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We construct heterotic standard models by compactifying on smooth Calabi-Yau three-folds in the

presence of purely Abelian internal gauge fields. A systematic search over complete intersection Calabi-

Yau manifolds with less than six Kähler parameters leads to over 200 such models which we present. Each

of these models has precisely the matter spectrum of the minimal supersymmetric standard model, at least

one pair of Higgs doublets, the standard model gauge group, and no exotics. For about 100 of these models

there are four additional Uð1Þ symmetries which are Green-Schwarz anomalous and, hence, massive. In

the remaining cases, three Uð1Þ symmetries are anomalous, while the fourth, massless one can be

spontaneously broken by singlet vacuum expectation values. The presence of additional global Uð1Þ
symmetries, together with the possibility of switching on singlet vacuum expectation values, leads to a

rich phenomenology which is illustrated for a particular example. Our database of standard models, which

can be further enlarged by simply extending the computer-based search, allows for a detailed and

systematic phenomenological analysis of string standard models, covering issues such as the structure

of Yukawa couplings, R-parity violation, proton stability, and neutrino masses.
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I. INTRODUCTION

There is a long history of attempting to construct four-
dimensional theories, from smooth compactifications of
the heterotic string, with a matter sector which precisely
matches that of the minimal supersymmetric standard
model (MSSM). Indeed, the subject of string phenomenol-
ogy started in this way in the 1980s when various attempts
were made to build models based upon the ‘‘standard
embedding.’’ In that approach, the gauge bundle was taken
to be the holomorphic tangent bundle, with the SUð3Þ
structure group, or deformations of the tangent bundle
[1]. In recent years, more general gauge configurations
have been used in an attempt to achieve phenomenologi-
cally viable physics. Slope-stable1 bundles with SUðnÞ
structure groups (for n ¼ 3, 4, 5), unrelated to the tangent
bundle, have been used in the attempt to build stringy
standard models [2–12]. These constructions were based
upon the use of non-Abelian gauge field configurations on
smooth Calabi-Yau (CY) three-folds.2

In this paper we adopt a different approach to construct-
ing standard models in smooth Calabi-Yau three-fold com-
pactifications of heterotic string and M theory. Instead of
using the non-Abelian constructions mentioned in the pre-
ceding paragraph, we shall construct models where the
gauge field configuration in the internal dimensions is
simply a sum of line bundles—that is, a set of Uð1Þ fluxes.
This is the extremal form of the so-called ‘‘split’’ or
reducible bundles first studied in Refs. [26,27].
There are two key aspects to this approach that differ-

entiate it from the traditional non-Abelian one. The first is
a practical one: it is much simpler to construct, and calcu-
late the resulting spectrum of, Abelian bundles than non-
Abelian ones. As a result, an algorithmic and systematic
approach to such (heterotic) string model building is rela-
tively straightforward and can be used to analyze vast
numbers of line bundle sums over Calabi-Yau manifolds.
Rather than attempting to fine-tune the construction of a
single example, this large data set can be scanned for
realistic models, using methods of computational algebraic
geometry3 [30–32]. This paper presents our first results
from an investigation along these lines. We have system-
atically scanned line bundle sums on Calabi-Yau three-
folds (defined as complete intersections in products of
projective spaces) with Hodge number h1;1ðXÞ � 5 and
have found 208 heterotic standard models. It is important
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1Slope-stable bundles satisfy the Hermitian-Yang-Mills equa-

tions required for N ¼ 1 supersymmetry in four dimensions [1].
2Another class of models is based on nonsmooth CYorbifolds;

these have been shown to also allow for an appropriate massless
spectrum as well as other phenomenological features [13–22].
There are also constructions based on nongeometric settings
such as the free-fermionic models as studied in [23–25].

3Similar scans for non-Abelian constructions have been started
in Refs. [10–12,28], and further results will be presented in
Ref. [29].
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to note that these models are all ‘‘global’’ in that they
correspond to explicit Calabi-Yau three-folds and holo-
morphic vector bundles leading to fully consistent heter-
otic theories. All 208 models have the precise matter
spectrum of the MSSM, at least one pair of Higgs doublets,
the standard model gauge group, and no exotics charged
under the standard model group of any kind. The number
of models constructed should be considered with the
knowledge that, to date, only three other smooth heterotic
standard models have been produced in the literature
[2,5,12].

The second key aspect of heterotic line bundle model
building is related to additional Uð1Þ symmetries. We will
consider line bundle sums with the structure group
SðUð1Þ5Þ whose commutant within E8 is SUð5Þ �
SðUð1Þ5Þ ffi SUð5Þ �Uð1Þ4. Hence, before Wilson-line
breaking, our models are based on SUð5Þ grand unified
theories (GUT) with four additional Uð1Þ symmetries.
Phenomenologically, the vector bosons associated with
those Uð1Þ symmetries should of course be massive.
Fortunately, there are two mechanisms to generate such
masses, both within our control. The first is the Green-
Schwarz mechanism: the Uð1Þ vector bosons can acquire a
large mass, close to the compactification scale, due to a
gauging of axion shift symmetries. For 105 of our 208
models this happens for all four Uð1Þ symmetries, so that
the low-energy gauge group is precisely that of the stan-
dard model. The remaining models have three anomalous
and, hence, massive Uð1Þ symmetries while the fourth
Abelian gauge factor remains massless, as long as the
internal bundle is a sum of line bundles. In this case, we
can invoke the second mechanism, namely, moving away
from the split locus in bundle moduli space such that the
bundle structure group becomes non-Abelian, thus remov-
ing the extra Uð1Þ from the low-energy gauge group. In the
effective field theory this amounts to giving supersymmet-
ric vacuum expectation values (VEVs) to bundle moduli
fields. We have explicit control over the spectrum of such
bundle moduli and can, therefore, analyze this effect in
detail.

Another important physical implication, which is tied to
the above discussion, is that the Green-Schwarz anomalous
Uð1Þ symmetries give rise to residual Uð1Þ global symme-
tries in the effective theory. These global symmetries im-
pose constraints on the possible operators present in the
theory and may forbid problematic operators such as those
that lead to proton decay or R-parity violation. They may
also serve as Froggatt-Nielsen–type symmetries to explain
the patterns of observed quark and lepton masses. This
interplay between Uð1Þ symmetries, their spontaneous
breaking through bundle moduli VEVs, and the resulting
operators in the low-energy theory lead to a rich arena for
phenomenology [33,34].

In this paper, we present the physical ideas behind
our work, the database of 208 standard models, and an

exploration of some of the phenomenological issues by
focusing on a particular example. A more comprehensive
study will be presented in a forthcoming paper [35].
The plan of this paper is as follows. In the next section

we briefly explain the basic model-building setup.
Section III reviews the Green-Schwarz mechanism and
its particular implications for our models. In Sec. IV we
describe our scanning procedure and its main results. As an
illustrative example, one of our standard models is pre-
sented in Sec. V. Section VI discusses the phenomenologi-
cal implications of the anomalous Uð1Þ symmetries and
bundle moduli VEVs in more detail, focusing on the
particular example introduced earlier. We present a brief
summary and an outlook in Sec. VII. The data for all 208
standard models are listed in the Appendix.

II. MODEL-BUILDING SETUP

We consider compactifications of the E8 � E8 heterotic
string on a smooth Calabi-Yau three-fold, X, with a freely
acting discrete symmetry, �. In practice, we will use com-
plete intersection Calabi-Yau manifolds (CICYs) which
are defined as the common zero locus of homogeneous
polynomials in an ambient product of projective spaces
Pn1 � . . .� Pnm . These manifolds have been classified
[36,37] and their freely acting symmetries are known
[38]. In the present paper, we will explore all CICYs
with freely acting symmetries and Hodge number satisfy-
ing h1;1ðXÞ � 5. It turns out that all these manifolds are ‘‘
favorable’’ in the sense that h1;1ðXÞ ¼ m, so that their
whole second cohomology is spanned by the restrictions
of the Kähler forms, Ji, of the ambient projective spaces.
Line bundles L on X, the main building blocks of our
bundle construction, can hence be denoted as L ¼
OXðkÞ, where k is an m-dimensional integer vector such
that c1ðOXðkÞÞ ¼ kiJi.
As mentioned earlier, on X we consider vector bundles V

with structure group SðUð1Þ5Þ, that is, sums of line bundles

V ¼ M5

a¼1

La where La ¼ OXðkaÞ; (2.1)

satisfying

c1ðVÞ ¼
X5

a¼1

ci1ðLaÞJi ¼ 0: (2.2)

Hence, for a given three-fold X and a given symmetry �, a
model is specified by the 5h1;1ðXÞ integers kia. In our model
scan, we will restrict ourselves to bundles V for which

c2ðTXÞ � c2ðVÞ ¼ ½C�; ½C� an effective class inH2ðX;ZÞ
(2.3)

which allows for an anomaly-free supersymmetric com-
pletion by the addition of an appropriate number of five-
branes wrapping C. Supersymmetry conditions on the
bundle V itself will be discussed in the next section.
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The structure group is embedded into E8 via the sub-
group chain SðUð1Þ5Þ � SUð5Þ � E8, so that the four-
dimensional gauge group, before Wilson-line breaking, is
the GUT group SUð5Þ � SðUð1Þ5Þ. In general, the low-
energy theory contains the standard SUð5Þ multiplets 10,
�5 (and their conjugates) and bundle moduli singlets 1. In
addition, the above multiplets are labeled by SðUð1Þ5Þ
charges, which can be represented as integers vectors q ¼
ðq1; . . . ; q5Þ. Because of the unit determinant condition in
SðUð1Þ5Þ, two such charge vectors q and ~q have to be
identified if q� ~q 2 Zð1; 1; 1; 1; 1Þ and, as a result, each
charge vector with five of the same entries corresponds to
the trivial representation. This fact will be of importance
later on when we discuss the SðUð1Þ5Þ invariant operators
in the four-dimensional effective theory. With this nota-
tion, the matter multiplet content of the GUT group is

10 ea ;
�10�ea ;

�5eaþeb ; 5�ea�eb ; 1ea�eb ; 1�eaþeb ; (2.4)

where a < b. Here, the subscripts are SðUð1Þ5Þ charges
with ea the ath standard unit vector in five dimensions.
These multiplets are associated with particular line bundle
cohomology groups, as summarized in Table I, and their
numbers can be determined by computing the dimensions
of these cohomology groups. For CICYs, line bundle co-
homology can be explicitly computed by applying the
methods described in Refs. [11,12,39]. Compared to a
standard SUð5Þ GUT, the multiplet content of our models
is split into subsectors, labeled by different SðUð1Þ5Þ
charges. Invariance under SðUð1Þ5Þ restricts the allowed
operators in the low-energy theory, and this will be of
importance for the phenomenological discussion later on.
In particular, we note that the bundle moduli singlets carry
nontrivial SðUð1Þ5Þ charges, so operators involving these
singlets are constrained as well. This leads to an interesting
interplay between SðUð1Þ5Þ invariance and switching on
singlet VEVs. In the language of vector bundles, nonzero
singlet VEVs correspond to moving away from the Abelian
locus in bundle moduli space to a bundle with a non-
Abelian structure group.

The further breaking of the GUT to the standard model
proceeds in the standard way via Wilson lines. For the
bundle V to descend to the quotient Calabi-Yau manifold
X=�, it has to be equivariant under the symmetry � [40], a
property which can be explicitly checked for line bundles
using the methods described in Ref. [12]. Note that for an
equivariant line bundle L, the cohomology groupsHiðX; LÞ
form representations under the group �. A Wilson line on
the quotient, pointing into the standard hypercharge direc-
tion, then breaks the GUT group into the standard model
group times the massive SðUð1Þ5Þ symmetry. Let us con-
sider a standard model multiplet with a Wilson-line repre-
sentation RW which originates from a GUT multiplet with
an associated line bundle L. The number of these multip-
lets can be computed from the � invariant part of
H1ðX; LÞ � RW . In essence, once the GUT multiplet con-
tent is known, computing the particle content after Wilson-
line breaking is a matter of applying representation theory
of the finite group �.

III. ADDITIONAL Uð1Þ SYMMETRIES AND
GREEN-SCHWARZ MECHANISM

We turn now to the fate of the four additional Uð1Þ
symmetries in SðUð1Þ5Þ ffi Uð1Þ4 which arise in our mod-
els. The Green-Schwarz mechanism in heterotic theories
has been understood for many years (see [27,41–44] for
some recent papers on the subject). It is known that
Abelian factors in the bundle structure group give rise to
a gauging of certain axion shift symmetries in the four-
dimensional effective theory. In our context, for each line
bundle La in V, the Kähler axions �i, the supersymmetric
partners of the Kähler moduli ti, acquire the following
transformation4:

��i ¼ �ci1ðLaÞ�a; (3.1)

with transformation parameter �a. Note that, from
Eq. (2.2), only four of these transformations, correspond-
ing to the four Uð1Þ symmetries, are independent. Each
such transformation leads to aD-term which schematically
reads

Da ¼ �ðLaÞ
�

�X
I

QaIjCIj2: (3.2)

Here, � ¼ dijkt
itjtk is the Kähler moduli space prepoten-

tial with the triple intersection numbers dijk of X, and CI

are matter fields and bundle moduli with chargesQaI under
SðUð1Þ5Þ. The slope �ðLaÞ of the line bundle La is defined
as

�ðLaÞ ¼ ci1ðLaÞ�i with �i ¼ dijkt
jtk: (3.3)

TABLE I. Multiplet content, charges, and associated line bun-
dles of the SUð5Þ � SðUð1Þ5Þ GUT. The indices a; b; . . . are in
the range 1; . . . ; 5 and ea denotes the standard five-dimensional
unit vector in the ath direction. The number of each type of
multiplet is obtained from the first cohomology, H1ðX;LÞ, of the
associated line bundle L.

Multiplet SðUð1Þ5Þ
charge

Associated

line bundle L
Contained

in

10ea ea La V
�10�ea �ea L�

a V�
�5eaþeb ea þ eb La � Lb ^2V
5�ea�eb �ea � eb L�

a � L�
b ^2V�

1ea�eb ea � eb La � L�
b V � V�

1�eaþeb �ea þ eb L�
a � Lb

4The equations below receive a one-loop correction due to a
nontrivial shift of the dilatonic and M5-brane axions. This has
been explicitly studied in Refs. [27,43] but will be neglected in
the present context as it does not affect our discussion.
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We can now discuss the conditions on the line bundle sum
V arising from N ¼ 1 supersymmetry. From a four-
dimensional point of view, for a supersymmetric vacuum,
all D-terms (3.2) must vanish. The locus in bundle moduli
space where V is split into a sum of line bundles corre-
sponds to setting all VEVs of the fields CI to zero. Hence,
all slopes �ðLaÞ must vanish simultaneously, somewhere
in Kähler moduli space. This is, of course, the well-known
condition for line bundle sums to preserve supersymmetry.
For the equations kia�i ¼ 0 to have a nontrivial solution, it
must be the case that the

ðnumber of lin. independentkaÞ< h1;1ðXÞ: (3.4)

This implies strong model-building constraints for Calabi-
Yau manifolds with a small Hodge number h1;1ðXÞ and
explains why we were not able to find standard models on
CICYs with h1;1ðXÞ ¼ 2; 3.

At the split locus in bundle moduli space, the mass
matrix for the SðUð1Þ5Þ vector bosons is given by

Mab ¼ Gijc
i
1ðLaÞcj1ðLbÞ; (3.5)

where Gij ¼ �@i@j ln� is the Kähler moduli space metric

of X. Since Gij is positive definite, the number of massless

Uð1Þ vector fields must equal 4—rankðkiaÞ and can, hence,
be easily determined from the integers kia which specify
our models. Combining this statement with the inequality
(3.4) we learn that

ðnumber of masslessUð1Þvector fieldsÞ>4�h1;1ðXÞ:
(3.6)

Hence, for Calabi-Yau manifolds with h1;1ðXÞ ¼ 4, at least
one massless Uð1Þ vector field remains, while h1;1ðXÞ ¼ 5
is the smallest Hodge number for which all Uð1Þ vector
fields can receive masses from the Green-Schwarz
mechanism.

IV. SEARCHING FOR LINE BUNDLE
STANDARD MODELS

Our scanning procedure involves the following basic
steps. For a given Calabi-Yau manifold X with freely act-
ing Abelian symmetry �, we generate a large number of
line bundle sums, V ¼ L5

a¼1 La, satisfying c1ðVÞ ¼ 0,
each specified by an integer matrix kia ¼ ci1ðLaÞ. In prac-
tice, we restrict the entries kia to run in a certain finite
range. In a first filtering step, we extract all line bundle
sums which are supersymmetric [that is, all slope condi-
tions �ðLaÞ ¼ 0 can be satisfied for some Kähler parame-
ters of X] and which satisfy (2.3). This ensures that all
remaining models give rise to consistent heterotic vacua on
X. Subsequently, we extract all line bundle sums which
are equivariant under �, so that the model can be quo-
tiented by �.

The second step involves imposing physical constraints
on the spectrum of the SUð5Þ � SðUð1Þ5Þ GUT. These
conditions can be easily inferred from Table I. First we

impose that h1ðX; VÞ ¼ 3j�j and h1ðX; V�Þ ¼ 0, where j�j
is the order of the discrete symmetry group �. This is to
ensure that downstairs we have precisely three SUð5Þ
families of 10 multiplets and no 10 antifamilies. As can
easily be proved, it then follows that h1ðX;^2VÞ �
h1ðX;^2V�Þ ¼ 3j�j so that there is a downstairs chiral
asymmetry of three �5 families. Second, we need at least
one vectorlike �5–5 pair in order to retain a pair of Higgs
doublets, so we also require that h1ðX;^2V�Þ> 0.
With these conditions imposed we have a model with the

standard model gauge group [times four Uð1Þ symmetries,
some or all massive], three families of quarks and leptons,
and whatever remains from the �5–5 pair. To increase the
chance that the Higgs triplets can be removed, we demand
that h1ðL�

a � L�
bÞ< j�j for all a < b, so that the number of

such pairs is smaller than the group order in each sector. In
this case, it can be shown that for appropriate choices of
equivariant structure and Wilson line, for all 208 models,
the Higgs triplets can be projected out and at least one pair
of Higgs doublets can be kept [35].
As a first step, the above procedure has been carried out for

all CICYs with symmetries and h1;1ðXÞ � 5 in the standard
list [36]. We recall that h1;1ðXÞ ¼ 5 is the smallest value for
which all four additionalUð1Þ symmetries can become mas-
sive due to theGreen-Schwarzmechanism, so it is sensible to
scan up to thisHodge number at least. For the sixCICYswith
h1;1ðXÞ ¼ 2, this has been done for line bundle entries in the
range�10 � kia � 10, and for the 12CICYswithh1;1ðXÞ ¼
3, the range �3 � kia � 3 has been covered. No model
passing all the above tests has been found. As indicated
earlier, this can be traced back to the stability constraint
(3.4) which is particularly strong for low h1;1ðXÞ.
The 19 CICYs with symmetries at h1;1ðXÞ ¼ 4 have

been scanned in the range �3 � kia � 3, and 28 models
passing all tests have been found. The scan over the 23
CICYs with h1;1ðXÞ ¼ 5 in the range �2 � kia � 2 re-
sulted in 180 models. Altogether, we have found 208
heterotic line bundle standard models, which are explicitly
listed in the Appendix. For 105 of these models, all for
h1;1ðXÞ ¼ 5, all additional Uð1Þ symmetries are Green-
Schwarz anomalous and superheavy. For the remaining
models we have three anomalous, massive Uð1Þ symme-
tries and one massless one. As indicated earlier, this re-
maining Uð1Þ can be easily broken spontaneously by
switching on singlet VEVs, and, for this reason, these
models have been included.
These results have been obtained from a scan over

roughly 1012 integer matrices kia generated initially.
Hence, a ‘‘one in a billion’’ rule of thumb [45] is not too
far from the truth in this part of the heterotic vacuum space.
It should be mentioned that this task has not required high
performance computing but was completed (within several
weeks) on a standard desktop machine. Extending to larger
ranges for the kia and to CICYs with larger h1;1ðXÞ is
merely a question of computing power.
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V. A STANDARD MODEL EXAMPLE

In order to illustrate our result and to set up a more
explicit context for the subsequent phenomenological dis-
cussion, we will now present one of our 208 standard
models in more detail. This will be sufficient for the
main purpose of this paper, which is to merely indicate
the rich structure of model-building possibilities. A de-
tailed analysis for all standard models in our database will
be carried out in a forthcoming paper [35].

Our example lives on the h1;1ðXÞ ¼ 5 CICY with the
configuration matrix

X ¼

P1 1 1 0 0

P1 0 0 0 2

P1 0 0 2 0

P1 2 0 0 0

P3 1 1 1 1

0
BBBBBBBB@

1
CCCCCCCCA

5;37

�64

(5.1)

defined in the ambient space ðP1Þ�4 � P3, as indicated in
the first column of the configuration matrix. We denote the
homogeneous coordinates of the four P1 by xi�, where i ¼
1, 2, 3, 4 and� ¼ 0, 1, and theP3 coordinates by y�, where
� ¼ 0; . . . ; 3. The remaining columns of the above matrix
specify the multidegrees of four homogeneous polyno-
mials on the ambient space whose common zero locus
defines the CICY X. The subscript is the Euler number
and the superscripts provide the Hodge numbers h1;1ðXÞ
and h2;1ðXÞ, which count the number of Kähler and com-
plex structure moduli, respectively. The second cohomol-
ogy of X is spanned by the five ambient space Kähler forms
Ji, and the cone of allowed Kähler forms J ¼ tiJi is
specified by ti > 0 for all i. The triple intersection numbers
of X have the following nonzero components (as well as
those related by symmetry of the indices):

d123 ¼ d124 ¼ d134 ¼ d234 ¼ d235 ¼ 2;

d125 ¼ d135 ¼ d145 ¼ d245 ¼ d255 ¼ d345 ¼ d355 ¼ 4;

d155 ¼ d455 ¼ d555 ¼ 8: (5.2)

The second Chern class of the tangent bundle is c2ðTXÞ ¼
ð24; 24; 24; 24; 56Þ, relative to a basis of four-forms dual
to the ambient space Kähler forms Ji. The manifold is
simply connected but can be divided by a freely acting
� ¼ Z2 symmetry which transforms the ambient space
coordinates as

ðxi0;xi1Þ!ð�xi0;xi1Þ; ðy0;y1;y2;y3Þ!ð�y0;�y1;y2;y3Þ:
(5.3)

Our model is specified by the sum of line bundles

V¼M5

a¼1

La¼OXð1;0;0;�1;0Þ	OXð1;�1;�2;0;1Þ

	OXð0;1;1;1;�1Þ	OXð0;�1;1;0;0ÞX
	OXð�2;1;0;0;0Þ: (5.4)

This bundle satisfies c1ðVÞ ¼ 0 and (2.3). In addition,
using the above intersection numbers, it can be verified
that the slope conditions�ðLaÞ ¼ 0 can be simultaneously
satisfied at a locus in the Kähler cone of X. It can also be
verified that V is Z2 equivariant and, hence, descends to a
bundle on the ‘‘downstairs’’ quotient space X=Z2. The
bundle (5.4) has four linearly independent Chern classes
c1ðLaÞ ¼ ka. From our earlier discussion this means that
all four additional Uð1Þ symmetries are Green-Schwarz
anomalous and, hence, massive. Consequently, the down-
stairs gauge group is precisely the standard model gauge
group.
The nonvanishing cohomology groups of the constituent

line bundles La are given by

h1ðX; L2Þ ¼ 4; h1ðX; L5Þ ¼ 2: (5.5)

We recall from Table I that the cohomology groups
H1ðX; LaÞ count the number of GUT multiplets 10ea .

Hence, after dividing by the symmetry order, j�j ¼ 2,
this leads to three multiplets, 10e2 , 10e2 , 10e5 , in the down-

stairs spectrum.
The nonvanishing first cohomology groups of tensor

products La � Lb and L�
a � L�

b are

h1ðX; L2 � L4Þ ¼ 4; h1ðX; L4 � L5Þ ¼ 2;

h1ðX; L2 � L5Þ ¼ 1; h1ðX; L�
2 � L�

5Þ ¼ 1:
(5.6)

From Table I, the cohomology groups H1ðX; La � LbÞ and
H1ðX; L�

a � L�
bÞ count the number of �5eaþeb and 5�ea�eb

GUT multiplets, respectively. This means that downstairs
we have three multiplets, �5e2þe4 ,

�5e2þe4 ,
�5e4þe5 , plus what-

ever remains from the vectorlike pair of �5e2þe5 and 5�e2�e5

multiplets after Wilson-line breaking. It turns out, in line
with general arguments above, that both Higgs triplets can
be projected out while the pair of Higgs doublets can be
kept. As a result, the complete spectrum of multiplets
charged under the standard model group is precisely that
of the MSSM, as summarized in Table II below. From
Table I, the number of singlets 1ea�eb is determined by

H1ðX; La � L�
bÞ. For our model, the nonvanishing first

cohomology groups in this sector are

h1ðX; L2 � L�
1Þ ¼ 4; h1ðX; L5 � L�

1Þ ¼ 8;

h1ðX; L2 � L�
3Þ ¼ 4; h1ðX; L2 � L�

4Þ ¼ 12;

h1ðX; L2 � L�
5Þ ¼ 11; h1ðX; L5 � L�

2Þ ¼ 3;

h1ðX; L4 � L�
5Þ ¼ 6:

(5.7)

After Wilson-line breaking, this gives rise to seven types of
singlets, denoted by C1; . . . ; C7, whose charges and multi-
plicities are listed in Table III.
To summarize, our example model has the exact spec-

trum and gauge group of the MSSM, plus seven types of
bundle moduli fields which are singlets under the standard
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model group. All those fields carry charges under the
remnant global SðUð1Þ5Þ symmetry which constrains the
four-dimensional effective theory. The phenomenology
resulting from the interplay between this global symmetry
and switching on VEVs for the singlet fields will be dis-
cussed in the next section.

VI. RESIDUAL SYMMETRIES AND
SINGLET VEVS

In the previous section we presented an example from
our standard model database which has exactly the matter
spectrum of the MSSM, along with some gauge singlet
fields. In this model, all four additional Uð1Þ symmetries
are Green-Schwarz anomalous, so that their associated
gauge bosons are superheavy and, hence, absent from the
low-energy theory. However, they leave behind global
Uð1Þ symmetries (see [33,34] for recent explorations of
such symmetries in heterotic theories) which allow us to
constrain the operator spectrum of the theory [34] and push
the phenomenological study beyond the mere computation
of the spectrum. Similar considerations apply to the other
standard models in our database. In this section, we would
like to discuss some of these phenomenological issues, in
general, and illustrate our points within the context of the
example model. A systematic study for all models will be
presented in a forthcoming paper [35]. We also note that
the themes presented in this section are recurrent within the
F-theory GUT literature; see, for example, [46–50].

Before proceeding, it is important to note that althoughwe
refer to the Uð1Þ symmetries as global, since they are fun-
damentally gauge symmetries, there is no pseudo-Goldstone
boson associated with their spontaneous breaking by the
GUT singlet VEVs. Rather, the would-be flat mode is a
combination of the GUT singlets and the closed-string axion
which gets eaten by the Uð1Þ. The remaining gauge-neutral
combination can possibly remain a flat direction perturba-
tively but will be lifted by nonperturbative operators which
realize the gauge symmetry nonlinearly. Whether all flat
directions can be lifted in this way is a question of moduli
stabilization, which we do not address here.

The study of allowed operators in the theory involves
finding SðUð1Þ5Þ invariant field combinations. We recall
that SðUð1Þ5Þ charges are labeled by integer vectors q ¼
ðq1; . . . ; q5Þ and, as a result of the determinant one condi-
tion in SðUð1Þ5Þ, two such integer vectors q and ~q have to
be identified if q� ~q 2 Zð1; 1; 1; 1; 1Þ. A particular opera-
tor is therefore allowed if its charge vector is entirely zero
or if it is nonzero but with all entries equal. For our
example, the explicit charge vectors of the MSSM fields
and the seven singlet fields CI are given in Tables II and III.
We note that these charges are not flavor universal, a
feature which is generic for heterotic line bundle models.5

In our analysis, we also allow the singlets CI to develop a
VEV,6 which we denote by

�I ¼ hCIi: (6.1)

As a result, the allowed terms involve higher dimension
operators with singlet insertions—much like in the
Froggatt-Nielsen setup [51]. As mentioned earlier,
SðUð1Þ5Þ gauge bosons which did not receive a mass
from the Green-Schwarz mechanism can become massive
due to the spontaneous breaking induced by these VEVs.
This is the reason why we have included such models
in our list of 208 standard models given in the Appendix.
In the following, we will frequently write down operators
in terms of SUð5Þ GUT multiplets, for simplicity. This
is appropriate because every standard model field within
a given SUð5Þ multiplet carries the same SðUð1Þ5Þ charge.
However, we should keep in mind that, even though we use
the language of SUð5Þ GUTs, the subsequent discussion
applies to heterotic standard models.
It is important to note that an operator allowed by the

SðUð1Þ5Þ symmetries is not necessarily present in the
theory—this would require further calculations to determine

TABLE III. Charges and multiplicities for the seven types of bundle moduli singlets in our example model.

Name C1 C2 C3 C4 C5 C6 C7

SðUð1Þ5Þ charge e2 � e1 e5 � e1 e2 � e3 e2 � e4 e2 � e5 e5 � e2 e4 � e5
Multiplicity 2 4 2 6 5 1 3

TABLE II. Charges of the standard model multiplets in our example model. Each multiplet arises with multiplicity 1. For simplicity,
families are denoted by SUð5Þ representations but should be thought of as broken up into standard model multiplets, keeping the
SðUð1Þ5Þ charge unchanged.

Name 101 102 103 �51 �52 �53 Hu Hd

SðUð1Þ5Þ charge e2 e2 e5 e2 þ e4 e2 þ e4 e4 þ e5 �e2 � e5 e2 þ e5

5Note that this shows that the approach adopted in [47] within
the F-theory framework of allowing different families to come
from different matter curves is in fact rather generic.

6So long as this VEV remains small compared to the compac-
tification scale, we can define a valid perturbative theory near the
Abelian locus in moduli space. For more details on the mass
scales associated with these VEVs, see [44].
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[52]. In particular, the theory might have further discrete
symmetries which forbid some operators allowed by
SðUð1Þ5Þ. However, an SðUð1Þ5Þ noninvariant operator is
definitely forbidden at the perturbative level. It can still be
generated by nonperturbative effects, but one would expect
such a contribution to be suppressed.7

A. Proton decay

One of the strongest constraints on supersymmetric
theories comes from dimension-four proton decay, induced
by superpotential operators of the form �5 �5 10 with matter
multiplets �5 and 10. In our context, these operators can be
written as �5eaþeb

�5ecþed10ef and, hence, have a total

SðUð1Þ5Þ charge ea þ eb þ ec þ ed þ ef. Such an opera-

tor is allowed precisely if all five charge vectors involved
are different, in which case the total charge is (1, 1, 1, 1, 1).
Whether this happens depends on the precise charges of the
matter fields and has to be analyzed in detail for each of our
standard models. For our example, the matter field charges
in Table II show that all such operators are forbidden and,
hence, this particular model is safe from dimension-four
proton decay at the Abelian split locus. What happens if we
move away from this locus by switching on singlet VEVs
�I? In this case, we have to worry about recreating such
operators by singlet VEV insertions. Again, this is a matter
of detailed analysis for each given model, but for our
example model, the singlet charges in Table III show that
they are never recreated for any number of singlet inser-
tions. Our example model is therefore safe from
dimension-four proton decay in at least a neighborhood
of the Abelian locus in bundle moduli space.

A less-constrained but nevertheless important effect is
dimension-five proton decay, induced by an operator of the
form �5eaþeb10ec10ed10ef with total charge eaþebþecþ
edþef. For our example, such operators are forbidden, as

the SðUð1Þ5Þ charges in Table II show, and, from the singlet
charges in Table III, they are not recreated by singlet
insertions.

The above results regarding proton decay are promising.
However, within our models, forbidding proton decay us-
ing the SðUð1Þ5Þ symmetry comes at a price. From the
neutrality of the Yukawa couplings in the MSSM, it is easy
to show that the only Uð1Þ symmetry that can forbid
dimension-five proton decay is one that is not vectorlike
for the up and down Higgs. Such a symmetry is often
referred to as a Pecci-Quinn symmetry, Uð1ÞPQ. In our

example, the Higgs pair is indeed vectorlike and so there
is no Uð1ÞPQ. The reason for the absence of dimension-five

proton decay in this model is that, as discussed below, the
down-type Yukawa couplings are forbidden by SðUð1Þ5Þ

and, hence, the standard MSSM reasoning based on the
presence of these couplings does not apply. Of course, this
may not be a real problem, as the down-type Yukawa
couplings may be generated by nonperturbative effects.
Such nonperturbative effects may or may not reintroduce
proton decay. Whether or not this occurs can be decided at
the present level of sophistication, relying on the informa-
tion provided by the SðUð1Þ5Þ symmetry, by writing down
the relevant gauge invariant nonperturbative contributions
to the theory given the axion transformations (3.1). As with
the perturbative terms being discussed in this section,
whether or not such terms actually appear in the theory,
as opposed to simply being allowed by gauge invariance,
requires more detailed calculation to determine.
In fact, we find that, under fairly general assumptions, the

issue discussed in the proceeding paragraph is generic in
heterotic line bundle standard models. Assuming that the
low-energy spectrum does not contain exotic states, such as
Higgs triplets, Higgs pairs are always vectorlike under
SðUð1Þ5Þ and, hence, there is no Uð1ÞPQ symmetry. The

underlying model-building reasons for this will be discussed
in Ref. [35]. Here, we present a more intuitive argument
which follows from anomaly cancellation. The key observa-
tion is that, since the Green-Schwarz couplings only depend
on the gauge field strength, the GUT-breaking Wilson line
cannot affect Green-Schwarz anomaly cancellation.
Considering the mixed anomalies of two standard model
gauge factors with one of the additional Uð1Þ symmetries,
together with the MSSM matter spectrum, these can only
match the GUT anomalies if the Higgs fields are vectorlike
under the Uð1Þ symmetry. Consequently, there is either no
Uð1ÞPQ symmetryor the theory contains exoticmatter fields.8

B. R-parity violation

There is a set of superpotential operators which violate
the MSSM R parity and which lead to too large neutrino

masses, namely, operators of the form 5Hu�ea�eb
�5ecþed with

SðUð1Þ5Þ charge�ea � eb þ ec þ ed. For our example, an
inspection of the charges in Table II shows that these
operators are forbidden. This is consistent with our coho-
mology calculation which shows that, at the Abelian split
locus, the three �5 matter multiplets and the up Higgs are
indeed massless. However, the dimension-four operator
C3

�53Hu is allowed so it is possible to induce some of these
R-parity violating terms by switching on a VEV for C3. To
be safe, we have to demand that �3 ¼ hC3i ¼ 0, and this is
sufficient to remove all similar operators with any number
of singlet insertions.

7Note that the Uð1Þ symmetries have discrete subgroups that
are preserved even nonperturbatively such that the group Zk is
determined by the charge of the axion participating in the Green-
Schwarz mass for the Uð1Þ [53,54].

8There is a very similar story in F-theory, for which we note
our Wilson-line argument above also applies, in the case of
hypercharge flux doublet-triplet splitting [48–50,55]. Also note
that this argument applies to an unbroken Uð1ÞPQ and can be
evaded by having an approximate symmetry, i.e. breaking it well
below the cutoff scale.
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C. �-term

A related discussion applies to the �-term, �HuHd. As
we have argued above, for our models Higgs doublets
come in vectorlike pairs under the SðUð1Þ5Þ symmetry.
Consequently, the �-term is allowed by SðUð1Þ5Þ.
However, as the cohomology calculation shows, all our
208 standard models have at least one massless Higgs pair
at the Abelian locus in bundle moduli space. Hence, for all
these models, the �-term is absent from the superpotential
for reasons unrelated to the SðUð1Þ5Þ symmetry. What
happens when we move away from the Abelian locus by
switching on singlet VEVs? A quick glance at Table III
shows that our example model has no singlets which are
completely uncharged under SðUð1Þ5Þ, so dimension-four
terms of the form CIHuHd are forbidden. In fact, this is
generic for all our models. Bundle moduli with charge
ea � eb are counted by the first cohomology of La � L�

b.

Singlets under SðUð1Þ5Þ can only arise for a ¼ b, but in
this case H1ðX;La � L�

aÞ ¼ H1ðX;OXÞ ¼ 0.
As a result, the lowest dimension at which a �-term can

be generated is five. The relevant operators are of the form
CICJHuHd, where CI and CJ need to have opposite
SðUð1Þ5Þ charge. For sufficiently small VEVs, �I, �J, this
can provide a string-theoretical realization of the solution
to the � problem proposed in Ref. [56]. In our example
model, such a dimension-five operator, C5C6HuHd, is
allowed and, if indeed present, could give rise to a
�-term of an acceptable size provided the product �5�6
is sufficiently small. A small value for this product is
independently suggested by the pattern of up-type
Yukawa couplings discussed below.

D. Yukawa couplings

Three possible types of contributions to the (superpo-
tential) Yukawa coupling arise in our models. First we have
regular dimension-four Yukawa couplings. In the up sector

they are of the form 5Hu�ea�eb10ec10ed and allowed, pro-

vided ea þ eb ¼ ec þ ed. The down sector Yukawa cou-

plings, �5Hd
eaþeb

�5ecþed10ef , are allowed if ea þ eb þ ecþ
ed þ ef ¼ ð1; 1; 1; 1; 1Þ. As we have mentioned earlier,

the SðUð1Þ5Þ symmetry is not flavor universal, so this
generates a pattern of order one entries in the Yukawa
matrices. Further contributions, proportional to the VEVs
�I or products thereof, can be generated by vacuum in-
sertions once singlet VEVs are switched on. This amounts
to a string-theoretical realization of a Froggatt-Nielsen [51]
type model for fermion masses.9 Finally, we may have
nonperturbative contributions. Here, we will only consider
the first two types of effects explicitly, and we stress that

they can be straightforwardly analyzed for all our standard
models.
However, when discussing the results, we should keep in

mind that nonperturbative corrections to Yukawa couplings
are rather common in string theory and provide a possible
mechanism to generate small fermion masses. It is, there-
fore, not absolutely necessary to explain the full structure
of Yukawa couplings from a Froggatt-Nielsen approach
based on the SðUð1Þ5Þ symmetry. However, we should
certainly require that the top Yukawa coupling is generated
perturbatively at order one.
For our example model, the charges in Table II show

that, in the absence of singlet VEVs, the up-type Yukawa
matrix has rank two while the down-type Yukawa matrix
vanishes identically. Switching on VEVs �5 ¼ hC5i and
�6 ¼ hC6i, the Yukawa matrices take the form

YU ¼
�5 1 1
1 �6 �6
1 �6 �6

0
@

1
A; YD ¼

0 0 0
0 0 0
0 0 0

0
@

1
A: (6.2)

Note that order one coefficients have been omitted so that
YU generically has rank three. The eigenvalues of YU are of
order 1, 1 and �6, giving two heavy generations and one
potentially lighter one, depending on the position in moduli
space. The down-type Yukawa couplings are vanishing and
so require nonperturbative effects in order to be generated.
Generally, when giving VEVs to singlets we must ensure

that supersymmetry is preserved; that is, the D-terms (3.2)
and F-terms must remain zero. The D-terms form a very
mild restriction, as the Kähler moduli can adjust themselves
tominimize theD-term potential formany choices of singlet
VEVs. For our example, it is even simpler to prove the
existence of VEVs compatible with supersymmetry. Since
C5 and C6 are vectorlike, we can set �5 ¼ �6 and keep the
Kähler moduli fixed, so that the Fayet-Iliopoulos and matter
field contributions to the D-term vanish independently. In
[35] we show that also more general VEVs are supersym-
metric with an appropriate adjustment of the Kähler
moduli.10

The F-terms correspond to superpotential operators and
are more difficult to study explicitly since we do not know
the coefficients of these operators. Including a possible
VEV for C7, the most general superpotential compatible
with gauge invariance up to quartic terms is

W 
 �ijC
2
6C

i
5C

j
5 þ 	ijC6C

i
4C

j
7: (6.3)

The indices on the singlets count generations. There are no
quadratic terms since we know that all the fields are mass-
less. The cubic and quartic terms are allowed by gauge

9We note that, as show in [47], the group theory of E8 allows
for an accurate re-creation of the observed masses and mixing of
the quarks and leptons. Note though that a more detailed treat-
ment would also require a mechanism for the observed mass
splitting of the SUð5Þ multiplets for the lighter generations.

10In order to recreate the hierarchy between the top and up
quark masses, and solve the D-terms, we should take �5 ¼ �6 �
10�6, which interestingly implies the �-term operator discussed
in Sec. VIC is naturally at the TeV scale. Note though that this
assumes that whatever mechanism induces the charm-top mass
splitting leaves the up coupling unaffected.
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invariance and may or may not be present. An explicit
analysis of F-term stability is difficult due to the unknown
matrices �ij and 	ij. However, a sufficient condition for

F-term stability is that the matrices do not have maximal
rank since then we can set the VEVs such that

�ij�
j
5 ¼ 	ij�

j
7 ¼ 0: (6.4)

Note that the second condition in (6.4) is not strictly neces-
sary, as we will require �4 ¼ 0 anyway, but we include the
solution with it vanishing since it has relevance for the
following section in which C4 are considered as potential
right-handed neutrino candidates. Apart from these solu-
tions we can also take the simpler setup with �5 ¼ 0, which
would only affect the �-term discussion above and would
require Kähler moduli to adjust in order to solve theD-term
(we have explicitly checked that this is possible within the
Kähler cone up to the constraint j�6j> j�7j).

It is worth noting a practical advantage originating from
the SðUð1Þ5Þ symmetry, in relation to the physical Yukawa
couplings in heterotic compactifications. It is generally very
difficult to calculate the structure of the kinetic terms of the
matter fields, and so deducing the physical Yukawa cou-
plings from the holomorphic ones is nontrivial. The addi-
tionalUð1Þ symmetries can be of help in this regard because
they can restrict the matter field kinetic terms severely.

E. Neutrino physics

The bundle moduli serve as good candidates for right-
handed neutrinos [34]. For our example model, we can
consider the fields C4 as forming the right-handed neutri-
nos. In this case we have the superpotential operators, in
GUT field notation,

W
5Hu
�53C4þ�65Hu

�52C4þ�65Hu
�51C4þð�6�7Þ2C4C4:

(6.5)

The first three terms provide Dirac neutrino masses while
the last gives a Majorana mass to C4, thereby realizing the
seesaw mechanism. However, note that there is also a
possible linear term �6�7C4 which must vanish in some
way (in the MSSM this is done using matter-parity).11

VII. CONCLUSIONS AND OUTLOOK

In this paper, we have presented a database of 208
heterotic standard models based on smooth Calabi-Yau
manifolds and Abelian bundles over them. All of these
models have the precise matter spectrum of the MSSM,
one or more pairs of Higgs doublets, the standard model
gauge group with possibly one additional Uð1Þ symmetry,
and no exotic matter charged under the standard model of
any kind. For 105 of these models, there is no additional

Uð1Þ symmetry so that the gauge group is exactly the
standard model group. For the remaining models this
Uð1Þ can be spontaneously broken by switching on singlet
VEVs. We have presented an example model from our
database with the exact gauge group and spectrum of the
MSSM in more detail.
An interesting additional feature of our heterotic line

bundle models is the presence of a global, flavor nonun-
iversal SðUð1Þ5Þ ffi Uð1Þ4 symmetry which restricts the
structure of the four-dimensional effective theory.
Standard model fields as well as bundle moduli singlets
are charged under SðUð1Þ5Þ. The interplay between this
symmetry and switching on singlet VEVs, thereby moving
away from a purely Abelian bundle, provides a rich phe-
nomenological setting for issues such as proton stability,
R-parity violation, the� problem, and fermion masses. We
have discussed some of these issues and have illustrated
them with our example. It turns out, in this model, that the
SðUð1Þ5Þ symmetry stabilizes the proton, allows for an
order one top Yukawa coupling, facilitates a possible so-
lution to the � problem, and may provide a realization of
the seesaw mechanism for neutrino masses. However, the
down-type Yukawa couplings vanish perturbatively for this
example and, as a further goal, it is important to search for
models where such Uð1Þ flavor nonuniversal symmetries
can accommodate both proton stability and a realistic
Yukawa sector for both up- and down-type couplings.
We believe that our results raise the phenomenology of

heterotic Calabi-Yau compactifications to a new level.
Phenomenological problems beyond the calculation of the
spectrum can now be addressed within a sizable class of
quasirealistic explicitmodels, rather than for a small number
of individual models which are likely to fail more sophisti-
cated phenomenological requirements. Such a systematic
phenomenological analysis, for the standard models pre-
sented here, will be carried out in a forthcoming paper [35].
Our work can be extended in a variety of ways. Scans

over CICYs with Hodge numbers h1;1 > 5 and larger
ranges of bundles are underway and are likely to lead to
more standard models. It would be interesting to perform a
similar scan for heterotic line bundle models on Calabi-
Yau hypersurfaces in toric varieties, as classified in
Refs. [57,58], although this requires developing a number
of technical tools [59,60].
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APPENDIX: LINE BUNDLE STANDARD MODELS
ON h1;1ðXÞ ¼ 4; 5 CICYS

In this appendix we provide tables with all 208 line
bundle standard models which we have found on CICYs
with h1;1ðXÞ ¼ 4; 5. The scan has been performed over all
line bundle sums V ¼ L

5
i¼1 OXðkaÞ with entries in the

range �3 � kia � 3 for h1;1ðXÞ ¼ 4 and �2 � kia � 2 for
h1;1ðXÞ ¼ 5. The methodology and the general results of
this scan have already been described in Sec. IV.

The notation in the tables is as follows. The first row
contains information about the CICY, namely, the CICY
identifier (that is, its position in the standard CICY list
[36]), the standard configuration matrix with the Euler
number as a subscript and h1;1ðXÞ, h2;1ðXÞ as superscripts,
and the freely acting symmetry by which the model is
divided. Each subsequent table entry specifies a line
bundle sum by providing the five vectors ka. As ex-
plained in Sec. III, the number of massless Uð1Þ symme-
tries at the Abelian locus in bundle moduli space is given
by 4 minus the number of linearly independent vectors ka

and can, hence, be directly read off from the data pro-
vided here.

CICY 6784:

P1 1 1 0
P1 0 0 2
P1 2 0 0
P3 1 1 2

0
BBB@

1
CCCA

4;36

�64

Z2 � Z2

(3, 2, �2, �1) (1, �1, 0, 0) (� 1, 0, 1, 0) (� 1, 0, 1, 0) (� 2, �1, 0, 1) (2, 2, 1, �1) (1, �1, 0, 0) (1, �1, 0, 0) (� 1, 0, �2, 1) (� 3, 0, 1, 0)

(2, 1, 0, �1) (0, 1, �3, 0) (0, �2, 1, 1) (� 1, 0, 1, 0) (� 1, 0, 1, 0) (2, 1, �3, 0) (0, 1, 2, �1) (0, �2, �1, 1) (� 1, 0, 1, 0) (� 1, 0, 1, 0)

(1, 0, �1, 0) (1, 0, �1, 0) (1, �2, 0, 1) (0, 1, 2, �1) (� 3, 1, 0, 0) (1, 2, 2, �1) (1, 0, �3, 0) (0, �1, 1, 0) (0, �1, 1, 0) (� 2, 0, �1, 1)

(1, 1, 0, �1) (1, 1, 0, �1) (0, �1, �2, 1) (0, �2, 1, 1) (� 2, 1, 1, 0) (1, 0, �1, 0) (1, 0, �1, 0) (0, �1, 1, 0) (0, �1, �2, 1) (� 2, 2, 3, �1)

CICY 7435:

P1 1 1 0 0 0 0 0
P1 0 0 1 1 0 0 0
P1 0 0 0 0 1 1 0
P7 1 1 1 1 1 1 2

0
BBB@

1
CCCA

4;44

�80

Z2 � Z2

(2, 1, 1, �1) (2, 1, �3, 0) (� 1, 0, 1, 0) (� 1, 0, 1, 0) (� 2, �2, 0, 1) (2, 1, 1, �1) (2, �3, 1, 0) (� 1, 1, 0, 0) (� 1, 1, 0, 0) (� 2, 0, �2, 1)

(1, 2, 1, �1) (1, �1, 0, 0) (1, �1, 0, 0) (0, �2, �2, 1) (� 3, 2, 1, 0) (1, 1, 2, �1) (1, 0, �1, 0) (1, 0, �1, 0) (0, �2, �2, 1) (� 3, 1, 2, 0)

(1, 2, 1, �1) (1, 2, �3, 0) (0, �1, 1, 0) (0, �1, 1, 0) (� 2, �2, 0, 1) (1, 1, 2, �1) (1, �3, 2, 0) (0, 1, �1, 0) (0, 1, �1, 0) (� 2, 0, �2, 1)

CICY 7862:

P1 2
P1 2
P1 2
P1 2

0
BBB@

1
CCCA

4;68

�128

Z2 � Z2

(1, �3, 0, 2) (0, 1, 0, �1) (0, 1, 0, �1) (0, 0, �1, 1) (� 1, 1, 1, �1) (1, �1, �1, 1) (1, �2, 0, 1) (0, 0, �1, 1) (� 1, 2, 2, �3) (� 1, 1, 0, 0)

(1, �1, �1, 1) (1, �1, �1, 1) (0, 1, 2, �3) (� 1, 1, �1, 1) (� 1, 0, 1, 0) (1, 0, �2, �1) (1, �2, 1, 2) (0, 0, 1, �1) (� 1, 1, 0, 0) (� 1, 1, 0, 0)

(1, 0, �2, �1) (1, �2, 2, 1) (0, 0, 1, �1) (� 1, 1, 0, 0) (� 1, 1, �1, 1) (1, 0, �2, 1) (1, �2, 0, 1) (0, 1, 1, �2) (� 1, 1, 1, �1) (� 1, 0, 0, 1)

(1, 0, �2, 1) (1, �2, 1, 0) (0, 1, 1, �2) (� 1, 1, 0, 0) (� 1, 0, 0, 1) (1, 0, �1, 0) (1, �3, 2, 0) (0, 1, 0, �1) (0, 1, 0, �1) (� 2, 1, �1, 2)

(1, 0, �3, 0) (1, �2, 3, 0) (0, 0, 1, �1) (0, 0, 1, �1) (� 2, 2, �2, 2) (1, 0, �1, 0) (1, �1, 2, �2) (1, �2, 1, 0) (0, 1, �1, 0) (� 3, 2, �1, 2)

CICY 5256:

P1 1 1 0 0
P1 2 0 0 0
P1 0 0 1 1
P1 0 0 1 1
P3 1 1 1 1

0
BBBBB@

1
CCCCCA

5;29

�48

Z2

(1, �2, 0, 1, 0) (0, 1, 1, 1, �1) (0, 1, �1, 0, 0) (0, 0, 1, �2, 0)

(� 1, 0, �1, 0, 1)

(1, 1, 0, 1, �1) (1, �2, 0, 0, 0) (0, 1, 1, �2, 0) (� 1, 1, 0, 1, 0)

(� 1, �1, �1, 0, 1)

(1, 1, 0, 1, �1) (1, 0, 1, �2, 0) (0, �1, 0, 1, 0) (0, �1, �1, 0, 1)

(� 2, 1, 0, 0, 0)

CICY 5256:

P1 1 1 0 0
P1 2 0 0 0
P1 0 0 1 1
P1 0 0 1 1
P3 1 1 1 1

0
BBBBB@

1
CCCCCA

5;29

�48

Z2 � Z2

(1, 1, 0, 1, �1) (0, 1, �2, �2, 1) (0, 0, 1, �1, 0) (0, �2, 1, 1, 0)

(� 1, 0, 0, 1, 0)

(1, 0, �2, 1, 0) (1, �2, 1, 0, 0) (0, 1, 1, �2, 0) (� 1, 1, 0, 0, 0)

(� 1, 0, 0, 1, 0)
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(1, 1, �2, 0, 0) (1, �2, 0, 1, 0) (0, 1, 1, �2, 0) (� 1, 0, 1, 0, 0)

(� 1, 0, 0, 1, 0)

(1, 1, 0, 1, �1) (1, �2, 0, 1, 0) (0, 1, �2, �2, 1) (� 1, 0, 1, 0, 0)

(� 1, 0, 1, 0, 0)

(1, 1, 0, 1, �1) (1, �2, 1, 0, 0) (0, 1, �2, �2, 1) (� 1, 0, 1, 0, 0)

(� 1, 0, 0, 1, 0)

(1, 0, �2, 1, 0) (1, �2, 1, 0, 0) (0, 1, 0, �1, 0) (0, 0, 1, �1, 0)

(� 2, 1, 0, 1, 0)

(1, 0, �1, 0, 0) (1, �2, 1, 0, 0) (0, 1, 1, �2, 0) (0, 0, �1, 1, 0)

(� 2, 1, 0, 1, 0)

(1, 0, �1, 0, 0) (1, �2, 0, 1, 0) (0, 1, 1, �2, 0) (0, 1, �1, 0, 0)

(� 2, 0, 1, 1, 0)

(1, 0, �2, 1, 0) (1, �1, 0, 0, 0) (0, 1, 1, �2, 0) (0, �1, 1, 0, 0)

(� 2, 1, 0, 1, 0)

(1, 0, 0, �1, 0) (1, 0, �2, 1, 0) (0, 1, 0, �1, 0) (0, �2, 1, 1, 0)

(� 2, 1, 1, 0, 0)

(1, 0, �1, 0, 0) (1, 0, �1, 0, 0) (0, 1, 1, 1, �1) (0, 1, 1, �2, 0)

(� 2, �2, 0, 1, 1)

(1, 0, 0, �1, 0) (1, 0, �2, 1, 0) (0, 1, 1, 1, �1) (0, 1, 0, �1, 0)

(� 2, �2, 1, 0, 1)

(1, 0, 1, 1, �1) (1, 0, �2, 1, 0) (0, 1, 0, �1, 0) (0, 1, 0, �1, 0)

(� 2, �2, 1, 0, 1)

(1, 0, 1, 1, �1) (1, 0, �1, 0, 0) (0, 1, 1, �2, 0) (0, 1, �1, 0, 0)

(� 2, �2, 0, 1, 1)

(1, 1, �2, 0, 0) (1, �1, 0, 0, 0) (0, 1, 1, 1, �1) (0, 1, 0, �1, 0)

(� 2, �2, 1, 0, 1)

(1, 1, �2, 0, 0) (1, 0, 1, �2, 0) (0, �1, 1, 0, 0) (0, �1, 0, 1, 0)

(� 2, 1, 0, 1, 0)

(1, 1, �2, 0, 0) (1, 0, 1, 1, �1) (1, 0, 0, �1, 0) (� 1, 1, 0, 0, 0)

(� 2, �2, 1, 0, 1)

CICY 5452:

P1 1 1 0 0
P1 0 0 1 1
P1 2 0 0 0
P1 0 0 2 0
P3 1 1 1 1

0
BBBBB@

1
CCCCCA

5;29

�48

Z2

(1, 1, 0, �2, 0) (1, 0, 1, 1, �1) (0, 0, �1, 1, 0) (0, �1, �1, 0, 1)

(� 2, 0, 1, 0, 0)

(1, 0, 1, 1, �1) (1, 0, �2, 0, 0) (0, 1, 1, �2, 0) (� 1, 0, 0, 1, 0)

(� 1, �1, 0, 0, 1)

(1, 1, �2, 0, 0) (0, 1, 1, 1, �1) (0, 0, 1, �1, 0) (0, �2, 0, 1, 0)

(� 1, 0, 0, �1, 1)

(1, 0, �2, 1, 0) (0, 1, 1, 1, �1) (0, 1, 0, �2, 0) (0, �1, 1, 0, 0)

(� 1, �1, 0, 0, 1)

CICY 5452:

P1 1 1 0 0
P1 0 0 1 1
P1 2 0 0 0
P1 0 0 2 0
P3 1 1 1 1

0
BBBBB@

1
CCCCCA

5;29

�48

Z2 � Z2

(1, 1, 0, 0, �1) (1, 1, 0, 0, �1) (1, �2, 0, 0, 1) (� 1, 0, �1, �1, 1)

(� 2, 0, 1, 1, 0)

(1, 1, 0, 0, �1) (1, 1, 0, 0, �1) (1, �2, �1, 1, 1) (� 1, 0, 1, �2, 0)

(� 2, 0, 0, 1, 1)

(1, 1, 0, 1, �1) (1, 0, 1, �2, 0) (1, �1, 0, 0, 0) (� 1, 0, 1, 0, 0)

(� 2, 0, �2, 1, 1)

(1, 1, 0, 0, �1) (1, 1, 0, 0, �1) (0, 0, �1, �2, 1) (0, �2, 1, 1, 0)

(� 2, 0, 0, 1, 1)

(1, 1, 0, 0, �1) (1, 1, 0, 0, �1) (0, 0, �2, �1, 1) (0, �2, 1, 0, 1)

(� 2, 0, 1, 1, 0)

(1, 1, 0, 1, �1) (1, 1, 0, �2, 0) (0, �1, 1, 0, 0) (0, �1, 1, 0, 0)

(� 2, 0, �2, 1, 1)

(1, 1, 0, 0, �1) (1, 1, 0, 0, �1) (0, �1, �1, �1, 1) (0, �2, 1, 1, 0)

(� 2, 1, 0, 0, 1)

(1, 1, 0, 0, �1) (1, 1, 0, 0, �1) (0, �1, �2, 1, 0) (0, �2, 1, 0, 1)

(� 2, 1, 1, �1, 1)

(1, 1, 0, �2, 0) (1, 0, �1, 0, 0) (0, 0, �1, 1, 0) (0, �2, 1, 1, 0)

(� 2, 1, 1, 0, 0)

(1, 1, �2, 0, 0) (1, 0, 0, �1, 0) (0, 0, 1, �1, 0) (0, �2, 1, 1, 0)

(� 2, 1, 0, 1, 0)

(1, 1, 0, �2, 0) (1, 0, �2, 1, 0) (0, �1, 1, 0, 0) (0, �1, 0, 1, 0)

(� 2, 1, 1, 0, 0)

(1, 1, 0, 1, �1) (1, �1, 0, 0, 0) (0, 1, 1, �2, 0) (0, �1, 1, 0, 0)

(� 2, 0, �2, 1, 1)

(1, 1, 0, �2, 0) (1, �1, 0, 0, 0) (0, 1, 1, 1, �1) (0, �1, 1, 0, 0)

(� 2, 0, �2, 1, 1)

(1, 1, 0, �2, 0) (1, �1, 0, 0, 0) (0, 1, �2, 1, 0) (0, �1, 1, 0, 0)

(� 2, 0, 1, 1, 0)

(1, 1, �2, 0, 0) (1, �1, 0, 0, 0) (0, 1, 1, �2, 0) (0, �1, 0, 1, 0)

(� 2, 0, 1, 1, 0)

(1, 1, 0, �2, 0) (1, �2, 1, 0, 0) (0, 1, �1, 0, 0) (0, 0, �1, 1, 0)

(� 2, 0, 1, 1, 0)

(1, 1, �2, 0, 0) (1, �2, 0, 1, 0) (0, 1, 0, �1, 0) (0, 0, 1, �1, 0)

(� 2, 0, 1, 1, 0)

(1, 0, 1, �2, 0) (1, 0, �1, 0, 0) (0, 1, 1, 1, �1) (0, �1, 1, 0, 0)

(� 2, 0, �2, 1, 1)

(1, 0, 0, �1, 0) (1, 0, �2, 1, 0) (0, 1, 0, �1, 0) (0, �2, 1, 1, 0)

(� 2, 1, 1, 0, 0)

(1, 0, �2, 1, 0) (1, �1, 0, 0, 0) (0, 1, 1, �2, 0) (0, �1, 1, 0, 0)

(� 2, 1, 0, 1, 0)

(1, 0, �1, 0, 0) (1, �2, 0, 1, 0) (0, 1, 1, �2, 0) (0, 1, �1, 0, 0)

(� 2, 0, 1, 1, 0)

(1, 0, 1, �2, 0) (1, �2, 0, 1, 0) (0, 1, �1, 0, 0) (0, 0, �1, 1, 0)

(� 2, 1, 1, 0, 0)

(1, 0, 0, �1, 0) (1, �2, 0, 1, 0) (0, 1, �2, 1, 0) (0, 0, 1, �1, 0)

(� 2, 1, 1, 0, 0)

(1, �1, 0, 0, 0) (1, �1, 0, 0, 0) (0, 1, 1, 1, �1) (0, 1, 1, �2, 0)

(� 2, 0, �2, 1, 1)

(1, 1, 1, 0, �1) (1, 1, �2, 0, 0) (0, �2, 1, �2, 1) (� 1, 0, 0, 1, 0)

(� 1, 0, 0, 1, 0)

(1, 1, 1, 0, �1) (1, 0, �2, 1, 0) (0, �2, 1, �2, 1) (� 1, 1, 0, 0, 0)

(� 1, 0, 0, 1, 0)

(1, 1, 0, �2, 0) (1, 0, �2, 1, 0) (0, �2, 1, 1, 0) (� 1, 1, 0, 0, 0)

(� 1, 0, 1, 0, 0)

(1, 1, �2, 0, 0) (1, 0, 1, 1, �1) (0, �2, 1, �2, 1) (� 1, 1, 0, 0, 0)

(� 1, 0, 0, 1, 0)

(1, 1, �2, 0, 0) (1, 0, 1, �2, 0) (0, �2, 1, 1, 0) (� 1, 1, 0, 0, 0)

(� 1, 0, 0, 1, 0)

(1, 1, �2, 0, 0) (1, �2, 0, 1, 0) (0, 1, 1, �2, 0) (� 1, 0, 1, 0, 0)

(� 1, 0, 0, 1, 0)

(1, 0, 1, 1, �1) (1, 0, �2, 1, 0) (0, �2, 1, �2, 1) (� 1, 1, 0, 0, 0)

(� 1, 1, 0, 0, 0)

(1, 0, �2, 1, 0) (1, �2, 1, 0, 0) (0, 1, 1, �2, 0) (� 1, 1, 0, 0, 0)

(� 1, 0, 0, 1, 0)

(1, 1, 1, 0, �1) (0, 1, �2, 1, 0) (0, �1, 0, 1, 0) (0, �2, 1, �2, 1)

(� 1, 1, 0, 0, 0)

(1, 0, 1, 1, �1) (0, 1, 0, �1, 0) (0, 1, �2, 1, 0) (0, �2, 1, �2, 1)

(� 1, 0, 0, 1, 0)
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CICY 6947:

P1 1 1 0 0 0 0 0 0
P1 0 0 1 1 0 0 0 0
P1 0 0 0 0 1 1 0 0
P1 0 0 0 0 0 0 1 1
P7 1 1 1 1 1 1 1 1

0
BBBBB@

1
CCCCCA

5;37

�64

Z2

(1, 0, 1, 1, �1) (1, 0, 1, 1, �1) (1, �2, 0, �2, 1) (� 1, 1, �2, �1, 1)

(� 2, 1, 0, 1, 0)

(1, 1, 0, 1, �1) (1, 1, 0, 1, �1) (0, 1, �2, �2, 1) (0, �2, 1, 1, 0)

(� 2, �1, 1, �1, 1)

(1, 0, 1, 1, �1) (1, 0, 1, 1, �1) (0, 0, �1, �2, 1) (0, �1, �1, �1, 1)

(� 2, 1, 0, 1, 0)

(1, 1, 0, 1, �1) (1, 1, 0, 1, �1) (0, �2, 1, 1, 0) (� 1, 0, 0, �2, 1)

(� 1, 0, �1, �1, 1)

CICY 6947:

P1 1 1 0 0 0 0 0 0
P1 0 0 1 1 0 0 0 0
P1 0 0 0 0 1 1 0 0
P1 0 0 0 0 0 0 1 1
P7 1 1 1 1 1 1 1 1

0
BBBBB@

1
CCCCCA

5;37

�64

Z2 � Z2

(1, 1, �2, �2, 1) (1, 0, 1, 1, �1) (1, 0, 1, 1, �1) (� 1, �2, 0, �1, 1)

(� 2, 1, 0, 1, 0)

(1, 1, 0, 1, �1) (1, 1, 0, 1, �1) (0, �1, �2, �1, 1) (0, �2, 1, 1, 0)

(� 2, 1, 1, �2, 1)

(1, 1, 0, �2, 0) (1, 0, �1, 0, 0) (0, 0, �1, 1, 0) (0, �2, 1, 1, 0)

(� 2, 1, 1, 0, 0)

(1, 1, �2, 0, 0) (1, 0, 0, �1, 0) (0, 0, 1, �1, 0) (0, �2, 1, 1, 0)

(� 2, 1, 0, 1, 0)

(1, 1, 0, �2, 0) (1, 0, �2, 1, 0) (0, �1, 1, 0, 0) (0, �1, 0, 1, 0)

(� 2, 1, 1, 0, 0)

(1, 1, �2, 0, 0) (1, 0, 1, �2, 0) (0, �1, 1, 0, 0) (0, �1, 0, 1, 0)

(� 2, 1, 0, 1, 0)

(1, 1, 0, �2, 0) (1, �1, 0, 0, 0) (0, 1, �2, 1, 0) (0, �1, 1, 0, 0)

(� 2, 0, 1, 1, 0)

(1, 1, �2, 0, 0) (1, �1, 0, 0, 0) (0, 1, 1, �2, 0) (0, �1, 0, 1, 0)

(� 2, 0, 1, 1, 0)

(1, 1, 0, �2, 0) (1, �2, 1, 0, 0) (0, 1, �1, 0, 0) (0, 0, �1, 1, 0)

(� 2, 0, 1, 1, 0)

(1, 1, �2, 0, 0) (1, �2, 0, 1, 0) (0, 1, 0, �1, 0) (0, 0, 1, �1, 0)

(� 2, 0, 1, 1, 0)

(1, 0, 1, �2, 0) (1, 0, �1, 0, 0) (0, 1, �1, 0, 0) (0, �2, 1, 1, 0)

(� 2, 1, 0, 1, 0)

(1, 0, 0, �1, 0) (1, 0, �2, 1, 0) (0, 1, 0, �1, 0) (0, �2, 1, 1, 0)

(� 2, 1, 1, 0, 0)

(1, 0, 1, �2, 0) (1, �1, 0, 0, 0) (0, 1, �2, 1, 0) (0, �1, 0, 1, 0)

(� 2, 1, 1, 0, 0)

(1, 0, �2, 1, 0) (1, �1, 0, 0, 0) (0, 1, 1, �2, 0) (0, �1, 1, 0, 0)

(� 2, 1, 0, 1, 0)

(1, 0, 0, �1, 0) (1, �2, 1, 0, 0) (0, 1, 0, �1, 0) (0, 1, �2, 1, 0)

(� 2, 0, 1, 1, 0)

(1, 0, �1, 0, 0) (1, �2, 0, 1, 0) (0, 1, 1, �2, 0) (0, 1, �1, 0, 0)

(� 2, 0, 1, 1, 0)

(1, 0, 1, �2, 0) (1, �2, 0, 1, 0) (0, 1, �1, 0, 0) (0, 0, �1, 1, 0)

(� 2, 1, 1, 0, 0)

(1, 0, 0, �1, 0) (1, �2, 0, 1, 0) (0, 1, �2, 1, 0) (0, 0, 1, �1, 0)

(� 2, 1, 1, 0, 0)

(1, 0, �1, 0, 0) (1, �2, 1, 0, 0) (0, 1, 1, �2, 0) (0, 0, �1, 1, 0)

(� 2, 1, 0, 1, 0)

(1, 0, �2, 1, 0) (1, �2, 1, 0, 0) (0, 1, 0, �1, 0) (0, 0, 1, �1, 0)

(� 2, 1, 0, 1, 0)

(1, 1, 0, �2, 0) (1, 0, �2, 1, 0) (0, �2, 1, 1, 0) (� 1, 1, 0, 0, 0)

(� 1, 0, 1, 0, 0)

(1, 1, �2, 0, 0) (1, 0, 1, �2, 0) (0, �2, 1, 1, 0) (� 1, 1, 0, 0, 0)

(� 1, 0, 0, 1, 0)

(1, 1, 0, �2, 0) (1, �2, 1, 0, 0) (0, 1, �2, 1, 0) (� 1, 0, 1, 0, 0)

(� 1, 0, 0, 1, 0)

(1, 1, �2, 0, 0) (1, �2, 0, 1, 0) (0, 1, 1, �2, 0) (� 1, 0, 1, 0, 0)

(� 1, 0, 0, 1, 0)

(1, 0, 1, �2, 0) (1, �2, 0, 1, 0) (0, 1, �2, 1, 0) (� 1, 1, 0, 0, 0)

(� 1, 0, 1, 0, 0)

(1, 0, �2, 1, 0) (1, �2, 1, 0, 0) (0, 1, 1, �2, 0) (� 1, 1, 0, 0, 0)

(� 1, 0, 0, 1, 0)

CICY 6732:

P1 1 1 0 0 0 0
P1 0 0 1 1 0 0
P1 0 0 0 0 1 1
P1 0 0 0 0 2 0
P5 1 1 1 1 1 1

0
BBBBB@

1
CCCCCA

5;37

�64

Z2

(1, 1, 1, 0, �1) (1, 0, �2, 1, 0) (1, �1, 0, 0, 0) (� 1, 1, 1, �1, 0)

(� 2, �1, 0, 0, 1)

(1, 1, 1, 0, �1) (1, �1, 1, �1, 0) (1, �1, 0, 0, 0) (� 1, 0, �2, 0, 1)

(� 2, 1, 0, 1, 0)

(1, 1, 1, 0, �1) (1, 1, �1, 1, �1) (0, 0, �2, 1, 0) (0, �2, 1, �1, 1)

(� 2, 0, 1, �1, 1)

(1, 1, 0, �2, 0) (1, 0, 1, 1, �1) (0, 1, �1, 0, 0) (0, �1, 0, 1, 0)

(� 2, �1, 0, 0, 1)

(1, 1, �2, 0, 0) (1, 0, 1, 1, �1) (0, 1, 0, �1, 0) (0, �1, 1, 0, 0)

(� 2, �1, 0, 0, 1)

(1, 1, 1, 0, �1) (1, �1, 0, 0, 0) (0, 1, 0, �2, 0) (0, 0, �1, 1, 0)

(� 2, �1, 0, 1, 1)

(1, 1, 1, 0, �1) (1, �1, 0, 0, 0) (0, 1, �2, 1, 0) (0, 0, 1, �1, 0)

(� 2, �1, 0, 0, 1)

(1, 1, 0, 1, �1) (1, �1, 1, �1, 0) (0, 1, �2, 1, 0) (0, 0, 1, �1, 0)

(� 2, �1, 0, 0, 1)

(1, 1, 0, 1, �1) (1, �1, 0, 0, 0) (0, 1, �2, 0, 0) (0, 0, 1, �1, 0)

(� 2, �1, 1, 0, 1)

(1, 1, 0, 1, �1) (1, �1, 1, �1, 0) (0, 0, �1, 1, 0) (0, �1, 0, �2, 1)

(� 2, 1, 0, 1, 0)

(1, 1, 0, �2, 0) (1, 0, �1, 0, 0) (0, 1, 1, 1, �1) (� 1, 0, 0, 1, 0)

(� 1, �2, 0, 0, 1)

(1, 1, �2, 0, 0) (1, 0, 0, �1, 0) (0, 1, 1, 1, �1) (� 1, 0, 1, 0, 0)

(� 1, �2, 0, 0, 1)

(1, 1, 1, 0, �1) (1, 0, 0, �2, 0) (0, 0, �1, 1, 0) (� 1, 1, 0, 0, 0)

(� 1, �2, 0, 1, 1)

(1, 1, 1, 0, �1) (1, 0, �2, 1, 0) (0, 0, 1, �1, 0) (� 1, 1, 0, 0, 0)

(� 1, �2, 0, 0, 1)

(1, 1, 0, 1, �1) (1, 0, �2, 1, 0) (0, 0, 1, �1, 0) (� 1, 1, 1, �1, 0)

(� 1, �2, 0, 0, 1)

(1, 1, 0, 1, �1) (1, 0, �2, 0, 0) (0, 0, 1, �1, 0) (� 1, 1, 0, 0, 0)
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