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In this paper we will analyze a noncommutative deformation of the Aharony-Bergman-Jafferis-

Maldacena (ABJM) theory in N ¼ 1 superspace formalism. We will then analyze the Becchi-Rouet-

Stora-Tyutin (BRST) and anti-BRST symmetries for this deformed ABJM theory, and its linear as well as

nonlinear gauges. We will show that the sum of the gauge fixing term and the ghost term for this deformed

ABJM theory can be expressed as a combination of the total BRST and the total anti-BRST variation, in

Landau and nonlinear gauges. We will show that in Landau and Curci-Ferrari gauges deformed ABJM

theory is invariant under an additional set of symmetry transformations. We will also discuss the effect that

the addition of a bare mass term has on this theory.
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I. INTRODUCTION

The construction of an action for M theory at low en-
ergies with manifest N ¼ 8 superconformal symmetry has
led to the discovery of the Bagger and Lambert action with
a Lie 3-algebra [1–5]. However, only one example of such a
3-algebra is known and so far the rank of the gauge group
has not been increased. But a UðNÞk �UðNÞ�k supercon-
formal Chern-Simons-matter theory with level k and �k
with arbitrary rank and N ¼ 6 supersymmetry has been
constructed [6]. This theory called the Aharony-Bergman-
Jafferis-Maldacena (ABJM) theory is thought to describe
the world volume of N M2 membranes placed at the
singularity of R8=Zk as it may be possible to enhance the
supersymmetry to N ¼ 8 supersymmetry [7]. Furthermore,
if this is done then a SOð8Þ R symmetry at Chern-Simons
levels k ¼ 1, 2 will also exist for this model.

Chern-Simons theory in N ¼ 1 superspace formalism
has also been used in analyzing the low energy approxi-
mation of the action for M theory with N ¼ 8 supersym-
metry [8]. This was done by constructing a manifestly
SOð7Þ invariant superpotential which for specially chosen
couplings reproduced the Bagger and Lambert action [2,3].
Hence for these values of the coupling constants full SOð8Þ
symmetry was restored. Chern-Simons theory in N ¼ 1
superspace formalism has also been used for studying the
ABJM theory [9]. By using the Higgs mechanism, higher-
order terms that occur in the low energy approximation of
the action for M theory have been analyzed in this N ¼ 1
superspace formalism.

The presence of an NS antisymmetric tensor back-
ground is a source of spacetime noncommutativity in
string theory [10,11]. Now as string theory introduces
noncommutativity in spacetime, so field theories with
spacetime noncommutativity have been thoroughly studied
[12–17]. The extension of spacetime noncommutativity to
superspace noncommutativity is related to the presence

of other background fields. The RR field strength back-
grounds give rise to �-� type deformations [18,19] and a
gravitino background gives rise to x-� deformation [20].
As superspace noncommutativity also arises in string the-
ory, field theories with superspace noncommutativity have
also been thoroughly studied [19–25]. However, the pres-
ence of �-� deformation breaks half of the supersymmetry.
As we want to retain all the supersymmetry in our theory,
we do not include the �-� deformation of the ABJM theory
in this paper. It may be noted that even though this is the
first work on noncommutative deformation of the ABJM
theory, we analyze both the x-x and x-� deformations at the
same time. This is because we use a similar formalism to
analyze both these deformations.
Because of the duality between M theory and IIA string

theory, we expect that a deformation of the superalgebra
on the string theory side will also correspond to some
deformation of the superalgebra on the M-theory side. It
is interesting to note that a three-form field strength occurs
naturally inM theory. Besides that,M2-branes inM theory
can end on M5-branes. In this sense M5-branes in M
theory act as analogous objects to a D-brane in string
theory. So we expect that coupling the ABJM theory to a
background three-form field could lead to a noncommuta-
tive deformation of its superalgebra, just like a background
two-form field strength leads to a noncommutative defor-
mation of the superalgebra of D-branes. This can be useful
in describing the physics of M2-branes ending on
M5-branes. It may be noted that action for a single
M5-brane can be derived by demanding the � symmetry
of the open membrane ending on it [26] Thus the analysis
of ABJM theory coupled to a background three-form field
strength might give some useful insights into understand-
ing the dynamics of multiple M5-branes. This will be
interesting because even though the action for a single
M5-brane is known, the action for multiple M5-branes is
not known [27–31].
We will thus analyze the noncommutative deformations
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coupling of the ABJM theory with the background three-
form field strength that occurs naturally in theM theory. As
the ABJM theory is composed of two Chern-Simons theo-
ries suitably coupled to matter fields, a Seiberg-Witten map
will hold for the noncommutative ABJM theory because it
is known to hold for noncommutative Chern-Simons theo-
ries [32,33]. We thus analyze this noncommutative ABJM
theory by relating the noncommutative fields in it to ordi-
nary commutative fields. The product of these noncommu-
tative fields will then induce a star product for the ordinary
commutative fields.

The Becchi-Rouet-Stora-Tyutin (BRST) and the anti-
BRST symmetries for gauge theories have been thoroughly
studied [34]. In fact it is known that for the Yang-Mills
theories in Landau and nonlinear gauges the algebra gen-
erated by the BRST and the anti-BRST transformations
along with FP conjugation is a subalgebra of a larger
algebra called Nakanishi-Ojima algebra [35–38]. The ef-
fect of the addition of a bare mass term on the BRST and
the anti-BRST symmetries has also been analyzed in the
nonlinear gauges [39]. The BRST symmetry for the Chern-
Simons theory has also been thoroughly investigated
[40,41]. The BRST symmetry of N ¼ 1 Abelian Chern-
Simons theory [42] and N ¼ 1 non-Abelian Chern-Simons
theory [43] has been analyzed in the superspace formalism.
The BRST symmetry of noncommutative pure Chern-
Simons theory has also been analyzed [44,45]. We will
analyze the BRST and the anti-BRST symmetries of this
deformed ABJM theory. The main focus of this paper will
be the generalization of some known results about the
BRST and the anti-BRST symmetries in Yang-Mills theo-
ries to this deformed ABJM theory. In particular, we will
show that, in certain gauges, the sum of this deformed
ABJM theory along with a gauge fixing term and a ghost
term is invariant under a set of symmetry transformations
which obey SLð2; RÞ algebra. This is similar to the invari-
ance of Yang-Mills theories under the Nakanishi-Ojima
algebra [35]. Furthermore, it is known that the evolution
of the S matrix in the Yang-Mills theories in the massive
Curci-Ferrari gauge is not unitary because the bare mass
term breaks the nilpotency of the BRSTand the anti-BRST
transformations [39]. We will show that a similar result
holds for this deformed ABJM theory in the massive Curci-
Ferrari gauge. Thus we will show that for ABJM theory the
unitarity of the S matrix is violated in the massive Curci-
Ferrari gauge due to the breaking of the nilpotency of the
BRST and the anti-BRST transformations.

II. DEFORMATION OF ABJM THEORY

In this section we will deform the superspace of ABJM
theory without breaking any supersymmetry. To do so we
define �a as a two-component Grassmann parameter and
let y� ¼ x� þ �að��Þba�b. Then we promote them to op-

erators �̂a and ŷ� such that they satisfy the following
deformed superspace algebra [20],

½ŷ�; ŷ�� ¼ B��; ½ŷ�; �̂a� ¼ A�a: (1)

This is the most general deformation that we can have
without breaking any supersymmetry [19]. We use Weyl
ordering and express the Fourier transformation of super-
fields on this deformed superspace as

X̂ðŷ; �̂Þ ¼
Z

d4k
Z

d2�e�ikŷ���̂Xðk; �Þ: (2)

Now we have a one to one map between a function of �̂, ŷ
and a function of ordinary superspace coordinates �, y via

Xðy; �Þ ¼
Z

d4k
Z

d2�e�iky���Xðk; �Þ: (3)

Now as we have a one to one map between superfields on
this deformed superspace and superfields on the unde-
formed superspace, we can define the product of two
superfields on this deformed superspace. To do that we

can express the product of two superfields X̂ðŷ; �̂ÞẐðŷ; �̂Þ
on this deformed superspace as

X̂ðŷ; �̂ÞẐðŷ; �̂Þ ¼
Z

d4k1d
4k2

Z
d2�1d

2�2 exp

� iððk1 þ k2Þŷþ ð�1 þ �2Þ�̂Þ
� expði�ÞXðk1; �1ÞZðk2; �2Þ; (4)

where

expði�Þ ¼ exp� i

2
ðB��k2�k

1
� þ A�að�2

ak
1
� � k2��

1
aÞÞ:

(5)

So we can now define the star product between ordinary
functions as follows:

Xðy;�Þ?Zðy;�Þ¼ exp� i

2
ðB��@2�@

1
�þA�að@2a@1��@2�@

1
aÞÞ

�Xðy1;�1ÞZðy2;�2Þjy1¼y2¼y;�1¼�2¼�:

(6)

The star product reduces to the usual Moyal star product
for the bosonic noncommutativity in the limit Aa� ¼ 0.
Furthermore, when B�� ¼ Aa� ¼ 0, then the star product
reduces to the ordinary product. It is also useful to define
the following bracket

2½X; Z�? ¼ X ? Z� Z ? X; (7)

where the relative sign is negative unless both the fields are
fermionic.
Now we construct the classical Lagrangian density with

the gauge group UðNÞk �UðNÞ�k [9], on this deformed
superspace,

L c ¼ LM þLCS � ~LCS; (8)

where LCS and ~LCS are deformed Chern-Simons theories
with gauge groups UðNÞk and UðNÞ�k, respectively. They
can thus be expressed as
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LCS ¼ k

2�

Z
d2�Tr

�
�a ? !a þ i

3
½�a;�b�? ? Db�a

þ 1

3
½�a;�b�? ? ½�a;�b�?

�
j
;

~LCS ¼ k

2�

Z
d2�Tr

�
~�a ? ~!a þ i

3
½~�a; ~�b�? ? Db

~�a

þ 1

3
½~�a; ~�b�? ? ½~�a; ~�b�?

�
j
; (9)

where k is an integer [46] and

!a ¼ 1
2D

bDa�b � i½�b; Db�a�? � 2
3½�b; ½�b;�a�?�?;

~!a ¼ 1
2D

bDa
~�b � i½~�b;Db

~�a�? � 2
3½~�b; ½~�b; ~�a�?�?:

(10)

Here the superderivative Da is given by

Da ¼ @a þ ð��@�Þba�b; (11)

and ‘‘|’’ means that the quantity is evaluated at �a ¼ 0. In

component form the �a and ~�a are given by

�a ¼ �a þ B�a þ 1
2ð��ÞaA� þ i�2½�a � 1

2ð��@��Þa�;
~�a ¼ ~�a þ ~B�a þ 1

2ð��Þa ~A� þ i�2½~�a � 1
2ð��@� ~�Þa�:

(12)

The Lagrangian density for the matter fields is given by

LM ¼ 1

4

Z
d2�Tr

�
½ra

ðXÞ ? XIy ?raðXÞ ? XI�

þ ½ra
ðYÞ ? YIy ?raðYÞ ? YI� þ 16�

k
V ?

�
j
; (13)

where

rðXÞa ? XI ¼ DaX
I þ i�a ? XI � i~�a ? XI;

rðXÞa ? XIy ¼ DaX
Iy � i�a ? XIy þ i~�a ? XIy;

rðYÞa ? YI ¼ DaY
I � i�a ? YI þ i~�a ? YI;

rðYÞa ? YIy ¼ DaY
Iy þ i�a ? YIy � i~�a ? YIy;

(14)

and V ? is the potential term given by

V ? ¼ 	IJ	KL½XI ? YK ? XJ ? YL�
þ 	IJ	

KL½XyI ? Yy
K ? XyJ ? Yy

L�: (15)

This model reduces to the regular ABJM theory when
B�� ¼ A�a ¼ 0.

III. LINEAR GAUGE

All the degrees of freedom in the Lagrangian density for
this deformed ABJM theory are not physical because it is
invariant under the following gauge transformations,


�a ¼ ra ?�;


~�a ¼ ~ra ? ~�;


XI ¼ ið�� ~�Þ ? XI;


XIy ¼ �ið�� ~�Þ ? XIy
YI ¼ �ið�� ~�Þ ? YI;


YIy ¼ ið�� ~�Þ ? YIy;

(16)

where

ra ¼ Da � i�a;
~ra ¼ Da � i~�a: (17)

So we have to fix a gauge before doing any calculations.
This can be done by choosing the following gauge fixing
conditions,

Da ? �a ¼ 0; Da ? ~�a ¼ 0: (18)

These gauge fixing conditions can be incorporated at the
quantum level by adding the following gauge fixing term to
the original Lagrangian density,

Lgf ¼
Z

d2�Tr

�
b ? ðDa�aÞ þ �

2
b ? b� i~b ? ðDa~�aÞ

þ �

2
~b ? ~b

�
j
: (19)

The ghost terms corresponding to this gauge fixing term
can be written as

L gh ¼
Z

d2�Tr½ �c ? Dara ? c� ~�c ? Da ~ra ? ~c�j: (20)

The total Lagrangian density obtained by the addition of
the original classical Lagrangian density, the gauge fixing
term, and the ghost term is invariant under the following
BRST transformations,

s�a ¼ ra ? c; s~�a ¼ ~ra ? ~c;

sc ¼ �½c; c�?; s~�c ¼ �~b� 2½~�c; ~c�?;
s �c ¼ b; s~c ¼ �½~c; ~c�?;
sb ¼ 0; s~b ¼ �½~b; ~�c�?;
sXI ¼ iðc� ~cÞ ? XI; sXIy ¼ �iðc� ~cÞ ? XIy;

sYI ¼ �iðc� ~cÞ ? YI; sYIy ¼ iðc� ~cÞ ? YIy:

(21)

This total Lagrangian density is also invariant under the
following anti-BRST transformations,

�s�a ¼ ra ? �c; �s~�a ¼ ~ra ? ~�c;

�sc ¼ �b� 2½ �c; c�?; ½�s; ~c�? ¼ ~b;

�s �c ¼ �½ �c; �c�?; �s ~�c ¼ �½~�c; ~�c�?;
�sb ¼ �½b; c�?; �s ~b ¼ 0;

�sXI ¼ ið �c� ~�cÞ ? XI; �sXIy ¼ �ið �c� ~�cÞ ? XIy;

�sYI ¼ �ið �c� ~�cÞ ? YI; �sYIy ¼ ið �c� ~�cÞ ? YIy:

(22)
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Both these sets of transformations are nilpotent:

½s; s�? ¼ ½ �s; �s�? ¼ 0: (23)

In fact they also satisfy ½s; �s�? ¼ 0. Here star product
means that any product of fields in the transformation be
treated as a star product. We can now express the sum of
the gauge fixing term and the ghost term as

Lgf þLgh ¼ �
Z

d2��sTr

�
c ?

�
Da�a � i�

2
b

�

� ~c ?

�
Da~�a � i�

2
~b

��
j

¼
Z

d2�sTr

�
�c ?

�
Da�a � �

2
b

�

� ~�c ?

�
Da~�a � �

2
~b

��
j
: (24)

Thus the sum of the gauge fixing term and ghost term can
be expressed as a total BRST or a total anti-BRST varia-
tion. In the Landau gauge, � ¼ 0, and so we have

L gh þLgf ¼
Z

d2�sTr½ �c ? ðDa�aÞ � ~�c ? ðDa~�aÞ�j

¼
Z

d2��sTr½c ? ðDa�aÞ � ~c ? ðDa~�aÞ�j:
(25)

In fact in the Landau gauge we can express the sum of the
gauge fixing term and the ghost term as a combination of
the total BRST and the total anti-BRST variation. Thus in
the Landau gauge the sum of the gauge fixing term and the
ghost term is given by

Lgh þLgf ¼�1

2

Z
d2�s �sTr½�a ? �a � ~�a ? ~�a�j

¼ 1

2

Z
d2��ssTr½�a ? �a � ~�a ? ~�a�j: (26)

IV. NONLINEAR GAUGES

For Yang-Mills theories in the Curci-Ferrari gauge the
sum of the gauge fixing term and the ghost term can also be
expressed as a combination of the total BRST and the total
anti-BRST variation, for any value of� [35]. In this section
we will show that the sum of the gauge fixing term and the
ghost term for this deformed ABJM theory in the Curci-
Ferrari gauge can also be expressed as a combination of a
total BRST and a total anti-BRST variation, for any value
of �. The BRST transformations for the deformed ABJM
theory in the Curci-Ferrari gauge are given by

s�a ¼ ra ? c; sb ¼ �½b; c�? � ½ �c; ½c; c�?�?;
sc ¼ �½c; c�?; s �c ¼ b� ½ �c; c�?;

s~�a ¼ ~ra ? ~c; s~b ¼ �½~b; ~c�? � ½~�c; ½~c; ~c�?�?;
s~c ¼ �½~c; ~c�?; s~�c ¼ ~b� ½~�c; ~c�?;

sXI ¼ iðc� ~cÞ ? XI; sXIy ¼ �iðc� ~cÞ ? XIy;

sYI ¼ �ið �c� ~�cÞ ? YI; sYIy ¼ ið �c� ~�cÞ ? YIy:

(27)

The anti-BRST transformations for this theory in the
Curci-Ferrari gauge are given by

�s�a ¼ ra ? �c; �sb ¼ �½b; �c�? þ ½c; ½ �c; �c�?�?;
�s �c ¼ �½ �c; �c�?; �sc ¼ �b� ½ �c; c�?;
�s~�a ¼ ~ra ? ~�c; �s ~b ¼ �½~b; ~�c�? þ ½~c; ½~�c; ~�c�?�?;
�s ~�c ¼ �½~�c; ~�c�?; �s ~c ¼ �~b� ½~�c; ~c�?;
�sXI ¼ ið �c� ~�cÞ ? XI; �sXIy ¼ �ið �c� ~�cÞ ? XIy;

�sYI ¼ �ið �c� ~�cÞ ? YI; �sYIy ¼ ið �c� ~�cÞ ? YIy:

(28)

Both these sets of transformations are also nilpotent:

½s; s�? ¼ ½�s; �s�? ¼ 0: (29)

In fact they also satisfy ½s; �s�? ¼ 0. We can now write the
sum of the gauge fixing term and the ghost term for this
deformed ABJM theory as a combination of a total BRST
and a total anti-BRST variation, as

L0
g ¼ 1

2

Z
d2�s�sTr½�a ? �a � ~�a ? ~�a � � �c ? c

þ �~�c ? ~c�j
¼ � 1

2

Z
d2��ssTr½�a ? �a � ~�a ? ~�a

� � �c ? ca þ �~�c ? ~c�j: (30)

In Yang-Mills theory the effect of the addition of a bare
mass to the sum of the gauge fixing term and the ghost
term has been analyzed [39]. We can also generalize the
Curci-Ferrari gauge in the deformed ABJM theory to the
massive Curci-Ferrari gauge by the addition of a similar
bare mass term. Thus we can also write the massive Curci-
Ferrari type of Lagrangian density for the deformed ABJM
theory as

L0
g ¼ � 1

2

Z
d2�½�ssþ im2�Tr½�a ? �a � ~�a ? ~�a

� � �c ? cþ �~�c ? ~c�j
¼ 1

2

Z
d2�½s�s� im2�Tr½�a ? �a � ~�a ? ~�a

� � �c ? cþ �~�c ? ~c�j: (31)

The BRST transformations for the deformed ABJM theory
in this massive Curci-Ferrari gauge are given by

MIR FAIZAL PHYSICAL REVIEW D 84, 106011 (2011)

106011-4



s�a ¼ ra ? c; sb ¼ im2c� ½b; c�? � ½ �c; ½c; c�?�?;
sc ¼ �½c; c�?; s �c ¼ b� ½ �c; c�?;

s~�a ¼ ~ra ? ~c;

s~b ¼ im2~c� ½~b; ~c�? � ½~�c; ½~c; ~c�?�?s~c ¼ �½~c; ~c�?;
s~�c ¼ ~b� ½~�c; ~c�?; sXI ¼ iðc� ~cÞ ? XI;

sXIy ¼ �iðc� ~cÞ ? XIy; sYI ¼ �ið �c� ~�cÞ ? YI;

sYIy ¼ ið �c� ~�cÞ ? YIy: (32)

Similarly the anti-BRST transformations for the deformed
ABJM theory in this massive Curci-Ferrari gauge are
given by

�s�a ¼ ra ? �c; �sb ¼ im2 �c� ½b; �c�? þ ½c; ½ �c; �c�?�?;
�s �c ¼ �½ �c; �c�?; �sc ¼ �b� ½ �c; c�?;
�s~�a ¼ ~ra ? ~�c; �s ~b ¼ im2~�c� ½~b; ~�c�? þ ½~c; ½~�c; ~�c�?�?;
�s ~�c ¼ �½~�c; ~�c�?; �s ~c ¼ �~b� ½~�c; ~c�?;
�sXI ¼ ið �c� ~�cÞ ? XI; �sXIy ¼ �ið �c� ~�cÞ ? XIy;

�sYI ¼ �ið �c� ~�cÞ ? YI; �sYIy ¼ ið �c� ~�cÞ ? YIy: (33)

The addition of a bare mass term breaks the nilpotency of
the BRST and the anti-BRST transformations. The BRST
and the anti-BRST transformations now satisfy

½s; s�? ¼ ½ �s; �s�? � 2im2: (34)

However, in the zero mass limit, the nilpotency of the
BRST and the anti-BRST transformations is restored.

V. NAKANISHI-OJIMA ALGEBRA

In Yang-Mills theory it is known that whenever the sum
of the gauge fixing term and the ghost term can be written
as a combination of the total BRSTand the total anti-BRST
variation, the total Lagrangian density is invariant under a
set of symmetry transformations which obey SLð2; RÞ
algebra [35]. Now for the deformed ABJM theory in the
Landau and nonlinear gauges, the sum of the gauge fixing
term and ghost term is expressed as a combination of the
total BRSTand the total anti-BRST variation, so we expect
the total Lagrangian density for this deformed ABJM
theory will also be invariant under a set of symmetry
transformations which obey SLð2; RÞ algebra. In fact in
these gauges the deformed ABJM theory is also invariant
under the following transformations,


1b ¼ ½c; c�?; 
1
~b ¼ ½~c; ~c�?;


1c ¼ 0; 
1~c ¼ 0;


1 �c ¼ c; 
1
~�c ¼ ~c;


1�a ¼ 0; 
1
~�a ¼ 0;


1X
I ¼ 0; 
1X

Iy ¼ 0;


2b ¼ ½ �c; �c�?; 
2
~b ¼ ½~�c; ~�c�?;


2c ¼ �c; 
2~c ¼ ~�c;


2 �c ¼ 0; 
2
~�c ¼ 0;


2X
I ¼ 0; 
2X

Iy ¼ 0:

(35)

In the Landau and Curci-Ferrari gauges these transforma-
tions, the BRST transformation, and the anti-BRST trans-
formation along with the FP conjugation form the
Nakanishi-Ojima SLð2; RÞ algebra,

½s; s�? ¼ 0; ½ �s; �s�? ¼ 0;

½s; �s�? ¼ 0; ½
1; 
2�? ¼ �2
FP

½
1; 
FP�? ¼ �4
1; ½
2; 
FP�? ¼ 4
2;

½s; 
FP�? ¼ �2s; ½�s; 
FP�? ¼ 2�s;

½s; 
1�? ¼ 0; ½ �s; 
1�? ¼ �2s;

½s; 
2�? ¼ 2�s; ½�s; 
2�? ¼ 0:

(36)

This algebra gets modified due to the presence of the bare
mass term in the massive Curci-Ferrari gauge. This is
because the nilpotency of both the BRST and the anti-
BRST transformations is broken by the addition of a bare
mass term. However, even though the nilpotency of the
BRST and the anti-BRST transformations is broken, the
FP conjugation is not broken in the massive Curci-Ferrari
gauge. Thus we are able construct an algebra for the set of
symmetric transformations in the massive Curci-Ferrari
gauge. This algebra for the set of symmetric transforma-
tions in the massive Curci-Ferrari gauge is given by

½s; s�? ¼ �2im2
1; ½ �s; �s�? ¼ 2im2
2;

½s; �s�? ¼ 2im2
FP; ½
1; 
2�? ¼ �2
FP

½
1; 
FP�? ¼ �4
1; ½
2; 
FP�? ¼ 4
2;

½s; 
FP�? ¼ �2s; ½�s; 
FP�? ¼ 2�s; ½s; 
1�? ¼ 0;

½ �s; 
1�? ¼ �2s; ½s; 
2�? ¼ 2�s; ½�s; 
2�? ¼ 0:

(37)

VI. CONSERVED CHARGES

In conventional commutative field theories, for every
symmetry under which the Lagrangian density is invariant
there is a conserved charge obtained from a divergenceless
current associated with that symmetry of the theory. In
noncommutative field theories even though the variation
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of the action vanishes for all local parameters of trans-
formation, the divergence of the current need not vanish.
However, for conventional noncommutative field theories
the divergence of the current is equal to the Moyal bracket
of some functions [47]. This Moyal bracket vanishes for
the spacelike noncommutativity when we integrate on the
continuity equation over all spatial coordinates in order to
obtain the time variation of the charge [48]. Consequently,
the charge associated to a symmetry transformation com-
mutes with the Hamiltonian of the theory in this case. A
similar result will hold for the star bracket if we are again
restricted to spacelike noncommutativity. Here again the
charge associated with a symmetry transformation will
commute with the Hamiltonian of the theory. So from
now on we shall be restricted to discussions of spacelike
noncommutativity. So for two local functions X and Z
associated with a symmetry, the divergence of the current
will be given as

½X; Y�? ¼ 2D� ? J�: (38)

whereD� is the ordinary covariant derivative. As we have
restricted the discussion to spacelike noncommutativity,
we get Z

d3y½X; Z�? ¼ 0: (39)

Now the conserved charge is given by

Q ¼
Z

d3yJ0 ¼ 0: (40)

Now we define the current associated with the noncom-
mutative BRST symmetry J

�
ðBÞ and noncommutative anti-

BRST symmetry J�ðBÞ as follows:

2J
�
ðBÞ ¼

Z
d2�Tr

�
@Leff

@D��b

? s�b þ @Leff

@D�c
? sc

þ @Leff

@D� �c
? s �cþ @Leff

@D�b
? sbþ @Leff

@D�
~�a

? s~�a

þ @Leff

@D�~c
? s~cþ @Leff

@D�
~�c
? s~�cþ @Leff

@D�
~b
? s~b

�
;

2J
�
ðBÞ ¼

Z
d2�Tr

�
@Leff

@D��b

? �s�b þ @Leff

@D�c
? �sc

þ @Leff

@D� �c
? �s �cþ @Leff

@D�b
? �sbþ @Leff

@D�
~�a

? �s~�a

þ @Leff

@D�~c
? �s ~cþ @Leff

@D�
~�c
? �s ~�cþ @Leff

@D�
~b
? �s ~b

�
;

(41)

where

Z
d2�½Leff�j ¼ Lc þLgh þLgf :

Hence, the BRST charge QB and anti-BRST charge �QB

associated with the currents J�ðBÞ and �J�ðBÞ are conserved,

QB ¼
Z

d3yJ0ðBÞ ¼ 0; �QB ¼
Z

d3y �J0ðBÞ ¼ 0: (42)

The BRST charge QB and anti-BRST charge �QB are both
nilpotent for all gauges except the massive Curci-Ferrari
gauge,

Q2
B ¼ �Q2

B ¼ 0: (43)

However, for the massive Curci-Ferrari gauge these
charges are not nilpotent:

Q2
B � 0; �Q2

B � 0: (44)

The nilpotency ofQB and �QB is very important to isolate
the physical Hilbert space and prove the unitarity of the S
matrix. This is what will be done in the next section.

VII. PHYSICAL SUBSPACE

The total Lagrangian which is formed by the sum of the
original Lagrangian, the gauge fixing term, and the ghost
term is invariant under the noncommutative BRST and
the noncommutative anti-BRST transformations. As the
charges QB and �QB are nilpotent for all gauges except
the massive Curci-Ferrari gauge, so their action on any
field twice will vanish for all gauges except the massive
Curci-Ferrari gauge. So for any state j�i in a gauge other
than the massive Curci-Ferrari gauge, we have

Q2
Bj�i ¼ 0; �Q2

Bj�i ¼ 0: (45)

We shall now restrict our discussion to gauges other than
the massive Curci-Ferrari gauge. The physical states j�pi
can now be defined as states that are annihilated by QB:

QBj�pi ¼ 0: (46)

We can also define the physical states as states that are
annihilated by �QB:

�QBj�pi ¼ 0: (47)

We will obtain the same result by using any of these as the
definition for the physical sates. Now as we get the same
physical result by using either the noncommutative BRST
or the noncommutative anti-BRST charge, we will denote
them both byQ, soQ represents bothQB and �QB. Thus the
physical states Qj�pi are annihilated by Q,

Qj�pi ¼ 0: (48)

This criterion divides the Fock space into three parts,
H 0, H 1, and H 2. The space H 1, comprises of those
states that are not annihilated by Q. So if j�1i is any state
in H 1, then we have

Qj�1i � 0: (49)

The space H 2 comprises those states that are obtained by
the action ofQ on states belonging toH 1. So if j�2i is any
state in H 2, then we have
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j�2i ¼ Qj�1i: (50)

Thus we have

Qj�2i ¼ Q2j�1i ¼ 0: (51)

So all the states in H 2 are annihilated by Q. The space
H 0 comprises of those states that are annihilated byQ and
are not obtained by the action of Q on any state belonging
to H 1. So if j�0i is any state in H 0, then we have

Qj�0i ¼ 0; (52)

j�0i � Qj�1i: (53)

Clearly the physical states j�pi can only belong to H 0 or

H 2. This is because any state inH 0 orH 2 is annihilated
by Q. However, any state in H 2 will be orthogonal to all
physical states including itself:

h�pj�2i ¼ h�pjðQj�1iÞ ¼ ðh�pjQÞj�1i ¼ 0: (54)

Thus two physical states that differ from each other by a
state in H 2 will be indistinguishable,

j�pi ¼ j�pi þ j�2i: (55)

So all the relevant physical states actually lie in H 0.
Now if the asymptotic physical states are given by

j�pa;outi¼ jpa;t!1i; j�pb;ini¼ j�pb;t!�1i; (56)

then a typical S-matrix element can be written as

hj�pa;outj�pb;ini ¼ hj�pajSySj�pbi: (57)

Now as the noncommutative BRST and the noncommuta-
tive anti-BRST charges are conserved charges, so they
commute with the Hamiltonian and thus the time evolution
of any physical state will also be annihilated by Q,

QSj�pbi ¼ 0: (58)

This implies that the states Sj�pbi must be a linear combi-

nation of states in H 0 and H 2. However, as the states in
H 2 have zero inner product with one another and also with
states inH 0, so the only contributions come from states in
H 0. So we can write

hj�pajSySj�pbi ¼
X
i

hj�pajSyj�0;iih�0;ijSj�pbi: (59)

Since the full S matrix is unitary, this relation implies that
the S matrix restricted to physical subspace is also unitary.
It may be noted that the nilpotency of the noncommutative
BRST and the noncommutative anti-BRST charges was
essential for proving the unitarity of the resultant theory.
Now as the noncommutative BRST and the noncommuta-
tive anti-BRST charges are not nilpotent in the massive
Curci-Ferrari gauge,

Q2
Bj�i � 0; �Q2

Bj�i � 0; (60)

so the S does not factorize in the massive Curci-Ferrari
gauge

hj�pajSySj�pbi �
X
i

hj�pajSyj�0;iih�0;ijSj�pbi; (61)

and thus the resultant theory is not unitary. However, even
though this noncommutative deformation is not unitary in
the massive Curci-Ferrari gauge, the nilpotency is restored
in the zero mass limit. Thus the unitarity is also restored in
the zero mass limit.

VIII. CONCLUSION

In this paper we studied a noncommutative deformation
of the ABJM theory in N ¼ 1 superspace formalism. In
performing our analyses the noncommutative fields were
related to ordinary ones and the product of these non-
commutative fields was related to a star product of ordinary
fields. The main focus of the paper was to generalize some
results that are known for Yang-Mills theories to this
deformed ABJM theory. So we analyzed the behavior of
the BRSTand the anti-BRST symmetries for this deformed
ABJM theory, and its linear as well as nonlinear gauges.
We have expressed the sum of the gauge fixing term and
the ghost term for this deformed ABJM theory as a combi-
nation of the total BRST and the total anti-BRST variation,
in the Landau gauge. Furthermore, this was achieved for
an arbitrary value of � by the making the BRST and the
anti-BRST transformations nonlinear. The addition of a
bare mass term violated the nilpotency of the BRST and
the anti-BRST transformations and this in turn breaks the
unitarity of the theory. We have also shown that in the
Landau and Curci-Ferrari gauges the deformed ABJM
theory is invariant under Nakanishi-Ojima SLð2; RÞ alge-
bra. We have also analyzed the effect that the addition of
a bare mass term has on this algebra.
In Yang-Mills theories the presence of nonlinear terms

gives rise to an effective potential whose vacuum configu-
ration favors the formation of off-diagonal ghost conden-
sates [49]. The ghost condensation in Yang-Mills theories
also occurs in the Landau gauge [50]. The ghost conden-
sation in Yang-Mills theories breaks the SLð2; RÞ symme-
try which exists in these gauges. It will be interesting to
investigate if the ghost condensation in this deformed
ABJM theory also leads to a dynamic breaking of the
SLð2; RÞ symmetry.
The infinite temporal derivatives occur in the product of

fields for this noncommuative ABJM theory due to B0�

and A0a. This will give rise to nonlocal behavior in the
deformed ABJM theory. This in general will lead to a
violation of the unitarity of the deformed ABJM theory.
However, if we restrict the deformation of the ABJM
theory to spacelike noncommutativity, i.e., we set B0� ¼
A0a ¼ 0, then these problems will not occur. It will then be

M THEORY ON DEFORMED SUPERSPACE PHYSICAL REVIEW D 84, 106011 (2011)

106011-7



possible to construct the Norther’s chargers corresponding
to the BRST and the anti-BRST symmetries and use them
to project out the physical states. As the nilpotency of the
BRSTand the anti-BRST transformations is violated in the
massive Curci-Ferrari gauge, so we expect that unitarity
will also be violated in that gauge, even after restricting to
spacelike noncommutativity.

ABJM theory has been used to study various
examples of AdS4=CFT3 correspondence [51–55]. In fact
AdS4=CFT3 has also been used to analyze the fractional
quantum Hall effect [56]. The fractional quantum Hall
effect in ABJM theory has also been analyzed [57]. In
ABJM theory D6-branes wrapped over AdS4 � S3=Z2 in

type IIA superstring theory on AdS4 � CP3 give its dual
description with N ¼ 3 supersymmetry. In the presence of
fractional branes, the ABJM theory can model the frac-
tional quantum Hall effect, with RR fields regarded as the
external electric-magnetic field. In this model the addition
of the flavor D6-brane describes a class of the fractional
quantum Hall plateau transition. It will be interesting to
analyze the fractional quantum Hall effect, with RR fields
regarded as the external electric-magnetic field in the
deformed superspace. We can expect that addition of the
flavor D6-brane might describe a class of a fractional
quantum Hall plateau transition in the deformed super-
space ABJM theory also.
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