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The physical meaning of structure scalars is analyzed for charged dissipative spherical fluids and for

neutral dust in the presence of cosmological constant. The role played by such factors in the structure

scalars is clearly brought out and physical consequences are discussed. Particular attention needs to be

paid to the changes introduced by the above mentioned factors in the inhomogeneity factor and the

evolution of the expansion scalar and the shear tensor.
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I. INTRODUCTION

In a recent work [1], the full set of equations governing
the structure and the evolution of self—gravitating spheri-
cally symmetric dissipative fluids with anisotropic
stresses—was written down in terms of five scalar quanti-
ties obtained from the orthogonal splitting of the Riemann
tensor in the context of general relativity. It was shown that
these scalars (denoted by XT , XTF, YTF, YT , and Z) are
directly related to fundamental properties of the fluid dis-
tribution, such as energy density, energy density inhomo-
geneity, local anisotropy of pressure, dissipative flux, and
the active gravitational mass. In particular, the following
properties of such quantities were established:

(i) XT is the energy density of the fluid, whereas Z
describes all possible dissipative fluxes [1].

(ii) In the absence of dissipation, XTF controls inhomo-
geneities in the energy density [1].

(iii) YTF describes the influence of the local anisotropy
of pressure and density inhomogeneity on the
Tolman mass [1].

(iv) YT turns out to be proportional to the Tolman mass
‘‘density’’ for systems in equilibrium or quasi-
equilibrium [1].

(v) The evolution of the expansion scalar and the shear
tensor is fully controlled by YTF and YT [1–3].

Motivated by the deep physical meaning of structure
scalars, we shall in this work calculate them for two
situations of evident physical interest (see, for example,
Refs. [4–11] and references therein), namely:

(i) charged fluids.
(ii) neutral dust with cosmological constant.
As we shall see here, both factors (electric charge and

cosmological constant) affect the evolution of the system
exclusively through their presence in some of the structure
scalars, stressing further their relevance in the study of self-
gravitating systems.

II. GENERAL EQUATIONS AND DEFINITIONS

Full details of some intermediate calculations, notation,
and basic equations can be found in Refs. [1–4], however,
for self-consistency, we shall here provide a summary of
the more essential equations and definitions.
We shall consider a general spherically symmetric line

element of the form

ds2 ¼ �A2dt2 þ B2dr2 þ R2ðd�2 þ sin2�d�2Þ (1)

and a general fluid distribution whose energy-momentum
tensor may be written as

T�� ¼ ð�þ P?ÞV�V� þ P?g�� þ ðPr � P?Þ����

þ q�V� þ V�q� þ �l�l� � 2�	��; (2)

where � is the energy density, Pr the radial pressure, P?
the tangential pressure, q� the heat flux, � the radiation
density, � the coefficient of shear viscosity, 	�� the shear

tensor, V� the four velocity of the fluid, �� a unit four-
vector along the radial direction, and l� a radial null
four-vector. The four-vectors above for Eq. (1) are

V� ¼ A�1
�
0 ; q� ¼ qB�1
�

1 ;

l� ¼ A�1
�
0 þ B�1
�

1 ; �� ¼ B�1
�
1 ;

(3)

where q is a function of t and r, and q� ¼ q��.
If the fluid is charged, we shall need to add the electro-

magnetic contribution to the fluid distribution.
The electromagnetic energy tensor S�� is given by (see

Ref. [4] for details)

S�� ¼ 1

4�

�
F�

�F�� � 1

4
F�
F�
g��

�
; (4)

where F�� is the electromagnetic field tensor. The electric

charge interior to radius r is time independent and given by

sðrÞ ¼ 4�
Z r

0
&BR2dr; (5)

where the charge density & is a function of t and r.
Next, for the four-acceleration, the expansion scalar, and

the shear tensor, we have
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a1 ¼ A0

A
; a2 ¼ a�a� ¼

�
A0

AB

�
2
; (6)

with a� ¼ a��,

� ¼ V�
;� ¼ 1

A

� _B

B
þ 2

_R

R

�
; (7)

and

	11 ¼ 2

3
B2	; 	22 ¼ 	33

sin2�
¼ � 1

3
R2	; (8)

with

	2 ¼ 3

2
	��	�� ¼ 1

A2

� _B

B
� _R

R

�
2
; (9)

where dots and primes denote differentiation with respect
to t and r, respectively.

The mass function mðt; rÞ is given by

m ¼ ðRÞ3
2

R23
23 þ s2

2R
¼ R

2

�� _R

A

�
2 �

�
R0

B

�
2 þ 1

�
; (10)

which can be rewritten as

E � R0

B
¼

�
1þU2 � 2mðt; rÞ

R
þ s2

R2

�
1=2

; (11)

where U is the areal velocity of the collapsing fluid, i.e.
U ¼ 1

A
_R.

From Eq. (10), we may obtain (see Eq. (38) in Ref. [4])

m ¼
Z r

0
4�R2

�
~�þ ~q

U

E

�
R0drþ s2

2R
þ 1

2

Z r

0

s2

R2
R0dr (12)

(assuming a regular center to the distribution, somð0Þ¼0),
or

3m

R3
¼ 4� ~�� 4�

R3

Z r

0
R3 ~�0drþ 4�

R3

Z r

0
3~qUBR2dr

þ 3

R3

�
s2

2R
þ 1

2

Z r

0

s2

R2
R0dr

�
; (13)

where ~� ¼ �þ � and ~q ¼ qþ �.
The Weyl tensor (C���
), as usual, may be decomposed

in its electric and magnetic parts; however, due to the
spherical symmetry, the magnetic part vanishes, and so
the Weyl tensor is expressed in terms of its electric part
alone.

The electric part of Weyl tensor is defined by

E�� ¼ C���
V
�V
; (14)

which may also be written as

E�� ¼ E
�
���� � 1

3
h��

�
; (15)

where

h�� ¼ g�� þ V�V�; (16)

and

E¼ 1

2A2

� €R

R
� €B

B
�
� _R

R
� _B

B

�� _A

A
þ _R

R

��

þ 1

2B2

�
A00

A
�R00

R
þ
�
B0

B
þR0

R

��
R0

R
�A0

A

��
� 1

2R2
: (17)

Using Einstein equations (10), (13), and (17), we can
write

E ¼ 4�ð2�	��Þ þ 3s2

2R4
þ 4�

R3

Z r

0
R3 ~�0dr

� 12�

R3

Z r

0
~qUBR2dr� 3

2R3

Z r

0

s2R0

R2
dr; (18)

where � ¼ ~Pr � P? and ~Pr ¼ Pr þ �.

III. STRUCTURE SCALARS FOR THE
CHARGED FLUID

We can now calculate the structure scalars for our
charged fluid. To do so, let us define tensors Y�� and

X�� by:

Y�� ¼ R���
V
�V
; (19)

X�� ¼ �R�
���
V

�V
 ¼ 1

2
���

��R�
���
V

�V
; (20)

where R�
���
 ¼ 1

2����
R��
��.

Tensors Y�� and X�� may be expressed as

Y�� ¼ 1

3
YTh�� þ YTF

�
���� � 1

3
h��

�
; (21)

X�� ¼ 1

3
XTh�� þ XTF

�
���� � 1

3
h��

�
: (22)

Then, after lengthy but simple calculations, using field
equations (see Eqs. (20, 21, 22, 23) in Ref. [4]) and Eq. (17),
we obtain

YT ¼ 4�ð ~�þ 3 ~Pr � 2�Þ þ s2

R4
;

YTF ¼ E � 4�ð�� 2�	Þ þ s2

R4
;

(23)

XT ¼ 8� ~�þ s2

R4
; XTF ¼ �E � 4�ð�� 2�	Þ þ s2

R4
:

(24)

Using Eqs. (18) and (23), we may write YTF as

YTF ¼ �8��þ 16��	þ 5s2

2R4
� 3

2R3

Z r

0

s2

R2
R0dr

þ 4�

R3

Z r

0
R3

�
~�0 � 3~qBU

R

�
dr: (25)

BRIEF REPORTS PHYSICAL REVIEW D 84, 107501 (2011)

107501-2



At this point, it would be useful to introduce the follow-
ing ‘‘effective’’ variables:

� ðT0
0 þ S00Þ � �eff ¼ ~�þ s2

8�R4
; (26)

T1
1 þ S11 � Peff

r ¼
�
~Pr � 4

3
�	

�
� s2

8�R4
; (27)

T2
2 þ S22 � Peff

? ¼
�
P? þ 2

3
�	

�
þ s2

8�R4
; (28)

and

Peff
r � Peff

? � �eff ¼ �� 2�	� s2

4�R4
: (29)

As it is evident from above, the effective variables are just
the corresponding ordinary variables with all contributions
(from viscosity and electric charge) included. In terms of
the former, the structure scalars read

YTF ¼ �8��eff þ 4�

R3

Z r

0
R3

�
�0

eff �
3~qBU

R

�
dr; (30)

XTF ¼ � 4�

R3

Z r

0
R3

�
�0

eff �
3~qUB

R

�
dr; (31)

YT ¼ 4�ð ~�eff þ 3 ~Peff
r � 2�effÞ; (32)

XT ¼ 8� ~�eff : (33)

The remarkable fact emerging from these expressions is
that the charge contribution is always absorbed into the
effective variables. In the absence of electrical charge, the
structure scalars are obtained from Eqs. (30)–(33), just
replacing the effective variables by the corresponding or-
dinary ones.

In order to delve deeper into the question about the role
of electric charge in the structure and evolution of compact
objects—and how this reflects in the structure scalar—we
shall consider three very important equations in general
relativity. These are the evolution equation for the expan-
sion scalar (Raychaudhuri), the evolution equation for the
shear [1,3,12,13], and a differential equation relating the
energy density inhomogeneity with the Weyl tensor and
other physical variables [1,12–14]. The Raychaudhuri
equation reads, in our case,

V��;� þ 1

3
�2 þ 2

3
	2 � a�;� ¼ �YT; (34)

which has exactly the same form as in the noncharged case
(see Eq. (32) in Ref. [3]). For the shear evolution equation,
we find

YTF ¼ ��a;� þ a2 � aR0

BR
� V�	;� � 2

3
�	� 	2

3
; (35)

which, again, has exactly the same form as in the non-
charged case (see Eq. (45) in Ref. [3]).
Finally, the differential equation for the Weyl tensor and

the energy density inhomogeneity can be written as

ðXTF þ 4��effÞ0 ¼ �XTF

3R0

R
þ 4�~qBð�� 	Þ; (36)

which is exactly the same expression for the noncharged
fluid, replacing the effective energy density by the energy
density (see Eq. (37) in Ref. [14]).
We shall next consider the case of dust with cosmologi-

cal constant.

IV. STRUCTURE SCALARS FOR DUST WITH
COSMOLOGICAL CONSTANT

Let us consider a spherically symmetric distribution of
dust with nonvanishing cosmological constant. Then the
energy-momentum tensor takes the simple form

T�� ¼ 8��V�V�; (37)

and Einstein equations read

G�� ¼ T�� ��g��; (38)

where � is the cosmological constant.
Since the fluid is obviously geodesic for our comoving

observers, we have A0 ¼ 0 and, rescaling the time coordi-
nate t, we can put A ¼ 1.
The mass function now can be casted into the form

m ¼ 4�
Z r

0
�R2R0drþ�

6
R3: (39)

From the above, the following equations may be ob-
tained, which are the equivalent to Eqs. (13) and (18) in the
case of dust with cosmological constant,

3m

R3
¼ 4��þ�

2
� 4�

R3

Z r

0
�0dr; (40)

E ¼ 4�

R3

Z r

0
R3�0dr: (41)

From Eqs. (17) and (19)–(22), with the help of Einstein
equations, we obtain for the structure scalars

YT ¼4����; YTF¼�XTF¼E; XT ¼8����:

(42)

Then, the evolution equations for the shear and expansion
become

E ¼ YTF ¼ �V�	;� � 2

3
�	� 	2

3
; (43)

and

V��;�þ1

3
�2þ2

3
	2�a�;�¼�4��þ�¼�YT; (44)
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whereas the differential equation for the inhomogeneity
factor can be written as

ðXTF þ 4��Þ0 ¼ �XTF

3R0

R
; (45)

from which it follows at once �0 ¼ 0 $ XTF ¼ 0, allow-
ing us to identify XTF as the inhomogeneity factor.

V. SUMMARY

In the case of the charged fluid, we have seen that the
role of electrical charge in the structure and evolution of
self-gravitating systems is completeley determined by
structure scalars. Thus, the influence of charge, in the
evolution of the expansion and the shear, reveals itself
exclusively through its contribution to YT and YTF, respec-
tively. The same can be said about the inhomogeneity
factor, as it follows from Eq. (36). It is also worth stressing
the fact that the charge contribution is always absorbed into
the effective variables in a rather, intuitively, obvious way.

In the case of dust with cosmological constant, we see
that the latter does not affect at all either the evolution of
the shear or the inhomogeneity factor. Instead, it affects the
evolution of the expansion scalar through the� term in YT .

The fact that the cosmological constant does not affect the
stability of the shear-free condition deserves to be
emphasized.
It should be observed that, besides local anisotropy of

pressure, dissipation, and shear viscosity, the inclusion
of electric charge and cosmological constant exhausts
all possible physical phenomena that we expect in a
spherically symmetric relativistic fluid distribution. The
fact that all of them act exclusively through their presence
in structure scalars exhibits the universality of the latter.
The comments above reinforce our belief that structure

scalars are called upon to play a major role in the study of
self-gravitating systems.
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