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A systematic search for Lie-algebra solutions of the type IIB matrix model is performed. Our survey is

based on the classification of all Lie algebras for dimensions up to five and of all nilpotent Lie algebras of

dimension six. It is shown that Lie-type solutions of the equations of motion of the type IIB matrix model

exist and they correspond to certain nilpotent and solvable Lie algebras. Their representation in terms of

Hermitian matrices is discussed in detail. These algebras give rise to certain noncommutative spaces for

which the corresponding star products are provided. Finally the issue of constructing quantized compact

nilmanifolds and solvmanifolds based on the above algebras is addressed.
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I. INTRODUCTION

String-inspired matrix models (MM) were proposed as
nonperturbative definitions of M theory [1] and type IIB
superstring theory [2]. SuchMMprovide an interesting and
simple framework to study the dynamics of branes, both
analytically and numerically.

Several solutions of the above MM have been identified.
In particular, as far as the model of Ishibashi-Kawai-
Kitazawa-Tsuchiya (IKKT) [2] is concerned, the first
solutions appear in the original publication and they
correspond to one or more D-strings. Odd-dimensional
Dp-brane solutions, in accord with type IIB superstring
theory, were described and studied in [3–7]. On the other
hand, compact noncommutative (NC) spaces, such as
fuzzy tori, fuzzy spheres and other fuzzy homogeneous
spaces, were shown to provide solutions upon adding extra
terms (deformations) in the original action [8–13].
Compact solutions of the undeformed MM were described
only recently [14]. The relation of the IKKT model to
toroidal compactifications was already discussed from a
different point of view in the pioneering paper [15].

The fluctuations around solutions of the MM carry
gauge degrees of freedom and provide a fruitful arena to
study non-Abelian gauge theories on NC space-time [7].
Such backgrounds may therefore provide a natural setup
for model building, much like vacua of the type IIB
string theory with D-branes. Such attempts were made in
[16–18]. More recently, configurations of intersecting NC
branes in the IKKTmodel were studied and a realization of
the gauge group and the chiral spectrum of the standard
model was provided in [19]. Similar considerations in a
field-theoretical context were discussed in [20–23].

In the present work we perform a survey on the possible
Lie-type solutions to the (undeformed) IKKT matrix
model. In other words, we examine which of the known
and classified (semisimple, nilpotent and solvable) Lie
algebras provide solutions to its equations of motion.

Such an examination does not come without its restric-
tions. Indeed, the classification of Lie algebras beyond six
dimensions becomes complicated. Therefore, our first re-
striction is to focus on all the Lie algebras of dimension up
to five and all nilpotent Lie algebras of dimension six.1 For
these low numbers of dimensions full classification tables
exist [25–27] and therefore our task becomes tractable.
Moreover, we shall be interested in the following only in
non-Abelian algebras. Abelian ones and algebraic sums of
them are always solutions of the MM but they do not lead
to interesting dynamics; therefore they will not be further
discussed. Finally, let us mention that we work here with
real Lie algebras; Lie algebras over different fields will not
be considered.
Under the above requirements, scanning the classifica-

tion tables of Lie algebras in Sec. III, we come up with the
following result. There are only nine Lie-algebraic solu-
tions to the IKKT MM, one of which is three-dimensional,
one four-dimensional, three five-dimensional and four six-
dimensional. Out of the above nine cases, seven correspond
to nilpotent Lie algebras and two of them correspond to
solvable ones. There are no semisimple Lie algebras pro-
viding tree-level solutions to the undeformed IKKT MM.
Having identified the Lie algebras which constitute so-

lutions of the equations of motion of the model, the next
step is to study whether they can be represented by
Hermitian matrices. Evidently this is a necessary require-
ment in order for these Lie algebras to correspond to NC
spaces which are indeed solutions of the MM. Utilizing the
powerful results of Kirillov on the unitary representations
of nilpotent Lie groups [28], such representations are in-
deed determined for most of the relevant Lie algebras.
Finally, the issue of constructing compact noncommu-

tative spaces based on these algebras is addressed. The
main possibility which arises in this context is to consider
spaces obtained as the quotient of a nilpotent Lie group by
a compact discrete subgroup of it. Such spaces are known
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1The same classification was used in [24] in the construction
of Wess-Zumino-Witten models.
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as nilmanifolds and they can be compact even when the
nilpotent group is not [29]. Some of them are known to
provide string flux vacua based on the ideas of the seminal
paper [30] (see, e.g., [31–35] and references therein). In an
appendix we collect some useful definitions on Lie
algebras.

II. THE TYPE IIB MATRIX MODEL

A. Action and symmetries

Let us briefly describe the IKKT or IIB matrix model,
which was originally proposed in [2] as a nonperturbative
definition of the type IIB superstring theory. It is a zero-
dimensional reduced matrix model defined by the action

S ¼ ��4

g2
Tr

�
1

4
½Xa; Xb�½Xa; Xb� þ 1

2
�c�a½Xa; c �

�
; (1)

where Xa, a ¼ 0; . . . ; 9 are ten Hermitian matrices, and c
are 16-component Majorana-Weyl spinors of SOð9; 1Þ.
Indices are raised and lowered with the invariant tensor
�ab, or possibly �ab in the Euclidean version of the model
where SOð9; 1Þ is replaced by SOð10Þ. The �a are gener-
ators of the corresponding Clifford algebra. � is an energy
scale, which we will set equal to one, � ¼ 1, and work
with dimensionless quantities. Finally, g is a parameter
which can be related to the gauge coupling constant.

The symmetry group of the above model contains the
UðNÞ gauge group (where the limit N ! 1 is understood)
as well as the SOð10Þ or SOð9; 1Þ global symmetry.
Moreover, the model is N ¼ 2 supersymmetric, with
supersymmetries realized by the following transforma-
tions,

��c ¼ i

2
½Xa; Xb��ab�;

��Xa ¼ i ���ac ;

��c ¼ �;

��Xa ¼ 0;

(2)

where �ab denotes the antisymmetrized product of gamma
matrices as usual. Therefore, the amount of supersymmetry
indeed matches that of the type IIB superstring. Let us also
note that the homogeneous � supersymmetry is inherited
by the maximal N ¼ 1 supersymmetry of super-Yang-
Mills theory in ten dimensions.

It is important to stress that due to its zero-dimensional
nature, the IKKT model is not defined on any pre-
determined space-time background. Instead, space-time
emerges as a particular solution of the model, as we discuss
in the following. This picture provides a dynamical origin
for geometry and space-time.

B. Equations of motion and basic solutions

Varying the action (1) with respect to the matrices Xa

and setting c ¼ 0, the following equations of motion are
obtained,

½Xb; ½Xa; Xb�� ¼ 0: (3)

Simple as they may appear, these equations admit diverse
interesting and nontrivial solutions. Clearly, the simplest
solution is given by a set of commuting matrices,
½Xa; Xb� ¼ 0. In that case, the matrices Xa can be simul-
taneously diagonalized and therefore they may be ex-
pressed as

Xa ¼ diagðXa
1 ; X

a
2 ; . . . ; X

a
NÞ: (4)

However, such solutions are in a sense degenerate and do
not lead to interesting dynamics. In the following, commu-
tative solutions will not be considered any further.
For notational convenience let us now split the ten

matrices Xa in two sets; we shall use the following nota-
tion,

Xa ¼ X�

Xi

� �
; (5)

where the X�, � ¼ 0; . . . ; 3 correspond to the first four Xa

matrices and the Xi, i ¼ 1; . . . ; 6 to the six rest of the Xa

matrices, respectively.2 In this notation, another solution of
the equations (3) is given by

Xa ¼ �X�

0

� �
; (6)

where �X� are the generators of the Moyal-Weyl quantum
plane R4

�, which satisfy the commutation relation

½ �X�; �X�� ¼ i���; (7)

where ��� is a constant antisymmetric tensor. This solution
corresponds to a single NC flat 3-brane, which corresponds
to space-time emerging as a solution of the matrix model.
Being a single brane, this solution is associated to an
Abelian gauge theory. An obvious generalization of the
above solution is given by

Xa ¼ �X�

0

� �
� 1n; (8)

which is interpreted as n coincident branes carrying a non-
Abelian UðnÞ gauge theory.

III. LIE-ALGEBRAIC SOLUTIONS

In the present section we search for solutions of the
IKKT model which have the structure of a Lie algebra.
This task may be split into two steps. First the Lie algebra
should solve the equations of motion (3). Second, the
algebras which pass the first test should possess represen-
tations in terms of Hermitian matrices, since only then they

2Let us stress that although a splitting of the type 10 ¼ 4þ 6
is considered here, this is not a priori favored by the dynamics of
the model. For studies related to the four-dimensionality of
space-time in the IKKT model, see, e.g., [6,36,37].
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may be considered solutions of the IKKT model. We shall
address these two issues separately below.

The Lie algebras we study here are algebras over the
field of real numbers. The classification we follow appears
in the tables of [27], which is a complete classification of
real Lie algebras of dimension up to five and real nilpotent
Lie algebras3 of dimension six.4 Let us mention that a
certain classification of solvable Lie algebras of dimension
six was partially given in [38] and later completed in [39]
but here we shall restrict our discussion to only the cases
mentioned above, appearing in [27], and leave a more
complete analysis for a future work.

A note on notation is in order here. The Lie algebras
under study will be denoted as Ad;i, where d is the

dimension of the algebra (the number of its generators)
and i is just an enumerative index according to the tables of
[27]. Moreover, when there is some parameter on which
the algebra depends, it will appear as superscript, e.g.,
A�

d;i if there is one parameter �. Let us also note that

the generators of an algebra will be denoted as Xa,
a ¼ 1; . . . ; d.

For the solutions that we find, the corresponding qua-
dratic Casimir operators are presented, as well as the
Killing form gab and the invariant metric �ab (whenever
it exists). The related definitions appear in the appendix. It
is important to note that unlike semisimple Lie groups,
where the invariant metric is proportional to the Killing
form, for a general Lie group this is not true as will become
obvious in some of the following examples.

As a final remark, let us explain that when we refer to a
solution of the equations (3) it is implied that the rest of the
matrices (i.e., ten minus the number of algebra generators)
are taken to be zero. For example, in the case of a three-
dimensional algebra with generators X1, X2 and X3, a
solution would be a set of commutation relations which
solve Eq. (3) accompanied by Xi ¼ 0, i ¼ 0; 4; . . . ; 9. Of
course such solutions may be subsequently combined with
the basic solution of Sec. II.

A. Solutions of the equations of motion

One- and two-dimensional Lie algebras. There is one
real one-dimensional Lie algebra, A1;1. Evidently, this is

an Abelian algebra and it constitutes a solution of the
IKKT model, albeit not an interesting one as we have
already argued. Therefore it will not be considered further.

As far as two-dimensional Lie algebras are concerned,
there exists the algebraic sum of two copies of A1;1,

namely, A1;1 �A1;1, which we shall not consider for

the above reasons. This will be true in all dimensions
to follow from now on and algebraic sums of lower-

dimensional Abelian algebras will not be considered fur-
ther. Moreover, there exists one non-Abelian solvable Lie
algebra in two dimensions, based on the following com-
mutation relation,

½X1; X2� ¼ iX2: (9)

However, it is clearly not a solution to the matrix model,
since one may easily verify that

½X1; ½X1; X2�� ¼ �X2 � 0 (10)

and therefore the corresponding equation of motion is not
satisfied.
Three-dimensional Lie algebras. There exist nine real

Lie algebras A3;i in three dimensions.5 One of them is

nilpotent, six are solvable and two are the well-known
semisimple ones, which are isomorphic to suð2Þ and
suð1; 1Þ � slð2;RÞ. Using their commutation relations ap-
pearing in [27] it is straightforward to verify that only one
of them, theA3;1 one, provides a solution of the equations

of motion (3). The only nontrivial commutation relation of
this algebra is

½X2; X3� ¼ iX1: (11)

This algebra is nilpotent and its only quadratic Casimir

operator is Cð2ÞðA3;1Þ ¼ X2
1 . Its Killing form vanishes

identically, gab ¼ 0, while

�ab ¼ diagð1; 0; 0Þ; (12)

which is degenerate.
Four-dimensional Lie algebras. There are 12 four-

dimensional real Lie algebras A4;i and, in particular, one

nilpotent and 11 solvable ones. Out of these algebras we
find only one that provides a solution to the equations (3). It
is the A4;12 one, which is solvable and its commutation

relations are

½X1; X3� ¼ iX1; ½X2; X3� ¼ iX2;

½X1; X4� ¼ �iX2; ½X2; X4� ¼ iX1:
(13)

However, this algebra does not possess any quadratic
Casimir operators (in fact it does not possess any invariants
at all) and therefore it is of no further interest.
Five-dimensional Lie algebras. In five dimensions the

number of real Lie algebras sums up to 40. Six of them are
nilpotent and the rest are solvable. Scanning the commu-
tation relations of the corresponding table in [27] we find
three solutions to the equations (3), corresponding to the
algebras A5;1, A5;4 and A5;39.

A5;1 is a nilpotent algebra with the following commu-

tation relations,

½X3; X5� ¼ iX1; ½X4; X5� ¼ iX2: (14)
3For the definition of nilpotent and solvable Lie algebras the

reader may consult the appendix.
4Nilpotent algebras of dimension seven are also classified but

they are not finitely many.

5We always refer to algebras which are not algebraic sums of
lower-dimensional ones.

LIE-ALGEBRAIC SOLUTIONS OF THE TYPE IIB . . . PHYSICAL REVIEW D 84, 106010 (2011)

106010-3



Its invariants are X1, X2 and X2X3 � X1X4 and therefore its
quadratic Casimir operator may be written as

Cð2ÞðA5;1Þ ¼ pX2
1 þ qX2

2 þ rðX2X3 � X1X4Þ; (15)

where p, q, r are arbitrary real parameters. Since the
algebra is nilpotent its Killing form is identically zero,
while it holds that

�ab ¼

p 0 0 �r 0
0 q r 0 0
0 �r 0 0 0
r 0 0 0 0
0 0 0 0 0

0
BBBBB@

1
CCCCCA; (16)

which is again degenerate and does not possess an inverse.
For A5;4, which is also nilpotent, the commutation

relations are

½X2; X4� ¼ iX1; ½X3; X5� ¼ iX1: (17)

Its only invariant is X1 and therefore it holds that

Cð2ÞðA5;4Þ ¼ X2
1 ; (18)

which leads to �ab ¼ diagð1; 0; 0; 0; 0Þ.
Finally, A5;39 is solvable with commutation relations

½X1;X4� ¼ iX1; ½X2;X4� ¼ iX2; ½X1;X5� ¼ �iX2;

½X2;X5� ¼ iX1; ½X4;X5� ¼ iX3: (19)

Its only invariant is X3 and therefore we find C
ð2ÞðA5;39Þ ¼

X2
3 , gab ¼ diagð0; 0; 0; 2;�2Þ and�ab ¼ diagð0; 0; 1; 0; 0Þ.

The last two cases are obviously degenerate too.
Six-dimensional nilpotent Lie algebras. There are 22

real nilpotent Lie algebras of dimension six which are
not algebraic sums of lower-dimensional ones. Four of
them provide solutions to the equations (3) and, in particu-
lar, theA6;3,A6;4,A�

6;5 andA
�1
6;14. In the two latter cases

the algebras have a continuous parameter � which in the
last case is fixed to �1 in order to provide the desired
solution. Let us mention again that the Killing form for all
the nilpotent Lie algebras is identically zero.

The algebra A6;4 has the following commutation

relations,

½X1;X2�¼ iX5; ½X1;X3�¼ iX6; ½X2;X4�¼ iX6: (20)

Its invariants are X5 and X6 and therefore

Cð2ÞðA6;4Þ ¼ pX2
5 þ qX2

6 ; (21)

which gives the degenerate metric

�ab ¼ diagð0; 0; 0; 0; p; qÞ: (22)

Similarly, for A�
6;5 the commutation relations read as

½X1; X3� ¼ iX5; ½X1; X4� ¼ iX6;

½X2; X3� ¼ i�X6; ½X2; X4� ¼ iX5; � � 0:
(23)

The invariants are again X5 and X6 and therefore the results
of the previous case apply in the present one as well.

The algebra A�1
6;14 has the following commutation

relations,

½X1; X3� ¼ iX4; ½X1; X4� ¼ iX6;

½X2; X3� ¼ iX5; ½X2; X5� ¼ �iX6;
(24)

with invariants X6 and X2
5 � X2

4 þ 2X3X6. Therefore the

quadratic Casimir operator is

Cð2ÞðA�1
5;14Þ ¼ pX2

6 þ qðX2
5 � X2

4 þ 2X3X6Þ; (25)

which gives

�ab ¼

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 q
0 0 0 �q 0 0
0 0 0 0 q 0
0 0 �q 0 0 p

0
BBBBBBBB@

1
CCCCCCCCA
; (26)

which is again degenerate.
The most interesting solution corresponds to the algebra

A6;3. This one has the following commutation relations,

½X1;X2�¼ iX6; ½X1;X3�¼ iX4; ½X2;X3�¼ iX5: (27)

Its invariants are X4, X5, X6 and X1X5 þ X3X6 � X2X4 and
therefore the general form of its quadratic Casimir operator
reads as

Cð2ÞðA6;3Þ¼pX2
4þqX2

5þrX2
6þsðX1X5þX3X6�X2X4Þ:

(28)

Now the corresponding metric is given by

�ab ¼

0 0 0 0 s 0
0 0 0 �s 0 0
0 0 0 0 0 s
0 �s 0 p 0 0
s 0 0 0 q 0
0 0 s 0 0 r

0
BBBBBBBB@

1
CCCCCCCCA
; (29)

which is the first nondegenerate case that we encounter in
our analysis. The determinant of the metric is

j�abj ¼ �s6 � 0 (30)

and therefore it is invertible with inverse

�ab ¼

�q=s2 0 0 0 1=s 0
0 �p=s2 0 �1=s 0 0
0 0 �r=s2 0 0 1=s
0 �1=s 0 0 0 0
1=s 0 0 0 0 0
0 0 1=s 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
:

(31)

The six eigenvalues of the latter are

1

s2
ð�xi �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ 4s2

q
Þ; i ¼ 1; 2; 3; (32)
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where x1 ¼ p, x2 ¼ q and x3 ¼ r. We observe that there
are three positive and three negative eigenvalues; therefore
the algebra is noncompact.

Finally, let us close this subsection by mentioning
that there is one further nontrivial case in six dimensions,
which is the algebraic sum of two three-dimensional nil-
potent algebras A3;1, namely, A3;1 �A3;1. The proper-

ties of this case are directly derived from the properties of
A3;1, which were presented before.

B. Representations in terms of Hermitian matrices

Let us now discuss the representation of the above
algebras in terms of Hermitian matrices. First let us note
that a complete study of the unitary representations of
nilpotent Lie groups was performed in [28], which facili-
tates our task.

The method that will be followed consists of the follow-
ing steps. First the central elements, i.e., the elements
which commute with all the algebra generators, are iden-
tified. These elements are mapped to operators which are
multiples of the identity. Then, in order to completely
define the representation one has to map the remaining
elements to Hermitian matrices. It turns out that this last
step amounts in mapping these elements to the usual
operators for coordinates and momenta in quantum me-
chanics. Let us now present a case by case analysis follow-
ing the above steps for the algebras which were identified
in the previous subsection.

A3;1 case. This algebra has one central element, the X1.

Therefore we map this element to a multiple of the identity,

X1 ¼ �1; � 2 R: (33)

The remaining elements now satisfy the commutation
relation,

½X2; X3� ¼ i�1; (34)

which reduces to the Moyal-Weyl case. Clearly, X2 and X3

may then be represented by the usual Hermitian matrices
corresponding to the coordinate and momentum operators
of quantum mechanics. These matrices are of course
infinite-dimensional and they have the well-known form

P ¼
ffiffiffi
1

2

s 0 1 0 0 0 . . .
1 0

ffiffiffi
2

p
0 0 . . .

0
ffiffiffi
2

p
0

ffiffiffi
3

p
0 . . .

0 0
ffiffiffi
3

p
0 0 . . .

..

.

0
BBBBBB@

1
CCCCCCA;

Q ¼
ffiffiffi
1

2

s 0 i 0 0 0 . . .
�i 0 i

ffiffiffi
2

p
0 0 . . .

0 �i
ffiffiffi
2

p
0 i

ffiffiffi
3

p
0 . . .

0 0 �i
ffiffiffi
3

p
0 0 . . .

..

.

0
BBBBBB@

1
CCCCCCA:

(35)

Then the solution we have obtained is

fX1 ¼ �1; X2 ¼
ffiffiffi
�

p
Q;X3 ¼

ffiffiffi
�

p
Pg: (36)

A4;12 case. As we already mentioned in the previous

subsection, this algebra does not possess any invariants and
therefore the method we follow here cannot be applied.
A5;1 case. The central elements of this algebra are X1

and X2 and the combination X2X3 � X1X4. Therefore we
set

X1 ¼ �11 and X2 ¼ �21: (37)

Then the commutation relations read as

½X3; X5� ¼ i�11; ½X4; X5� ¼ i�21: (38)

Moreover the last quadratic invariant has to be fixed,

X2X3 � X1X4 ¼ �1: (39)

The resulting solution is�
X1 ¼ �11; X2 ¼ �21; X3 ¼

ffiffiffiffiffi
�1

p
Q;X4

¼ �2ffiffiffiffiffi
�1

p Q� �

�1
1; X5 ¼

ffiffiffiffiffi
�1

p
P

�
: (40)

A5;4 case. The unique central element in the present

case is X1. Therefore we set

X1 ¼ �1; (41)

which leads to the commutation relations

½X2; X4� ¼ i�1; ½X3; X5� ¼ i�1: (42)

These relations may be interpreted as two quantum planes
in the directions (24) and (35), respectively, with the same
quantization parameter �. The solution is

fX1 ¼ �1;X2 ¼
ffiffiffi
�

p
Q;X3 ¼

ffiffiffi
�

p
Q0;X4 ¼

ffiffiffi
�

p
P;X5 ¼

ffiffiffi
�

p
P0g;
(43)

where ðQ;PÞ and ðQ0; P0Þ are two sets of Hermitian matri-
ces, representing the two different quantum planes and
therefore mutually commuting.
A5;39 case. This is a solvable Lie algebra and the

method we follow here does not directly apply. Therefore
this case is less clear and it will not be treated any further.
A6;3 case. The central elements in the present case are

X4, X5, X6 and X1X5 þ X3X6 � X2X4. Therefore we set

X4 ¼ �41; X5 ¼ �51 and X6 ¼ �61: (44)

The commutation relations take the form

½X1;X2� ¼ i�61; ½X1;X3� ¼ i�41; ½X2;X3� ¼ i�51;

(45)

while the quadratic invariant is fixed according to

X1X5 þ X3X6 � X2X4 ¼ �1: (46)

The resulting solution in this case is
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�
X1 ¼

ffiffiffiffiffi
�6

p
Q;X2 ¼

ffiffiffiffiffi
�6

p
P;

X3 ¼ � �5ffiffiffiffiffi
�6

p Qþ �4ffiffiffiffiffi
�6

p Pþ �

�6
1; X4 ¼ �41;

X5 ¼ �51; X6 ¼ �61
�
: (47)

A6;4 and A�
6;5 cases. The central elements for these

algebras are X5 and X6. Therefore in both cases we set

X5 ¼ �51; X6 ¼ �61: (48)

Then, for the first case we obtain the commutation relations

½X1;X2� ¼ i�51; ½X1;X3� ¼ i�61; ½X2;X4� ¼ i�61;

(49)

while for the second case

½X1; X3� ¼ i�51; ½X1; X4� ¼ i�61;

½X2; X3� ¼ i��61; ½X2; X4� ¼ i�51:
(50)

The resulting solutions take the following form,�
X1 ¼

ffiffiffiffiffi
�6

p
Q� �5

2
ffiffiffiffiffi
�6

p P0; X2 ¼
ffiffiffiffiffi
�6

p
Q0 þ �5

2
ffiffiffiffiffi
�6

p P;

X3 ¼
ffiffiffiffiffi
�6

p
P;X4 ¼

ffiffiffiffiffi
�6

p
P0; X5 ¼ �51; X6 ¼ �61

�
; (51)

and�
X1 ¼

ffiffiffiffiffi
�5

p
Qþ �6ffiffiffiffiffi

�5
p Q0; X2 ¼

ffiffiffiffiffi
�5

p
Q0 þ ��6ffiffiffiffiffi

�5
p Q;

X3 ¼
ffiffiffiffiffi
�5

p
P;X4 ¼

ffiffiffiffiffi
�5

p
P0; X5 ¼ �51; X6 ¼ �61

�
; (52)

respectively, where ðQ;PÞ and ðQ0; P0Þ are again two sets of
mutually commuting representations.

A�1
6;14 case. The central elements in this case are X6 and

X2
5 � X2

4 þ 2X3X6 and we set

X6 ¼ �61: (53)

Then the commutation relations read as

½X1; X3� ¼ iX4; ½X1; X4� ¼ i�61;

½X2; X3� ¼ iX5; ½X2; X5� ¼ �i�61;
(54)

while there is also a relation of the form

X2
5 � X2

4 þ 2X3X6 ¼ �1: (55)

The solution in this case is�
X1 ¼

ffiffiffiffiffi
�6

p
Q;X2 ¼

ffiffiffiffiffi
�6

p
P0; X3 ¼ 1

2

�
P2 �Q02 þ �

�6
1
�
;

X4 ¼
ffiffiffiffiffi
�6

p
P;X5 ¼

ffiffiffiffiffi
�6

p
Q0; X6 ¼ �61

�
: (56)

Having identified the above Lie-algebraic solutions of
the IKKT model, in the following subsection we discuss
their relation to NC geometry in a more general context.

C. Noncommutative spaces and � products

NC spaces. The construction of ‘‘NC spaces’’ is based
on a shift from the space itself to the algebra of functions
defined on it [40–44]. Therefore, strictly speaking a NC
space is not a space in the classical sense but instead it
corresponds to an associative but not necessarily commu-
tative algebra A, accompanied with a set of relations.
In order to be more specific, let us consider an associa-

tive algebra A with generators Xa, a ¼ 1; . . . ; N. These
generators satisfy certain commutation relations of the
general form

½Xa; Xb� ¼ i�abðXÞ; (57)

where �abðXÞ is an arbitrary function of the generators Xa.
Then the above algebraic structure defines a NC space and
the generators of the algebra are commonly referred to as
‘‘coordinates’’ of the NC space [45]. The case of constant
�ab corresponds to the Moyal-Weyl quantum plane, which
was encountered in Sec. II as the basic solution of the
IKKT MM.
The cases we already studied in the present section

correspond to a Lie-algebra structure. In other words, the
function �ab is linear in the generators Xa and the commu-
tation relations read as

½Xa; Xb� ¼ ifab
cXc: (58)

The most prominent representatives of such a structure are
the fuzzy two-sphere [46] and its higher-dimensional gen-
eralizations [47], the fuzzy complex projective spaces
[48,49] and others [50–52]. All these NC spaces are com-
pact, since they are based on compact semisimple Lie
algebras. As we saw, these compact NC spaces do not
directly provide solutions of the undeformed IKKT
MM.6 However, we proved that there exist solutions of
the IKKT model with the structure (58), albeit based on
noncompact algebras. Indeed, it is obvious from our pre-
vious analysis that in each case there is a set of generators
and relations, along with the prescribed Casimir operators
which fix the representation of the algebra. Thus all the
cases that were discussed correspond to well-defined NC
spaces. Moreover, in all the cases the number of generators
minus the number of invariants (whose fixing specifies the
representation) is always even. This means that the result-
ing solutions describe noncompact, noncommutative even-
dimensional branes, similarly to the Dp-brane solutions of
the IIB string theory (with p odd), appropriately embedded
in 10-dimensionalR10. We shall return to this and present a
more detailed description at the end of the present section.

6See however [14].
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Weyl quantization and � products. As we discussed
above, the shift from spaces to algebras paves the road to
NC geometry and provides a natural setup to construct
NC/quantized spaces which correspond to certain alge-
braic structures. Indeed, a natural way to quantize a mani-
fold is to consider an appropriate algebra of functions on it
and instead quantize the algebra, either by truncating it or
deforming its product structure. The latter possibility be-
longs in the broad context of deformation quantization
[53], whose most prominent physical example is phase-
space (Weyl) quantization [54].

Let us briefly discuss Weyl quantization in the case of a
Lie-algebra structure following [45] and apply it in the
specific cases studied here. A more formal and rigorous
discussion based on the pioneering work of Kontsevich
[55] may be found in [56]. Let us denote classical (com-
mutative) coordinates by xa, a ¼ 1; . . . ; N and elements of
A (NC coordinates) by Xa, as before. An operator WðfÞ
may be associated to every classical function fðxÞ, given by

WðfÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffið2	Þnp Z
dnkeikaX

a ~fðkÞ; (59)

where ~f is the Fourier transform of f,

~fðkÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffið2	Þnp Z
dnxeikax

a
fðxÞ: (60)

Multiplying operators of the kind appearing in (59) results
in new operators, which might or might not be associated
to classical functions as well. In the case that this is
possible, i.e., when

WðfÞWðgÞ ¼ WðhÞ; (61)

the corresponding function h will be identified with a
deformed product of f and g, which is denoted by �, i.e.,

h ¼ f � g: (62)

More explicitly, we can write the product of the operators
as

WðfÞWðgÞ ¼ 1

ð2	Þn
Z

dnkdnpeikaX
a
eipbX

b ~fðkÞ~gðpÞ:
(63)

Then the function f � g exists if the product of the two
exponentials in the integrand can be calculated by the
Baker-Campbell-Hausdorff formula. In the case of a Lie
structure one can write

eikaX
a
eipbX

b ¼ eiPaðk;pÞXa
; (64)

where

Pa ¼ ka þ pa þ 1
2gaðk; pÞ; (65)

where the ga contain the information about the NC struc-
ture. Having determined the functions ga it is straightfor-
ward to write down the explicit formula for the � product,

f � g ¼ eði=2Þxagaðið@=@yÞ;ið@=@zÞÞfðyÞgðzÞjy;z!x: (66)

Let us now determine the functions ga for the cases that
are studied here. By direct calculation we obtain the fol-
lowing results for each of the seven nilpotent cases, where
the brackets appearing in the subscripts denote antisym-
metrization with weight one:

A 3;1: g1 ¼ ik½2p3�; g2;3 ¼ 0:

A 5;1: g1 ¼ ik½3p5�; g2 ¼ ik½4p5�; g3;4;5 ¼ 0:

A 5;4: g1 ¼ iðk½2p4� þ k½3p5�Þ; g2;3;4;5 ¼ 0:

A6;3: g1;2;3 ¼ 0; g4 ¼ ik½1p3�;

g5 ¼ ik½2p3�; g6 ¼ ik½1p2�:

A 6;4: g1;2;3;4 ¼ 0; g5 ¼ ik½1p2�;

g6 ¼ iðk½1p3� þ k½2p4�Þ:

A 6;5: g1;2;3;4 ¼ 0; g5 ¼ iðk½1p3� þ k½2p4�Þ;
g6 ¼ iðk½1p4� þ k½2p3�Þ:

A 6;14: g1;2;3 ¼ 0; g4 ¼ ik½1p3�; g5 ¼ ik½2p3�;

g6 ¼ iðk½1p4� � k½2p5� þ i

6
ðk1k½1p3� � k2k½2p3�

� p1k½1p3� þ p2k½2p3�ÞÞ:
Plugging these expressions in the Eq. (66) gives directly
the corresponding � product in each case. It is worth noting
that due to the nature of nilpotent algebras the Baker-
Campbell-Hausdorff formula terminates and the above
functions determine exactly the exponent of the � product.

D. Geometric interpretation and supersymmetry

In order to conclude this section let us discuss some
important issues related to the solutions which were de-
scribed above.
The first issue we would like to discuss concerns the

geometric interpretation of the solutions. The cases based
on the algebras A3;1, A5;1 and A5;4 can be easily inter-

preted. Indeed, the A3;1 solution (36) represents a static

D-string extending in the X3 direction and shifted by � in
the X1 direction (here X2 may be thought of as the timelike
matrix of the model in its Lorentzian version). Such a
solution was obtained in [2]. However, it is worth noting
that in the present case the Lie-algebra structure partially
determines the embedding of the D-string in R10. The
D-string has to be shifted by � along X1; setting � to
zero is not allowed here.
The solution (40) based on A5;1 represents a configu-

ration of two static D-strings, one extending in the X3
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direction and one extending along the X4 direction. Both
D-strings are also shifted by �1 in the X1 direction and by
�2 in the X2 direction. Obviously, these D-strings are not
parallel but instead they intersect perpendicularly. It is
interesting that such a configuration of intersecting
D-strings is naturally obtained in our context.

The solution (43) based on A5;4 represents a static

D3-brane shifted by � in the X1 direction. Such a solution
was previously described in [3–7].

As for the solution (47) based on A6;3, we observe that

it involves one set of ðQ;PÞ matrices and therefore it
should correspond again to a pair ofD-strings, one extend-
ing along X2 and the other along X3. Both are shifted in
the directions X4, X5, X6 by �4, �5, �6, respectively. The
difference here in comparison to previous cases, especially
to the similar case of A5;1, is that although the first

D-string is again static, the second one is not. Indeed, it
is obvious from the solution (47) that the D-string extend-
ing along the X3 direction is time-dependent (the timelike
matrix here is X1) and therefore it is moving and it carries
nonzero momentum.

Similar considerations hold for the cases A6;4, A�
6;5

and A�1
6;14. In these cases the corresponding solutions

involve two sets of ðQ;PÞ matrices and therefore they
should all be associated to D3-branes. Their difference
from the similar D3-brane solution based on A5;4 lies in

their different embedding in R10, specified by the solutions
(51), (52), and (56) respectively. Moreover, certain of these
solutions may describe moving branes. For example, as far
as the solution (51) is concerned, if the timelike direction is
identified, e.g., with the matrix X3, then the D3-brane is
time-dependent along the direction X2; i.e., it carries mo-
mentum in this direction.

A second important issue regards the supersymmetry of
the above configurations. As we briefly discussed in
Sec. II, the IKKT model hasN ¼ 2 supersymmetry given
by the transformations (2). The single Dp-brane solutions
of the model (such as the single D-string and D3-brane
solutions obtained above) are in fact 1

2 Bogomol’nyi-

Prasad-Sommerfield (BPS) states; i.e. they preserve only
one supersymmetry [2]. This may be easily seen, since in
all but one of the nilpotent cases it turns out that the
commutator ½Xa; Xb� is a c number, say, �ab. Then setting
� ¼ 1

2�ab�
ab� one obtains

ð�� � ��Þc ¼ 0; ð�� � ��ÞXa ¼ 0; (67)

which shows that half of the supersymmetry is preserved
[2]. Let us note that the case of A�1

6;14 does not lie within

the above argument since the corresponding commutators
are not c numbers as can be seen by (54).

Moreover, the cases of intersecting D-strings call for
special treatment. Let us consider the case based on the
algebra A5;1. The nontrivial commutation relations

appear in (38). Then, in line with the previous argument,

a supersymmetric configuration corresponds to � ¼
1
2�1�

35�þ 1
2�2�

45�. Therefore, upon this choice one su-

persymmetry is again preserved for this configuration.
As a final issue, let us briefly discuss the relevance of

these solutions for the description of space-time and the
construction of gauge theories on it. In Sec. II we presented
the four-dimensional Moyal-Weyl quantum plane solution
R4

�, which may be considered as the space-time brane.

In such a description, space-time ceases to be a smooth
manifold below some scale set by the noncommutativity
parameter �, where one may talk about fuzzy or quantum
space-time. Such a picture arises naturally when gravity
and quantum mechanics are considered (see [57]). This
role may be played by the four-dimensional solutions
which were presented above, e.g., by the one based on
the algebra A5;4.

However, let us note that more ingredients are necessary
if one aims at the construction of particle physics models
based on the above solutions. As we argued before, the
single brane solutions are generically 1

2 BPS states and

therefore in four dimensions they would lead to a
N ¼ 4 supersymmetric Yang-Mills theory. This is inter-
esting on its own but it is clearly not realistic, mainly due to
the absence of chiral fermions. In order to obtain a more
realistic structure it is necessary to break the large amount
of supersymmetries toN ¼ 1, where chiral fermions may
in principle be accommodated. Although we are not going
to delve into details on mechanisms which address the
above issue, let us mention that the most promising possi-
bility would be to consider backgrounds based on multiple
intersecting higher-dimensional branes. Such backgrounds
were recently studied in [19]. There it was shown that
under certain conditions one can accommodate chiral fer-
mions at brane intersections and construct semirealistic
models. One necessary condition in that context turns out
to be that the branes should be D7 ones. Although the
solutions presented in the present paper correspond only to
D1 and D3 branes, it is not difficult to combine them with
the basic solution (7) in order to construct higher-
dimensional ones. As a concrete example, let us consider
the combined solution

Xa ¼ �X�

~Xi

� �
; (68)

with �X� satisfying the commutation relations (7) of theR4
�,

~Xi for i ¼ 1; . . . ; 5 satisfying the commutation relations of
the algebra A5;1 [i.e., corresponding to the solution (40)]

and ~X6 ¼ 0. This is then clearly a solution of the IKKT
model corresponding to a flat D7 brane. The study of
intersections of such solutions and their implications for
the construction of models for particle physics is interest-
ing and should be addressed elsewhere. Here we just state
that the welcome results of [19] are expected to hold in the
present cases as well.
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IV. TOWARDS QUANTIZED COMPACT
NILMANIFOLDS

In the present section we deviate from the search for
solutions of the IKKT model and we pose the following
question: are there compact manifolds based on the alge-
bras discussed in Sec. III? This question is of interest
because once it is answered in the affirmative it will open
up the possibility to consider new compactifications of the
IKKT model, based on the Lie algebras presented in the
previous section.

The simplest way to construct a manifold out of a
nilpotent or a solvable Lie algebra A is to consider the
action of a dicrete (sub)group � on its Lie group. Then the
quotient7 M ¼ A=� is called a nilmanifold or a solvmani-
fold, respectively. A very important result for our purposes
states that in the nilpotent case such a construction is
possible if and only if the corresponding Lie algebra has
rational structure constants in some basis [29]. This guar-
antees that in the nilpotent cases that we study here a � as
above always exists.8 For the solvable cases the situation is
more complicated but it will soon become evident that the
ones we met in Sec. III are not of further interest for our
purposes.

An important issue which we would like to mention
regards the compactness of a nilmanifold. It is true that
even starting with a noncompact group A it is possible to
construct a compact manifold by considering its quotient
by a compact discrete subgroup of it. A necessary condi-
tion for compactness is that the group is unimodular; i.e.,
its structure constants satisfy faab ¼ 0 (this was already

discussed in [30]). This condition is not sufficient but for
nilpotent groups the requirement of rational structure con-
stants is enough.

As a first check on whether we can construct compact
manifolds based on the algebras that were singled out in
Sec. III, let us try to verify the condition of unimodularity.
It is straightforward to check (by mere inspection of the
commutation relations) that A3;1, A5;1, A5;4, A6;3,

A6;4, A�
6;5 and A�1

6;14 indeed pass the test, while on the

other hand A4;12 and A5;39 fail to do so. Therefore the

two latter cases do not give rise to compact manifolds. It is
worth noting that these two cases are exactly the only
solvable ones that we found in Sec. III and therefore our
present analysis shows that there are no compact solvma-
nifolds9 corresponding to algebras which solve the equa-
tions (3). Therefore in the following only nilmanifolds will
be discussed. For tables of nilmanifolds and solvmanifolds
in six dimensions the reader may consult [34,58].
Moreover, six-dimensional solvmanifolds were used in

flux compactifications in [59], where a rather detailed
review on solvmanifolds may be found.
Let us proceed by giving two explicit examples of the

construction of a nilmanifold. The first one is well-known
and it corresponds to the simplest case of the algebraA3;1

with nontrivial commutation relation ½X2; X3� ¼ X1 [60].
A basis for the algebra is given by the following 3� 3
upper triangular matrices,10

X1 ¼
0 0 1
0 0 0
0 0 0

0
@

1
A; X2 ¼

0 1 0
0 0 0
0 0 0

0
@

1
A; X3 ¼

0 0 0
0 0 1
0 0 0

0
@

1
A:
(69)

Then, any element of the corresponding group A3;1 may be

parametrized as

g ¼
1 x2 x1
0 1 x3
0 0 1

0
@

1
A: (70)

This is clearly a noncompact group. According to the
above discussion, in order to produce a compact manifold
out of it, a compact discrete subgroup � has to be consid-
ered. Such a subgroup is given by those elements g 2 A3;1

which have integer values of x2, x3 and cx1, where c is a
positive integer. Then the quotient A3;1=� is indeed a

compact nilmanifold. In the physics literature this mani-
fold is known as a twisted torus and it corresponds
to a (twisted) fibration of a torus over another torus (see,
e.g., [34]).
Let us explain the above construction in more detail.

Consider a representative element g 2 A3;1, as in (70).

Then the Maurer-Cartan 1-form e is given by

e ¼ g�1dg; (71)

which gives

e ¼
0 dx2 dx1 � x2dx3
0 0 dx3
0 0 0

0
@

1
A: (72)

The 1-form e is Lie-algebra valued, e ¼ eaXa, and its
components are

e1 ¼ dx1 � x2dx3; e2 ¼ dx2; e3 ¼ dx3; (73)

which evidently satisfy the Maurer-Cartan equations

dea ¼ � 1

2
fabce

b ^ ec; (74)

7Here A denotes the group associated to the algebra A.
8This does not mean though that it has to be unique.
9This argument holds of course only for up to five-dimensional

solvable algebras which we consider here.

10Of course these matrices are not Hermitian and therefore they
cannot be directly related to solutions of the IKKT model.
However, their use facilitates significantly the geometric descrip-
tion of the corresponding manifolds. We shall comment on the
relevance of such manifolds for the IKKT model at the end of
this section.
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since de2 ¼ de3 ¼ 0 and de1 ¼ �e2 ^ e3. The important
observation here is that in order to compactify the group
one has to introduce a twist. Indeed, while for the direc-
tions x1 and x3 the compactification is achieved by the
identifications

ðx1;x2;x3Þ�ðx1þa;x2;x3Þ�ðx1;x2;x3þbÞ; a;b2Z;

(75)

one cannot do the same for x2; i.e., the identification
ðx1; x2; x3Þ � ðx1; x2 þ c; x3Þ obviously does not work.
Instead, the correct identification is

ðx1; x2; x3Þ � ðx1 þ cx3; x2 þ c; x3Þ: (76)

Under (75) and (76) the desired (twisted) compactification
is achieved.
The above example serves as a prototype for any other.

One can always write down a basis for the algebra in terms
of upper triangular matrices and compactify the corre-
sponding group by modding out a discrete subgroup cor-
responding to elements with integer entries. Let us work
out in some detail a less trivial, six-dimensional example,
based on the algebraA6;3. A basis for this algebra is given

by the following 6� 6 upper triangular matrices:

X1 ¼

0 0 1 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0

0 0
0

0
BBBBBBBB@

1
CCCCCCCCA
; X2 ¼

0 1 0 0 0 0
0 0 0 0 0

0 1 0 0
0 0 0

0 0
0

0
BBBBBBBB@

1
CCCCCCCCA
; X3 ¼

0 0 0 0 0 0
0 0 0 1 0

0 0 0 1
0 0 0

0 0
0

0
BBBBBBBB@

1
CCCCCCCCA
;

X4 ¼

0 0 0 0 0 1
0 0 0 0 0

0 0 0 0
0 0 0

0 0
0

0
BBBBBBBB@

1
CCCCCCCCA
; X5 ¼

0 0 0 0 1 0
0 0 0 0 0

0 0 0 0
0 0 0

0 0
0

0
BBBBBBBB@

1
CCCCCCCCA
; X6 ¼

0 0 0 1 0 0
0 0 0 0 0

0 0 0 0
0 0 0

0 0
0

0
BBBBBBBB@

1
CCCCCCCCA
:

(77)

The corresponding general group element is given by

g ¼

1 x2 x1 x6 x5 x4
1 0 0 x3 0

1 x2 0 x3
1 0 0

1 0
1

0
BBBBBBBB@

1
CCCCCCCCA
: (78)

The Maurer-Cartan 1-form may be computed and it has the following form,

e ¼

0 dx2 dx1 dx6 � x1dx2 dx5 � x2dx3 dx4 � x1dx3

0 0 0 dx3 0

0 dx2 0 dx3

0 0 0

0 0

0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; (79)

with components

e1 ¼ dx1; e2 ¼ dx2; e3 ¼ dx3; e4 ¼ dx4 � x1dx3; e5 ¼ dx5 � x2dx3; e6 ¼ dx6 � x1dx2: (80)

The necessity for twists is again evident. Indeed, it is straightforward to see that for the directions x3, x4, x5 and x6 we can
consider the identifications
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ðx1; x2; x3; x4; x5; x6Þ � ðx1; x2; x3 þ c; x4; x5; x6Þ
� ðx1; x2; x3; x4 þ d; x5; x6Þ
� ðx1; x2; x3; x4; x5 þ e; x6Þ
� ðx1; x2; x3; x4; x5; x6 þ fÞ;
c; d; e; f 2 Z; (81)

while for the x1 and x2 ones the correct identifications are

ðx1; x2; x3; x4; x5; x6Þ� ðx1þa;x2; x3; x4þax3; x5; x6þax2Þ
� ðx1; x2þb;x3; x4; x5þbx3; x6Þ;
a;b2Z: (82)

Under (81) and (82) we obtain the desired twisted
compactification.

Following the above procedure, nilmanifolds corre-
sponding to the seven nilpotent Lie algebras which were
singled out in Sec. III may be constructed. The deformation
quantization of the first one, based onA3;1, was performed

in [60]. A detailed discussion on the quantization of the rest
of the cases is beyond the scope of the present paper.
However, the pursuit of this task would be of interest,
e.g., for compactifications of the IKKT model. In [1,15]
toroidal compactifications of the Banks-Fischler-Shenker-
Susskind and IKKT matrix models were considered. They
correspond to a restriction of the matrix action if we
consider matrix configurations which satisfy certain peri-
odicity conditions related to the compact directions on a
multidimensional torus. These conditions cannot be satis-
fied by finite-dimensional matrices; however, solutions can
be found for operators in an infinite-dimensional Hilbert
space. In the above point of view, it would be natural to
consider twisted toroidal compactifications based on the
manifolds presented earlier in this section. In that case, one
should impose twisted periodicity conditions, dictated by
the identifications (75), (76), (81), and (82), and determine
(infinite-dimensional) matrix configurations which provide
solutions to the compactified matrix model. This task
deserves separate treatment and we leave a detailed study
for future work.

Moreover, in [15] compactifications on NC tori were
studied and they were shown to correspond to supergravity
backgrounds with constant 3-form flux. Then one could
expect that similar compactifications on NC twisted tori
could account for nongeometric flux vacua [61,62], incor-
porating the nongeometric fluxes in the geometry of the
NC space. We hope to report on this in a future publication.

V. DISCUSSION AND CONCLUSIONS

In the present paper we performed a survey of Lie-
algebraic solutions to the IKKT matrix model. Up to now
it was known that manifolds with Lie-type noncommuta-
tivity are either solutions of deformed MM [9–13] or else
some split noncommutativity has to be introduced [14].

Moreover, the above compact solutions are all based on
compact semisimple Lie algebras. Our investigation re-
vealed the possibility of obtaining (noncompact) solutions
to the undeformed IKKT model without deformations or
additional requirements, which are based on nilpotent and
solvable Lie algebras.
More specifically, scanning the classification tables of

[27] we found seven nilpotent Lie algebras (one three-
dimensional, two five-dimensional and four 6-dimensional
ones) and two solvable ones (one four-dimensional and one
five-dimensional) which solve the equations of motion of
the IKKT model. Subsequently, we discussed the repre-
sentation of these algebras by Hermitian matrices. This is
always possible for the nilpotent cases, thus proving that
they indeed constitute solutions to the IKKT model. It is
straightforward to combine these solutions with the basic
four-dimensional solution of the IKKT model, which was
presented in Sec. II and corresponds to NC space-time as a
Moyal-Weyl quantum plane R4

�.

In addition, we addressed the problem of constructing
compact NC spaces associated to these algebras. The
simplest constructions of compact spaces based on non-
semisimple Lie algebras are the so-called nilmanifolds and
solvmanifolds, also known as twisted tori in the physics
literature. These correspond to quotients of the group of a
nilpotent or solvable Lie algebra, respectively, by a com-
pact discrete subgroup of it. We argued that for the two
solvable cases we found, there are no associated compact
spaces. However, all the cases of nilpotent Lie algebras
give rise to certain compact nilmanifolds. These nilmani-
folds can be formally quantized via Weyl quantization.
Although it cannot be argued at this stage that these
compact manifolds are solutions of the IKKT model as
well, it would be interesting to investigate the compactifi-
cation of the model on them along the lines of [15].
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APPENDIX: DEFINITIONS ON LIE ALGEBRAS

Lie algebras are classified according to their properties
in simple, semisimple, Abelian, nilpotent and solvable. In
this brief appendix let us collect some useful definitions,
which appear often in the main text. A standard reference
is [63].
Let us denote a Lie algebra by A and its generators by

Xa. These generators satisfy the commutation relations

½Xa; Xb� ¼ fcabXc; (A1)
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where fcab are the structure constants. Knowledge of the

structure constants is enough to determine the Killing form
gab according to the formula

gab ¼ fdacf
c
bd: (A2)

According to Cartan’s criterion a Lie algebra is semi-
simple if and only if its Killing form is nondegenerate.
Accordingly, the Killing form of a nilpotent Lie algebra
vanishes identically.

Given a Lie algebra one may search for its invariants,
i.e., functions of its generators which commute with all the
generators. The most important of these invariants is the
quadratic Casimir operator, which we denote as

Cð2ÞðAÞ ¼ �abXaXb; (A3)

with�ab the elements of a symmetric matrix. If the matrix
�ab is invertible, then one may form its inverse�ab, which
is symmetric, nondegenerate and invariant under the ad-
joint action of the corresponding group. In other words,
�ab is a metric on the corresponding group manifold. In
fact, for semisimple algebras �ab is proportional to the
Killing form. This is no longer true for nonsemisimple
ones.

Let us define the derived algebraA0 of a Lie algebraA
as

A 0 ¼ ½A;A�: (A4)

Moreover, let us introduce two generalizations of the de-
rived algebra and, in particular, the so-called upper central
series or derived series of A, defined as

A fig ¼ ½Afi�1g;Afi�1g�; i 	 2; (A5)

and the lower central series, defined as

A fig ¼ ½A;Afi�1g�; i 	 2: (A6)

In the above iterative definitions it holds that Af1g ¼
Af1g ¼ A0. Then we have the following two definitions:
(i) A Lie algebra is called solvable if its derived series

becomes zero after a finite number of steps, i.e., 9i0,
such that Afi0g ¼ 0.

(ii) A Lie algebra is called nilpotent of step i0 if its
lower central series becomes zero after a finite
number of steps, i.e., 9i0, such that Afi0g ¼ 0.

Clearly nilpotency implies solvability.
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