resulting
magnitude of �i.

For concreteness, in this paper we work in the flavor
basis with up-type mixing, unless stated otherwise. In this
basis, the �0

ijk couplings which are off diagonal in j, k do

not contribute significantly to Meff
� at tree level, but could

be used as parameters to adjust loop-level contributions
when fitting the data. Note that because YE is always
diagonal in our model, �ijk couplings for i, j � k can be

utilized in a similar fashion. The changes that appear for
down-type mixing is discussed in Sec. VC.

E. Choice of cSSM benchmark point

As has been noted in Ref. [49], there are preferred
regions of B3 cSSM parameter space in which the neutrino
oscillation data can be more easily accommodated. This is
illustrated in Fig. 1 for one single LNV coupling. Recall
that there is only one tree-level neutrino mass, the second
(and third) neutrino mass scale is set by the one-loop

contributions [100]. From. 1(a) and 1(b) we see that for a
given � (�0), in the parameter region 100 & A0=GeV &
300 (870 & A0=GeV & 930), the tree-level neutrino
mass is sufficiently suppressed relative to the one-loop
neutrino mass to match the mild neutrino mass hierarchy
required by the data of maximally 5.7, cf. Eqs. (10) and
(11). This region of parameter space is determined by the
fact that the tree-level neutrino mass (solid cyan line in
Fig. 1) has a zero in A0 parameter space due to RGE
effects. This region exists for every B3 cSSM parameter
point, provided that

Að�0Þ
0 � 2M1=2 (31)

or

m
ν 

(e
V

)

A0 (GeV)

|mtree|
|m1loop|

|mΛΛ|
|msneut|

10-4

10-2

100

102

104

 0  200  400  600  800  1000  1200

λ233⏐GUT=10-4

m
ν 

(e
V

)

A0 (GeV)

|mtree|
|m1loop|

|mΛΛ|
|msneut|

10-4

10-2

100

102

104

 0  200  400  600  800  1000  1200

λ′222⏐GUT=6 10-4

FIG. 1 (color online). A0 dependence of the different contri-
butions to the neutrino mass at the electroweak symmetry break-
ing scale for our benchmark point BP, with (top)
�233jGUT ¼ 10�4, (bottom) �0

222jGUT ¼ 6 	 10�4. Note that only

the absolute values of the contributions to the neutrino mass
are displayed. The equations for mtree

� and m��
� are given in

Eqs. (22) and (25), respectively. m
1loop
� represents the full one-

loop corrections to the neutrino mass, msneut
� represents the

neutral scalar loops. The grey-shaded area is excluded by the
cosmological bound.
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Að�Þ
0 � M1=2

2
(32)

for nonzero LNV couplings �0
ijk or �ijk, respectively. Note

that the position of the minimum is approximately the
same for all indices i, j, k ¼ 1, 2, 3. Henceforth we denote

the A0 minimum with respect to � and �0 by Að�Þ
0 and Að�0Þ

0

respectively. In this paper we focus on this region; more
details are given in Sec. IVB. Therefore we have only 4
Rp-conserving parameters left, namelyM1=2,M0, tan� and

sgnð�Þ.
For easy comparison with Ref. [49], the benchmark

point (BP) we use in this paper is chosen to be the same
as Ref. [49]:

M1=2 ¼ 500 GeV; M0 ¼ 100 GeV;

tan� ¼ 20; sgnð�Þ ¼ þ1:
(33)

We have checked that this BP is tachyon-free [93] and that
the LEP2 exclusion bound on the light SSM Higgs mass is
fulfilled [101,102]. The spectrum in the Rp conserving

limit is displayed in Table I. We see that the squark masses
are of order Oð1 TeVÞ, whereas the slepton masses are
around 200–300 GeV. The lightest supersymmetric particle
(LSP) is a stau. However the presence of LNV couplings
will render the LSP unstable, making cosmological con-
straints on the nature of the LSP not applicable [103–105].

It should also be pointed out that it is not possible
to suppress tree-level contributions for both � and �0
simultaneously for a universal A0 parameter [49], as the
two minima do not coincide in the A0 parameter space, cf.

Eqs. (31) and (32). Therefore scenarios such as those
discussed in Ref. [106], where there is no tree-level neu-
trino mass at all, are only possible in the B3 cSSM if there
is only one type of LNV coupling, either � or �0.
It is also interesting to note that in the case of � cou-

plings [Fig. 1(a)], the full one-loop contributions are well
approximated by the �� loops, whereas in the case of �0
couplings [Fig. 1(b)], the approximation is less satisfac-
tory, and further one-loop contributions such as neutral
scalar-neutralino loops also play an important role in parts

of the parameter space. However, around the Að�0Þ
0 mini-

mum, the �� loops still give a good order of magnitude
estimate.
Note that viable neutrino masses could also be obtained

away from the A0 minimum region by using only off-
diagonal LNV couplings, since the tree-level contribution
is dominantly generated through diagonal LNV couplings.
Thus, scenarios involving only off-diagonal couplings (and
up mixing if using �0 couplings) also lead to a suppression
of the tree-level contribution and could thus potentially
reduce the dependence on the A0 minimum.

F. Low-energy bounds on LNV parameters

Once a set of � couplings is specified to reproduce the
neutrino oscillation data, a natural question arises as to
whether the model is compatible with the large number of
low-energy observables (LEOs). If a considered model
predicts LEO values close to current experimental limits,
future (non-)observations could (dis-)favor this model.
An extended set of relevant bounds on LEOs is pre-

sented in Refs. [54,107,108]. Typically these constraints
are more important for LNV couplings involving lighter
generations. The reasons are twofold: First, the fermion

mass term in the loop function Af
kn in Eq. (27) implies that,

in order to generate a neutrino mass contribution of the
same size, LNV couplings involving a light family index k
need to be much larger than corresponding couplings with
heavy family indices to compensate for the mass suppres-
sion. Second, experimental constraints generally provide
more stringent limits on LNV couplings involving light
generations.
In the models presented in later sections, we compare

our best-fit parameter values with the limits presented in
Ref. [54], as well as a 0��� bound on �0

111 from
Ref. [109]. The bounds which are most relevant for the
discussion of our results are displayed below:
[b1] � ! eee decay [110–112]:

�nij�n11 & 6:6 	 10�7

�
m~�n

100 GeV

�
2
; i; j ¼ 12; 21

�0
211�

0
111 & 1:3 	 10�4

[113]

TABLE I. Mass spectrum of the benchmark point BP in the Rp

conserving limit. From top to bottom, the particles are the
gluino, charginos, neutralinos, uplike squarks (2 rows), downlike
squarks (2 rows), charged sleptons (2 rows), sneutrinos and the
Higgses. The charginos and neutralinos are ordered according to
their masses. For a scalar sparticle, a subscript 1(2) denotes that
it is primarily ‘‘left’’ (‘‘right’’) handed, i.e. the superpartner of a
left (right) chiral fermion. This is the convention used in
SOFTSUSY. From left to right, the 4 Higgses are the light

CP-even Higgs, CP-odd Higgs, heavy CP-even Higgs and the
charged Higgs.

Particles Masses (GeV)

~g 1146

~	�
1 , ~	

�
2 380 570

~	0
1, ~	

0
2, ~	

0
3, ~	

0
4 204 380 552 571

~u1, ~c1, ~t1 1050 1050 1005

~u2, ~c2, ~t2 1012 1012 858
~d1, ~s1, ~b1 1053 1053 971
~d2, ~s2, ~b2 1008 1008 1002

~e1, ~�1, ~�1 353 353 346

~e2, ~�2, ~�2 217 217 163

~�e, ~��, ~�� 343 343 331

h0, A0, H0, H� 112 607 608 612
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[b2] �� e conversion in nuclei [114,115]:

�nij�
0
n11 & 2:1 	 10�8

�
m~�n

100 GeV

�
2
; i; j ¼ 12; 21

�0
2n1�

0
1n1 & 4:3 	 10�8

�
m~qn

100 GeV

�
2
; n ¼ 2; 3

�0
21n�

0
11n & 4:5 	 10�8

�
m~qn

100 GeV

�
2
; n ¼ 2; 3

�0
211�

0
111 & 4:3 	 10�8 	 ��1;

� �
�
100 GeV

m~u

�
2 �

�
2Zþ N

2N þ Z

100 GeV

m~d

�
2

For 48
22Ti, ð2Zþ NÞ=ð2N þ ZÞ ¼ 70=74. This comes from

the ratio of the number of valence up quarks to that of the
down quarks in a nuclei. See Ref. [114].

[b3] � decay [54]:

�12k & 0:08

�
m~ekR

100 GeV

�

[b4] Leptonic � decay [116]:

�23k; �13k & 0:08

�
m~ekR

100 GeV

�

[b5] Forward-backward asymmetry of Z decay [54]:

�i3kði � k � 3Þ & 0:25

�
m~��

100 GeV

�

�i2kði � k � 2Þ & 0:11

� m~��

100 GeV

�

[b6] Leptonic K-meson decay (here i, j ¼ 12, 21)
[111,117]:

�n11�
0
nij & 1:0 	 10�8

�
m~�n

100 GeV

�
2
;

�n22�
0
nij & 2:2 	 10�7

�
m~�n

100 GeV

�
2
;

�n12�
0
nij & 6 	 10�9

�
m~�n

100 GeV

�
2
;

�n21�
0
nij & 6 	 10�9

�
m~�n

100 GeV

�
2
;

[b7] � ! e
 [48,112,118]:

�nl2�nl1 < 8:2 	 10�5 	
�
2

�
100 GeV

m~�L

�
2 �

�
100 GeV

m~lL

�
2
��1

�23n�13n < 2:3 	 10�4 	
�
2

�
100 GeV

m~�L

�
2 �

�
100 GeV

m~lR

�
2
��1

�0
2nl�

0
1nl < 7:6 	 10�5

� m~dlR

100 GeV

�
2
; n ¼ 1; 2

[b8] 0��� (here ~f ¼ ~eL, ~uL, ~dR) [109]:

j�0
111j & 5 	 10�4

� m~f

100 GeV

�
2
�

m~g=~	

100 GeV

�
1=2

:

These bounds are given in the mass basis, with the
reference sparticle mass scale set at 100 GeV. In order to
compare our model values with these bounds, we rotate to
the mass basis and include the correct mass dependence
for all constraints derived from tree-level (4-fermion)
operators.

III. CHOICE OF LNV PARAMETERS

In this section, we choose specific representative sce-
narios for the LNV sector which will be used for the
numerical fit of the neutrino masses and mixings in
Sec. IV. First, as a motivation to and a guide line in
finding models, we discuss the general neutrino mass
matrix in the TBM approximation. As we have seen in
Sec. II A, this is a very good approximation to the data.
Later, when performing our numerical fits, we use the
experimental values listed in Eqs. (1)–(3). In Sec. III A
we limit the discussion to ‘‘diagonal LNV parameters’’
�ijj and �0

ijj. In Sec. III B we discuss the more general

case which includes ‘‘nondiagonal couplings,’’ i.e. �ijk

and �0
ijk with j � k.

Since any LNV coupling �ijk, �
0
ijk could potentially

contribute to the effective neutrino mass matrix, we expect
a large number of possible solutions to Eqs. (1)–(5). It is
well beyond the scope of this paper to attempt to determine
them completely. Instead we wish to classify the types of
solutions with a potentially minimal set of parameters. We
thus make a series of simplifying assumptions, restricting
ourselves to a subset of couplings. We will suggest 5
different scenarios (denoted S1 to S5), each making use
of LNV coupling combinations from different types (� and
�0) and generations, which we will make explicit as we
proceed.
In order to obtain the neutrino mass matrix, we solve the

equation

Uy
TBMM

TBM
� UTBM ¼ diag½m���; (34)

for MTBM
� . Here the neutrino masses m��ð� ¼ 1; 2; 3Þ fit

the mass-squared differences and UTBM is given in Eq. (8).
It is natural to split up the resulting neutrino mass matrix

into three separate contributions, each of which is propor-
tional to one neutrino mass:
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MTBM
� �M1þM2þM3

¼m�1

3

2 �1 1

�1 1=2 �1=2

1 �1=2 1=2

0
BB@

1
CCAþm�2

3

1 1 �1

1 1 �1

�1 �1 1

0
BB@

1
CCAþm�3

2

0 0 0

0 1 1

0 1 1

0
BB@

1
CCA (35)

¼ 1

6

4m�1 þ 2m�2 2�21 �2�21

2�21 m�1 þ 2m�2 þ 3m�3 �2�21 þ 3�31

�2�21 �2�21 þ 3�31 m�1 þ 2m�2 þ 3m�3

0
BB@

1
CCA; (36)

where the off-diagonal entries are written in terms of

�ij �
�m2

ij

m�i þm�j

: (37)

We observe that all three contributions M� are of the
symmetric form

ðM�Þij / cð�Þi cð�Þj : (38)

If UTBM is orthogonal, this always follows from Eq. (34),
independent of its exact form. The supersymmetric tree-
level neutrino mass matrix displays an identical structure if
one assigns

cðtreeÞi � �0
ijkðYDÞjk; (39)

or

cðtreeÞi � �ijkðYEÞjk: (40)

This follows from a first-order approximation of Eq. (22),
making use of RGE considerations such as Eq. (30) [119].
The dominant one-loop level contribution to the neutrino
mass matrix does not strictly display the same structure, as
can be seen from Eq. (25). However, for diagonal cou-
plings (j ¼ k), one can make a similar assignment as in the
tree-level case,

cðloopÞj � �0
jkkðmdÞk (41)

or

cðloopÞj � �jkkðm‘Þk; (42)

cf. Eq. (27). We discuss the generalization to nondiagonal
couplings in Sec. III B.

For simplicity, we mainly focus on solutions which
directly reflect the form of Eq. (36) (S1 to S4) [120],
namely

cð1Þ1 ¼ �2cð1Þ2 ¼ 2cð1Þ3 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2m�1

3

s
;

cð2Þ1 ¼ cð2Þ2 ¼ �cð2Þ3 ¼
ffiffiffiffiffiffiffiffi
m�2

3

r
;

cð3Þ1 ¼ 0;

cð3Þ2 ¼ cð3Þ3 ¼
ffiffiffiffiffiffiffiffi
m�3

2

r
:

(43)

This can minimally be achieved by allowing for exactly

one LNV parameter for each coefficient cð�Þi [121]. The
three matrices in Eq. (36) can then be described by 8
coefficients

fcð1Þ1;2;3; c
ð2Þ
1;2;3; c

ð3Þ
2;3g; (44)

where we have made use of the fact that cð3Þ1 ¼ 0 in both the
TBM case and the best-fit case, under the assumption that
�13 ¼ 0. Since we need only two mass scales to describe
the neutrino data, we shall assume that the lightest neutrino
is massless in the NH and IH cases. Depending on the
scenario (NH, IH, degenerate [DEG]), we thus need either

five, six or eight nonzero coefficients cð�Þi .
To illustrate possible alternatives, we show how ‘‘non-

diagonal’’ couplings might contribute to neutrino masses
in another example (S5).
While we have presented the TBM approximation to

display the general coupling structure we are aiming for, in
the numerical analysis below we solve Eq. (34) not in the
TBM approximation but instead for the best-fit neutrino
data given in Eqs. (1)–(5). This results in slightly different

values for cðiÞj . However, the deviation from the TBM case

is less than 7% for each cðiÞj .

A. Diagonal LNV scenarios

Scenarios involving only diagonal LNV couplings �ijk

with j ¼ k are the most straightforward to consider. With
these we can generate all neutrino mass matrix entries with
a minimal set of LNV couplings. The nondiagonal case
requires additional couplings, as we discuss below, cf.
Sec. III B. We first discuss normal hierarchy and inverted
hierarchy scenarios and then the degenerate case.
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(i) Normal hierarchy: Since the first part of the neutrino
mass matrix, M1, is zero for NH, we need only five
LNV couplings to generateM� � M2 þM3. In order
to keep these two contributionsM2,M3 (correspond-
ing to the two nonzero neutrino mass eigenvalues) as
independent as possible, we use � couplings for one
and �0 couplings for the other matrix. If we now
choose A0 such that it lies in the minimum region

for either � or �0 (we denote this by Að�Þ
0 and Að�0Þ

0

respectively), cf. Sec. II E, we can generate one neu-
trino mass eigenvalue at tree level and one at loop
level in a nearly independent fashion. This implies
that the mass scales can be easily adjusted. We focus

on the case Að�0Þ
0 � 2M1=2, where the contribution

from �0 couplings to the tree-level mass matrix is
suppressed, because as we will show, for the IH sce-
narios only this choice of A0 is possible. We briefly

mention changes for the case Að�Þ
0 �M1=2=2 in NH

scenarios during the discussion in Sec. VC.
Motivated by the observation that the first row/column

ofM3 is zero (i.e. c
ð3Þ
1 ¼ 0), and also �111 ¼ 0 due to

antisymmetry, we fit

ðM3Þij � �i11�j11; (45)

(i.e. cð3Þi � �i11). We then automatically obtain the

structure of M3. Because we have chosen Að�0Þ
0 �

2M1=2, this matrix is dominated by the tree-level

contribution. In order to generate M2 independently
ofM3 (at one-loop level), we choose

ðM2Þij � �0
ikk�

0
jkk; (46)

where k is fixed.We present all three cases k ¼ 1, 2, 3
in Table II, denoted S1, S2 and S3, respectively.
Additionally, we present one further scenario where

we depart from the correspondence cð�Þi ��i. The
motivation for this is to consider a neutrino scenario
where third generation couplings are dominant, in
analogy to the hierarchy of the SMYukawa couplings.
This scenario is particularly interesting because it
represents a lower limit on the required size of the
LNV couplings under the assumption that no further
mechanism exists to contribute to the neutrinomasses.
Wediscuss this aspect inmore detail in Sec.V. In order
to be able to fit the matrices M2, M3 only with third
generation couplings �i33 and �0

i33, one of those ma-

trices needs to fulfill ðMiÞ3k ¼ 0 due to the antisym-
metry of � in the first two indices. To achieve this, we
build a suitable superposition of the matricesM2 and

M3. We denote the new coefficients by ~cð�Þi in S4 of
Table II.

(ii) Inverse hierarchy: As mentioned in the case of
normal hierarchy, �ijj couplings will always lead

to one row/column of zeros in the generated neu-
trino mass matrix. Since in the case of inverse
hierarchy, the two nonzero matrices M1 and M2

are both nonzero in all entries, we take this as
motivation to fit M1 and M2 with �0 couplings
only (however, for completeness we also present
one scenario with both � and �0 couplings, cf. next

TABLE II. Overview of the ‘‘diagonal’’ (S1–S4) and ‘‘nondiagonal’’ (S5) scenarios used for
our numerical analysis.

Normal Hierarchy (NH) Inverse Hierarchy (IH) Degenerate (DEG)

S1 cð1Þi � 0 cð1Þi � �0
i11 cð1Þi � �0

i11

cð2Þi � �0
i11 cð2Þi � �0

i22 cð2Þi � �0
i22

cð3Þi � �i11 cð3Þi � 0 cð3Þi � �i11

S2 cð1Þi � 0 cð1Þi � �0
i11 cð1Þi � �0

i11

cð2Þi � �0
i22 cð2Þi � �0

i33 cð2Þi � �0
i33

cð3Þi � �i11 cð3Þi � 0 cð3Þi � �i11

S3 cð1Þi � 0 cð1Þi � �0
i22 cð1Þi � �0

i22

cð2Þi � �0
i33 cð2Þi � �0

i33 cð2Þi � �0
i33

cð3Þi � �i11 cð3Þi � 0 cð3Þi � �i11

S4 cð1Þi � 0 cð1Þi � �0
i33

~cð2Þi � �0
i33 cð2Þi � �i33 &�322

–

~cð3Þi � �i33 cð3Þi � 0

S5 cð1Þi � 0 cð1Þi � �0
i33

cð2Þi � �0
i23 &�0

i32
– cð2Þi � �i33 &�322

cð3Þi � �i11 cð3Þi � �231&�213 &�312ð&�313Þ
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paragraph). With only �0 couplings present, we set

the value of A0 to Að�0Þ
0 � 2M1=2, such that all tree-

level contributions are suppressed, and the two mass
scales are both generated at loop level. Otherwise
the neutrino mass hierarchy would be much larger
than experimentally observed, cf. Sec. II E. We dis-
play the three possibilities arising from

ðM1Þij � �0
ikk�

0
jkk; (47)

ðM2Þij � �0
ill�

0
jll; (48)

where l < k [122] in Table II. These models are
labeled (IH) S1, S2, and S3.
If we choose �i‘‘ couplings instead of �0

i‘‘ in

Eq. (48), this would again generate a (unwanted)
row/column of zeros in M2. Therefore, in this case
we need to combine, for example, �i33 with �322 in
order to generate nonzero entries for the third row/
column of M2. Such a combination of couplings

generates a matrix of the form cð2Þi cð2Þj , where cð2Þ1;2

and cð2Þ3 originate from �i33 and �322 at tree level,

respectively, because these couplings generate �i

via the RGEs, cf. Eqs. (22) and (30). In order to
ensure that M2 is generated at tree level, we still set

Að�0Þ
0 ¼ 2M1=2, such that we are able to fit Eq. (36).

This case is also listed under S4 in Table II.
(iii) Degenerate masses: Since for degenerate masses,

all three matrices M1;2;3 are nonzero and of similar

magnitude, this scenario is a combination of
choices made for NH and IH. As explained for
the case of NH, we choose

ðM3Þij � �i11�j11: (49)

To generateM1 andM2, we fit in analogy to the IH
case

ðM1Þij � �0
ikk�

0
jkk; (50)

ðM2Þij � �0
ill�

0
jll: (51)

These models are listed in Table II as (DEG) S1, S2
and S3. Here, as in the IH case, only the parameter

choice Að�0Þ
0 is possible in order to suppress the �0

contribution to the tree-level neutrino mass.

B. Nondiagonal LNV scenarios

In this section, we depart from the diagonal coupling
scenarios and discuss the effects of introducing ‘‘nondiag-
onal’’ couplings.

When allowing for nondiagonal LNV couplings �0
ikl

(�ikl), l � k, we generally need more couplings than in
the diagonal case. This is because at one-loop level [123],
neutrino masses are dominantly generated proportional
to �0

ikl�
0
ilk (�ikl�ilk). Thus, the assignment of one LNV

coupling to one cð�Þi parameter [Eq. (38)] is not possible
for the part of the neutrino mass matrix generated at one-
loop level. Instead, we require

cð�Þi cð�Þj � 1
2 	 ð�0

ikl�
0
jlk þ �0

ilk�
0
jklÞðmdÞkðmdÞl; (52)

where k, l are fix (similarly for � couplings). This effec-
tively doubles the number of LNV parameters if we choose
k � l. Phenomenologically, one can distinguish between
two cases:
(a) �0

ikl � �0
ilk (same order of magnitude)

(b) �0
ikl 
 �0

ilk or vice versa (strong hierarchy)

In the first case (a), the size of the couplings will not differ
significantly from the diagonal case. For illustrative pur-
poses, we will present numerical results for a nondiagonal
scenario similar to the S3NH example, which we list under
S5 NH in Table II. Here, we take as starting values �0

i23 ¼
�0
i32 and thus, a simplified form of Eq. (52) is cð2Þi � �0

i32,

similar to the assignment in the diagonal case.
In the latter case (b), the size of the couplings become

very different from those in the diagonal scenarios. In
particular, some of the couplings can become very large.
This is potentially of great interest experimentally.
However, various low-energy bounds could potentially be
violated. This can be illustrated with the help of the follow-
ing example with degenerate neutrino masses, which we
list under S5 DEG in Table II. Here, the first two neutrino
masses are generated as in the case of S4 IH (however, now
for normal mass ordering):M2 is generated at tree level via
diagonal �i33 and �322 couplings, and M1 is generated at
loop level via �0

i33 couplings. However, now we addition-

ally generate M3 at one-loop level via the 3 off-diagonal �
couplings �231, �213 and �312. The latter do not lead to tree-
level neutrino masses because the leptonic Higgs-Yukawa
coupling is (nearly) diagonal and thus the tree-level gen-
erating term �ijkðYEÞjk is (practically) zero. As we will see,
the benchmark point we use leads to a very large �231

beyond the perturbativity limit. For this reason, a different
BP point, labeled as BP2, will be introduced for this
scenario in Sec. VB [124].
To obtain a qualitative understanding of the relative size

of the couplings, first note that �133 contributes to bothM2

andM3 due to the antisymmetry, �133 � ��313. We choose

the Að�0Þ
0 minimum, and thus generate M2 at tree level. The

value of �133 is therefore fixed, and is forced to be small
due to its coupling with the large tau Yukawa coupling
ðYEÞ33. The matricesM1 andM3 are then generated at loop
level. The coupling product �231�313 ¼ ��231�133 is re-
sponsible for generating ðM3Þ23. This implies that �231

needs to be large in order to compensate for the smallness
of �313. When now fitting ðM3Þ22 � �231�213, the large �231

then leads to a hierarchically smaller �213 in order to be
consistent with the experimental result. Similarly, �231
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leads to a small �312 by their contribution to ðM3Þ33 via
�312�321ðAl

12 þ Al
21Þ as shown in Eq. (25).

IV. NUMERICAL ANALYSIS

In this section, we present the numerical results. We will
first discuss the relevant aspects of SOFTSUSY V3.1.5 for our
analysis. We then describe our minimization procedure.
Next we present our best-fit solutions for the normal hier-
archy, inverted hierarchy and the degenerate case, respec-
tively. In the last subsection we discuss these results.

A. Preliminaries

Our numerical simulation is performed using an adapta-
tion of SOFTSUSY V3.1.5, which will be made public in the
near future. Until then, we refer interested readers to the
SOFTSUSY manual [51] for the detailed procedure of ob-

taining the B3 SSM mass spectrum. We use the program
package MINUIT2 and a Markov chain Monte Carlo method
(Metropolis-Hastings algorithm) for fitting the LNV cou-
plings �ijk to the neutrino data.

We now comment briefly on the additional features we
include in SOFTSUSY and the determination of the UPMNS

mixing in the following. Our calculation improves on
SOFTSUSY V3.1.5 by including the one-loop contributions

to the neutrino-neutralino mass matrix, as well as all 6Rp

tadpole corrections to the Higgs and sneutrino VEVs.
Because the superfields Li and Hd have the same quantum
numbers, we organize the computation to treat these fields
on equal footing. To ensure the accuracy, an independent
calculation was performed without using this symmetry.
We have also checked that in the Rp conserving limit our

results agree with the internal results in SOFTSUSY V3.1.5.
The 6Rp tadpole corrections are included in the SOFTSUSY

iteration procedure which minimizes the five-dimensional
electroweak symmetry breaking neutral scalar potential.
The effective 3� 3 neutrino mass matrix Meff

� and the
effective neutrino mixing matrix U� are calculated at the
electroweak symmetry breaking scale given an input set of
LNV parameters at the unification scale. Note that within
SOFTSUSY, the condition that the charged lepton mixing

matrix is diagonal is imposed at the electroweak scale.
Thus, UPMNS ¼ U� [125].

B. Minimization procedure

Our goal is to find numerical values for each LNV
scenario specified in Table II, such that we obtain the
experimentally observed neutrino data, Eqs. (1)–(5), at
the 1� level by means of least-square fitting. In order to
achieve this also in degenerate scenarios, which neces-
sarily involve some fine-tuning (as we discuss in Sec. V),
we use a multistep procedure as outlined below.

We take as initial values for each set of LNV parameters
at the unification scale MX

�ikk � cð�Þi

1

ðYfÞkk ; (53)

(no summation over k) as specified in Table II. f denotes a
down quark for a �0 and a charged lepton for a � coupling.
The proportionality factor is estimated from the upper
bound on the LNV couplings which comes from the upper
bound on the neutrino mass from WMAP measurements,
cf. Ref. [49].
Next, we perform a pre-iteration within our modified

version of SOFTSUSY, where we make the simplifying as-
sumption that the generation of the tree level (by � ¼ �)
and one-loop level (by� ¼ �0) neutrino mass matricesM�

in Eq. (36) are independent of each other. So for each M�

we separately fit the relevant �ijk. In our iteration proce-

dure we set

�ijkjnew ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMobs

� Þii
ðMsoftsusy

� Þii

vuut �ijkjold: (54)

HereMsoftsusy
� is the effective neutrino mass matrix (at one-

loop level) obtained via the seesaw-mechanism with
SOFTSUSY. In the first step we use the initial values corre-

sponding to Eq. (53). We obtain ðMobs
� Þii by inverting

Eq. (34), without using the TBM approximation. For m��

we use the experimental best-fit values. And for the diag-
onalization matrix U, we implement the general form,
using �12, �23 from the experimental best fit, as well as
�13 ¼ 0. In Eq. (54) there is also no sum over i.
This gives a very good order of magnitude estimate for

all LNV couplings and thus a suitable starting point for our
least-square fit. However, so far each set of couplings

�ijk � cð�Þi =ðYfÞkk has only been fit separately for each

�, while keeping the other LNV couplings equal to zero.
When fitting all LNV couplings simultaneously, they can
affect each other via the RGEs and through contributions to
the other Mobs

� . Note that these effects are easily control-
lable for NH and IH scenarios. However, in the case of
DEG scenarios, some strong cancellations occur for some
entries of the effective neutrino mass matrix, e.g. the
ðM�Þ13 ¼ ðM1Þ13 þ ðM2Þ13 entry in Eq. (36). Here, both
individual entries ðM�Þ13 are of the order of the generated
neutrino mass, but the resulting ðM�Þ13 entry is at least 3
orders of magnitude smaller. This will become relevant in
the next step of our procedure.
After these first approximations, we next fit all LNV

parameters specified for each scenario in Table II simulta-
neously. We calculate the full 7� 7 neutralino-neutrino
mass matrix with SOFTSUSY. The 3� 3 neutrino mass
matrix is then obtained via the seesaw mechanism, and is
used in order to extract predictions for the neutrino masses
and mixing angles.
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We define a 	2 function

	2 � 1

Nobs

XNobs

i¼1

�
f
softsusy
i � fobsi

�i

�
2
; (55)

where fobsi are the central values of the Nobs experimental

observables defined in Eqs. (1)–(5), f
softsusy
i are the corre-

sponding numerical predictions and �i are the 1� experi-
mental uncertainties. We minimize Eq. (55) with a
stepping method of the program package MINUIT2 for the
NH/IH case. In the DEG scenarios, MINUIT2 initially does
not converge due to the points made in the last paragraph.
Therefore, we first use the Hastings-Metropolis algorithm
to obtain a 	2 <Oð10Þ. Subsequently, the same MINUIT2

routine as in the NH/IH case is used. We accept a
minimization result as successful if our minimization pro-
cedure yields 	2 < 1.

Simultaneously, we ensure that the conditions

X
i

m�i
& 0:4 eV

sin2ð�13Þ< 0:047
(56)

are fulfilled.

V. DISCUSSION OF RESULTS

We present our numerical results in Table III. In the
three columns, we show our best-fit solutions for normal
hierarchy, inverse hierarchy and degenerate masses, re-
spectively. In the five rows, we show our solutions for the
various scenarios enlisted in Table II. S1–S4 are the ‘‘di-
agonal’’ LNV scenarios, while S5 involves nondiagonal
couplings, as discussed in the previous section. In order to
illustrate the low-energy bounds most relevant to our sce-
narios, we also display models which do not satisfy all
constraints. These solutions are highlighted in bold and the
violated bound(s) are also stated.

A. Diagonal LNV scenarios

We first discuss some general features of the best-fit
parameter sets. Focusing on the three scenarios S1–S3,
some ratios among the LNV couplings are displayed in
Table IV. We see that the results reflect the basic structure
of our ansätz Eq. (53). In particular, the relative signs
among different LNV couplings are reproduced.
However, the relative magnitude among the couplings are
expected to deviate somewhat from Eqs. (53) and (43). One
reason is that our LNV couplings should mirror the struc-
ture of Eq. (43) at the electroweak scale, while in Table III
and IV the couplings are given at the unification scale. So
RG running needs to be taken into account. However the
change in the LNV couplings when going to the unification
scale is not uniform for all couplings. Also, we fit the

oscillation data given in Sec. I instead of the TBM

approximation, such that the cð�Þi differ from Eq. (43)

already by up to 7% percent.
We also see from Table IV that the LNV parameters in

the IH scenarios follow the pattern of cð�Þi more closely

than those in the NH and DEG scenarios. For the IH
scenarios, the tree-level contribution is suppressed by
choosing A0 appropriately. The neutrino mass matrix en-
tries are dominated by loop contributions and the associ-
ated couplings should then reflect the near TBM structure

as well as the orthogonality of the vectors cð�Þ. However for
the NH and DEG scenarios, the significant contributions

from both tree and loop masses mean that while the cð�Þi

have the expected ratios for each � after pre-iteration, once
contributions from different �’s are combined for the full
iteration they interfere with each other. For example, the

presence of � couplings changes the position of the Að�0Þ
0

minimum, making the contributions of the �0 couplings to
the tree-level masses less suppressed, thus leading to the
larger deviation.
It is clear from Eq. (53) that the magnitude of diagonal

LNV couplings should decrease from first to third genera-
tion (while generating the same neutrino masses), because
the LNV couplings have to balance out the effect of the
Higgs-Yukawa couplings, which increase with generation.
For example, comparing the size of �0

ikk in scenarios

S1–S3 in the IH case, one observes that the difference in
magnitude of the LNV couplings mirrors the hierarchy of
down-type quark masses, �0

ijj=�
0
ikk � ðmdÞk=ðmdÞj for

fixed index i.
As we see in Table III, models involving first generation

couplings (�0
111 and �0

211) are disfavored due to strong

constraints from � ! eee [b1], �� e conversions [b2]
and 0��� [b8]. In addition, the �211 in S1 NH, S1 DEG
and S2 DEG violate the two-coupling bound from �� e
conversion [b2] in conjunction with the large �0

111 cou-

pling. Limits on leptonic K-meson decay [b6] and� ! e

[b7] are also seen to be violated in degenerate scenarios S1
DEG and S2 DEG involving diagonal first generation
couplings. The second generation LNV Yukawa couplings
are of the order of 10�3 (10�4) for IH and DEG (NH)
scenarios [126] and safely satisfy all low-energy bounds.
The third generation couplings take on values between
10�5 and 10�6.
Collider implications of the solutions we obtained will

be discussed in Sec. VI. Generally speaking, the stringent
low-energy bounds on the first generation couplings could
be evaded in models with heavier supersymmetric mass
spectra. In these models the relatively large couplings
could still lead to interesting collider phenomenology, for
example, resonant production of sparticles [127]. These
couplings could also have significant impact on the RG
running of the sparticle masses, and result in observable
changes to the sparticle spectrum when compared with
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those in the Rp-conserving limit. In particular, new LSP

candidates may be obtained even within the B3 cSSM
framework [128].

In contrast, third generation couplings are tiny, e.g. the
S4 NH model in Table III. However these small couplings
could result in a finite decay length for the LSP and hence
potential detection of displaced vertices in a collider. See
Ref. [41] for numerical estimates.

In Fig. 2, we display the changes in 	2 for a few selected
scenarios (S2 NH, S3 IH and S3 DEG) when a LNV
coupling is varied within ½0:5:1:5� times the best-fit value.
We define a ‘‘width’’ for a 	2 minimum to be

w � ��j	2<3

�j	2�0

; (57)

TABLE III. Best-fit points for the LNV parameters at the unification scale MX for our benchmark point BP and Að�0Þ
0 ¼ 912:3 GeV,

except for S5 DEG, where BP2 and Að�0 Þ
0 ¼ 1059:2 GeV are used, cf. Sec. VB. The couplings printed in bold violate one of the low-

energy bounds [b1]–[b7] which are listed in Sec. II F. Note that the values are given at 2 significance level only for better readability. In
order to reproduce the results, higher significance is needed as is clear from Eq. (58). Readers are encouraged to contact the authors to
obtain the exact values.

Normal hierarchy Inverse hierarchy Degenerate

S1 �0
111 ¼ 1:12 	 10�2, ½b2�, ½b8� �0

111 ¼ 3:94 	 10�2, ½b1�, ½b2�, ½b8� �0
111 ¼ 5:85 	 10�2, ½b1�, ½b2�, ½b7�, ½b8�

�0
211 ¼ 8:76 	 10�3 �0

211 ¼ �1:88 	 10�2, ½b1�, ½b2� �0
211 ¼ �3:63 	 10�2, ½b1�, ½b2�, ½b6�, ½b7�

�0
311 ¼ �1:48 	 10�2 �0

311 ¼ 1:94 	 10�2 �0
311 ¼ 3:35 	 10�2, ½b6�

�211 ¼ 1:52 	 10�2, ½b2� �0
122 ¼ 1:21 	 10�3 �0

122 ¼ 2:18 	 10�3

�311 ¼ 1:37 	 10�2 �0
222 ¼ 1:27 	 10�3 �0

222 ¼ 1:63 	 10�3

�0
322 ¼ �1:31 	 10�3 �0

322 ¼ �2:09 	 10�3

�211 ¼ 2:55 	 10�2, ½b6�
�311 ¼ 2:28 	 10�2, ½b6�

S2 �0
122 ¼ 5:08 	 10�4 �0

111 ¼ 3:99 	 10�2, ½b1�, ½b2�, ½b8� �0
111 ¼ 6:87 	 10�2, ½b1�, ½b2�, ½b7�, ½b8�

�0
222 ¼ 3:88 	 10�4 �0

211 ¼ �1:81 	 10�2, ½b1�, ½b2� �0
211 ¼ �2:90 	 10�2, ½b1�, ½b2�, ½b6�, ½b7�

�0
322 ¼ �6:97 	 10�4 �0

311 ¼ 1:89 	 10�2 �0
311 ¼ 3:18 	 10�2, ½b6�

�211 ¼ 1:52 	 10�2 �0
133 ¼ 3:09 	 10�5 �0

133 ¼ 4:99 	 10�5

�311 ¼ 1:37 	 10�2 �0
233 ¼ 3:21 	 10�5 �0

233 ¼ 2:98 	 10�5

�0
333 ¼ �3:35 	 10�5 �0

333 ¼ �7:43 	 10�5

�211 ¼ 2:99 	 10�2, ½b2�, ½b6�
�311 ¼ 2:10 	 10�2, ½b6�

S3 �0
133 ¼ 1:30 	 10�5 �0

122 ¼ 1:80 	 10�3 �0
122 ¼ 2:93 	 10�3

�0
233 ¼ 4:84 	 10�6 �0

222 ¼ �8:29 	 10�4 �0
222 ¼ �1:98 	 10�3

�0
333 ¼ �2:28 	 10�5 �0

322 ¼ 8:64 	 10�4 �0
322 ¼ 5:79 	 10�4

�211 ¼ 1:55 	 10�2 �0
133 ¼ 3:11 	 10�5 �0

133 ¼ 5:18 	 10�5

�311 ¼ 1:40 	 10�2 �0
233 ¼ 3:22 	 10�5 �0

233 ¼ 5:78 	 10�5

�0
333 ¼ �3:32 	 10�5 �0

333 ¼ �5:13 	 10�5

�211 ¼ 1:71 	 10�2

�311 ¼ 3:08 	 10�2

S4 �0
133 ¼ �6:80 	 10�6 �0

133 ¼ 3:96 	 10�5

�0
233 ¼ 2:81 	 10�5 �0

233 ¼ �2:81 	 10�5

�0
333 ¼ 4:21 	 10�5 �0

333 ¼ 2:89 	 10�5

�133 ¼ 1:32 	 10�6 �133 ¼ 3:23 	 10�6

�233 ¼ 2:70 	 10�6 �233 ¼ 3:48 	 10�6

�322 ¼ �5:64 	 10�5

S5 �0
123 ¼ 5:76 	 10�5 �0

133 ¼ �3:11 	 10�5

�0
132 ¼ 5:75 	 10�5 �0

233 ¼ 8:79 	 10�5

�0
223 ¼ 6:23 	 10�5 �0

333 ¼ �4:14 	 10�5

�0
232 ¼ 6:24 	 10�5 �133 ¼ 1:99 	 10�6

�0
323 ¼ �5:88 	 10�5 �233 ¼ 4:08 	 10�6

�0
332 ¼ �6:00 	 10�5 �322 ¼ �2:57 	 10�5

�211 ¼ 1:52 	 10�2 �231 ¼ �5:67 	 10�2

�311 ¼ 1:39 	 10�2 �213 ¼ �2:03 	 10�5

�312 ¼ 2:54 	 10�3
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so that a large (small) w value may be interpreted as less
(more) fine-tuning between different LNV couplings.

Clearly the NH case looks significantly better than the
IH/DEG cases:

wðNH;� ¼ �0
222Þ ¼ 1:1 	 10�1;

wðIH;� ¼ �0
222Þ ¼ 7:4 	 10�3;

wðDEG;� ¼ �0
222Þ ¼ 4:8 	 10�4:

(58)

In fact, since the neutrino masses in our model are free
parameters to be fitted to the data, it is natural for these
masses to be nondegenerate. To obtain the two (three)
quasidegenerate masses in the IH (DEG) spectrum thus
requires a certain amount of fine-tuning, which should be
reflected in the value of w. Recall from Eqs. (36) and (37)
that due to a small (zero) sin½�13� in the near (exact) TBM
limit, there are small off-diagonal entries for an inverted or
degenerate mass spectrum. Specifically, �21 is small in
both cases, while �31 is also small in a DEG spectrum.
As a result, there are small off-diagonal entries for both IH
and DEG scenarios but not for a normal hierarchy, while in
our setup the diagonal and off-diagonal entries of M� are
of the same order for each �. Therefore, a way to under-
stand this fine-tuning technically would be by considering
the size of the off-diagonal entries ofMeff

� . We discuss the
three cases separately.

In the case of NH, the off-diagonal entries in Meff
� will

be of the same order as the diagonal values. In this case, the
experimental observables are fairly insensitive to changes
of up to Oð10%Þ in the LNV sector, cf. Eq. (58).

For IH, we have two nearly degenerate mass eigenstates.
Therefore, the tree-level and the loop contribution have to
be of the same order, with a near cancellation occurring
between the off-diagonal entries ofM1 andM2. This results
in a significantly larger width of the 	2 minimum than in
the NH case.

For the same reason, in the DEG cases even larger
fine-tuning is required in order to obtain three nearly
degenerate neutrino masses. Actually, in the limit M 

�M� �m2=M, where M is the mass scale of the heaviest
neutrino, all off-diagonal entries will have a magnitude of
Oð�MÞ, and the width w can be approximated by

�2 �M; (59)

��

�
� 1

2

�M

M
: (60)

A consequence of such fine-tuning is that if Meff
� is de-

formed slightly (for example due to changes in model
parameters or technical aspects such as a low convergence
threshold in the spectrum calculation), the angles can
change a lot since they are especially sensitive to the
(small) off-diagonal entries of Meff

� . In contrast, the
mass values are much more stable, with their sum deter-
mined by the diagonal entries of Meff

� .
This can be illustrated by changing the implementation

of the LNV parameters in the numerical code from 6
significant figures to 3: the masses change by less than
1%, whereas the angles change by a factor of order one.
Therefore the values displayed in Table III, especially
those for the IH and DEG cases, need to be taken with
caution. However, listing more digits would result in worse
readability, so we ask readers interested in reproducing our
results to contact the authors for more precise values.
To see how the experimental observables change as the

LNV couplings are varied, we show in Figs. 3–5, the
variation of the mixing angles and masses as functions of
�0
222. Recall that the 	2 variation of the fit for �0

222 is
displayed in Fig. 2. For illustrative purposes these figures
also show the variation of another LNV coupling for each
of these scenarios, such that two sets of couplings, each
corresponding to one M�, are presented [129].

TABLE IV. Ratios of the LNV parameters at the unification scaleMX for scenarios S1, S2 and S3 and the ratios cð�Þ1 :cð�Þ2 :cð�Þ3 inferred

from experimental data. For comparison, the ratios cð�Þ1 :cð�Þ2 :cð�Þ3 in the TBM limit are (2:� 1:1), (1:1:� 1) and (0:1:1) for � ¼ 1, 2
and 3, respectively.

Normal hierarchy Inverse hierarchy Degenerate

Data cð2Þ1 :cð2Þ2 :cð2Þ3 ¼ 0:94:0:99:� 1 cð1Þ1 :cð1Þ2 :cð1Þ3 ¼ 2:09:� 0:98:1 cð1Þ1 :cð1Þ2 :cð1Þ3 ¼ 2:09:� 0:98:1
cð3Þ2 :cð3Þ3 ¼ 0:99:1 cð2Þ1 :cð2Þ2 :cð2Þ3 ¼ 0:94:0:99:� 1 cð2Þ1 :cð2Þ2 :cð2Þ3 ¼ 0:94:0:99:� 1

cð3Þ2 :cð3Þ3 ¼ 0:99:1

S1 �0
111:�

0
211:�

0
311 ¼ 0:75:0:59:� 1 �0

111:�
0
211:�

0
311 ¼ 2:04:� 0:97:1 �0

111:�
0
211:�

0
311 ¼ 1:75:� 1:09:1

�211:�311 ¼ 1:11:1 �0
122:�

0
222:�

0
322 ¼ 0:93:0:97:� 1 �0

111:�
0
211:�

0
311 ¼ 1:04:0:78:� 1

�211:�311 ¼ 1:19:1

S2 �0
122:�

0
222:�

0
322 ¼ 0:73:0:56:� 1 �0

111:�
0
211:�

0
311 ¼ 2:12:� 0:96:1 �0

111:�
0
211:�

0
311 ¼ 2:11:� 0:91:1

�211:�311 ¼ 1:11:1 �0
133:�

0
233:�

0
333 ¼ 0:93:0:96:� 1 �0

133:�
0
233:�

0
333 ¼ 0:67:0:40:� 1

�211:�311 ¼ 1:42:1

S3 �0
133:�

0
233:�

0
333 ¼ 0:57:0:21:� 1 �0

122:�
0
222:�

0
322 ¼ 2:09:� 0:96:1 �0

122:�
0
222:�

0
322 ¼ 5:06:� 3:41:1

�211:�311 ¼ 1:11:1 �0
133:�

0
233:�

0
333 ¼ 0:93:0:97:� 1 �0

133:�
0
233:�

0
333 ¼ 1:01:1:13:� 1

�211:�311 ¼ 0:56:1
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We first discuss the scenario S2 NH, which is illustrated
in Fig. 3. In the upper two plots, one sees that the variation
of �0

222 mainly affects �12 and somewhat also m2, whereas

�23 and m3 are left relatively unchanged. In the lower two
plots, where �211 is varied, the observables are reversely

affected. This is because the two nonzero mass matrices,
M2 �m�2 and M3 �m�3, are controlled by the � and �0
couplings separately (i.e. by the tree-level and loop-level
contribution, respectively). Obviously, in NH sin2�12 is
determined only by M2, whereas in IH and DEG, the
form of M1 is also relevant. Therefore, NH is the easiest
scenario to fit, because the observables can be directly
related to independent sets of couplings. The mixing
sin2�13 remains practically unchanged due to our ansätz
in Eq. (53), which is designed to give a tiny �13.
For scenario S3 IH (Fig. 4), we see that here, no clean

correlation exists between which LNV parameter is varied
and which observable is affected. �12 and m2 change
drastically and are affected by both �0

i22 �M1 and �0
i33 �

M2. The sharp change in sin2�12 around the best-fit point
corresponds to ‘‘crossovers’’ of mass eigenstates m1 and
m2 as �0

222 or �0
233 is varied. The fact that the best-fit

solution lies in this steeply changing region simply reflects
the fact that for IH the two heavy neutrinos have similar
masses. Incidentally, the small ‘‘suppression’’ at �0

222 �
�8:4 	 10�4 in the corresponding 	2 plot in Fig. 2 near the
best-fit point corresponds to a region where �m2

21 coin-

cides with the experimental value during this crossover.
However to a reasonable approximation the flavor content
of the two mass eigenstates are now swapped, hence
sin2�12 is different from its best-fit value.
On the other hand, it is clear thatm3 does not sit close to

the crossover region. Moreover, since m3 basically con-
tains only � and � flavors around the best-fit region, the
proportion of � and � content of the other two mass
eigenstates must be the same in order for them to be
orthogonal tom3. As a consequence, the crossover of these
two states only changes sin2�23 mildly. As in the case of S2
NH, sin2�13 is designed to have a tiny value.
For the scenario S3 DEG (Fig. 5), the fact that the three

mass scales are very close to each other means that com-
plete separation of the three contributions is in practice
very difficult. As in S3 IH, the best-fit point lies close to a
region where crossover of mass eigenstates take place. In
this case, two crossovers take place near the best-fit point.
For example, the nontrivial variation of sin2�12 with �0

233

immediately to the right of the best-fit point corresponds to
a second crossover of the mass eigenvectors. The fact that
all three masses are quasidegenerate also explains the large
transition of all three mixing angles. In particular, even
though the coupling set is chosen to have a small sin2�13,
immediately away from the best-fit point the mass ordering
is changed, resulting in the different sin2�13 behavior
compared with the NH and IH cases.
Furthermore, due to the strong fine-tuning, the 	2 sup-

pression expected as in the IH scenarios is buried within
the rapidly increasing 	2 value. We note in passing that due
to this fine-tuning, the numerical results are less stable than
those in the NH and IH scenarios. This results in the
fluctuations seen in the figures [130].

χ2

λ’222
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1 σ range
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λ’222
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100
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104
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FIG. 2 (color online). Variation of 	2 as a function of �0
222 for

scenarios S2 NH, S3 IH and S3 DEG. The glitches in S3 IH and
S3 DEG are associated with the ‘‘crossing over’’ of mass
eigenstates when �0

222 is varied. See text for more discussion.
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We now go on to discuss the scenarios S4, which
represent scenarios with the smallest possible LNV cou-
plings to still describe the oscillation data correctly. In the
S4 NH scenario, recall that the antisymmetry of the �i33

couplings generates zeros in M3 which do not correspond
to the ‘‘texture zeros’’ given in Eq. (36). Therefore, linear
combinations between the different contributions to the
neutrino masses (i.e. between M2 �m�2 and M3 �m�3)
are necessary to obtain the desired oscillation parameters.
As a result, the ratio of the couplings are not approxi-
mated by those displayed in Eq. (43) but instead by a
linear combination of these, cf. Ref. [120]. Still, the
behavior of the observables when the relevant LNV cou-
plings are varied is similar to the scenarios discussed
above.

In the S4 IH scenario, the �0
i33 couplings still roughly

follow the expected structure and magnitude as before in
S1 to S3 IH. However, the deviations are slightly larger
because of the presence of � couplings. In contrast to other
IH scenarios, in S4 IH, M2 is generated at tree level from

�i33 and �322 instead of at one-loop level from �0
i22. The

absence of �333, due to the antisymmetry of the first two
generation indices, means that �322 (or �311) is needed to
‘‘fill up’’ the third row/column of the tree-level matrixM2.
In this scenario, all diagonal third generation couplings are
used. Consequently, the magnitude of our coupling set is
the smallest possible among the diagonal inverted hier-
archy scenarios.
The ratio of the three � couplings is approximately

ð�133:�233:�322Þ � ð1:1:� 16Þ; (61)

which is expected as these couplings scales as 1=ðYEÞii
(i ¼ 2, 3).
We conclude in both the NH and the IH case that it is not

possible to push all LNV couplings below Oð10�5Þ.
However, at this order of magnitude, displaced vertices
might be observed at colliders, depending on the bench-
mark point, cf. Sec. VI.
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FIG. 3 (color online). Variation of the mixing angles (left) and the mass eigenvalues (right) as functions of �0
222 (top) and �211

(bottom) for scenario S2 NH. The best-fit values for �0
222 and �211 are located at the center of the plots. On the plots of mixing angles,

the grey bands are experimentally viable regions for (from top to bottom) sin2�23, sin
2�12 and sin2�13. On the plots of mass

eigenvalues, values inside the grey bands are disfavored by cosmological considerations.
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B. Off-diagonal LNV scenarios

In S5 we present the solutions for the two off-diagonal
LNV scenarios. We see that the NH off-diagonal solution,
being an example of nonhierarchical off-diagonal cou-
plings, is very similar to the diagonal NH solutions in
structure, cf. Eq. (61). Obviously, because here the
generation indices of the couplings are i23=i32 instead of
i22 (S2) or i33 (S3). The order of magnitude of the
couplings is somewhere between the solutions S2 and
S3, mirroring the mass hierarchy in the down-quark sector.

In scenario S5 DEG, the �231 coupling is much larger
than the other couplings, representing an example of a
strongly hierarchical off-diagonal scenario. In fact, when
performing the SOFTSUSY pre-iteration for our benchmark
point, we found �231 to be of Oð1Þ, which is inconsistent
with the requirement of perturbativity, and also violates the
low-energy bounds.

To reduce the size of this coupling, a different cSSM
benchmark point is therefore chosen. Employing a larger

tan� and also sgnð�Þ ¼ �1 is useful, as the former implies
larger down-type quark Yukawa couplings, while the latter
also increases certain loop contributions to neutrino
masses. Of course, assuming a heavier mass spectrum is
also helpful. In fact, a scan over the cSSM parameter space
with the condition �231 & Oð0:1Þ, leads to the following
benchmark point (BP2):

M1=2 ¼ 760 GeV;

M0 ¼ 430 GeV;

tan� ¼ 40;

sgnð�Þ ¼ �1:

(62)

The Að�0Þ
0 corresponding to this is 1059.2 GeV. The

resulting mass spectrum is displayed in Table V.
Compare with the original benchmark point BP, the spar-
ticles in BP2 are somewhat heavier than those in BP.
Also, while the LSP in BP is a stau, the relatively small
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FIG. 4 (color online). Variation of the mixing angles (left) and the mass eigenvalues (right) as functions of �0
222 (top) and �0

233

(bottom) for scenario S3 IH. The best-fit values of �0
222 and �

0
233 are located at the center of the plots. On the plots of mixing angles, the

grey bands are experimentally viable regions for (from top to bottom) sin2�23, sin
2�12 and sin2�13. On the plots of mass eigenvalues,

values inside the grey bands are disfavored by cosmological considerations.
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differences between M1=2 and M0 in BP2 results in a

neutralino LSP (~	0
1) instead. This leads to distinctly differ-

ent collider phenomenology, which will be briefly dis-
cussed in the next section.

C. Effects of changing the benchmark point

So far, we have only considered scenarios under the
assumption of up-mixing in the quark sector and using

the Að�0Þ
0 minimum. In the rest of this section we briefly

discuss changes which occur when down-mixing is as-

sumed or using the Að�Þ
0 minimum instead.

(i) Að�Þ
0 minimum: We consider as an example the sce-

nario S2 NH. The best-fit LNV couplings for Að�0Þ
0 ¼

912:3 GeV are given in the second row, first column

of Table III. When using the Að�Þ
0 minimum instead

(given by Að�Þ
0 ¼ 200:6 GeV), the �0

i22 couplings

generate M2 at tree level whereas M3 is generated

by �i11 at one-loop level (for the A
ð�0Þ
0 it was the other

way round). We obtain as a best fit

�0
122 ¼ 1:11 	 10�5;

�0
222 ¼ 1:49 	 10�5;

�0
322 ¼ �8:99 	 10�6;

�211 ¼ 1:53 	 10�1½b3�; ½b5�;
�311 ¼ 1:59 	 10�1½b4�:

(63)

The decrease (increase) by a factor 10 of the
�0
i22 (�i11) couplings reflects the typical hierarchy

between the tree level and the one-loop neutrino
mass of Oð102Þ, cf. Fig. 1. In contrast to the original
S2 NH scenario, this scenario is not compatible with
several low-energy bounds as listed in Sec. II F due
to the larger �i11 couplings.

(ii) Down mixing: When changing the quark mixing
assumption from up-type to down-type mixing, cf.
Sec. II D, the LNV parameters are affected via RG
running. However, the changes when running from
the unification scale down to the electroweak scale
are less than 1% for diagonal LNV couplings when
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FIG. 5 (color online). Variation of the mixing angles (left) and the mass eigenvalues (right) as functions of �0
222 (top) and �0

233

(bottom) for scenario S3 DEG. The best-fit values for �0
222 and �

0
233 are located at the center of the plots. On the plots of mixing angles,

the grey bands are experimentally viable regions for (from top to bottom) sin2�23, sin
2�12 and sin2�13. On the plots of mass

eigenvalues, values inside the grey bands are disfavored by cosmological considerations.
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switching from up-type to down-type mixing. This
is because for �0 couplings involving light genera-
tions (e.g. �0

i11), RG running is dominated by gauge
contributions. For couplings involving the third gen-
eration (e.g. �0

i33), the fact that the only significant

mixing in the CKM matrix is between the first two
generations implies that the effect of changing the
quark mixing is also small. The bilinear LNV cou-
plings responsible for the tree-level neutrino mass
matrix are dynamically generated by � couplings,
which are of course not affected directly by changes
in the quark mixing assumptions. In models where
bilinear couplings are generated by �0 couplings, the
effect of changing the quark mixing assumption is
more complicated.
Note also that for nondiagonal couplings, the changes
are expected to be much larger than for diagonal
couplings. This is because YD is diagonal when as-
suming up-quarkmixing, while nonzero off-diagonal
entries are present when down-quark mixing is as-
sumed instead. We note that similar observations are
made in Ref. [49], where a single nonzero LNV
coupling is used to saturate the cosmological bound.
Nevertheless, these small changes for diagonal LNV
couplings can still be important, particularly for the
IH and DEG scenarios, which are sensitive to the
exact values of the LNV parameters. On top of that,
one-loop contributions involving light quark mass
insertions can depend sensitively on the quarkmixing
assumption. For example, ðYDÞ11 changes by a factor
of �2 when the mixing is changed, which implies
large changes in the loop contributions involving
�0
i11, which in turn will affect all mass ordering

scenarios. In contrast, ðYDÞ22 changes by a couple
of percent, so the impact through themass insertion is
relatively mild.

In principle, changing the mixing assumption, but
retaining the same coupling values, can affect 	2

dramatically, if the width w of the scenario is small.
As a numerical example consider a comparison of the
three scenarios depicted in Fig. 2. S2 NH, involves
�0
i22 with a width w of Oð10%Þ. Here 	2 increases

from �0 in the up-mixing case to about 3 in the
down-mixing case. In contrast, in S3 IH (DEG),
where the width is narrower than 1% (0.1%), chang-
ing the quarkmixing assumption leads to a	2 change
of 4 (more than 6) orders of magnitude. These
changes can be compensated by refitting the LNV
couplings. It is not surprising that refitting a subset of
couplings is sufficient. For example, a refit of S3 IH
yields:

�0
122 ¼ 1:70 	 10�3;

�0
222 ¼ �8:80 	 10�4;

�0
322 ¼ 9:71 	 10�4;

�0
133 ¼ 3:11 	 10�5;

�0
233 ¼ 3:22 	 10�5;

�0
333 ¼ �3:32 	 10�5;

(64)

where the three �0
i22 are refitted. A different solution

with a small 	2 can also be obtained by refitting �0
i33

alone. The solution in Eq. (64) differs from the origi-
nal up-type mixing solution byOð10%Þ. This is what
one might expect, bearing in mind that the changes
occurring in the CKMmatrix from up-type to down-
type mixing are�20%.

VI. COLLIDER SIGNATURES

The neutrino models we have found in the previous
sections lead to observable collider signatures. Here, we
shortly discuss phenomenological implications at the
LHC. Resonant slepton production typically requires a
coupling strength �0

i11 * 10�3 for incoming first genera-
tion quarks [127]. For higher generation quarks an even
larger coupling is required to compensate the reduced
parton luminosity. In Table III, we see that our models do
not satisfy this requirement. However, by considering a
scenario which combines aspects of S1 NH and S4 NH, it
is possible to have a large �0

211 while evading the low-
energy constraints, see [131].
Thus in most neutrino mass scenarios, squark and gluino

production are the dominant production mechanisms for
supersymmetric particles at the LHC, as in the Rp con-

serving minimal supersymmetric standard model. Once
produced, the squarks and gluinos cascade decay in the
detector to the LSP, via gauge couplings. The final LHC
signature is then determined by the exact nature of the LSP
and the LNVoperators leading to the LSP decay.

TABLE V. Mass spectrum of the benchmark point BP2 in the
Rp conserving limit. The notation is the same as Table I. The

values in brackets denote changes when the nonzero LNV
couplings in S5 DEG is included. As expected, the dominant
coupling �231 changes the second and third generation slepton
and the (right-handed) selectron masses, but only by at most 1%.

Particles Masses (GeV)

~g 1696

~	�
1 , ~	

�
2 599 798

~	0
1, ~	

0
2, ~	

0
3, ~	

0
4 320 599 785 799

~u1, ~c1, ~t1 1593 1593 1431

~u2, ~c2, ~t2 1536 1535 1281
~d1, ~s1, ~b1 1595 1595 1427
~d2, ~s2, ~b2 1530 1530 1358

~e1, ~�1, ~�1 665 665(663) 631(629)

~e2, ~�2, ~�2 516(510) 515 382

~�e; ~��; ~�� 659 659(657) 616(614)

h0; A0; H0; H� 116 579 577 585

NEUTRINO MASSES AND MIXINGS IN THE BARYON . . . PHYSICAL REVIEW D 84, 113005 (2011)

113005-19



For our benchmark point BP, we have a stau LSP ~�2
[132] and the next-to-lightest supersymmetric particle is
the lightest neutralino ~	0

1 with m~�2 ¼ 163 GeVhi and

m~	0
1
¼ 204 GeV. A typical production process for our

BP parameters is then given by

pp ! ~q ~q ! qq~	0
1 ~	

0
1 ! qq��~�2~�2: (65)

Here we have employed BRð~	0
1 ! ~�2�Þ ¼ 1, which is by

far the dominant decay mode in our BP. The LSP stau can
normally decay via two- and four-body modes [104].
However, in our B3 cSSM neutrino models we always
have a nonzero LNV operator which directly couples to
the stau LSP. Thus the stau will dominantly decay into two
SM fermions and the four-body decays of the stau LSP are
highly suppressed. The collider signatures can then be
classified by the possible two-body stau decay modes, as
well as the stau decay length. A recent detailed discussion
of stau LSP phenomenology at the LHC is given in
Ref. [103]. However, this focuses on four-body stau decay
modes.

For S2 NH, S3 NH, S5 NH and S3 DEG, we find that
�311 is the dominant LNVoperator which is relevant for the
tree-level two-body stau decay. Assuming the cascade
decay in Eq. (65) we expect as the final state collider
signature

2jþ 2‘þ 2�þ 2�: (66)

In this case ‘ ¼ e. Note that the final state charged leptons
can have the same electric charge, since the intermediate
next-to-lightest supersymmetric particle neutralinos in
Eq. (65) are Majorana fermions. Like-sign dilepton signa-
tures at the LHC in the context of 6Rp have been studied

extensively in the literature, see for example
[127,133,134]. Here we could in addition also make extra
use of the final state tau leptons, as in Ref. [103].

In S4 NH and S4 IH the stau LSP cannot decay via �0
333,

because it is kinematically forbidden, as m~�2 <mtop.

Instead it will decay via �133, �233, or �322 to a two-body
leptonic final state. Hence, in both scenarios the stau LSP
decays into two leptons and we expect the same signature
as in Eq. (66). However, the couplings have typical values
of the order of 10�6 � 10�5. The stau lifetime is given by

�~� ¼ ½�ð~� ! f1 þ f2Þ��1 ¼ 16


Nc�
2m~�2

¼ 3:3 	 10�15 sec
1

Nc

�
100 GeV

m~�2

��
10�5

�

�
2
: (67)

Here Nc is the color factor. It is 3 for �
0 couplings and 1 for

� couplings. We have ignored any factors due to stau
mixing and have only considered one dominant decay
mode [135]. The decay length is then given by

L~�2 ¼ 
�c�~�2 ¼ 
� 	 10�6m 	 1

Nc

�
100 GeV

m~�2

��
10�5

�

�
2
:

(68)

In S4 NH the stau mass is 163 GeVand c�~�2 � 3 �m. The

benchmark point BP implies that at the 14 TeV LHC 
� is
typically of OðfewÞ. Therefore a small fraction of events,
with 
� for one of the stau LSPs near 10, could lead to
detached vertices that are observable at the LHC [136].
S3 IH is special. Here we just allow for nonzero �0

ijk

couplings. Hence, the stau LSP has only one hadronic
two-body decay mode via �0

322, ~�2 ! cþ s. The final state
collider signature is

6jþ 2�: (69)

This is very difficult to observe. One must then consider
other cascades with intermediate first or second generation
sleptons. These lead to additional leptons in the final state.
However, the corresponding overall branching ratios are
smaller.
For our benchmark point BP2, we have a neutralino LSP

with m~	0
1
¼ 320 GeV. A typical production process for

BP2 is given by

pp ! ~q ~q ! qq~	0
1 ~	

0
1: (70)

For S5 DEG, the dominant LNV coupling is �231 and the
neutralino LSP decays via an off-shell slepton as

~	 0
1 ! ��e���; ��e���; (71)

and we did not distinguish between neutrinos and antineu-
trinos here. We then expect the following event topologies

2jþ 2�þ
8><
>:
2‘þ 2�;

3‘þ 1�;

4‘;

(72)

where the branching ratios for all channels are roughly the
same.

VII. SUMMARYAND OUTLOOK

Experimentally it is now well established that the neu-
trinos are massive and have nonvanishing mixing angles.
This requires physics beyond the standard model. In this
paper we have reanalyzed the neutrino mass and mixing
data in the light of supersymmetric R-parity violating
models. These automatically include lepton number viola-
tion, and thus Majorana neutrino masses. One neutrino
mass is generated at tree level via mixing with the conven-
tional neutralinos. Any further neutrino masses must arise
at the one-loop level. We have improved the accuracy of
the neutrino mass and mixing angle computation, in par-
ticular, we have performed a full one-loop calculation for
the sneutrino vacuum expectation values, on top of the
one-loop corrections to the neutral fermion masses. This
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computation is implemented as an extension to the mass
spectrum calculational tool SOFTSUSY [50,51].

Most importantly, we have implemented also for the first
time in the construction of neutrino mass models, a mecha-
nism to suppress the tree-level masses compared to the
corresponding one-loop contribution. This requires a tun-
ing, but not fine-tuning, of the trilinear soft breaking A0

parameter. This allows much larger flexibility in the fitting
procedure. It also allows for solutions with larger lepton
number violating couplings.

In this region of the A0 parameter space, there are a large
number of possibilities to obtain the observed neutrino
masses and mixings. We have split our analysis into normal
hierarchy, inverted hierarchy, and degenerate models.
Furthermore we have mostly focused on one benchmark
point to fix the other cSSM parameters. We have imple-
mented all the relevant low-energy bounds on the lepton
number violating R-parity violating couplings. It turns out
these kill a significant number of the best-fit solutionswefind.

We have then considered five different scenarios, labeled
S1 through S5. Scenarios S1 through S3 employ diagonal
lepton number violating couplings �ijk, j ¼ k and the cou-

plings are chosen to closely follow the structure of the tribi
maximal mixing solutions. The three scenarios correspond
to the three different possible generations j ¼ k ¼ 1, 2, 3.
Higher generations lead to smaller lepton number violating
couplings, because the corresponding Higgs-Yukawa cou-
plings which also enter the formulae are larger.

In looking for solutions, we then fit a small number of
lepton number violating couplings to the neutrino data. We
need five couplings in the NH case, six in the IH case and
eight couplings for the degenerate case. Our results are
presented in Table III.

Solutions with large couplings, � ¼ Oð10�2Þ, are
mostly excluded by the low-energy bounds. In particular
this kills all S1 models, as well as the IH and DEG models
in the S2 scenarios. The NH S2, as well as the NH and DEG
S3 scenarios include LL �E couplings of order 10�2. All
other remaining scenarios have couplings 10�3 or smaller.

Possible alternatives to the scenarios S1, S2 and S3 are
presented in scenarios S4 and S5. The S4 models assume
ansätze with diagonal � couplings but alternative methods
to obtain the neutrino masses, whereas the S5 models
employ off-diagonal � couplings. We have not attempted
to construct IH S5 nor DEG S4 models.

Towards the completion of this project, the T2K experi-
ment [137] has announced an indication of �e appearance in
their data. Appearance of �e in T2K would imply a small
nonzero �13, whereas in our fit we only impose a strict upper
bound on �13 & 0:2, using �13 ¼ 0 as a starting point for the
iteration.However,we expect our procedure to be applicable
in the presence of a small nonzero value of�13, since this can
naturally arise in our scenarios through RGE effects.

All models lead to observable effects at colliders, as the
LSP will always decay in the detector. These have been

discussed in detail elsewhere. Characteristic of all neutrino
models is that we should get signatures which violate at
least two lepton flavors. For the case of S4 scenarios, where
all couplings are j�j< 5 	 10�5 there could possibly be
detached vertices.
In performing the numerical fit, we use a multistep

procedure. We start with initial values estimated from
upper bounds on the neutrino mass from WMAP. Then
we perform separate pre-iterations for the tree- as well as
for the one-loop contributions in SOFTSUSY. This already
gives a good estimate. The final solution is then found by
minimizing the 	2 function with the program package
MINUIT2, where all tree- and one-loop level contributions

simultaneously contribute to the neutrino mass matrix. The
degenerate scenarios require some fine-tuning, thus we
have implemented a Markov chain Monte Carlo method
to obtain the experimentally observed neutrino data.
We find that all three neutrino mass hierarchies are

possible, which can contribute to 0��� through the stan-
dard light neutrino exchange. However these simple mod-
els suggest normal hierarchy might be preferred, so that the
mass contribution to 0��� will not be probed by the next
generation of 0��� experiments. All our models involving
�0
111 couplings strongly violate the limit from its contribu-

tion to 0��� through the so-called direct neutralino/gluino
exchange mechanism. In other words, if 0��� is domi-
nated by the direct exchange mechanism, �0

111 is unlikely

to contribute significantly to the neutrino masses.
Despite the tension between the neutrino mass contri-

bution and the low-energy bounds, which favor large and
small LNV couplings, respectively, � couplings ofOð0:01Þ
(e.g. S2, S3 NH) sinvolving only the first 2 lepton gener-
ations are allowed. However, simultaneous presence of
(dominant) diagonal LNV couplings �0

i11 and �j11 appears

to be difficult, at least with the assumed mass spectrum BP.
Single coupling dominance, which many collider studies
usually assume, also appears to be consistent with neutrino
oscillation data (S5DEG). It would therefore be interesting
to study collider implications of these models in more
detail in the future.
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looks very similar to cð1Þi � �0
i22, c

ð2Þ
i � �0

i33. This is ob-
vious because the cð1Þi and cð2Þi differ from each other by
maximally a factor 2.

[123] Our choice to take the charged lepton mass matrix at the
electroweak scale to be diagonal ensures that in good very
approximation an off-diagonal coupling �ijk with j � k
does not generate a tree-level neutrino mass, since the
bilinears �i are generated proportionally to �ijkðYEÞjk and
are thus zero for j � k. This argument still roughly holds
if there are small off-diagonal entries in the Higgs-Yukawa
coupling, so in approximation this is also valid for cou-
plings �0

ijk with j � k, especially for the case of up-
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