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Using the superfield formalism, the effective Kählerian superpotential of the massless N ¼ 1 OðNÞ
Wess-Zumino model is computed in the limit of large N, in three spacetime dimensions. The effective

Kählerian superpotential is evaluated at the subleading order in the 1=N expansion, which involves

diagrams up to two-loop order, for a small coupling constant. We show that the OðNÞ symmetry of the

model is preserved in this approximation and that no mass is dynamically generated in the supersymmetric

phase. We discuss why spontaneous OðNÞ symmetry breaking cannot be induced by radiative corrections

in such a model.
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I. INTRODUCTION

Supersymmetry is one of the most important proposals
of physics beyond the standard model. It appeared for the
first time in two different scenarios. It was discovered as a
type of gauge symmetry of the string when fermionic states
are present, and in another scenario, it was proposed as a
way to avoid the Coleman-Mandula theorem; i.e., an ex-
tension of the spacetime algebra was found, namely, the
super-Poincaré algebra. Then, the first supersymmetric
action as a four-dimensional field theory was proposed
by Wess and Zumino in 1974 [1]. Although the so-called
Wess-Zumino model is not a realistic theory to describe the
physics beyond the standard model, it has played an im-
portant role in studying several aspects of supersymmetric
theories. Indeed, toy models are widely used as theoretical
laboratories because they can exhibit the same wealth of
more realistic theories, and often give an intuition of
nature’s behavior.

In this context, studying effective potentials is an im-
portant tool to understand, through classical concepts, the
quantum behavior of physical systems. Moreover, effective
potentials are a natural way to study spontaneous symme-
try breaking. Of special interest, the 1=N expansion [2] has
been a significant instrument responsible for remarkable
results, e.g., the spontaneous breaking of scale invariance
in three-dimensional supersymmetric models [3], studies
of the renormalization group through finite temperature
quantum field theory techniques [4], and the equivalence
between ð�2Þ2 and nonlinear sigma models in the descrip-
tion of critical phenomena [5,6]. The large-N technique is
also applied in the study of the relation between Abelian
Higgs and CPðN � 1Þ models [7]. For further information
about the 1=N expansion in quantum field theory, as well as
modern applications, see [8].

Recent interest in three-dimensional supersymmetric
theories comes from the fact that a wide class of models

could be related to M2-branes [9–11]. In such models,
superconformal invariance is an important ingredient. On
the other hand, spontaneous breaking of conformal sym-
metry induced by radiative corrections [12] was shown to
be a possible effect in some three-dimensional models
[13–15]. The three-dimensional massless Wess-Zumino
model with a quartic superfield self-interaction exhibits
superconformal invariance, and furthermore it can be in-
terpreted as the matter sector of the supersymmetric Chern-
Simons-matter model [16].
In the present paper, the effective Kählerian superpoten-

tial [17] of the massless N ¼ 1 OðNÞ Wess-Zumino
model is evaluated at subleading order in the large-N
expansion in three-dimensional spacetime, showing that
no generation of mass is induced by the Coleman-
Weinberg mechanism [12]. This is developed using the
superfield formalism; therefore the discussion is restricted
to the supersymmetric phase. This Brief Report intends to
discuss some aspects of the OðNÞ Wess-Zumino model
ground state that were not approached in [18].

II. N ¼ 1 OðNÞ WESS-ZUMINO MODEL

The action of the N ¼ 1 OðNÞ Wess-Zumino model in
the D ¼ ð2þ 1Þ superspace can be defined as

S ¼
Z

d3xd2�

�
1

2
�aD

2�a þ g

4
ð�a�aÞ2

�
; (1)

where a ¼ 1; 2; � � � ; N. The conventions and notations are
adopted as in [19]. The real superfields�a are expanded in
a Taylor series in the Grassmannian variable as

�aðx; �Þ ¼ �aðxÞ þ ��c a�ðxÞ � �2FaðxÞ; (2)

where � and F are real scalar fields and c is a two
component Majorana fermion.
We will evaluate the effective Kählerian superpotential

in the large-N limit, using some of the techniques
described in [18]. To do this, let us rescale g ! �=N

and let h�Ni ¼
ffiffiffiffi
N

p
’, where ’ is a constant classical*andrelehum@ect.ufrn.br
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(background) superfield given by ’ ¼ ’1 � �2’2. The
rescaled coupling stands for the proper expansion parame-
ter in the theory, where the large-N limit is accomplished
by taking N � 1, with the ’t Hooft parameter � being
fixed. After these rescalings, the action (1) can be
rewritten as

S ¼
Z

d5z

�
1

2
�jðD2 þ �’2Þ�j þ 1

2
�NðD2 þ 3�’2Þ�N

þ �

4N
ð�2

j þ�2
NÞ2 þ

�ffiffiffiffi
N

p ’�Nð�2
j þ�2

NÞ

þ ffiffiffiffi
N

p ðD2’þ �’3Þ�N þ N�

4
’4

�
: (3)

In general, an effective superpotential in a three-
dimensional spacetime has the form

Veffð’Þ ¼ F ðD�’D�’;D
2’;’Þ þKð’Þ; (4)

where F ðD�’D�’;D
2’;’Þ is a superpotential where

some supercovariant derivative D� appears applied to the
background superfield ’, and Kð’Þ is the Kählerian
superpotential characterized by the absence of supercovar-
iant derivatives D�.

Integrating (4) in d2� we get

Ueff ¼
Z

d2�Veffð’Þ

¼
Z

d2�½F ðD�’D�’;D
2’;’Þ þKð’Þ�

¼ ’2

dK
d’1

ð’1Þ þ ’2
2fð’1; ’2Þ; (5)

where in the last term we have to note that the contributions
coming from the F term start with, at least, two powers
of ’2.

The conditions that minimize Ueff are given by

@Ueff

@’1

¼ ’2

d2K
d’2

1

ð’1Þ þ ’2
2

@f

@’1

ð’1; ’2Þ ¼ 0; (6)

@Ueff

@’2

¼ dK
d’1

ð’1Þ þ 2’2fð’1; ’2Þ þ ’2
2

@f

@’2

ð’2; ’2Þ
¼ 0: (7)

For ’2 ¼ 0, suggesting the supersymmetric phase, these
equations imply that the minimum of Ueff is zero if only if

dK
d’1

ð’1Þ ¼ 0: (8)

If there exists a solution ’1 ¼ v of the above equation,
we have that Ueffðv; 0Þ ¼ 0, preserving supersymmetry.
Therefore, the knowledge of the Kählerian superpotential
is enough to decide on the possibility of spontaneous
supersymmetry breaking [15,20].

The ’t Hooft coupling � is fixed, and to simplify
our analysis let us consider it small, i.e., � � 1. This

approximation allows us to truncate the series of
Feynman diagrams that contribute to the Kählerian effec-
tive superpotential.
We next evaluate the effective superpotential up to order

�3 at subleading order in the 1=N expansion, correspond-
ing to including up to the two-loop diagrams, whose top-
ologies are drawn in Fig. 1. The tree level contribution is
easily identified from (3) as

K ð’Þ ¼ �N
�

4
’4; (9)

and the one-loop contributions are given by the trace of the
determinants. These traces can be evaluated as described in
[18]. Then, the one-loop contribution to the effective action
can be written as

�ð1Þ ¼ i

2
Tr ln½h�K00ð’ÞD2�

¼ 1

16�

Z
d5zðN þ 8Þ�2’4; (10)

where the regularization by dimensional reduction [21] is
used to perform the integrals.
The two-loop diagrams, Fig. 1, contribute with

�ð2Þ ¼ i
Z

d5z
Z d3k

ð2�Þ3
d3q

ð2�Þ3

�
�

5�3’4

ðk2 þM2Þðq2 þM2Þ½ðkþ qÞ2 þm2�
� N

�

4

1

ðk2 þM2Þðq2 þM2Þ
� N

�

2

1

ðk2 þM2Þðq2 þm2Þ
�
: (11)

Performing the integrals using the formulas given in
[13,22] and adding all contributions, the effective action
can be written as

� ¼ i
Z

d5z

�
�N

�

4
’4 þ ðN þ 8Þ �2

16�
’4 þ N

7�3

64�2
’4

þ 5�3

16�2
’4

�
Cð�Þ � ln

’2

�

�
þLCT

�
; (12)

where LCT ¼ NC’2 þ N�B’4 is the Lagrangian of
counterterms, � is a mass scale introduced by the regu-

larization, Cð�Þ ¼ þ 1
2 ð1� � �þ 1Þ þ ln2

ffiffiffi
�

p
5� , � is the Euler-

Mascheroni constant, and � ¼ ð3�DÞ, with D being the

FIG. 1. Topologies of two-loop diagrams that contribute to the
effective superpotential.
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number of spacetime dimensions. We observe the presence
of a divergent term, which requires a renormalization
condition to remove it.

Just as in the original proposal of Coleman and
Weinberg [12], the renormalization conditions adopted
here are

@2Kð’Þ
@’2

��������’¼0
¼ 0; (13a)

@4Kð’Þ
@’4

��������’¼v
¼ �4!

�

4
N; (13b)

where v is the renormalization scale. In four dimensions, a
quadratic divergence appears at one-loop order, and the
mass counterterm C is used to remove it. In three dimen-
sions, the regularization by dimensional reduction avoids
any divergence at the one-loop level; hence no mass renor-
malization is necessary to ensure the renormalizability of
the model. Consequently the renormalization condition
(13a) implies C ¼ 0.

The condition (13b) determines the counterterm B as

B ¼ � �

192N�2

�
96�þ 12N�þ 250�þ 21N�

� 60�cð�Þ þ 60� ln
v2

�

�
: (14)

Substituting the expression for B into (12), the renor-
malized Kählerian effective superpotential can be written
as

K ð’Þ ¼ �N
�

4
’4 þ 5

16�2
�3’4

�
25

6
� ln

’2

v2

�
: (15)

The condition that minimizes the effective superpoten-
tial is

@Kð’Þ
@’

¼ 0; (16)

which has three solutions:

’ ¼ 0; (17a)

’ ¼ �v exp

�
11

6
� 4�2N

10�2

�
: (17b)

The first one is the trivial solution and no mass is
generated by the radiative corrections. The second and
third ones, at first glance, would generate mass to the scalar
superfields. But, to the solutions (17b), it is expected that
the minimum of the effective potential lies around ’ ¼ v.
This is satisfied when the exponential function of � is
approximately 1. So the exponent should satisfy

11

6
� 4�2N

10�2
� 0; (18)

which fixes � to be of the order of
ffiffiffiffi
N

p
. Once it is admitted

that N � 1 this result contradicts the initial condition that

� should be much less than 1, invalidating the perturbative
expansion.
In general, this issue seems to be a characteristic of the

Coleman-Weinberg mechanism when the model has only
one coupling constant. The condition that constraints � be
large is improved when the global symmetry of the model
is promoted to a gauge one. In a gauge theory situation,
what appears is a condition that constrains the self-
interaction coupling constant (�) to be of the order of
some power of the gauge coupling constant, where this
power depends on the number of spacetime dimensions.
Therefore, it is natural to expect that a gauge version of the
model presented here can exhibit a consistent generation of
mass through the Coleman-Weinberg mechanism [15].
Taking the limit of (17b) whenN tends to infinity, we see

that ’ goes to zero. The fact is that the only consistent
solution to the minimum of the effective Kählerian super-
potential is ’ ¼ 0, indicating that in the supersymmetric
phase no generation of mass is possible in this model.

III. FINAL REMARKS

In summary, in this work the effective Kählerian super-
potential of the massless OðNÞ Wess-Zumino model was
computed at subleading order in the large-N limit in three-
dimensional spacetime. The effective Kählerian superpo-
tential was evaluated keeping the ’t Hooft coupling small.
This approximation allowed us to truncate the series of
Feynman diagrams at the two-loop corrections. This
choice is justified considering that a mass scale is always
introduced in this model through logarithmic divergent
diagrams, whose first appearance is at the two-loop
Feynman graphs.
This evaluation of the effective Kählerian superpotential

allows us to affirm that supersymmetry cannot be sponta-
neously broken at the considered approximation, because
condition (16) is satisfied. Furthermore, no generation of
mass is induced by radiative corrections in the approxima-
tion presented here. The approximation adopted here relies
on two distinct approximation approaches, expansion in
powers of 1=N and in powers of �. All of our conclusions
are limited to largeN and small �. A similar procedure was
adopted in the study of 1=N expansion of a UðNÞ gauge
model [23]. Only a full 1=N evaluation, i.e., without re-
strictions over �, can clarify about the spontaneous gen-
eration of mass in such a model, this being a question that
we have not succeeded in answering in this paper. But
we have found that if the OðNÞ Wess-Zumino model can
present dynamical generation of mass, such an effect
should be a nonperturbative phenomenon.
As a final remark, we comment about the possibility of

noncommutative extensions of the present article. Lately,
noncommutative extensions of the ordinary field theories
have been intensely discussed in the literature because
such theories are related to certain low energy limits
of string theory [24]. In particular, a four-dimensional
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Wess-Zumino model was shown to be a consistent non-
commutative field theory, free of the dangerous ultraviolet/
infrared mixing to all orders in perturbation theory [25].
A study of the dynamical generation of mass in a three-
dimensional version of such a model is in progress.
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