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The classical Green-Schwarz superstring action, with N ¼ 1 or N ¼ 2 spacetime supersymmetry,

exists for spacetime dimensions D ¼ 3, 4, 6, 10, but quantization in the light-cone gauge breaks Lorentz

invariance unless either D ¼ 10, which leads to critical superstring theory, or D ¼ 3. We give details of

results presented previously for the bosonic and N ¼ 1 closed 3D (super)strings and extend them to the

N ¼ 2 3D superstring. In all cases, the spectrum is parity-invariant and contains anyons of irrational

spin.
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I. INTRODUCTION

Quantization of a relativistic string in a D-dimensional
Minkowski background spacetime is problematic unless D
is the critical dimension (D ¼ 26 for the Nambu-Goto
string and D ¼ 10 for superstrings). The difficulty is seen
most clearly in the light-cone gauge; unitarity is then mani-
fest, as all unphysical ‘‘gauge’’ modes of the string are
absent, but quantum anomalies break Lorentz invariance
in any (generic) noncritical dimension [1] (see also [2,3] for
a recent detailed computation). A corollary is that Lorentz-
covariant quantization in a (generic) noncritical dimension
can lead to a unitary theory only if it involves some
‘‘longitudinal’’ modes.1 A corollary is that Lorentz-
covariant quantization in a (generic) noncritical dimension
can lead to a unitary theory only if it involves some addi-
tional ‘‘longitudinal’’ mode, e.g. a Liouville mode. In fact,
this option is available only in subcritical dimensions and it
has not yet proved useful for D> 2 (see e.g. [5]).

These problems with noncritical string theories are well
known except for the qualification ‘‘generic,’’ which
refers to an exception that we exploited in an earlier paper
[6] to which the present paper is a sequel: light-cone gauge
quantization preserves Lorentz invariance not only in the
critical dimension but also forD ¼ 3 (3D), trivially for the
Nambu-Goto string.2 The light-cone gauge quantization

of the 3D Nambu-Goto closed string was carried out in
[6] and it was confirmed that Lorentz invariance is pre-
served in the quantum theory, without the need for any
longitudinal modes. It was also noted in [6] that the low-
lying states of nonzero spin appear in parity doublets. Here
we prove that this was no coincidence: the quantum theory
preserves parity as well as Lorentz invariance.
The 3D Nambu-Goto closed string is sufficiently simple

that one can easily determine the Lorentz representations
of the states in low-lying levels explicitly (rather than
having to rely on implicit arguments based on matching
degeneracies to dimensions of Lorentz representations).
The spin of the states in levels 2 and 3 was found to depend
on the intercept parameter, not surprisingly, but there is no
choice of this parameter for which the spins in both these
levels are either integral or half-integral; in other words,
the spectrum contains anyons.3

We also observed in [6] that the spectrum contains irra-
tional spins for a generic allowed choice of the intercept
parameter.Herewe further show, bycomputation of the spec-
trum at level 4, that some states necessarily have irrational
spin. This result is significant because it implies that the
Lorentz group of the quantum 3D string is neither SOð2; 1Þ
nor any finite multiple cover, such as the double cover

Slð2;CÞ, but rather its universal cover SOð2; 1Þ. Irrational
spin irreps of SOð2; 1Þ are infinite-dimensional [10,11], so
an infinite component field is needed for any manifestly
Lorentz-invariant field theoretic description of a particle of
irrational spin. Since irrational spin particles appear in the
3D string spectrum, it should not be a surprise that the
Lorentz invariance of 3D quantum strings cannot easily be
seen using current methods of covariant quantization.
The Nambu-Goto string has a natural generalization

to a spacetime supersymmetric Green-Schwarz (GS)
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1In the Nambu-Goto formulation, some such modes have a

classical interpretation [4], but we postpone discussion of this
point.

2This was pointed out at the May 2010 Solvay workshop on
‘‘Symmetries and Dualities in Gravitational Theories’’ in a talk
by one of us based on a draft version of our subsequent paper,
and also by T. Curtright in independent work on a related topic
over the same period [7]. We have been led to understand that the
exceptional status of the bosonic 3D string was already known to
experts but we are not aware of any earlier reference. Some
classical aspects of the light-cone gauge for 3D strings have been
discussed previously by Siegel [8].

3By ‘‘anyon’’ we mean a particle with spin not equal to an
integer or half-integer. This differs, in principle, from the defi-
nition in terms of statistics but spin and statistics are related by
the 3D spin-statistics theorem; see e.g. [9].
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superstring, which exists classically for spacetime dimen-
sion D ¼ 3, 4, 6, 10, with eitherN ¼ 1 orN ¼ 2 super-
symmetry [12]. The GS superstring action has a fermionic
‘‘�-symmetry’’ gauge invariance, in addition to world-
sheet reparametrization invariance, but there is an exten-
sion of the light-cone gauge that again eliminates all
longitudinal modes. Quantization in D ¼ 10 leads to stan-
dard critical superstring theory (after the inclusion of open
strings in theN ¼ 1 case). Light-cone gauge quantization
of the 3D N ¼ 1 GS superstring was carried out in [6].
Not only are there no Lorentz anomalies but there are also
no super-Poincaré anomalies, and parity is also preserved.
Moreover, the intercept parameter is now fixed by super-
symmetry such that the ground state, which is doubly
degenerate, is massless. This is entirely consistent with
the possibility that there exists a 3D N ¼ 1 superstring
theory with an effective N ¼ 1 3D supergravity action
since only the dilaton and dilatino of the latter would
propagate massless modes.

It is convenient to refer to the Nambu-Goto string with
zero intercept parameter as the N ¼ 0 string; this string
has spin-3=2 states at level-2 and irrational spin anyons
at level-3. The N ¼ 1 string is a 3D heterotic string in
the sense that its spectrum is a tensor product of Lorentz
irreps arising from an N ¼ 0 right-moving sector with
supermultiplets from an N ¼ 1 supersymmetric left-
moving sector. The spectrum was computed through
level-2 in [6]: it was found that there are semion states
(spin 1=4þ n=2 for integer n) at levels 1 and 2 (and
irrational spins must occur at higher levels because they
are present for N ¼ 0). By tensoring two factors of the
supersymmetric left-moving sector of the N ¼ 1 string,
one can deduce from the results of [6] that the N ¼ 2
string has only bosons and fermions through level-2, and
there is no obvious reason why anyons should appear in
higher levels. This is one reason why a discussion of the
N ¼ 2 superstring was omitted (aside from a comment
about zero-mass modes) from [6]: it was not clear that it
exemplified our title ‘‘Anyons from Strings.’’

The principal purpose of this paper is to extend the
results of [6] to the 3D N ¼ 2 GS superstring, but we
also present details, omitted from the very brief account in
[6], of the quantization of the 3D Nambu-Goto string and
of the 3D N ¼ 1 GS superstring; in all cases, we shall
restrict our attention to closed oriented strings. The main
issue that we wish to address for N ¼ 2 is whether the
spectrum contains anyons. If not then we would need to
explain why this quantum 3D string had not previously
been found using Lorentz-covariant quantization methods.
It might have been necessary to invoke the usual difficul-
ties with �-symmetry, but a computation of the spectrum at
level-3 suffices to show that irrational spins are also present
in the spectrum of the N ¼ 2 3D GS superstring.

We begin with a preliminary section that recalls perti-
nent features of 3D physics and introduces some of our

notation. A novelty of this section is a ‘‘reinterpretation’’
of the 3D supersymmetry algebra as the algebra of a model
of supersymmetric quantum mechanics. This simplifies the
analysis of the structure of massive 3D supermultiplets.
We then consider, in succession, the 3D closed Nambu-

Goto string, the N ¼ 1 GS superstring, and finally the
N ¼ 2 GS superstring. In each case we show how gauge
invariances may be fixed so as to leave only the residual
global gauge invariance under shifts of the string coordi-
nate �, which becomes the level-matching condition in
the quantum theory. In this we follow the classic work of
Goddard et al. [1] except that we start with the Hamiltonian
form of the string action and thus obtain directly the
Hamiltonian form of the light-cone gauge-fixed action;
this simplifies the verification of (super)Poincaré invari-
ance of the gauge-fixed quantum (super)string. Having
established (super)Poincaré invariance, we then compute
the spectrum at the first few levels, sufficient to show that
the spectrum of each of the quantum (super)strings con-
sidered contains anyons of irrational spin. We conclude
with a summary and some speculations on a possible 4D
interpretation of the N ¼ 2 3D superstring.

II. 3D PRELIMINARIES

In Cartesian coordinates fX�;� ¼ 0; 1; 2g, we define the
Minkowski metric ��� and alternating pseudotensor "���

such that

� ¼ diagð�1; 1; 1Þ; "012 ¼ 1: (2.1)

The ‘‘light-cone components’’ are

X� ¼ 1ffiffiffi
2

p ðX1 � X0Þ; X ¼ X2: (2.2)

Similarly, the light-cone components of an arbitrary 3-
vector U are

U� ¼ 1ffiffiffi
2

p ðU1 � U0Þ; U ¼ U2: (2.3)

We also have

U� ¼ U� ¼ 1ffiffiffi
2

p ðU1 � U0Þ ¼ 1ffiffiffi
2

p ðU1 � U0Þ: (2.4)

Note that

� U2
0 þ U2

1 þ U2
2 � U2 ¼ 2UþU� þU2: (2.5)

We will make use of the following 3D vector algebra
relations for arbitrary 3-vectors U and V:

U � V ¼ U�V����;

½U ^ V�� ¼ "���U�V�;

U� ¼ ���U
�:

(2.6)
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A. 3D Dirac matrices and Majorana spinors

A convenient choice for the 3D Dirac matrices is

�0 ¼ i�2; �1 ¼ �1; �2 ¼ �3: (2.7)

Observe that

���� � �½������ ¼ "���I: (2.8)

The Dirac matrices satisfy the identity

ð��Þ�ð�ðC��Þ	
Þ � 0; (2.9)

where C is the antisymmetric charge conjugation matrix
satisfying C��C

�1 ¼ ��T
�.

A Majorana spinor is a 2-component spinor such that

�c � c y�0 ¼ c TC: (2.10)

For the above representation of the Dirac matrices we may
choose

C ¼ �0; (2.11)

in which case a Majorana spinor is a real Slð2;RÞ doublet.
For any commuting Majorana spinor c , the identity (2.9)
implies that

��c ð �c��c Þ � 0: (2.12)

The Dirac matrices in the light-cone basis are

�� ¼ 1ffiffiffi
2

p ð�1 � �0Þ; � � �2 ¼ �3: (2.13)

These satisfy

ð��Þ2 ¼ 0; ���� ¼ 1� �3: (2.14)

As for vectors, �� ¼ ��.

B. Poincaré and super-Poincaré invariants

The 3D Poincaré group is generated by the 3-momentum
P� and Lorentz 3-vector J � with nonzero commutators

½J �;J �� ¼ i"���J�; ½J �;P �� ¼ i"���P�: (2.15)

In the light-cone basis this becomes

½Jþ;J�� ¼ iJ ; ½J ;J�� ¼ �iJ�;

½J�;P�� ¼ �iP ; ½J ;P�� ¼ �iP�:
(2.16)

There are two Poincaré Casimirs:

M2 � �P 2; � ¼ P�J �: (2.17)

Unitary irreps of the Poincaré group are labeled by the
values of these Casimirs [13]. In principle, M2 may be
negative but only irreps withM2 � 0 are physical. We may
therefore assume that M is real and non-negative. When
M> 0 we define the ‘‘relativistic helicity,’’ which we
usually abbreviate to ‘‘helicity,’ by

s ¼ �=M: (2.18)

This may take either sign, and parity flips the sign of s.
We define jsj to be the spin. If the Lorentz group is SOð1; 2Þ
then s is an integer. If the Lorentz group is Slð2;RÞ, which
is the double cover of SOð1; 2Þ, then s is an integer or half-
integer. If the Lorentz group is the universal cover of
SOð1; 2Þ then s can be any real number.
The N -extended super-Poincaré algebra includes N

Majorana spinor generators Q�
a (� ¼ 1, 2) with the

following commutation relations with the Poincaré
generators:

½P ;Q�
a � ¼ 0; ½J �;Q�

a � ¼ � i

2
ð��Þ��Q

�
a : (2.19)

In addition they obey the following anticommutation
relation

fQ�
a ;Q

�
b g ¼ 
abð��CÞ��P�: (2.20)

The super-Poincaré Casimirs are (summation over
a ¼ 1; . . . ;N )

M2 � �P 2; � � P � J þ i

4
�QaQa: (2.21)

We shall call

�s ¼ �=M (2.22)

the ‘‘(relativistic) superhelicity’’ of anN -extended super-
multiplet, and j�sj its superspin.

C. 3D superspace and superforms

The extension of Minkowski spacetime to N -extended
superspace involves the introduction ofN anticommuting
Majorana spinor coordinates f�a; a ¼ 1; . . . ;N g. The su-
persymmetry transformations are


�X
� ¼ i ��a�

��a; 
��a ¼ �a; (2.23)

where �a are constant real anticommuting spinor parame-
ters, and a sum over the index a is implicit. The factor of i
in the expression for 
�X is needed because we use the
standard convention that the complex conjugate of a prod-
uct of anticommuting factors reverses the order, which
gives a minus sign for the complex conjugation of a
fermion bilinear if the order is not changed.
A basis for the left-invariant differential 1-forms on

superspace is provided by d�a and

�� ¼ dX� þ i ��a�
�d�a: (2.24)

Allowing for nonconstant �, one has


��
� ¼ �2id ��a�

��a; (2.25)

which confirms the invariance for constant parameters �a.
The WZ terms for the superstring can be constructed as

follows [14]. Consider, for N ¼ 1, the following super-
Poincaré invariant 3-form (the exterior product of forms is
implicit):
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hN¼1
3 ¼ ��ðd ����d�Þ: (2.26)

The identity (2.9) implies that this 2-form is closed. It is
also exact, in de Rham cohomology, because

hN¼1
3 ¼ dhN¼1

2 ; hN¼1
2 ¼ �dX�ð ����d�Þ:

(2.27)

However, h2 is not super-Poincaré invariant, and cannot be
made so by the addition of any exact 2-form, so h3 is
nontrivial in Lie-superalgebra (Chevally-Eilenberg) coho-
mology (see e.g [15]). Because h3 is super-Poincaré
invariant the super-Poincaré variation of h2 is a closed
2-form, and this is sufficient for invariance of the integral
of h2 over a string world sheet. In fact, using the identity

2��d� ����d� � ���d ����d�; (2.28)

which is a consequence of (2.9), one finds that


�h
N¼1
2 ¼ d

�
�����

�
dX� þ i

3
�����

��

� 2d �����

�
dX� � i

3
���d�

�
: (2.29)

This is nonzero even when d� ¼ 0, but it is then an exact 2-
form.
There is a generalization to N ¼ 2 with

hN¼2
3 ¼ ��ðd ��1��d�1 � d ��2��d�2Þ: (2.30)

The relative minus sign is required for closure of h3, which
can be written as dh2 with

hN¼2
2 ¼ �

�
dX� þ i

2
��a�

�d�a

�
ð ��1��d�1

� ��2��d�2Þ: (2.31)

This 2-form is manifestly Poincaré invariant but its super-
symmetry variation (allowing for nonconstant para-
meters) is


�h
N¼2
2 ¼ d

�
��1���1

�
dX� þ i

3
��1�

�d�1

�
� ��2���2

�
dX� þ i

3
��2�

�d�2

��

� 2d ��1���1

�
dX� � i

3
��1�

�d�1 þ i ��2�
�d�2

�
þ 2d ��2���2

�
dX� � i

3
��2�

�d�2 þ i ��1�
�d�1

�
: (2.32)

This is an exact 2-form for constant �a.

D. Parity

Parity is a Z2 transformation � that we may choose to
have the following action on the coordinates of N ¼ 1
superspace

� : X2 ! �X2; � ! �2�; (2.33)

with all other coordinates being inert. For the extension to
N ¼ 2 (we will not need to consider N > 2) we choose
to define parity as the Z2 transformation

� :X2!�X2; �1!�2�1; �2!��2�2; (2.34)

with all other coordinates being inert; these transforma-
tions imply the invariance of the 3-form h3, and hence of
the superstringWZ term. TheN ¼ 2 superstring model to
be considered here is additionally invariant under the trans-
formations �a ! ��a, separately for a ¼ 1, 2, so we
could choose to define parity without the relative sign for
the�1 and�2 transformation. However, the relative minus
sign is required for standard parity assignments within
supermultiplets relevant to the N ¼ 2 superstring spec-
trum, and for parity invariance of the massive N ¼ 2
superparticle with a central charge [16].

Parity acts as the following outer automorphism of the
N ¼ 1 super-Poincaré algebra:

� :P 2!�P 2; J�!�J�; Q1!��2Q1; (2.35)

with all other basis generators being inert. Similarly for
N ¼ 2, but with the relative sign difference discussed
above:

�: P 2 ! �P 2; J� ! �J�;

Q1 ! ��2Q1; Q2 ! �2Q2:
(2.36)

In both cases, it follows that

� : � ! ��; � ! ��: (2.37)

E. 3D supermultiplets

In any Hermitian operator realization of the super-
Poincaré generators with nonvanishing P�, and positive
M2, we may define the new nonhermitian supercharges

S a ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
P�

q ½ ffiffiffi
2

p
P�Q1

a � ðP 2 � iMÞQ2
a�: (2.38)

These have the remarkably simple anticommutation
relations
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fSa;Sbg ¼ 0; fSa;S
y
b g ¼ 2
abM

2: (2.39)

They also have simple commutation relations with the
Poincaré invariant �

½�;S� ¼ � 1

2
MS; ½�;Sy� ¼ 1

2
MSy; (2.40)

which shows that the action of any of Sa on a helicity
eigenstate lowers the helicity by 1=2, whereas the action of

any of Sy
a raises it by 1=2. Of course, Sa commutes with

the superinvariant �, which can be written for M � 0 as

� ¼ �þ 1

8M

X
a

½Sa;S
y
a �: (2.41)

It follows immediately from this formula that the value of
� for a given supermultiplet is the average of the values
of �, and hence that �s is the average of the helicities s.

Irreducible supermultiplets are built by the action of the

operators Sy
a on a ‘‘Clifford vacuum’’ state ji that is anni-

hilated by the Sa:

S aji ¼ 0 ða ¼ 1; . . . ;N Þ: (2.42)

This gives a supermultiplet of states

ðji;Sy
a ji;Sy

aSy
b ji; . . . ;Sy

1 � � �Sy
N jiÞ: (2.43)

If the first of these states has relativistic helicity h then we

get a supermultiplet of 2N states with helicities ranging
from h to hþN =2, and ‘‘binomial’’ multiplicities. As the
superhelicity is the average of the helicities, the �s ¼ h
supermultiplet is the �s ¼ 0 supermultiplet with all compo-
nent helicities shifted by h. For example, for N ¼ 1, the
�s ¼ h supermultiplet has helicities

s ¼
�
h� 1

4
; hþ 1

4

�
: (2.44)

This is an anyon supermultiplet when h� 1
4 =2 Z. The

special case of 2h 2 Z yields semion supermultiplets; first
studied for h ¼ 1

2 in [17]. The h ¼ 0 case yields the spin- 14
supermultiplet with s ¼ ð� 1

4 ;
1
4Þ; this has arisen in a num-

ber of distinct contexts [18–20], including the level-2
spectrum of the N ¼ 1 3D string [6], because it is the
unique parity-invariant irreducibleN ¼ 1 supermultiplet.
The generic anyon supermultiplet has been studied in [21].

For N ¼ 2, the �s ¼ h supermultiplet has helicities

s ¼
�
h� 1

2
; h; h; hþ 1

2

�
: (2.45)

Again, the superhelicity is the average of the helicities in
the supermultiplet. For h ¼ 0 we get the parity-invariant
3D scalar supermultiplet with spin-0 and spin-1=2 states.
In the absence of a central charge, this is the unique parity-
invariant N ¼ 2 supermultiplet.

When M ¼ 0 the N charges Sa are Hermitian.
These mutually-anticommuting hermitian charges also

anticommute with the remaining N linearly independent
Hermitian supercharges, Qa, which we may choose such
that fQa;Qbg ¼ 2
ab. The charges Sa annihilate the states
of an irreducible representation of the super-Poincaré
group, which are acted upon nontrivially only by the Qa.
ForN ¼ 1, there is only one chargeQ, satisfyingQ2 ¼ 1.
In this exceptional case there is a trivial realization ofQ by
the identity, but if there exists an operator ð�1ÞF that
anticommutes with Q (as is the case for the N ¼ 1
superstring considered here) then the minimal realization
is 2-dimensional: one Bose state and one Fermi state [20].
Although spin is not defined for massless particles, there
are still two distinct unitary irreps of the Poincaré group
corresponding to the distinction between bosons and fer-
mions [13,22]. For N ¼ 2 there are two charges Q1 and
Q2 that are realized nontrivially and the minimal realiza-
tion is again 2-dimensional but if there exists an operator
ð�1ÞF that anticommutes with Q1 and Q2 (as is the case
for the N ¼ 2 superstring considered here) then the 2-
dimensional realization is complex so there are two boson
and two fermion states, which is also what one finds from
quantization of theN ¼ 2massless 3D superparticle [20].

1. Central charges

TheN -extended super-Poincaré algebra admits central
charges for N � 2. For the N ¼ 2 case, which is of
potential relevance in light of comments that we make in
the conclusions, the anticommutator (2.20) becomes

fQ�
a ;Q

�
b g ¼ 
abð��CÞ��P� þ "abC

��Z; (2.46)

where Z is a real central charge. This modification implies
that (2.39) is modified to

fSa;Sbg ¼ 0; fSa;S
y
b g ¼ 2Mð
abM� i"abZÞ: (2.47)

Unitarity requires that

M � jZj: (2.48)

An N ¼ 2 massive parity-preserving superparticle
model in which this bound is saturated was presented in
[16]. In the quantum theory this describes a centrally-
charged parity-invariant semion supermultiplet with helic-
ity states s ¼ ð� 1

4 ;� 1
4 ;

1
4 ;

1
4Þ. In the Z ! 0 limit, both M

and � go to zero, and the helicity �=M becomes ill-
defined; the 4 massive states become the two massless
bosonic and two massless fermionic states of a massless
N ¼ 2 supermultiplet.

F. The 3D massive particle

The Hamiltonian form of the time-reparametrization
invariant action for a point particle of non-zero mass m
and relativistic helicity s is
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S½X;P� ¼
Z

d

�
_X�P� � 1

2
‘ðP2 þm2Þ

�
� sSLWZ;

(2.49)

where P2 ¼ ���P
�P� and SLWZ is the (parity violating)

‘‘Lorentz Wess-Zumino’’ (LWZ) term constructed from
the Poincaré-invariant closed 2-form [23]

1

2
ð�P2Þ�ð3=2Þ"���P�dP�dP�: (2.50)

By construction, the action is Poincaré invariant. The
Noether charges are

P � ¼ P�; J � ¼ ½X ^ P�� � s

m
P�: (2.51)

The time reparametrization invariance is equivalent to
gauge invariance under the infinitesimal ‘‘�-symmetry’’
transformation


�X
� ¼ �P�; 
�P� ¼ 0; 
�‘ ¼ _�; (2.52)

with arbitrary parameter �ðÞ. To quantize, we must deal
with this gauge invariance. As our purpose here is to
illustrate some features of the light-cone gauge fixing
that we will use for strings, we proceed in this way by
setting

Xþ ¼ : (2.53)

This fixes the �-gauge invariance of (2.52) provided that
P� � 0; which is the case for any solution of the equations
of motion as long as m � 0. We may then solve the mass-
shell constraint for Pþ, which is minus the Hamiltonian in
the chosen gauge:

H ¼ �Pþ ¼ 1

2P�
ðP2 þm2Þ: (2.54)

The light-cone gauge action naturally depends on s but
the s-dependence can be removed (following the procedure
of [20]) by defining the new variable

Y� ¼ X� � �P

m2P�
; � ¼ sm: (2.55)

The light-cone gauge action then becomes

S½X; X�;P;P�� ¼
Z

df _XPþ _Y�P� �Hg: (2.56)

The Poincaré charges (2.51) in the light-cone gauge are

P ¼ P; P� ¼ P�; Pþ ¼ �H;

J ¼ Y�P� þ H; Jþ ¼ P� XP�;

J� ¼ �Y�P� XH þ�=P�:

(2.57)

The s-dependence is now entirely in J� and it is
easily checked that P�J � ¼ �, confirming that the par-

ticle has helicity s. The equations of motion imply that
the Poincaré charges are time-independent; the explicit

time-dependence is canceled by the implicit time-
dependence due to the equations of motion.
Upon quantization we have the equal-time commutation

relations (we set ℏ ¼ 1)

½Y�; P�� ¼ i; ½X; P� ¼ i: (2.58)

There are now operator ordering ambiguities in the expres-
sions for J and J�. These ambiguities are fixed by the
twin requirements of Hermiticity and closure of the
Lorentz algebra. The quantum Lorentz generators are

J ¼ 1

2
fY�; P�g þ H;

Jþ ¼ P� YP�;

J� ¼ �Y�P� 1

2
fX;Hg þ�=P�:

(2.59)

It should now be understood that the canonical vari-
ables in these expressions are operators, as is H. Again,
the explicit time-dependence is cancelled by the implicit
time-dependence of the operators. Using the equal-time
commutation relations (2.58) one may verify that the com-
mutation relations (2.16) are satisfied, and hence that the
quantum theory preserves the Poincaré invariance of the
classical theory. This was to be expected but virtually
the same computation is what is needed to verify
Poincaré invariance for the 3D string. The only difference
is in the form of the Hamiltonian H and the Poincaré
invariant�. As long as these operators commute, one finds
that the commutation relations (2.16) are obeyed, so the
proof of Lorentz invariance for the 3D string will reduce to
checking that ½H;�� ¼ 0.

III. THE 3D BOSONIC STRING

The Nambu-Goto action for the closed bosonic 3D string
of tension T is

S½X� ¼ �T
Z

d
I d�

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _X � X0Þ2 � _X2ðX0Þ2

q
; (3.1)

where an overdot indicates a derivative with respect to the
arbitrary time parameter  and a prime indicates a deriva-
tive with respect to the arbitrary string coordinate �, which
we assume to be identified with �þ 2�. This action
involves the background 3D Minkowski metric � through
the scalar product.
Our starting point, however, is not the Nambu-Goto

action but rather the following Hamiltonian version,
with 3-momentum P and Lagrange multipliers ‘ (for
the time-reparametrization constraint) and u (for the
S1-diffeomorphism constraint):
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S½X;P;‘;u�¼
Z
d

I d�

2�

�
�
_X�P��1

2
‘½P2þðTX0Þ2��uX0�P�

�
:

(3.2)

Although the Lagrange multipliers should be viewed here
as unrestricted variables, it is necessary to assume that ‘ is
nowhere zero in order to recover the Nambu-Goto action
(3.1), by progressive elimination of P, ‘ and u. For this
reason, the Hamiltonian formulation is not strictly equiva-
lent to the Nambu-Goto formulation, even classically, but it
should be appreciated that the classical action is merely a
starting point for the construction of a quantum theory, and
the Hamiltonian formulation of the Nambu-Goto string is
convenient for this purpose.

The action (3.2) is invariant under the Poincaré trans-
formations generated by the Noether charges

P � ¼
I d�

2�
P�; J � ¼

I d�

2�
½X ^ P��: (3.3)

It is also invariant under the discrete parity transformation

X 2 ! �X2; P2 ! �P2; (3.4)

with all other variables being inert. In addition to these
rigid invariances, the action (3.2) is invariant under the
following infinitesimal gauge transformations with pa-
rameters �, �:


X ¼ �Pþ �X0;


P ¼ T2ð�X0Þ0 þ ð�PÞ0;

‘ ¼ _�þ u0�� u�0 þ ð‘0�� ‘�0Þ;

u ¼ _�þ u0�� u�0 þ T2ð�‘0 � ‘�0Þ:

(3.5)

Note that not only is the action gauge-invariant but so also
are the Noether charges.

A. Light-cone gauge

We now introduce the light-cone coordinates
ðXþ; X�; XÞ and their conjugate momenta ðPþ; P�; PÞ.
The light-cone gauge is defined by the choice

Xþ ¼ ; P� ¼ p�ðÞ; (3.6)

where p�ðÞ is a function of  only that we assume to be
nowhere zero.4 This gauge choice leaves only the residual

global gauge invariance induced by a constant shift
of �:


�0
X¼�0X

0; 
�0
u¼ _�0þu0�0; 
�0

‘¼�0‘
0; (3.7)

where

�0ðÞ ¼
I d�

2�
�: (3.8)

To obtain the action in light-cone gauge, we first define

xðÞ ¼
I d�

2�
X; x�ðÞ ¼

I d�

2�
X�;

pðÞ ¼
I d�

2�
P; pþðÞ ¼

I d�

2�
Pþ;

(3.9)

and

�X ¼ X � x; �X� ¼ X � x�;
�P ¼ P� p; �Pþ ¼ Pþ � pþ;

(3.10)

and also

u0 ¼
I d�

2�
u; �u ¼ u� u0: (3.11)

Using the gauge conditions (3.6), we now find that the
string Lagrangian reduces to

L ¼ _xpþ _x�p� þ pþ þ
I d�

2�
_�X �P�u0

I d�

2�
�X0P

�
I d�

2�
�u �X0Pþ p�

I d�

2�

�
�
�X� �u0 � ‘

�
Pþ þ 1

2p�
½P2 þ ðTX0Þ2�

��
: (3.12)

In this form of the action, �X� is a Lagrange multiplier
imposing the constraint �u0 ¼ 0, which implies �u ¼ 0. The
constraint imposed by the lapse function ‘ is also easily
solved:

Pþ ¼ � 1

2p�
½P2 þ ðTX0Þ2�: (3.13)

This leads to the Lagrangian density

L ¼
�
_xpþ _x�p� þ

I d�

2�
_�X �P

�
�H � u0

I d�

2�
�X0 �P;

(3.14)

where the Hamiltonian is

H � �pþ ¼ 1

2p�
ðp2 þM2Þ; (3.15)

with

M 2 ¼
I d�

2�
½ �P2 þ ðT �X0Þ2�: (3.16)

4For p� ¼ 0 one gets longitudinal ‘‘kink’’ modes [4] which
are presumably related to the Liouville mode that arises in the
Polyakov approach from a quantum conformal anomaly. In the
light-cone gauge this anomaly is pushed into an anomaly of
the Lorentz algebra, so one might expect to have to include these
modes to get a Lorentz-invariant theory in a subcritical dimen-
sion, as is the case for the 2D string [4]. However, we shall see
that no longitudinal modes (whether of quantum or classical
origin) are needed for Lorentz invariance of the 3D string.
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As expected, there is a residual global constraint im-
posed by u0, corresponding to the residual global gauge
invariance which is now just


�0
� ¼ �0�

0; 
�0
u0 ¼ _�0: (3.17)

The u0-dependence of the Lagrangian (3.14) converts de-
rivatives with respect to  into covariant  derivatives,
defined for any dynamical variable � by

D� ¼ _�� u0�
0: (3.18)

This transforms covariantly under (3.17):


�0
ðD�Þ ¼ �0ðD�Þ0: (3.19)

Using this notation, the light-cone-gauge action may now
be written in a form that is manifestly invariant under this
residual gauge invariance:

S ¼
Z

d

�
_xpþ _x�p� þ

I d�

2�
�PD

�X�H

�
: (3.20)

This action is clearly still invariant under the parity trans-
formation (3.4), which now reads

X ! �X; P ! �P; (3.21)

with all other variables being inert. It is also still Poincaré
invariant, despite appearances: the infinitesimal transfor-
mations are easily found by working out the compensating
gauge transformations needed to maintain the gauge choice
when performing an infinitesimal Poincaré transformation,
and these transformations can then be used to find the
Noether charges. However, because the Noether charges
are gauge-invariant, one finds the same result by simply
substituting the gauge-fixing conditions into the expres-
sions (3.3). This gives

P 2 ¼ p; P� ¼ p�; Pþ ¼ �H; (3.22)

and

J ¼ x�p� þ H;

Jþ ¼ p� xp�;

J� ¼ �x�p� xH þ �=p�;

(3.23)

where

� ¼ p�
I d�

2�
½ �X �Pþ � �X� �P�: (3.24)

One may verify that all these charges are time-independent
as a consequence of the equations of motion. The two
Poincaré invariants are

P 2 ¼ �M2; P � J ¼ �: (3.25)

Observe that � depends on �X� as well as the canonical
variables of the final action, but the equation of motion of �u
in (3.12) is

p�ð �X�Þ0 þ p �X0 ¼ � �X0 �Pþ
I d�

2�
�X0 �P; (3.26)

which will allow us to express �X� in terms of ðp�; pÞ and
the Fourier coefficients of ð �X; �PÞ.

B. Fourier expansion

We see from (3.14) that the physical variables in the
light-cone gauge are the canonical pairs ðx; pÞ, ðx�; p�Þ
and either ð �X; �PÞ or the coefficients in their Fourier ex-
pansions. As is standard, we actually choose to Fourier
expand the combinations �P� T �X0:

�P� T �X0 ¼ ffiffiffiffiffiffi
2T

p X1
n¼1

½ein��n þ e�in��	
n�;

�Pþ T �X0 ¼ ffiffiffiffiffiffi
2T

p X1
n¼1

½ein� ~�	
n þ e�in� ~�n�:

(3.27)

This implies that

�X ¼ iffiffiffiffiffiffi
2T

p X1
n¼1

1

n
½ein�ð�n � ~�	

nÞ � e�in�ð�	
n � ~�nÞ�;

�P ¼
ffiffiffiffi
T

2

s X1
n¼1

½ein�ð�n þ ~�	
nÞ þ e�in�ð�	

n þ ~�nÞ�:
(3.28)

It follows from the first of these expressions that

�X 0 ¼ �
ffiffiffiffiffiffi
1

2T

s X1
n¼1

½ein�ð�n � ~�	
nÞ þ e�in�ð�	

n � ~�nÞ�;

(3.29)

and hence that the Lagrangian (3.14) may be written as

L ¼
�
_xpþ _x�p� þ i

X1
n¼1

1

n
½ _�n�

	
n þ _~�n ~�

	
n�
�

�H þ u0
X1
n¼1

½�	
n�n � ~�	

n ~�n�; (3.30)

where the Hamiltonian is as in (3.15) but now M2 is
expressed as a sum over Fourier modes

M 2 ¼ 2T
X1
n¼1

½�	
n�n þ ~�	

n ~�n�: (3.31)

Note that parity now acts as

x! �x; p! �p; �n ! ��n; ~�n ! �~�n:

(3.32)

To obtain expressions for the Lorentz generators (3.23)
in terms of the same variables, we need an expression in
terms of them for �X�. To this end we use (3.26) to deduce
that

�X� ¼ � 1

p�

�
p �Xþ X1

n¼1

i

n
½ein�ð�n � ~�	

nÞ

� e�in�ð�	
n � ~�nÞ�

�
; (3.33)
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where

�n ¼ 1

2

Xn�1

m¼1

�m�n�m þ X
m>n

�m�
	
m�n; (3.34)

and similarly for ~�n. The �n and ~�n coefficients also arise
in the Fourier expansion of �Pþ, as given in (3.13):

�Pþ ¼ � 1

p�

�
p �Pþ T

X1
n¼1

½ein�ð�n þ ~�	
nÞ

þ e�in�ð�	
n þ ~�nÞ�

�
: (3.35)

We now have Fourier expansions for each of the varia-
bles appearing in the integrand of the expression (3.24) for
�. Using them, we deduce that

� ¼ �þ þ ��; �þ ¼ ffiffiffiffiffiffi
2T

p
�; �� ¼ ffiffiffiffiffiffi

2T
p

~�;

(3.36)

where

� ¼ X1
n¼1

i

n
ð�	

n�n � �	
n�nÞ;

~� ¼ X1
n¼1

i

n
ð~�	

n
~�n � ~�	

n ~�nÞ:
(3.37)

1. Equations of motion

Before moving on to the quantum theory, we comment
on the equations of motion. The Lagrangian (3.30) leads to
the equations of motion

_p ¼ _p� ¼ 0; _x ¼ p=p�; _x� ¼ �H=p�;
(3.38)

and

D�n ¼ �in!�n; D ~�n ¼ �in!~�n; (3.39)

where

! ¼ T=p�: (3.40)

Using these equations, and the expression (3.35) for Pþ,
one can show that the expression (3.33) for �X� implies that

p�D
�X� ¼ �Pþ: (3.41)

In the gauge u0 ¼ 0, the equations for ð�n; ~�nÞ have the
solution

�nðÞ ¼ �nð0Þe�in!; ~�nðÞ ¼ ~�nð0Þe�in!; (3.42)

which gives

�P� T �X0 ¼ ffiffiffiffiffiffi
2T

p X1
n¼1

½ein½��!��nð0Þ þ c:c:�;

�Pþ T �X0 ¼ ffiffiffiffiffiffi
2T

p X1
n¼1

½e�in½�þ!� ~�nð0Þ þ c:c:�:
(3.43)

This confirms that the �n are the Fourier coefficients for
right-moving modes and ~�n the Fourier coefficients for
left-moving modes, but one might have expected to find
that ! ¼ 1 since waves on the string travel along it at the
speed of light (which is c ¼ 1 in the units used here).
However, the scale associated with the time variable  is
arbitrary, and this is reflected in the arbitrariness of the
angular frequency ! ¼ T=p�. Note that p� is set to a
constant by the equations of motion. A natural choice is

p� ¼ T (3.44)

since this implies that ! ¼ 1. However, it is important
not to set p� ¼ T in the action; doing so would cause
the _x�p� term to become an irrelevant total derivative
and the action would no longer be Lorentz invariant. It
is also important not to set p� ¼ T in the expressions
for the Noether charges, at least before evaluation of
Poisson brackets (classically) or commutators (quantum
mechanically).

C. Quantum bosonic string

The nonzero Poisson brackets of the canonical variables
in the light-cone-gauge action (3.20) are

fx; pgpb ¼ 1;

fx�; p�gpb ¼ 1;

fXð�Þ; Pð�0Þgpb ¼ 2�
ð�� �0Þ:
(3.45)

In the quantum theory, these variables are promoted to
operators with the commutation relations (we set ℏ ¼ 1)

½x; p� ¼ i;

½x�; p�� ¼ i;

½Xð�Þ; Pð�0Þ� ¼ 2�i
ð�� �0Þ:
(3.46)

The last of these can be achieved by promoting to operators
the Fourier coeficients ð�n; ~�nÞ so that the nonzero com-
mutators are

½�n; �
y
n � ¼ n; ½~�n; ~�

y
n � ¼ n; 8 n 2 Zþ: (3.47)

The quantum Hamiltonian is then

H ¼ 1

2p�
ðp2 þM2Þ; M2 ¼ 2TðN þ ~N � aÞ;

(3.48)

where a is an arbitrary constant arising from operator
ordering ambiguities, and the ‘‘level-number’’ operators
N and ~N are

N ¼ X1
n¼1

�y
n�n; ~N ¼ X1

n¼1

~�y
n ~�n: (3.49)

The constraint imposed by u0 is the level-matching condi-
tion, which must be imposed as a physical-state condition
in the quantum theory: for physical state jphysi,
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ðN � ~NÞjphysi ¼ 0: (3.50)

The string ground state takes the tensor product form

jp; p�i 
 j0iþ 
 j0i�; (3.51)

where j0iþ is the ground state for the right-moving modes
and j0i� is the ground state for the left-moving modes:

�nj0iþ ¼ 0; ~�nj0i� ¼ 0; 8 n 2 Zþ: (3.52)

Excited string states are found by the action of oscillator
creation operators on this ground state. Such states are
eigenstates of the level operators N and ~N, with eigenval-
ues that we also call N and ~N. To be physical, these
eigenstates must satisfy the level-matching condition
N ¼ ~N. We may therefore organize all physical states
according to their level N. In addition,

M 2jN ¼ 2Tð2N � aÞ: (3.53)

Because of the level-matching constraint, not only is
the (level-0) oscillator ground state unique, for given p
and p�, but so also is the first (level-1) excited state,

�y
1 j0iþ 
 ~�y

1 j0i� � j1iþ 
 j1i�: (3.54)

There are four physical level-2 states, which are tensor
products of

j1; 1iþ ¼ 1ffiffiffi
2

p ð�y
1 Þ2j0iþ; j2iþ ¼ 1ffiffiffi

2
p �y

2 j0iþ; (3.55)

with the analogous two states built on j0i�. At level 3 we
need to consider the three (orthonormal basis) states

j1; 1; 1iþ ¼ 1ffiffiffi
6

p ð�y
1 Þ3j0iþ;

j1; 2iþ ¼ 1ffiffiffi
2

p �y
1�

y
2 j0iþ;

j3iþ ¼ 1ffiffiffi
3

p �y
3 j0iþ;

(3.56)

and this leads to a total of nine physical states.
At level 4 we need to consider the five (orthonormal

basis) states

j1;1;1;1iþ ¼ 1ffiffiffiffiffi
4!

p ð�y
1 Þ4j0iþ; j1;1;2iþ ¼ 1

2
ð�y

1 Þ2�y
2 j0iþ;

j1;3iþ ¼ 1ffiffiffi
3

p �y
1�

y
3 j0iþ; j2;2iþ ¼ 1

2
ffiffiffi
2

p ð�y
1 Þ2�y

2 j0iþ;

j4iþ ¼ 1

2
�y
4 j0iþ; (3.57)

and this leads to a total of 25 level-4 physical states.

1. Lorentz covariance and parity

As the light-cone gauge renders the classical Lorentz
invariance nonmanifest, there is no guarantee that the
quantum string will be Lorentz invariant. We must

therefore check Lorentz invariance. The quantum trans-
lation generators are

P 2 ¼ p; P� ¼ p�; Pþ ¼ �H; (3.58)

exactly as in (3.22) but now with the operator Hamiltonian
of (3.48), and the quantum Lorentz generators are

J ¼ 1

2
fx�; p�g þ H;

Jþ ¼ p� xp�;

J� ¼ �x�p� 1

2
fx;Hg þ �=p�:

(3.59)

Here, � ¼ �þ þ ��, with

1ffiffiffiffiffiffi
2T

p �þ ¼ � � X1
n¼1

i

n
ð�y

n�n � �y
n�nÞ;

1ffiffiffiffiffiffi
2T

p �� ¼ ~� � X1
n¼1

i

n
ð~�y

n
~�n � ~�y

n ~�nÞ;
(3.60)

where �n and ~�n are now the operators

�n ¼ 1

2

Xn�1

m¼1

�m�n�m þ X
m>n

�m�
y
m�n;

~�n ¼ 1

2

Xn�1

m¼1

~�m ~�n�m þ X
m>n

~�m ~�y
m�n:

(3.61)

All operator ordering ambiguities in the quantum Lorentz
generators are fixed by the requirements of hermiticity and
closure of the algebra. In particular, there is no Lorentz
anomaly, so the quantum theory is Lorentz invariant. This
was to be expected because the ‘‘dangerous commutators’’
are antisymmetric in the (D� 2) ‘‘transverse space’’ in-
dices and hence trivially absent for D ¼ 3. As a result, the
computation is equivalent to the one that must be done for
the massive particle except that one needs to check that
½N; �� ¼ 0, which implies ½H;�� ¼ 0. For this step, it is
convenient to first establish the commutation relations

½�n;�m� ¼ n�nþm;

½�y
n ; �m� ¼

8><
>:
�n�m�n n < m

0 n ¼ m

�n�y
n�m n > m

; (3.62)

and then to use the identity

X1
m¼1

X1
n¼mþ1

� X1
n¼2

Xn�1

m¼1

: (3.63)

It also remains true in the quantum theory that

P 2 ¼ �M2; P � J ¼ �; (3.64)

where the operators M2 and � are given by (3.53) and
(3.60) respectively. It is straightforward to verify that these
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two operators commute with each other and with all gen-
erators of the Poincaré algebra.

The parity operator of the quantum theory is5

� ¼ �0 exp

�
i�

X1
n¼1

1

n
ð�y

n�n þ ~�y ~�nÞ
�
; (3.65)

where

� 0 ¼
Z

dpj � pihpj: (3.66)

The operator � anticommutes with all the creation and
annihilation operators. It therefore commutes with N and
~N, and hence with the Hamiltonian. Also, it anticommutes
with �. Parity is therefore preserved by the quantum
theory, and all states of nonzero spin must appear in parity
doublets of opposite-sign helicities. For the first few low-
lying levels, this is verified by the explicit computations to
follow.

2. Helicity spectrum

AsM2 and � commute, they are simultaneously diago-
nalizable. This means that � is block-diagonal in a basis in
whichM2 is diagonal, with blocks that may be labeled by

the level number N. Since � and ~� commute, they too may
be simultaneously diagonalized. It follows that

� ¼ X1
n¼2

�n; ~� ¼ X1
n¼2

~�n; (3.67)

where �n annihilates all states with N < n but not all those
with N � n. The absence of n ¼ 0 and n ¼ 1 contribu-
tions to the sum is easily verified, and it implies that �
annihilates the states at N ¼ 0 and N ¼ 1; this is expected
because these levels each contain a single physical state
which must be a parity singlet and hence a scalar. At level 2
we need consider only �2 because �n for n � 3 annihilates
all states at levels N ¼ 0, 1, 2. A computation shows that

�2 ¼ 3i

4
½ð�y

1 Þ2�2 � �y
2�

2
1�: (3.68)

This reduces to the matrix ð3=2Þ�2 in the level-2 basis
(3.55) so � has eigenvalues �3=2. The same is obviously

true for ~�, so the eigenvalues of � at level 2 are (0, 0, 3,

�3) times
ffiffiffiffiffiffi
2T

p
. We must divide by the level-2 massffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Tð4� aÞp
to get the helicities, which are therefore

s2 ¼
�
0; 0;� 3ffiffiffiffiffiffiffiffiffiffiffiffi

4� a
p

�
: (3.69)

As implied by parity, each nonzero spin occurs twice, once
for each sign of the helicity.

At level 3 we need �3 and a computation gives

�3 ¼ 7i

6
ð�y

1�
y
2�3 � �y

3�1�2Þ: (3.70)

We also need �2 because, for example, it does not annihi-
late j1; 1; 1iþ, but we do not need �4 or higher terms. In the
level-3 basis (3.56), one finds that � reduces to the matrix

i

2
ffiffiffi
3

p
0 �9 0
9 0 �7

ffiffiffi
2

p
0 7

ffiffiffi
2

p
0

0
@

1
A; (3.71)

which has eigenvalues (0, � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
179=12

p
). This leads to the

level-3 helicity content

s3 ¼
�
0; 0; 0;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
179

12ð6� aÞ

s
;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
179

12ð6� aÞ

s
;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
179

3ð6� aÞ

s �
:

(3.72)

Observe again that nonzero helicities appear in parity
doublets of opposite helicity.
At level 4 we need �4 and a computation gives

�4 ¼ i

�
13

12
ð�y

3�
y
1�4 � �y

4�1�3Þ

þ 3

8
½ð�y

2 Þ2�4 � �y
4 ð�2Þ2�

�
: (3.73)

We also need �3 and �2. In the level-4 basis (3.57), one
finds that � reduces to the matrix

i

0 �3
ffiffiffi
6

p
=2 0 0 0

3
ffiffiffi
6

p
=2 0 �7

ffiffiffi
3

p
=3 �3

ffiffiffi
2

p
=2 0

0 7
ffiffiffi
3

p
=3 0 0 �13

ffiffiffi
3

p
=6

0 3
ffiffiffi
2

p
=2 0 0 �3

ffiffiffi
2

p
=2

0 0 13
ffiffiffi
3

p
=6 3

ffiffiffi
2

p
=2 0

0
BBBBB@

1
CCCCCA;

(3.74)

which has eigenvalues�
0;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

24
ð635þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

258505
p Þ

s
;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

24
ð635� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

258505
p Þ

s �
:

(3.75)

Or, in plain numbers, f0;�6:9024 � � � ;�2:29643 � � �g. The
helicities are found by adding pairs of these numbers and

then dividing by
ffiffiffiffiffiffiffiffiffiffiffiffi
8� a

p
.

We are free to choose the intercept parameter a except
that there are tachyons unless a � 0. The choice a ¼ 0 is
natural because this makes the ground-state a massless
scalar. In this case the first excited state (level 1) is a
massive scalar, there are then spins (0, 0, 3=2) at level 2
and some irrational spin anyons at level 3. We shall call this
the N ¼ 0 string since its spectrum is of direct relevance
to the spectrum of the N ¼ 1 superstring.
However, since the ground state of the critical bosonic

string is a tachyon, the a > 0 cases should perhaps be
considered too. In particular, the choice a ¼ 2 leads to a
tachyonic scalar ground state and a massless first-excited

5Recall that the parity operator for the harmonic oscillator is
expði�N̂Þ where N̂ is the particle number operator.
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state, just like the critical bosonic string although the first
excited state is a scalar in 3D. For a > 2 this scalar excited
state is a tachyon too but as long as a < 4 there are no other
tachyons. For a > 4 there are nonscalar tachyonic excited
states in addition to the scalar ground-state tachyon. The
a ¼ 4 case is special because there are then states of
infinite helicity; we believe that these correspond to unitary
irreps of the 3D Poincaré group that are analogs of
Wigner’s unitary ‘‘infinite spin’’ (alias ‘‘continuous
spin’’) irreps of the 4D Poincaré group (see [24] for a
recent discussion). If so, the 3D Nambu-Goto string would
provide a novel physical model for these Poincaré irreps;
we intend to return to this point in a future work.

It was observed in [6] that there is no choice of a that
avoids anyons in one of the levels 2 and 3, and that
irrational spins occur for generic a. Taking into account
the level 4 results, it becomes clear that the spectrum
contains irrational spins for any choice of a. As we shall
see, the analysis of this issue is simpler for the superstring
because supersymmetry removes the ambiguity repre-
sented by the choice of the intercept parameter a.

IV. THE CLOSED N ¼ 1 3D SUPERSTRING

The action for the closed 3D N ¼ 1 GS superstring of
tension T is obtained from the Nambu-Goto string action in
two steps. First, we replace dX by the supersymmetry
invariant 1-form � of (2.24) (for N ¼ 1). In other words

_X ! � ¼ _Xþ i ��� _�; X0 ! �� ¼ X0 þ i ����0:
(4.1)

Next, we add to the resulting action a Wess-Zumino (WZ)
term constructed from the closed, super-Poincaré invariant
3-form of (2.26). Applying this prescription to the
Hamiltonian form of the 3D Nambu-Goto string action
(3.2), we find the following ‘‘quasi-Hamiltonian’’ form of
the N ¼ 1 3D superstring action:

S½X;P;‘;u�¼
Z
d

I d�

2�

�
�

�
 P��1

2
‘½P2þðT��Þ2�

�u�
�
�P�þ iTð _X� �����

0 �X0� ����
_�Þ
�
:

(4.2)

By construction, this action is invariant under world-sheet
diffeomorphisms, and this is equivalent to invariance under
‘‘�-symmetry’’ and ‘‘�-symmetry’’ gauge transformations
that generalize (3.5). The gauge transformations of the
Lagrange multiplier variables ‘ and u are unchanged
from those of (3.5) while the canonical variables have the
gauge transformations


X ¼ �½P� i‘�1 ���ð _�� u�0Þ� þ �X0;


� ¼ �‘�1ð _�� u�0Þ þ ��0;


P ¼ ðT2��� þ �PÞ0 þ 2i�‘�1Tð ��0� _�Þ:
(4.3)

The term linear in T in the action is the WZ term, and
we have chosen its coefficient to ensure invariance of
the action under the following fermionic gauge invariance
(‘‘kappa-symmetry’’) with anticommuting Majorana
spinor parameter �:


�� ¼ ��ðP� � T�
�
�Þ�;


�X
� ¼ �i ����
��;


�P� ¼ 2iT ��0��
��;


�‘ ¼ �4i ��½ _�þ ð‘T � uÞ�0�;

�u ¼ �T
�‘:

(4.4)

The action is �-symmetric for either sign of T but we may
choose T > 0 and then allow for either sign of the WZ
term. As the two models thus obtained are equivalent we
may choose the sign as given. To verify the invariance, it is
useful to use the fact that


�h3 ¼ d
�h2 ¼ �2d½��ð
�
�����Þ�; (4.5)

which gives 
kh2 up to the addition of an irrelevant closed
form. Observe that

det½��ðP� � T��
�Þ� ¼ �ðP� T��Þ2 � 0; (4.6)

where the symbol � stands for ‘‘weak equality’’ in the
sense of Dirac. This implies that only one of the two
independent components of � has any effect, so that only
one real component of � can be gauged away.
The action (4.2) is both parity-invariant (for reasons

explained in Sec. II D) and super-Poincaré invariant. The
Poincaré Noether charges are

P� ¼
I d�

2�
fP� þ iT �����

0g;

J � ¼
I d�

2�

�
½X ^ ðPþ iT ����0Þ��

þ i

2
���ðP� TX0Þ�

�
: (4.7)

The supersymmetry Noether charges are

Q� ¼ ffiffiffi
2

p I d�

2�
fðP� � T��

�Þ
� ð���Þ� � 2iTð ���Þð�0Þ�g: (4.8)

The �-symmetry variation of all these charges is zero on
the constraint surface, i.e. weakly zero.

A. Light-cone gauge

Light-cone gauge-fixing proceeds as for the Nambu-
Goto string but with the additional fixing of the kappa-
symmetry by the relation [12]

�þ� ¼ 0; (4.9)

which implies that
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� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
ffiffiffi
2

p
p�

s
�
0

� �
(4.10)

for some anticommuting world-sheet function �ð; �Þ. We
thus find that

�þ
 ¼ 1; ��

 ¼ _X� þ i

2p�
� _�; �2

 ¼ _X;

�þ
� ¼ 0; ��

� ¼ ðX�Þ0 þ i

2p�
��0; �2

� ¼ X0:

(4.11)

As for the bosonic variables, it is convenient to define

�� ¼ �� #; #ðÞ ¼
I d�

2�
�: (4.12)

There should be no confusion with the notation for a
conjugate spinor as � is not a 2-component spinor. In this
notation, we find that the analog of (3.12) (but without the
u ¼ u0 þ �u split) is

L ¼ _xpþ _x�p� þ i

2
# _# þ

I d�

2�

�
_�X �Pþ i

2
�� _��

�

þ iT

2p�

I d�

2�
�� ��0 �

I d�

2�
u

�
�X0Pþ i

2
� ��0

�

þ p�
I d�

2�

�
�X�u0 � ‘

�
Pþ þ 1

2p�
½P2 þ ðTX0Þ2�

��
:

(4.13)

As before, �X� is now a Lagrange multiplier for the con-
straint u0 ¼ 0, which we solve by writing u ¼ u0ðÞ. The
constraint imposed by the Lagrange multiplier ‘ is also
exactly as before, and therefore has the same solution
(3.13) for Pþ. The resulting analog of the bosonic
Lagrangian (3.14) is

L ¼
�
_xpþ _x�p� þ i

2
# _# þ

I d�

2�

�
_�X �Pþ i

2
�� _��

��

�H � u0
I d�

2�

�
�X0 �Pþ i

2
�� ��0

�
; (4.14)

where

H ¼ �pþ � iT

2p�

I d�

2�
�� ��0

¼ 1

2p�

�
p2 þ

I d�

2�
f �P2 þ ðT �X0Þ2 � iT �� ��0g

�
: (4.15)

Notice that the Hamiltonian is no longer �pþ because of
the fermionic contribution from the WZ term.

The Poincaré generators in the light-cone gauge are

P ¼ p; P� ¼ p�; Pþ ¼ �H;

J ¼ x�p� � H; Jþ ¼ p� xp�;

J� ¼ �x�p� xH þ �=p�;
(4.16)

exactly as for the bosonic string, except that the
Hamiltonian differs and now

� ¼ p�
I d�

2�
½ �X �Pþ � �X� �P�

þ iT

2

�I d�

2�
�X �� ��0 þ #

I d�

2�
�X ��0

�
: (4.17)

Note the #-dependence in the last term of this expression.
Note also the dependence on �X� in the first integral;
although this is not one of the canonical variables of the
gauge-fixed action, its Fourier coefficients may again be
expressed in terms of the Fourier coefficients of ð �X; �PÞ.
However, in repeating this step one must now use the
relation6

p�ð �X�Þ0 þ p �X0 þ i

2
# ��0

¼ �
�
�X0 �Pþ i

2
�� ��0

�
þ

I d�

2�

�
�X0 �Pþ i

2
�� ��0

�
(4.18)

which replaces (3.26). The relation that replaces (3.41) is

p�D
�X� ¼ �Pþ þ i

T

2p�
�� ��0 � i

T

2p�

I d�

2�
�� ��0: (4.19)

The supersymmetry charges in the light cone gauge are

Q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1ffiffiffi
2

p
p�

s �
p# þ

I d�

2�
ð �P� T �X0Þ ��

�
;

Q2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
p�

q
#: (4.20)

Finally, the parity transformation (2.33) acts in the light-
cone gauge via the transformation

X ! �X; P ! �P; (4.21)

with all other canonical variables, in particular �, being
parity inert. It follows that the (classical) HamiltonianH is
invariant under parity, as expected.

B. Fourier expansion

We Fourier expand �� as

��¼X1
n¼1

½ein��nþe�in��	
n�: (4.22)

With the bosonic Fourier expansions as before, the
Lagrangian (4.14) becomes

L¼ _xp� _x�p�þ i

2
# _#þ i

X1
n¼1

�
1

n
ð�	

n _�nþ ~�	
n
_~�nÞþ�	

n
_�n

�

�Hþu0
X1
n¼1

ð�	
n�n� ~�	

n ~�nþn�	
n�nÞ: (4.23)

6This corrects a minus sign error in the corresponding relation
of [6].
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The Hamiltonian again takes the form

H ¼ 1

2p�
ðp2 þM2Þ (4.24)

but now with

M 2 ¼ 2T
X1
n¼1

ð�	
n�n þ ~�	

n ~�n þ n�	
n�nÞ: (4.25)

The Poincaré charges are as in (4.16) but now with the
different expression (4.17) for the Poincaré invariant �. As
this involves �X�, we must first use (4.18) to express �X� in
terms of the canonical variables, or their Fourier coeffi-
cients. The result of this computation is

�p� �X� ¼ p �X þ i

2
# ��þ X1

n¼1

i

n
½ein�ð�n þ 	n � ~�	

nÞ

� e�in�ð�	
n þ 		

n � ~�nÞ�; (4.26)

where �n and ~�n are as they were for the bosonic string,
and

	n ¼ 1

2

Xn�1

m¼1

ðn�mÞ�m�n�m þ X
m>n

�
m� n

2

�
�	
m�n�m:

(4.27)

One also needs the result that

i

2

I d�

2�
�X �� ��0 ¼ 1ffiffiffiffiffiffi

2T
p X1

n¼1

i

n
½	nð�	

n� ~�nÞ�		
nð�n� ~�	

nÞ�:

(4.28)

We then find that

�þ ¼ ffiffiffiffiffiffi
2T

p �X1
n¼1

i

n
�	
nð�n þ 	nÞ þ i

2
#
X1
n¼1

�	
n�n

�
þ c:c:;

�� ¼ ffiffiffiffiffiffi
2T

p X1
n¼1

i

n
~�	
n
~�n þ c:c: (4.29)

The supersymmetry charges are now

Q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1ffiffiffi
2

p
p�

s �
p# þ ffiffiffiffiffiffi

2T
p X1

n¼1

ð�n�
	
n þ �	

n�nÞ
�
;

Q2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
p�

q
#: (4.30)

Using (4.29) and (4.30), we find that the super-Poincaré
invariant � of (2.21) takes the form

� ¼ �þ þ��; (4.31)

where �� ¼ �� and

�þ ¼ ffiffiffiffiffiffi
2T

p X1
n¼1

i

n
½�	

nð�n þ 	nÞ � ð�n þ 	nÞ	�n�:

(4.32)

Note that the anticommuting zero mode #, present in �,
cancels from �.

C. Quantum N ¼ 1 3D superstring

To quantize, we replace the bosonic variables by opera-
tors as before, and we promote the fermionic variables to
operators satisfying the anticommutation relations

#2 ¼ 1

2
; f�n; �

y
n g ¼ 1; (4.33)

with all other anticommutators of these variables equal to
zero. The quantum Hamiltonian has the form (4.24) with

M 2 ¼ 2T½N þ ~N þ ��; � ¼ X1
n¼1

n�y
n�n; (4.34)

where the bosonic level number operators ðN; ~NÞ are as
before. The level-matching constraint is now

~N ¼ N þ �; (4.35)

which implies that

M 2 ¼ 4TðN þ �Þ; (4.36)

and hence that physical states of a given mass all appear at
a particular level, given by N þ �. The asymmetry in the
level-matching condition is due to the fact that the fermi-
onic operators �n create right-moving modes on the string
that are superpartners to the right-moving modes, whereas
the left-moving bosonic modes have no superpartners.
In effect, the N ¼ 1 GS 3D closed superstring is a 3D
heterotic string. Changing the sign of the WZ term in the
action (4.2) would lead to superpartners for the left-moving
bosonic modes instead of the right-moving ones, so there
are two distinctN ¼ 1 superstrings. Nevertheless, both of
these potentially distinct (albeit equivalent) superstrings
have exactly the same (parity preserving) 3D spectrum,
so they are identical as quantum theories and we need not
distinguish between them.7

The operator versions of �� may be written as

�þ ¼ ffiffiffiffiffiffi
2T

p �
�þ X1

n¼1

i

n
ð�y

n	n � �n	
y
n Þ
�
;

�� � �� ¼ ffiffiffiffiffiffi
2T

p
~�; (4.37)

where � and ~� are the operators of the bosonic string and
	n is now the following operator:

7There is nothing to prevent the strings under consideration
here from self-intersecting, so we could consider a macroscopic
figure-of-eight superstring in which the fermionic modes move
clockwise in one loop of the ‘‘8’’ and anticlockwise in the other;
this shows that the chiral nature of the world-sheet fermions does
not imply a violation of 3D parity.
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	n ¼ 1

2

Xn�1

m¼1

ðn�mÞ�m�n�m þ X
m>n

�
m� n

2

�
�y
m�n�m:

(4.38)

The super-Poincaré invariant operator � ¼ �þ þ�� is
related to the Poincaré invariant operator � by

� ¼ �þ 1

2
ffiffiffi
2

p i#�; � ¼ ffiffiffiffiffiffi
4T

p X1
n¼1

ð�n�
y
n þ �y

n�nÞ:

(4.39)

The operator supercharges are

Q 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1ffiffiffi
2

p
p�

s �
p# þ 1ffiffiffi

2
p �

�
; Q2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
p�

q
#:

(4.40)

Using the fact that

�2 ¼ M2; (4.41)

for physical states satisfying the level-matching condition,
it is straightforward to verify that the supercharges have the
expected anticommutation relations. Although the above
relation shows that the Hermitian operator � is a square
root of M2, it has zero trace in the state space to be dis-
cussed below and so is not positive; it also anticommutes
with #. However, the Hermiticity of � implies that M2 is
positive so there exists a positive square root Hermitian
operator M; it can be defined in a basis in which M2 is
diagonal by taking the positive square root of all diagonal
entries. We may then introduce the new supercharge

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
p�

q
Q1 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
p

p�
q ðp� iMÞQ2

¼ 1ffiffiffi
2

p ½i ffiffiffi
2

p
#Mþ��: (4.42)

For M ¼ 0 this reduces to a factor times �, which is (in
this case) one real linear combination of the two Hermitian
supercharges Q�. Otherwise, S is non-Hermitian, and we
may trade the two Hermitian superchargesQ� for S and its
Hermitian conjugate. Using the relation (4.41) one may
verify that

S 2 ¼ 0; fS;Syg ¼ 2M2; (4.43)

in accord with the discussion of Sec. II E. These relations
are valid only when the operators act on physical states
because the validity of (4.41) requires the level-matching
constraint.

Parity acts in the light-cone gauge of the N ¼ 1 super-
string in exactly the same way as it does in the bosonic
theory. The parity operator � is again given by (3.65); it
has the property

� S ¼ �Sy�: (4.44)

As� commutes with bothN and ~N, as before, and trivially
with �, it commutes with the Hamiltonian. Since it anti-
commutes with �, this means that massive states of non-
zero spin must appear in degenerate parity doublets of
opposite-sign helicity. However, two such degenerate
states will not appear in the same supermultiplet unless
this supermultiplet has zero superspin; this is because �
also anticommutes with �, so massive supermultiplets of
nonzero superspin must appear in degenerate pairs of
opposite-sign superhelicity.

1. Absence of anomalies

The Poincaré charges of the N ¼ 1 superstring are
exactly as given in (3.58) and (3.59) for the bosonic string
but with the HamiltonianH and Poincaré invariant� of the
superstring. The absence of anomalies in the Lorentz alge-
bra is again a direct consequence of the fact that H and �
commute, but this is now an immediate consequence of the
fact that

½�; �� ¼ 0: (4.45)

Moreover, this relation is now the fundamental one to
check because it also implies that there is no anomaly in
the commutation relation of the Lorentz charges with the
supercharges. Most of the latter are just as for the super-
particle; the only potentially problematic commutators are
those which involve J�. We should find, for operators
acting on physical states satisfying the level-matching
constraint, that

½J�;Q1� ¼ 0; ½J�;Q2� ¼ � iffiffiffi
2

p Q2: (4.46)

This can be checked directly but it is essentially equivalent
to a check of the commutation relations

½�;S� ¼ � 1

2
MS; ½�;Sy� ¼ 1

2
MSy; (4.47)

which ensure that massive supermultiplets consist of two
states differing by helicity 1=2, and these follow directly
from (4.45).
To verify (4.45) we need only show that ½�; �þ� ¼ 0

since it is manifest that� commutes with�� ¼ ��. As�
is linear and � quadratic in ‘‘fermions’’, this commutator
contains, in principle, terms that are linear and cubic in
‘‘fermions’’. The cubic term vanishes as a consequence of
the identity

X1
n¼1

ð�y
n	n þ 	y

n�nÞ � 0; (4.48)

which one proves by using the obvious identity

Xn�1

m¼1

�m�n�m � 0: (4.49)

To check that the term linear in ‘‘fermions’’ is also zero, it
is useful to begin by establishing the following commuta-
tion relations, which supplement those of (3.62):
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½�n; 	m� ¼
�
nþm

2

�
�nþm;

½�y
n ; 	m� ¼

8>>>>>><
>>>>>>:

�
m
2 � n

�
�m�n n < m

0 n ¼ m�
m
2 � n

�
�y
n�m n > m

: (4.50)

2. Realization

The anticommutation relations (4.33) can be partially
realized by setting

# ¼ 1ffiffiffi
2

p �1 
 I; �n ¼ �2 
 �n; �y
n ¼ �2 
 �y

n ;

(4.51)

where ð�n; �
y
n Þ are a set of fermionic annihilation and

creation operators:

f�n; �
y
mg ¼ 
mn: (4.52)

The operator

ð�1ÞF ¼ �3 
 I (4.53)

anticommutes with # and �n, and hence with the super-
charges.8 Let j&iþ be the pair of states (& ¼ �) such that

ð�1ÞFj&iþ ¼ &j&iþð& ¼ �Þ; �nj&iþ ¼ 0ðn 2 ZþÞ:
(4.54)

Then the doubly-degenerate oscillator ground state (for
both bosonic and fermionic operators) is

j&i ¼ j0; &iþ 
 j0i�; j0; &iþ ¼ j0iþ 
 j&iþ; (4.55)

where j0; &iþ is the ground state for the right-movers and
j0i� is the ground state for the left-movers. The states j&i
are annihilated by � and hence have zero mass. The
operator � is a real linear combination of the two
Hermitian supercharges for zero mass. The two states of
j&i are permuted by any other linearly-independent combi-
nation, e.g. #, so they form the two states of a single
massless supermultiplet. As expected, one is a boson and
the other a fermion. Excited string states, which are all
massive, are found by acting on the ground state j&i with
creation operators, in such a way that the level-matching
condition (4.35) is satisfied. We may therefore organize all

physical states according to their level L, with mass

M ¼ ffiffiffiffiffiffi
4T

p
L. In the above realization, the operators M

and � become

M ¼ I2 
Mred; � ¼ �2 
�red; (4.56)

where Mred and �red are ‘‘reduced’’ operators acting in

the Fock space of the operators ð�n; �
y
n Þ and ð�n; �

y
n Þ. The

non-Hermitian supercharge S is represented by

S ¼ 1ffiffiffi
2

p ½i�1 
Mred þ �2 
�red�: (4.57)

At a given mass level L > 0, for whichM ¼ M ¼ ffiffiffiffiffiffi
4T

p
L,

we have

S jL ¼ i
ffiffiffiffiffiffi
2T

p
L½�1 
 IL � i�2 
 �L�; (4.58)

where �L is an operator on the space of states at level L
that squares to the identity but has zero trace. For a given
eigenvalue of �L, we get a supermultiplet by acting with
Sy on a state annihilated by S (as discussed in Sec. II E)
but since the eigenvalues of �L come in �1 pairs, each
massive level contains an even number of degenerate
supermultiplets, half with �L ¼ 1 and the other half with
�L ¼ �1. All massive multiplets are therefore at least
quadruply degenerate.

3. Low-lying excited states

The first excited states, at level-1, are

j1B; &iþ 
 j1Bi� ¼ �y
1 j0; &iþ 
 ~�y

1 j0i�;
j1F; &iþ 
 j1Bi� ¼ �y

1 j0; &iþ 
 ~�y
1 j0i�;

(4.59)

which gives us a total of four states at this level, and hence
two N ¼ 1 supermultiplets. The level-2 oscillator states,
are constructed from tensor products of the ‘‘right-
moving’’ orthonormal states

j1B;1B;&iþ ¼ 1ffiffiffi
2

p ð�y
1 Þ2j0; &iþ; j2B;&iþ ¼ 1ffiffiffi

2
p �y

2 j0; &iþ
j1B;1F;&iþ ¼ �y

1�
y
1 j0; &iþ; j2F; &iþ ¼ �y

2 j0; &iþ;
(4.60)

with the ‘‘left-moving’’ level-2 states of the bosonic string

j1; 1i� ¼ 1ffiffiffi
2

p ð~�y
1 Þ2j0i�; j2i� ¼ 1ffiffiffi

2
p ~�y

2 j0i�: (4.61)

This gives us a total of 16 states, which must arrange
themselves into eight N ¼ 1 supermultiplets.
At level 3 we need to consider the following eight

doubly-degenerate ‘‘right-moving’’ (orthonormal basis)
states

8The fact that the supercharges are 3D fermions suggests an
interpretation of ð�1ÞF as an operator that counts spacetime
fermion number modulo two. This allows us to distinguish
bosonic from fermionic massless states: recall that this distinc-
tion survives the massless limit even though spin is not defined
for massless 3D particles. The interpretation of ð�1ÞF in its
action on massive states is less clear since these need not be
either bosons or fermions, but we pass over this point here
because massive states are characterized by their relativistic
helicity s, which we may compute directly.
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j1B; 1B; 1B; &iþ ¼ 1ffiffiffi
6

p ð�y
1 Þ3j0; &iþ;

j1B; 2B; &iþ ¼ 1ffiffiffi
2

p �y
1�

y
2 j0; &iþ;

j3B; &iþ ¼ 1ffiffiffi
3

p �y
3 j0; &iþ;

j1F; 2F; &iþ ¼ �y
1�

y
2 j0; &iþ;

j1B; 2F; &iþ ¼ �y
1�

y
2 j0; &iþ;

j1B; 1B; 1F; &iþ ¼ 1ffiffiffi
2

p ð�y
1 Þ2�y

1 j0; &iþ;

j2B; 1F; &iþ ¼ 1ffiffiffi
3

p �y
2�

y
1 j0; &iþ;

j3F; &iþ ¼ �y
3 j0; &iþ:

(4.62)

These must be tensored with the three ‘‘left-moving’’ level-
2 states of the bosonic N ¼ 0 string

j1; 1; 1i� ¼ 1ffiffiffi
6

p ð~�y
1 Þ3j0i�;

j1; 2i� ¼ 1ffiffiffi
2

p ~�y
1�

y
2 j0i�;

j3i� ¼ 1ffiffiffi
3

p ~�y
3 j0i�:

(4.63)

This gives us a total of 48 states at level 3, and hence 24
N ¼ 1 supermultiplets.

4. Superhelicities

In order to determine the spectrum of superhelicities,
we must find the eigenvalues of the operator �, which we
can do by finding those of �þ since the eigenvalues of
�� ¼ �� have already been computed (to the level con-
sidered here). There will be a double-degeneracy in the
eigenvalues of � due to the independence of this operator
on the fermion zero mode #; this is the degeneracy implied
by N ¼ 1 supersymmetry. As discussed in the previous
subsection, there is a further double-degeneracy in massive
levels, so the number of potentially distinct eigenvalues of
� at a given mass level is only a quarter of the number of
states at that level. A further simplifying feature is that
�þ is a Grassmann even operator that does not mix states
of different Grassmann parity (as determined by the
Grassmann parities of the operators used to construct the
states, ignoring the Grassmann parity of the ground states).

The operator � annihilates the two massless ground
states, which form a massless supermultiplet of N ¼ 1
3D supersymmetry comprising one boson and one fermion
(recall that spin is not defined for massless particles).
Potentially, these could be identified as a dilaton and
dilatino. The operator � also annihilates all level-1 states,
which implies that the four states at this level yield two
copies of theN ¼ 1 semion supermultiplet with helicities

( 14 , � 1
4 ); this is the supermultiplet one gets by quantizing

theN ¼ 1massive superparticle [20]. At level 2, there are
16 states and so eight eigenvalues of �. To compute them,
we need to consider the 4� 4 matrix that results from the
action of�� in the space spanned by the basis states (4.60).
We may write this operator in the form

�þ ¼ ffiffiffiffiffiffi
2T

p X1
n¼2

!n; (4.64)

where the operator !n, which generalizes the operator �n

introduced earlier, annihilates all states with N þ v < n
but not all those with N þ v � n. At level 2 we need only

!2 ¼ 3i

4
½ð�y

1 Þ2�2 � �y
2�

2
1� þ

3i

2
½�y

1�
y
1�2 � �y

2�1�1�:
(4.65)

Each of the two terms in this expression contributes to only
one 2� 2 block of the 4� 4 matrix, which is therefore
block-diagonal. The first term is �2 and we showed earlier
that this gives the 2� 2matrix ð3=2Þ�2. The second block,
coming from the second term, also turns out to be ð3=2Þ�2,

so the eigenvalues of �þ at level 2 are
ffiffiffiffiffiffi
2T

p ð32 ; 32 ;� 3
2 ;� 3

2Þ.
The eigenvalues of �� ¼ �� are

ffiffiffiffiffiffi
2T

p ð32 ;� 3
2Þ so the eight

eignvalues of � at level 2 are
ffiffiffiffiffiffi
2T

p ð0; 0; 0; 0; 3; 3;�3;�3Þ.
To get the superhelicities �s1 (the subscript here indicates
the number N of supersymmetries) we have to divide by

the level-2 mass, which is 2
ffiffiffiffiffiffi
2T

p
; this gives

�s 1 ¼
�
� 3

2
;� 3

2
; 0; 0; 0; 0;

3

2
;
3

2

�
: (4.66)

The supermultiplets with superhelicity �s1 ¼ � 3
2 have hel-

icities s ¼ ð� 7
4 ;� 5

4Þ. These level-1 and level-2 results,

which show that semions are present in the spectrum of
the 3D N ¼ 1 superstring, were announced in [6]. Here
we continue the analysis to the next level.
At level 3 we need

!3 ¼ 7i

6
ð�y

1�
y
2�3 � �y

3�1�2Þ þ i

�
5

2
ð�y

1�
y
2�3 � �y

3�2�1Þ

þ ð�y
2�

y
1�3 � �y

3�1�2Þ � 1

6
ð�y

3�1�2 � �y
2�

y
1�3Þ

�
:

(4.67)

In the level-3 basis (4.62) !2 þ!3 is a block-diagonal
8� 8 matrix, with the following two 4� 4 blocks:
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i

0 � 3
ffiffi
3

p
2 0 0

3
ffiffi
3

p
2 0 � 7ffiffi

6
p 0

0 7ffiffi
6

p 0 � 1
2
ffiffi
3

p

0 0 1
2
ffiffi
3

p 0

0
BBBBBBBB@

1
CCCCCCCCA
;

i

0 þ 3ffiffi
2

p 0 � 5
2

� 3ffiffi
2

p 0 � 3
2 0

0 3
2 0 � ffiffiffi

2
p

5
2 0

ffiffiffi
2

p
0

0
BBBBBBB@

1
CCCCCCCA:

(4.68)

The eigenvalues of these matrices are, respectively,

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15

2
� 9

ffiffiffiffiffiffi
11

p
4

s
and �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 3

ffiffiffi
7

p
4

s
; (4.69)

which shows that at the level 3 there are supermultiplets of
irrational superhelicity.

V. THE CLOSED N ¼ 2 3D SUPERSTRING

As forN ¼ 1, theN ¼ 2GS superstring action can be
obtained from the bosonic string action in two steps. First,
we make the replacement

_X ! � ¼ _Xþ i ��a� _�a;

X0 ! �� ¼ X0 þ i ��a��
0
a:

(5.1)

Next, we add to the resulting action a Wess-Zumino (WZ)
term constructed from the closed, super-Poincaré invariant
3-form h3 given in (2.30). This can be written as h3 ¼ dh2
for h2 as given in (2.31), and the integral of h2 gives us the
requiredWZ term. These considerations lead to the follow-
ing quasi-Hamiltonian form of the N ¼ 2 superstring
action:

S½X;P;�a;‘;u� ¼
Z

d
I d�

2�

�
��

 P� � 1

2
‘½P2 þ ðT��Þ2� � u��

�P� þ iT

��
_X� þ i

2
��a�

� _�a

�
ð ��1���

0
1 � ��2���

0
2Þ

�
�
X0� þ i

2
��a�

��0
a

�
ð ��1��

_�1 � ��2��
_�2Þ

��
: (5.2)

This action has �-symmetry and �-symmetry gauge in-
variances that generalize those of the N ¼ 1 3D super-
string. The transformations of the Lagrange multiplier
variables are unchanged while those of the canonical var-
iables are


X ¼ �½P� i‘�1 ��a�ð _�a � u�0
aÞ� þ �X0;


�a ¼ �‘�1ð _�a � u�0
aÞ þ ��0

a;


P ¼ ðT2��� þ �PÞ0 þ 2i�‘�1Tð ��0
1�

_�1 � ��0
2�

_�2Þ:
(5.3)

The term linear in T in the action (5.2) is the WZ term,
and we have chosen its coefficient to ensure invariance
under the following ‘‘�-symmetry’’ gauge transformation
with anticommuting Majorana spinor parameters �a:


�X
� ¼ �i ��a�

�
��a;


�P� ¼ 2iTð ��0
1��
��1 � ��0

2��
��2Þ;

��1 ¼ ��ðP� � T�

�
�Þ�1;


��2 ¼ ��ðP� þ T�
�
�Þ�2;


�‘ ¼ �4i ��1½ _�1 þ ð‘T � uÞ�0
1�

� 4i ��2½ _�2 þ ð�‘T � uÞ�0
2�;


�u ¼ �Tð
�1
‘� 
�2

‘Þ:

(5.4)

Because of the relative minus sign in the WZ term, its
overall sign can be changed by the field redefinition

�1 $ �2, so we may choose T > 0. To verify the
�-symmetry, it is useful to use the fact that


�h3 ¼ d
�h2 ¼ �2d½��ð
�
��1���1 � 
�

��2���2Þ�;
(5.5)

which gives 
kh2 up to the addition of an irrelevant closed
form. Observe that

det½��ðP� � T�
�
�Þ� ¼ �ðP� T��Þ2 � 0: (5.6)

As for the N ¼ 1 superstring, this implies that only one of
the two independent components of each �a has any effect,
so that only one real component of each�a can be gauged
away.
As for rigid symmetries, the action (5.2) is invariant

under the parity transformation of (2.34). It is also super-
Poincaré invariant, by construction. The Poincaré Noether
charges are

P � ¼
I d�

2�
fP� þ iT½ ��1���

0
1 � ��2���

0
2�g;

J � ¼
I d�

2�

�
½X ^ ðPþ iTð ��1��

0
1 � ��2��

0
2ÞÞ��

þ i

2
��1�1ðP� TX0Þ� þ i

2
��2�2ðPþ TX0Þ�

þ ðT=2Þð ��2�
��0

2
��1�1 � ��1�

��0
1
��2�2Þ

�
:

(5.7)
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The supersymmetry Noether charges are

Q�
1 ¼ ffiffiffi

2
p I d�

2�
fðP� � T��Þð���1Þ�

� 2iTð ��1�1Þ�0
1g;

Q�
2 ¼ ffiffiffi

2
p I d�

2�
fðP� þ T��Þð���2Þ�

þ 2iTð ��2�2Þ�0
2g: (5.8)

A. Light-cone gauge

The light-cone gauge fixing proceeds as for the N ¼ 1
superstring but with the additional fixing of the larger
kappa-symmetry gauge invariance by the condition

�þ�a ¼ 0; a ¼ 1; 2: (5.9)

In this gauge,

�a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
ffiffiffi
2

p
p�

s
�a
0

� �
(5.10)

for some anticommuting world-sheet functions �að; �Þ.
We thus find that

�þ
 ¼ 1; ��

 ¼ _X� þ i

2p�
�a _�a; �2

 ¼ _X;

�þ
� ¼ 0; ��

� ¼ ðX�Þ0 þ i

2p�
�a�

0
a; �2

� ¼ X0:

(5.11)

Again it is convenient, it is convenient to define

�� a ¼ �a � #a; #aðÞ ¼
I d�

2�
�a: (5.12)

Again, there should be no confusion with the notation for a
conjugate spinor as the �a are not 2-component spinors. In
this notation, we find that the analog of (3.12) (but without
the u ¼ �uþ u0 split) is

L¼ _xpþ _x�p�þ i

2
#a

_#aþ
I d�

2�

�
_�X �Pþ i

2
��a

_��a

�

þ iT

2p�

I d�

2�
ð ��1 ��01� ��2 ��

0
2Þ�

I d�

2�
u

�
�X0Pþ i

2
�a ��

0
a

�

þp�
I d�

2�

�
�X�u0 �‘

�
Pþþ 1

2p�
½P2þðTX0Þ2�

��
:

(5.13)

As before, �X� is now a Lagrange multiplier for the con-
straint u0 ¼ 0, which we solve by writing u ¼ u0ðÞ. The
constraint imposed by the Lagrange multiplier ‘ is also
exactly as before, and therefore has the same solution
(3.13) for Pþ. The resulting analog of the bosonic
Lagrangian (3.14) is

L ¼
�
_xpþ _x�p� þ i

2
#a

_#a þ
I d�

2�

�
_�X �Pþ i

2
��a

_��a

��

�H � u0
I d�

2�

�
�X0 �Pþ i

2
��a ��

0
a

�
;

(5.14)

where

H¼�pþ� iT

2p�

I d�

2�
ð ��1 ��01� ��2 ��

0
2Þ

¼ 1

2p�

�
p2þ

I d�

2�
f �P2þðT �X0Þ2� iTð ��1 ��01� ��2 ��

0
2Þg

�
:

(5.15)

As for N ¼ 1, the Hamiltonian is not equal to �pþ
because it gets a fermionic contribution from the WZ term.
The Poincaré generators in the light-cone gauge are

P ¼ p; P� ¼ p�; Pþ ¼ �H;

J ¼ x�p� þ H; Jþ ¼ p� xp�;

J� ¼ �x�p� xH þ �=p�;
(5.16)

exactly as for the N ¼ 1 superstring except that the
Hamiltonian differs and now

� ¼ p�
I d�

2�
ð �X �Pþ � �X� �PÞ þ iT

2

I d�

2�
�Xð ��1 ��01 � ��2 ��

0
2Þ

þ iT

2

�
#1

I d�

2�
�X ��01 � #2

I d�

2�
�X ��02

�
: (5.17)

Note the #a-dependence of this expression. The Fourier
coefficients of �X� may again be expressed in terms of the
Fourier coefficients of ð �X; �PÞ, but in repeating this step we
should now use the N ¼ 2 relation

p�ð �X�Þ0 þ p �X0 þ i

2
#a

��0a

¼ �
�
�X0 �Pþ i

2
��a ��

0
a

�
þ

I d�

2�

�
�X0 �Pþ i

2
��a ��

0
a

�
; (5.18)

which replaces (4.18). The relation that replaces (4.19) is

p�D
�X� ¼ �Pþ þ i

T

2p�
ð ��1 ��01 � ��2 ��

0
2Þ

� i
T

2p�

I d�

2�
ð ��1 ��01 � ��2 ��

0
2Þ: (5.19)

The supersymmetry charges in the light-cone gauge are

Q1
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1ffiffiffi
2

p
p�

s �
p#1 þ

I d�

2�
ð �P� T �X0Þ ��1

�
;

Q2
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
p�

q
#1;

(5.20)

and
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Q1
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1ffiffiffi
2

p
p�

s �
p#2 þ

I d�

2�
ð �Pþ T �X0Þ ��2

�
;

Q2
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
p�

q
#2:

(5.21)

Finally, parity acts in the light-cone gauge via the trans-
formation

X ! �X; P ! �P; �2 ! ��2; (5.22)

with all other canonical variables being parity inert. The
light-cone gauge Hamiltonian (5.15) is parity-invariant, as
expected.

B. Fourier expansion

We Fourier expand the ��a as

��1 ¼
X1
n¼1

½ein��n þ e�in��	
n�;

��2 ¼
X1
n¼1

½ein� ~�	
n þ e�in� ~�n�:

(5.23)

With the bosonic Fourier expansions as before, the
Lagrangian (5.14) becomes

L ¼ _xp� _x�p� þ i

2
#a

_#a

þ i
X1
n¼1

�
1

n
ð�	

n _�n þ ~�	
n
_~�nÞ þ �	

n
_�n þ ~�	

n
_~�n

�

�H þ u0
X1
n¼1

½�	
n�n � ~�	

n ~�n þ nð�	
n�n � ~�	

n
~�nÞ�:

(5.24)

The Hamiltonian again takes the form

H ¼ 1

2p�
ðp2 þM2Þ (5.25)

but now with

M 2 ¼ 2T
X1
n¼1

½�	�þ ~�	
n ~�n þ nð�	

n�n þ ~�	
n
~�nÞ�: (5.26)

Similarly, the Poincaré charges are as in (5.16) with� ¼
�þ þ �þ, with

�þ ¼ �þ þ
ffiffiffiffi
T

2

s
i#1

X1
n¼1

ð�	
n�n þ �n�

	
nÞ;

�� ¼ �� þ
ffiffiffiffi
T

2

s
i#2

X1
n¼1

ð~�	
n
~�n þ ~�n

~�	
nÞ;

(5.27)

where ��, which sum to the N ¼ 2 super-Poincaré in-
variant �, are given by

�þ ¼ ffiffiffiffiffiffi
2T

p �
�þ X1

n¼1

i

n
ð�	

n	n � �n	
	
nÞ
�
;

�� ¼ ffiffiffiffiffiffi
2T

p �
~�þ X1

n¼1

i

n
ð~�	

n ~	n � ~�n ~	
	
nÞ
�
:

(5.28)

In these expressions, the quantities � and ~� are as given in
(3.37) for the bosonic string and 	n is as given in (4.27) for
theN ¼ 1 string, with a formally identical expression for
~	n in terms of the ‘‘left-moving’’ canonical variables. Note
that the fermionic zero modes #a cancel from ��.
The supersymmetry charges are

Q1
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1ffiffiffi
2

p
p�

s �
p#1 þ

ffiffiffiffiffiffi
2T

p X1
n¼1

f�n�
	
n þ �	

n�ng
�
;

Q2
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
p�

q
#1; (5.29)

and

Q1
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1ffiffiffi
2

p
p�

s �
p#2 þ

ffiffiffiffiffiffi
2T

p X1
n¼1

f~�n
~�	
n þ ~�	

n
~�ng

�
;

Q2
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
p�

q
#2: (5.30)

The upper number is the value of the spinor index �, and
the lower number is the value of the supersymmetry-
number index a.
Parity now acts via the transformations

x ! �x; p ! �p; #2 ! �#2;

�n ! ��n; ~�n ! �~�n; ~�n ! �~�n:
(5.31)

The asymmetry in the action on the Fermi modes originates
in the relative minus sign in the�a transformation of (2.34)
.

C. Quantum N ¼ 2 3D superstring

To quantize, we replace the bosonic variables by opera-
tors as before, and we promote the fermionic variables to
operators satisfying the anticommutation relations

f#a;#bg¼
ab; f�n;�
y
n g¼ 1; f~�n; ~�

y
n g¼ 1; (5.32)

with all other anticommutators of these variables equal to
zero. The quantum Hamiltonian has the form (5.25) with

M2 ¼ 2T½N þ ~N þ �þ ~��;

� ¼ X1
n¼1

n�y
n�n;

~� ¼ X1
n¼1

n~�y
n
~�n;

(5.33)

where the bosonic level number operators ðN; ~NÞ are as
before. The level-matching constraint, on the eigenvalues
of these operators, is now
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~N þ ~� ¼ N þ �; (5.34)

and we may use this to rewrite the mass-squared at level
L ¼ N þ � as

M 2jL ¼ 4TL; L ¼ N þ �: (5.35)

The quantum supersymmetry charges are obtained from
the classical charges (5.36) in the usual way. The result is

Q1
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1ffiffiffi
2

p
p�

s �
p#1 þ 1ffiffiffi

2
p �

�
; Q2

1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
p�

q
#1;

Q1
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1ffiffiffi
2

p
p�

s �
p#2 þ 1ffiffiffi

2
p ~�

�
; Q2

2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
p�

q
#2;

(5.36)

where

� ¼ ffiffiffiffiffiffi
4T

p X1
n¼1

ð�n�
y
n þ �y

n�nÞ;

~� ¼ ffiffiffiffiffiffi
4T

p X1
n¼1

ð~�n
~�y
n þ ~�y

n
~�nÞ:

(5.37)

The operators� and ~� also appear in the relation between
the quantum operators �� and ��:

�þ¼�þþ i

2
ffiffiffi
2

p #1�; ��¼��þ i

2
ffiffiffi
2

p #2
~�: (5.38)

When these operators act on physical states satisfying the
level-matching condition (5.34), they satisfy

�2 ¼ M2 ¼ ~�2; f�; ~�g ¼ 0: (5.39)

For the reasons explained earlier for the N ¼ 1 super-
string, the absence of super-Poincaré anomalies is a cons-
quence of the fact

½�; �þ� ¼ 0; ½ ~�; ��� ¼ 0: (5.40)

The calculations needed to verify these commutation rela-
tions are also the same as those sketched earlier for the
N ¼ 1 superstring.

As for the N ¼ 1 superstring, it is convenient to con-
sider the supercharges

S a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
p�

q
Q1

a � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
p�

q ðp� iMÞQ2
a; (5.41)

where M is the positive square root of M. This gives

S 1 ¼ iM#1 þ 1ffiffiffi
2

p �; S2 ¼ iM#2 þ 1ffiffiffi
2

p ~�: (5.42)

Using (5.39), it is straightforward to verify that

fSa;Sbg ¼ 0; fSa;S
y
b g ¼ 2
abM2: (5.43)

The operators Sa again commute with the operator version
of �, but

½�;Sa� ¼ � 1

2
MSa; ½�;Sy

a � ¼ 1

2
MSy

a : (5.44)

The parity operator in the light-cone gauge takes the
form

�N¼2 ¼ �ð�1ÞFL; (5.45)

where � is the parity operator (3.65) of the bosonic string
andN ¼ 1 superstring, and the operator ð�1ÞFL anticom-

mutes with #2 and all ~�n but commutes with all other
canonical variables. As this operator anticommutes with
both �� and ��, both helicity and superhelicity eigen-
states must appear in parity doublets of opposite-sign
eigenvalues.
We may similarly define an operator ð�1ÞFR that anti-

commutes with #1 and all �n but commutes with all other
canonical variables. The operator

ð�1ÞF ¼ ð�1ÞFLð�1ÞFR (5.46)

anticommutes with all fermionic canonical variables but
commutes with all the bosonic canonical variables. As a
consequence it anticommutes with all components of the
supercharges Qa, so the action of one of these charges on
an eigenstate of ð�1ÞF yields another eigenstate of ð�1ÞF
but with opposite-sign eigenvalue.

1. Realization

The canonical anticommutation relations (5.32) can be
partially realized by settingffiffiffi

2
p

#1 ¼ ð�1 
 IþÞ 
 ð�3 
 I�Þ;ffiffiffi
2

p
#2 ¼ ðI2 
 IþÞ 
 ð�1 
 I�Þ;
�n ¼ ð�2 
 �nÞ 
 ð�3 
 I�Þ;
~�n ¼ ðI2 
 IþÞ 
 ð�2 
 ~�nÞ;

(5.47)

where ð�n; �
y
n Þ and ð~�n; ~�

y
n Þ are two mutually-commuting

sets of operators obeying the anticommutation relations

f�n; �
y
mg ¼ 
nmIþ; f~�n; ~�mg ¼ 
nmI�: (5.48)

In this realization,

ð�1ÞFR ¼ ð�3 
 IþÞ 
 ðI2 
 I�Þ;
ð�1ÞFL ¼ ðI2 
 IþÞ 
 ð�3 
 I�Þ;

(5.49)

and hence

ð�1ÞF ¼ ð�3 
 IþÞ 
 ð�3 
 I�Þ: (5.50)

The Fermi oscillator ground state is quadruply degener-
ate; a basis is provided by the four states

j&iþ 
 j~&i� ð& ¼ �; ~& ¼ �Þ; (5.51)
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where

ð�1ÞFR j&iþ ¼ &j&iþ; ð�1ÞFL j~&i� ¼ ~&j~&i�: (5.52)

and

ðI2 
 �nÞj&iþ ¼ 0; ðI2 
 ~�nÞj~&i� ¼ 0: (5.53)

This means that the Fock vacua for the right and left
oscillators (bosonic and fermionic) can be chosen to be,
respectively,

j0; &iþ ¼ j0iþ 
 j&iþ; j0; ~&i� ¼ j0i� 
 j~&i�; (5.54)

where j0i� are the Fock vacuum states for the bosonic
oscillators, as in (3.51). The quadruply-degenerate oscilla-
tor ground state of the string then takes the tensor product
form

j&; ~&i ¼ j0; &iþ 
 j0; ~&i�: (5.55)

At a given level L > 0, the non-Hermitian supercharges
Sa become

S1 ¼ i
ffiffiffiffiffiffi
2T

p
L½�1 
 Iþ � i�2 
 �L� 
 ð�3 
 I�Þ;

S2 ¼ i
ffiffiffiffiffiffi
2T

p
LðI2 
 IþÞ 
 ½�1 
 I� � i�2 
 ~�L�;

(5.56)

where both the operators �L and ~�L, acting in the space of
physical states at level L, are traceless and square to the
identity, and so have (simultaneous) eigenvalues�1. There
are four possible choices of the signs ð�L; ~�LÞ, and for each
choice we get a supermultiplet by the action of Sy

a on states
annihilated by Sa. Each such supermultiplet has four
states, so there is a minimal 16-fold degeneracy at each
nonzero level.

2. Low-level excited states

Excited string states are found, as eigenstates of the level
operators N þ � and ~N þ ~� with eigenvalues that we also
call N þ � and ~N þ ~�, by the action of the creation opera-
tors on the oscillator vacuum state such that the level-
matching condition (5.34) is satisfied. We may therefore
organize all physical states according to their level L ¼
N þ �, with the corresponding mass being given by (5.33).
Because of the quadruple degeneracy of the ground state
there is a minimal quadruple degeneracy at each level, as
required byN ¼ 2 supersymmetry. There are a total of 16
first excited states, i.e. level-1 states:

j1B; &iþ 
 j1B; ~&i� ¼ �y
1 j0; &iþ 
 ~�y

1 j0; ~&i�;
j1F; &iþ 
 j1F; ~&i� ¼ �y

1 j0; &iþ 
 ~�y
1 j0; ~&i�;

(5.57)

j1F; &iþ 
 j1B; ~&i� ¼ �y
1 j0; &iþ 
 ~�y

1 j0; ~&i�;
j1B; &iþ 
 j1F; ~&i� ¼ �y

1 j0iþ 
 ~�y
1 j0i�:

(5.58)

These form four N ¼ 2 supermultiplets.
The level-2 excited states are tensor products of the

orthonormal states

j1B;1B;&iþ¼ 1ffiffiffi
2

p ð�y
1 Þ2j0;&iþ; j2Biþ¼ 1ffiffiffi

2
p �y

2 j0;&iþ;

j1B;1F;&iþ¼�y
1�

y
1 j0;&iþ; j2F;&iþ¼�y

2 j0;&iþ;
(5.59)

with the analogous states built on j0; ~&i�. This gives us a
total of 64 level-2 states and hence 16 N ¼ 2
supermultiplets.
At level 3 we need to consider the (orthonormal basis)

states

j1B; 1B; 1B; &iþ ¼ 1ffiffiffi
6

p ð�y
1 Þ3j0; &iþ;

j1B; 2B; &iþ ¼ 1ffiffiffi
2

p �y
1�

y
2 j0; &iþ;

j3B; &iþ ¼ 1ffiffiffi
3

p �y
3 j0; &iþ;

j1F; 2F; &iþ ¼ �y
1�

y
2 j0; &iþ;

j1B; 2F; &iþ ¼ �y
1�

y
2 j0; &iþ;

j1B; 1B; 1F; &iþ ¼ 1ffiffiffi
2

p ð�y
1 Þ2�y

1 j0; &iþ;

j2B; 1F; &iþ ¼ 1ffiffiffi
3

p �y
2�

y
1 j0; &iþ;

j3F; &iþ ¼ �y
3 j0; &iþ:

(5.60)

Taking tensor products with the corresponding states built
on j0; ~&i� gives a total of 256 states, and hence 64N ¼ 2
supermultiplets.
To compute the spectrum of superhelicities at these

levels we need to compute the eigenvalues of the quantum
operator �. In fact, it is sufficient to compute the eigen-
values of the operator �þ because these eigenvalues are
identical to those of��. As neither�þ nor�� depends on
the zero modes #a, each eigenvalue of � has at least a
four-fold degeneracy, so the number of eigenvalues of� at
any given level (counting multiplicity) equals the number
of supermultiplets at that level, as required by N ¼ 2
supersymmetry.
The four ground states are annihilated by �, as must be

since (relativistic 3D) superhelicity is not defined for mass-
less particles. These states correspond to massless particles
that are potentially identifiable as a dilaton and axion, and
their superpartners. As we already saw for N ¼ 0, 1, the
operator � also annihilates the level-1 states, so there are
four degenerate copies of the N ¼ 2 supermultiplet of
zero superhelicity at this level. The helicity content of this
supermultiplet is s ¼ ð�1=2; 0; 0; 1=2Þ, so we get four 3D
N ¼ 2 scalar supermultiplets at level-1.
Similar considerations apply to the higher levels: the

N ¼ 2 helicity content at each level can be deduced
directly from the N ¼ 1 results of the previous section.
For example, we saw that �þ has the four eigenvalues
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ffiffiffiffiffiffi
2T

p ð� 3
2 ;� 3

2 ;
3
2 ;

3
2Þ at level 2, so �=

ffiffiffiffiffiffi
2T

p
for the N ¼ 2

superstring has eigenvalues (� 3, 0, 3) with multiplicities
(4, 8, 4), leading to 4 N ¼ 2 supermultiplets of super-
helicity �s2 ¼ 3=2, another 4 with superhelicity �s2 ¼ �3=2
and 8 with zero superhelicity (so 16 in total, as required for
the 16 supermultiplets at this level). The �s2 ¼ 3=2 super-
multiplet has helicities s ¼ ð2; 3=2; 3=2; 1Þ; it is a massive
spin-2 N ¼ 2 supermultiplet.

As these results show, the states of the N ¼ 2 3D
superstring through level 2 are just standard bosons and
fermions, but this simple feature does not extend to level 3.
Again, the level-3 content can be deduced from the pre-
vious results for N ¼ 1. From the eight level-3 eigenval-
ues of�þ given in (4.69) we get a total of 64 eigenvalues of
�, as required for the 64 supermultiplets at this level. Eight
of them have zero superhelicity but the rest have irrational
superhelicities. As all helicities in such a supermultiplet
are also irrational, we conclude not only that there are
anyons in the spectrum of the N ¼ 2 3D superstring,
but also that these anyons are ‘‘generic’’ ones of irrational
spin.

VI. SUMMARYAND OUTLOOK

The quantum theory of strings below their critical di-
mension is problematic and generically involves the intro-
duction of a new degree of freedom, the Liouville mode.
We say ‘‘generically’’ because there is an exception: the
usual quantum Lorentz anomaly in the light-cone gauge, in
which the action involves only physical worldvolume var-
iables, is trivially absent for the Nambu-Goto string in a
Minkowski spacetime of three dimensions (3D) [6,7], so
no Liouville mode is needed to guarantee unitarity and
Lorentz invariance, at least for a free 3D Nambu-Goto
string.

The implication is that the quantum spectrum contains
states of definite mass and spin, and this was verified
explicitly in [6], with a rather surprising result: the spins
are not generically integer or half-integer. This is possible
because the rotation subgroup of the universal cover

SOð1; 2Þ of the 3D Lorentz group is SOð2Þ ffi R. In the
context of a relativistic theory, this implies that the states in
the string spectrum generically describe ‘‘anyons.’’ There
is an ambiguity in the string spectrum due to an operator
ordering ambiguity: the mass-squared of the string ground
state is arbitrary, although it must be non-negative to avoid
tachyons. This ambiguity affects the spins as well as the
masses. Consideration of both the level-2 and level-3 ex-
cited states led to the conclusion that some states are
necessarily anyons and that they generically have irrational
spin.

A similar conclusion was arrived at for the N ¼ 1 3D
Green-Schwarz (GS) superstring, but in that case the
doubly-degenerate ground state is required by supersym-
metry to be massless, so the quantum ambiguity of the
bosonic 3D string is eliminated. The level-2 and level-3

excited states were shown in [6] to contain ‘‘semions’’ (a
particular case of anyons for which the spin is 1=4 modulo
a half-integer). In this paper we have given details of the
computations behind these results, and we have extended
them in a number of ways.
First, we have extended the computation of the spectrum

of the quantum 3D Nambu-Goto string to level 4 This
allows us to strengthen our earlier conclusion concerning
anyons in the spectrum: some of these anyons necessarily
have irrational spin. This tells us that the Lorentz group

really is SOð1; 2Þ and not some finite cover of SOð1; 2Þ.
Second, we have established the same result for the
N ¼ 1 superstring by showing that irrational spin anyons
are present in the spectrum at level 3. We have also
established the absence of super-Poincaré anomalies.
Classically, there are actually two N ¼ 1 superstring
theories, interchanged by world-sheet parity, because the
string fermions propagate in one direction around the
string. However, these two equivalent, but distinct, classi-
cal theories are identical as quantum theories because they
describe exactly the same 3D spectrum.
Third, and this is our main new result, we have extended

the analysis to include the N ¼ 2 GS superstring. In this
case, the spectrum through level 2 consists only of bosons
and fermions (i.e. particles of integer and half-odd-integer
spins) so it was not previously clear to us whether the
spectrum would contain anyons. In fact, the level-3 spec-
trum contains particles of irrational spin, this being a
consequence of the presence of such states in the N ¼ 1
superstring.
The fact that irrational spins appear in the spectrum of

all 3D (super)strings implies that the Lorentz group is the
infinite universal cover of SOð1; 2Þ, not the double cover
that might have been expected, nor any finite multiple
cover. We believe that this may explain why existing co-
variant quantization methods do not appear to allow for the
possibility of 3D strings: covariant quantization of even a
free 3D particle is not straightforward if it has irrational
spin.
We have made no attempt to explore whether the free 3D

strings discussed here admit interactions. Again, this is
already a difficult problem for particles of irrational spin.
If interactions are possible then one would expect there to
exist effective supersymmetric field theories describing the
massless modes of theN ¼ 1 andN ¼ 2 3D superstring
theories. Our results are consistent with this possibility
even if the effective field theories are supposed to be
supergravity theories because neither the metric nor the
antisymmetric tensor fields that couple naturally to a string
propagate massless modes in 3D.
For the N ¼ 2 superstring, there are four massless

states: a scalar and a pseudoscalar, and their superpartners.
The scalar might be interpretable as a dilaton. As a mass-
less pseudoscalar is dual to a massless vector in 3D, it
would be natural to suppose that any effective field theory
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is some generally covariant theory involving an N ¼ 2
vector multiplet. The vector potential of this supermultiplet
could couple to particles carrying the central charge per-
mitted by the N ¼ 2 superalgebra. Although there are no
such particles in the spectrum of a freeN ¼ 2 superstring,
they might be nonperturbative excitations of an interacting
N ¼ 2 3D superstring, analogous to the D0-branes of
critical superstring theory. If so, they might show up in
an analysis of N ¼ 2 open strings with Dirichlet bound-
ary conditions.

Finally, we recall that theN ¼ 2 3D GS superstring is,
classically, the double-dimensional reduction of the 4D
supermembrane. In the context of a 4D spacetime that is

a product of 3D Minkowski spacetime with a circle, the
supermembrane can be wrapped on the circle to give a
string. The N ¼ 2 3D superstring is then found by ignor-
ing the momentum modes in the extra dimension, but it
would be interesting to see what effect these modes have
on the string spectrum, and whether there are other impli-
cations of a 4D perspective.
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