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Motivated by recent studies of deep inelastic scattering off the N ¼ 4 super-Yang-Mills (SYM)

plasma, holographically dual to an AdS5 � S5 black hole, we use the spacelike flavor current to probe the

internal structure of one holographic quark-gluon plasma, which is described by the Sakai-Sugimoto

model at high temperature phase (i.e., the chiral-symmetric phase). The plasma structure function is

extracted from the retarded flavor current-current correlator. Our main aim in this paper is to explore the

effect of nonconformality on these physical quantities. As usual, our study is under the supergravity

approximation and the limit of large color number. Although the Sakai-Sugimoto model is nonconformal,

which makes the calculations more involved than the well-studied N ¼ 4 SYM case, the result seems to

indicate that the nonconformality has little essential effect on the physical picture of the internal structure

of holographic plasma, which is consistent with the intuition from the asymptotic freedom of QCD at high

energy. While the physical picture underlying our investigation is same as the deep inelastic scattering off

the N ¼ 4 SYM plasma with(out) flavor, the plasma structure functions are quantitatively different,

especially their scaling dependence on the temperature, which can be recognized as model dependent. As

a comparison, we also do the same analysis for the noncritical version of the Sakai-Sugimoto model which

is conformal in the sense that it has a constant dilaton vacuum. The result for this noncritical model is quite

similar to the conformalN ¼ 4 SYM plasma. We therefore attribute the above difference to the effect of

nonconformality of the Sakai-Sugimoto model.
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I. INTRODUCTION

In heavy-ion collision, which is now experimentally
studied at the Relativistic Heavy Ion Collider (RHIC)
and the LHC, the so-called quark-gluon plasma seems to
be strongly interacting and behaves like a perfect liquid
[1], which is greatly different from the previously recog-
nized weakly-coupled quark-gluon plasma. This brings to
an urgent stage nonperturbative investigations of hadronic
matter at high temperature and high density produced in
heavy-ion collision. Although the lattice method can cal-
culate some properties of a strongly coupled system, it can
just extract some static quantities such as the hadron mass
spectrum and thermodynamical behavior. What is worse is
that when adding finite density or chemical potential into
the thermal QCD, the lattice calculation usually confronts
the notorious sign problem. Therefore, improvement in the
theoretical understanding of strongly coupled quark-gluon
plasma (sQGP) should not only go beyond the traditional
perturbative QCD (pQCD) approach but also reveal some
properties out of equilibrium, such as transport properties,
dispersion relation, high-energy scattering, and so on.

Gauge/gravity duality [2] states that strong-coupling
gauge theory can be mapped to weak-coupling gravity
with a negative cosmological constant in the limit of large

’t Hooft coupling and large Nc, where Nc is the number of
color of gauge theory. Although the gravity dual of the
realistic QCD has not yet been established, one expects this
duality to be of great importance in understanding some
nonperturbative properties of QCD or at least some uni-
versal features of a strongly coupled system. In fact, over
the last decade, using the gauge/gravity duality technique
to study properties of sQGP has gained great success [3].
However, most of the studies have focused on the static or
hydrodynamic properties at large scale or long time com-
pared to the inversion of the temperature of the system.
Therefore, it is of great interest to study the hard probe of
the plasma and reveal its internal structure, which should
be in contrast with the parton picture of a single hadron in
pQCD. Studies on this topic1 were originally proposed in
[6] for R-current scattering off a dilaton hadron in a hard-
wall model and later generalized to the plasma case with-
out flavor in Ref. [7] and with flavor in Ref. [8].
The main lesson2 from these investigations is that at high

energy the R current or flavor current probes the partonic
behavior of the plasma, giving nonvanishing plasma struc-
ture function, while at low energy the current is not
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1For studies on deep inelastic scattering under the technique of
gauge/gravity duality, see, e.g., Refs. [4,5].

2For details on discussions of the structure function and the
partonic picture of holographic quark-gluon plasma, see
Refs. [7–9].
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absorbed by the plasma, indicating a vanishing contribu-
tion to the plasma structure function.3 Besides the plasma
structure function, another important quantity is the so-
called plasma saturation momentum, which is the critical
energy defining the transition from weakly quasielastic
scattering to high-energy deep inelastic scattering. In other
words, the partonic picture for holographic plasma exists
only when all partons have transverse momenta below the
saturation momentum.

Since previous studies focused mainly on the D3-brane
geometry, which is dual to the conformal N ¼ 4 SYM,
we here4 use one nonconformal gravity dual model of QCD
to probe the effect of the nonconformality on the plasma
structure. To be specific, the model under consideration

here is the transversely intersecting D4/D8/D8 brane sys-
tem, which is now usually referred to as the Sakai-
Sugimoto model [10]. It is one of the most successful
holographic QCD models from the top-down approach in
realizing some phenomena of low-energy QCD such as
confinement/deconfinement phase transition,5 non-Abelian
chiral symmetry breaking, and vector meson dominance.
The temperature under the gauge/gravity duality approach
can be realized by extending the color brane geometry to a
black hole [12]. The high-temperature phase means that
the chiral symmetry is restoring, which is denoted by the

parallel profile of flavor D8/D8 branes. Note that the
temperature will be much smaller than the four-momentum
of the flavor current, since in this paper we are focusing on
high-energy scattering to probe the internal structure of
holographic plasma. The setup in this paper is similar to
that of Ref. [8], but because the induced metric on the
flavor worldvolume reduces to an AdS5 � S4 black hole, it
is essentially the same as that of the R-current deep
inelastic scattering (DIS) off the N ¼ 4 SYM plasma.
Thus, the procedure here is similar to that of Ref. [7] and
much simpler than that in Ref. [8]. To extract the structure
function, we need to study the flavor-current propagation in
holographic plasma. According to gauge/gravity duality,
this can be achieved by studying theUð1Þ flavor gauge field
in curved spacetime. The corresponding action and

equation of motion determining this dynamic are encoded
in a Maxwell theory in curved five-dimensional spacetime.
On the other hand, the parton structure function has a
standard definition in quantum field theory, which is en-
coded in the retarded current-current correlator. One main
task of gauge/gravity duality is to calculate the retarded
Green function for finite-temperature field theory from
dual gravity following the recipe in Ref. [13]. In this sense,
the information of the structure function is totally encoded
in the solution of the above-mentioned Maxwell equation
in a five-dimensional curved spacetime of asymptotic AdS
type. One additional key point under this prescription is
that the solution should obey the incoming wave boundary
condition at the horizon, reflecting the full-absorption
characteristic of a black hole. Once the equation of motion
for the flavor Uð1Þ gauge field is turned into a Schrödinger
type of equation, it will be found that their behavior is very
similar to that of the N ¼ 4 SYM case. This is natural
since the setup of holographic models is very general. This
may also be recognized as one universal characteristic of
gauge/gravity duality.
Another motivation for our study in this paper is to probe

some universal features of the structure of holographic
plasma, described by the intersecting D-brane system in
the conformal or nonconformal case. We have learned that
both the procedure and the physical picture for these
calculations are universal, which is in part due to the
unified approach of gauge/gravity duality in dealing with
strongly coupled problems. The specific form of the struc-
ture function is model dependent, which may allow us to
resort to the experiments to judge which model is much
closer to physical reality. For the two structure functions,
we find, that in the nonconformal background, they also
satisfy the Callan-Gross relation in the limit of a large
Bjorken variable (defined later), which is same as in the
N ¼ 4 SYM case. Therefore, it is reasonable to conjec-
ture that this relation should be universal for holographic
plasma described by the intersecting D-brane system, hav-
ing nothing to do with the conformality of the holographic
background.
Since the flavor gauge field we are focusing on in

this paper can also be considered as the gravity dual of a
vector meson, our study can then be regarded as the
completion of previous studies of mesonic quasinormal
modes in Ref. [14]. Here, we extend these studies to
high-momentum and high-frequency limits, in contrast to
previous hydrodynamic behavior or just the high-
frequency limit. However, here we will not go into the
detailed numeric extraction of mesonic quasinormal fre-
quency in high-frequency and high-momentum limits, and
leave this task for future investigation.
We will also do the same analysis for the noncritical

version of the Sakai-Sugimoto model for comparison. This
noncritical model was proposed in Ref. [15] to overcome
some drawbacks, which are general in critical string theory,

3When taking into account the nonperturbative tunneling
effect of current when encountering a narrow and high potential
barrier, an exponentially suppressed structure function can be
obtained.

4As in the literature, for simplification, we do not consider
charge density, which can be modeled by the time component of
the flavor gauge field in present construction, and just leave this
problem for further investigation.

5Recently, one paper [11] appeared which proves that the
previous interpretation of transition between the anti–de Sitter
(AdS) soliton and the black D4-brane as the strong-coupling
continuation of the confinement/deconfinement transition in four
dimensional Yang-Mills theory is not valid. The authors there
proposed an alternative gravity dual of the confinement/decon-
finement transition. For details on this topic, see the original
work [11].
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of the critical Sakai-Sugimoto model. This model can be
thought of as a conformal one, so we expect the related
results in this model should be more similar to theN ¼ 4
SYM case. This expectation has been confirmed by the fact
that the structure function for the noncritical model has the
same scaling dependence on temperature as that of the
N ¼ 4 SYM case. This is another difference between
the Sakai-Sugimoto model and its noncritical version.

Another striking point is that the stringy imprints have
appeared in the final results of the structure functions for
both models considered in this paper. Seemingly, this
would lean toward the successful aspects of the Sakai-
Sugimoto model. However, if we recall that the holo-
graphic plasma is quite different from the realistic sQGP,
we should just take these unsatisfactory features as non-
universal ones and focus on some universal features that
emerge from the different holographic models.

The rest of this paper is organized as follows. In Sec. II,
we first give a brief overview of the Sakai-Sugimoto model
as well as its noncritical version, and then we give the basic
equations for later calculations. In Sec. III, we present
detailed extraction of the structure function for the Sakai-
Sugimoto model and list the main results for its noncritical
version. Then we have a brief discussion about the results.
Section IV is devoted to a short summary and some open
questions.

II. OVERVIEW OF MODELS AND
BASIC EQUATIONS

In this section we first recapitulate the Sakai-Sugimoto
model and its noncritical version [10,15,16]. Then we turn
to the definitions for the plasma structure function in terms
of physical quantity in standard field theory. We will also
state basic equations determining the flavor-current propa-
gation in these plasmas from the viewpoint of dual gravity;
the equations are essential for later extraction of the struc-
ture function. We will follow the notation conventions in
Refs. [7,8].

A. Sakai-Sugimoto model versus its noncritical version

The bulk background geometry of the Sakai-Sugimoto
model is given by a 10-dimensional supergravity descrip-
tion of Nc coincident D4-branes in type IIA superstring
theory compactified on a circle. According to Ref. [12],
there are two different metrics for this supergravity, repre-
senting two different phases of holographic QCD. The
transition between these two phases is interpreted as the
deconfinement phase transition. Here, we just focus on
the high-temperature deconfining phase, described by the
following backgrounds6:

ds2 ¼
�
u

R

�
3=2ð�fðuÞdt2 þ d~x2 þ dx24Þ

þ
�
R

u

�
3=2

�
du2

fðuÞ þ u2d�2
4

�
; (1)

e� ¼ gs

�
u

R

�
3=4

;

fðuÞ ¼ 1�
�
uT
u

�
3
;

t� tþ � ¼ tþ 4�R3=2

3u1=2T

:

(2)

The temperature of the holographic plasma dual to the
above background is

T ¼ 1

�
¼ 3u1=2T

4�R3=2
: (3)

The curvature radius R of the background is related to the
string coupling gs and string length ls via

R3 ¼ �gsNcl
3
s � ��l3s : (4)

Here in the second equality we have defined the
’t Hooft coupling constant � from the dual gravity side
as � � gsNc.
The above gravity background is dual to the gluon

sector, and the quark sector can be introduced in quenched

approximation by adding Nf pairs of D8- and D8-flavor

branes to the above geometry and making them transverse
to the circle along x4. In the quenched limit, Nf � Nc, the

backreaction of the flavor branes on the background ge-
ometry can be neglected. Dynamics of the flavor sector is
encoded in the Dirac-Born-Infeld (DBI) plus the Chern-
Simons actions for the flavor branes in the above back-
ground. However, the Chern-Simons term will be exactly
zero in this paper, as there is no background for the Uð1Þ
gauge field on the flavor branes.
Chiral phase transition for the flavor sector in this de-

confined phase can happen, and it has a beautiful geometric
explanation: the parallel profile of the flavor D8- and

D8-branes stands for the chiral-restoring phase while the
connected U-shaped profile stands for the chirally broken
phase. In general, high temperature corresponds to the
chiral-restoring phase while low temperature corresponds
to the chirally broken phase. (The details on this topic can
be found in Ref. [17].) In the high-temperature phase, the
induced metric on the flavor branes has the following
standard AdS form:

ds28¼
�
u

R

�
3=2ð�fðuÞdt2þd~x2Þþ

�
R

u

�
3=2

�
du2

fðuÞþu2d�2
4

�
:

(5)

The other model we are concerned about here is the
noncritical version of the Sakai-Sugimoto model. It is

6Because of the periodic identification of the time coordinate,
it should be Euclidean time. However, we here use the
Minkowskian signature for later convenience when we extract
the Minkowski-space retarded Green function.
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based on the supergravity description of Nc coincident
D4-branes in six dimensions with one dimension compac-
tified on a circle, as in the Sakai-Sugimoto model. The
corresponding background geometry takes the following
form in the high-temperature phase:

ds2 ¼
�
u

R

�
2ð�fðuÞdt2 þ d~x2 þ dx24Þ þ

�
R

u

�
2 du2

fðuÞ ; (6)

e� ¼ 2
ffiffiffi
2

p
ffiffiffi
3

p
Nc

; R2 ¼ 15
2 ; fðuÞ ¼ 1�

�
uT
u

�
5
;

t� tþ � ¼ tþ 4�R2

5uT
:

(7)

The flavor quark sector can be introduced by adding Nf

pairs of D4- and D4-branes into the above background
geometry. One important feature of this model is that it
does not have the undesired internal space, which may
introduce the unwanted KK modes. Another striking char-
acteristic of this model is that it has a constant dilaton
vacuum as for the D3-brane geometry in 10 dimensions,
which should signal that this model is a conformal one. As
in the Sakai-Sugimoto model, the chiral-restoring phase
means that the induced metric on the flavor branes takes
the form

ds24 ¼
�
u

R

�
2ð�fðuÞdt2 þ d~x2Þ þ

�
R

u

�
2 du2

fðuÞ : (8)

For convenience in later calculations, we now rescale the
radial coordinate u to make it dimensionless by a trans-
formation uT=u ¼ r. Then the induced geometry on the
flavor branes takes the following simplified versions:

ds28 ¼
�
uT
R

�
3=2

r�ð3=2Þð�fðrÞdt2 þ d~x2Þ

þ R3=2u1=2T r�ð5=2Þ
�
dr2

fðrÞ þ r2d�2
4

�
; (9)

e� ¼ gs

�
uT
R

�
3=4

r�ð3=4Þ; fðrÞ ¼ 1� r3; (10)

ds24 ¼
�
uT
R

�
2 1

r2
ð�fðrÞdt2 þ d~x2Þ þ

�
R

r

�
2 dr2

fðrÞ ; (11)

e� ¼ 2
ffiffiffi
2

p
ffiffiffi
3

p
Nc

; fðrÞ ¼ 1� r5: (12)

Note that under the new coordinates, the interval for radial
coordinate r is located in a finite regime: r 2 ½0; 1�, and the
horizon is now at r ¼ 1, while the boundary is at r ¼ 0,
which will make later analysis convenient.

Before concluding this subsection, we give a short com-
ment about one general feature of the above models.
Whether or not there is background on the flavor branes,

fluctuations of the flavor gauge field and scalar mode in the
chiral-restoring phase will always decouple, which to-
gether with exact AdS forms of the induced metrics will
greatly simplify later calculations. This is also one reason
why we choose the transversely intersecting D-brane sys-
tems for study. As mentioned in Sec. I, the plasma structure
function is completely encoded in the dynamics of the
flavor Uð1Þ gauge field propagating through the above-
mentioned geometry, which is described by the DBI ac-
tions on the flavor branes.

B. DIS: Field theoretical definitions

Deep inelastic scattering in QCD is a powerful tool for
exploring the hadron structure. Here we mainly focus on
the electromagnetic mediation between the charged lepton
and the hadron. The basic objective of DIS is to compute
the retarded current-current correlator defined by

���ðkÞ � i
Z

d4xe�ik�x�ðx0Þh½J�ðxÞ; J�ð0Þ�i; (13)

where k is the four-momentum of the electromagnetic
current, h. . .i means quantum vacuum expectation, and
J�ðxÞ is the mediated electromagnetic current. When con-

sidering the lepton scattering off the plasma, the hadron
should be replaced by the plasma system, and the vacuum
polarization tensor Eq. (13) is modified to

���ðk; TÞ � i
Z

d4xe�ik�x�ðx0Þh½J�ðxÞ; J�ð0Þ�iT; (14)

where h. . .iT means the thermal expectation value in the
plasma system.
Although the gravity dual of the SUðNÞ �Uð1Þe:m:

gauge theory has not been established, we can use a non-
dynamical electromagnetic field to model the photon just
as in condensed matter physics given that the electromag-
netic coupling constant is very small. In the present con-
text, the electromagnetic current is replaced by the flavor
Uð1Þ current and also denoted as J�ðxÞ. Now we list the

general structure of the thermal polarization tensor defined
in Eq. (14). According to the gauge symmetry and rotation
symmetry of thermal field theory, it can be decomposed
into two scalar functions as

���ðk; TÞ ¼
�
��� �

k�k�

Q2

�
�1ðx;Q2Þ

þ
�
n� � k�

n � k
Q2

��
n� � k�

n � k
Q2

�
�2ðx;Q2Þ;

(15)

where ��� ¼ ð�1; 1; 1; 1Þ, Q2 � k�k� is the current vir-

tuality, and n� is the four-velocity of the plasma, which

will be chosen as n� ¼ ð�1; 0; 0; 0Þ to signal that the

plasma is at rest. We have also defined the Bjorken variable
as x ¼ �Q2=½2ðn � kÞT�. Then the DIS structure function

YAN YAN BU AND JIN MIN YANG PHYSICAL REVIEW D 84, 106004 (2011)

106004-4



of the plasma can be extracted from the polarization tensor
as

F1 � 1

2�
Im�1; F2 � �ðn � kÞ

2�T
Im�2: (16)

For the sake of later convenience, we now proceed to
express the above two functions in terms of the longitudi-
nal and transverse polarization tensors �LL and �yy that

will be introduced in Sec. III:

F1 ¼ 1

2�
Im�yy ¼ 1

2�
Im�zz; (17)

F2 ¼ !2

q2

�
Q2x

�
Im�LL þ 2xF1

�
: (18)

In obtaining these two expressions, we have used the flavor
current momentum defined in Eq. (25) and assumed that
the plasma is at rest. From Eq. (18), we can see that in the
interesting kinematic regime,!2=q2 ¼ 1�Q2=q2 ’ 1, F2

can be simplified further to

F2 ’ Q2x

�
Im�LL þ 2xF1: (19)

If the first term in Eq. (19) could be negligible, we then
straightforwardly come to the familiar Callan-Gross rela-
tion F2 ’ 2xF1.

In particle physics, the structure function has been
studied by the operator product expansion technique for
specific hard processes. The parton model is suitable for
the weak-coupling regime of high-energy QCD, while in
the present case, for holographic quark-gluon plasma,
which has been thought of as strongly coupled, we resort
to its gravity dual for calculations of above quantities.
There is a standard prescription [13] for calculating the
retarded Green function such as Eq. (14) under the ap-
proach of gauge/gravity duality. The current J� couples to

its source A�ðx; r ¼ 0Þ as

Sint ¼
Z

d4xJ�A
�ðx; r ¼ 0Þ; (20)

where A�ðx; rÞ is the flavor Uð1Þ gauge field introduced in

the next subsection. The main idea under this prescription
is to invert the operator Green function on the field theory
side to a dual field Green function on the gravity side,
whose calculations just need classical gravity action. More
details on this prescription can be found in Ref. [13]. Now
we explicitly write the expression for the polarization
tensor defined in Eq. (14) in terms of the variables on the
dual gravity side:

���ðk; TÞ � 	2S

	A�ð�kÞ	A�ðkÞ
��������r¼0

; (21)

where S is the on-shell action defined in Eqs. (26) and (34).
Later, it will be found that, due to the coupling of Ax and

At, we have to express the on-shell action in terms of
longitudinal mode AL and transverse modes Ay, Az as

defined in the next subsection.

C. Basic equations: Flavor current
propagation in plasma

As in many works on applications of gauge/gravity
duality to strong-coupling problems, we choose the radial
gauge for gauge potential, i.e., Ar ¼ 0. This is enough for
the noncritical case, while for the Sakai-Sugimoto model
we also have internal symmetry on �4 space. For brevity,
we also set the gauge potential along it to zero and assume
that the gauge potential does not depend on the internal
coordinate. As to the action, we just retain it to quadratic
order in the gauge field fluctuation, which is enough for the
propagation of the flavor current. In the following, we will
write just the main equations for the gauge fields. (For
details on their extraction, see Refs. [14,18].)
For the Sakai-Sugimoto model, the DBI action for the

fluctuation of the flavor Uð1Þ gauge field takes the follow-
ing form after integrating out the �4 space:

S8¼�ð2�l2sÞ2
4

T8NfVS4

Z
d4xdr

ffiffiffiffiffiffiffiffiffiffiffiffi�geff
p

gMNgPQFMPFNQ;

(22)

ffiffiffiffiffiffiffiffiffiffiffiffi�geff
p � e��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg5
p

g2
S4

¼ g�1
s R3=2u7=2T r�ð9=2Þ; (23)

where FMP ¼ @MAP � @PAM is the field strength of the
gauge field AM, g

MN is the inversion of the induced metric
in Eq. (9), the index M, N and so on just need to run the
former five coordinates in Eq. (9), T8 is the D8-brane
tension, and VS4 is the volume of unit sphere �4. The
equation of motion (EOM) for the gauge field AM followed
from this action is of Maxwell type:

@Mð ffiffiffiffiffiffiffiffiffiffiffiffi�geff
p

gMNgPQFNQÞ ¼ 0: (24)

Now we turn to the momentum space by doing the
following partial Fourier transformation of the gauge field:

A�ðx; rÞ ¼
Z d4k

ð2�Þ4 e
ikxA�ðk�; rÞ;

k� ¼ ð�!; q; 0; 0Þ:
(25)

Without loss of generality, we have chosen the spatial
momentum along just one spatial direction as done in the
literature. Then, in the partial momentum space, the on-
shell action turns into the following form:

S8 ¼ �ð2�l2sÞ2
2

T8NfVS4

Z d4k

ð2�Þ4
� ffiffiffiffiffiffiffiffiffiffiffiffi�geff

p
grrfgttAtð�k; rÞ@rAtðk; rÞ

þ giiAið�k; rÞ@rAiðk; rÞgjr¼1
r¼0 ði ¼ x; y; zÞ; (26)
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while Eq. (24) can be explicitly cast into the following
three forms:

!A0
t þ qfðrÞA0

x ¼ 0; (27)

A00
y þ

@rð ffiffiffiffiffiffiffiffiffiffiffiffi�geff
p

grrgyyÞffiffiffiffiffiffiffiffiffiffiffiffi�geff
p

grrgyy
A0
y � gyy

grr

�
q2 � !2

fðrÞ
�
Ay ¼ 0;

(28)

A000
t þ

�
2@rð ffiffiffiffiffiffiffiffiffiffiffiffi�geff

p
grrgttÞffiffiffiffiffiffiffiffiffiffiffiffi�geff

p
grrgtt

� @rð ffiffiffiffiffiffiffiffiffiffiffiffi�geff
p

gttgxxÞffiffiffiffiffiffiffiffiffiffiffiffi�geff
p

gttgxx

�
A00
t

þ
�
@2rð ffiffiffiffiffiffiffiffiffiffiffiffi�geff

p
grrgttÞffiffiffiffiffiffiffiffiffiffiffiffi�geff

p
grrgtt

� gxx

grr

�
q2 � !2

fðrÞ
�

� @rð ffiffiffiffiffiffiffiffiffiffiffiffi�geff
p

gttgxxÞffiffiffiffiffiffiffiffiffiffiffiffi�geff
p

gttgxx
@rð ffiffiffiffiffiffiffiffiffiffiffiffi�geff

p
grrgttÞffiffiffiffiffiffiffiffiffiffiffiffi�geff

p
grrgtt

�
A0
t ¼ 0: (29)

The component Az satisfies the same equation as the Ay

component in Eq. (28), and we refer to them as transverse
modes. Another important relation between Ax and At is

@rð ffiffiffiffiffiffiffiffiffiffiffiffi�geff
p

grrgttA0
tÞ � ffiffiffiffiffiffiffiffiffiffiffiffi�geff

p
gttgxxqð!Ax þ qAtÞ ¼ 0:

(30)

In the above equations, prime denotes the derivative with
respect to the radial coordinate r. Once the induced metric
is inserted into Eqs. (28)–(30), they can be simplified to the
following forms:

a00 þ
�
1

2r
þ f0ðrÞ

fðrÞ
�
a0 þ

�
~!2 � ~q2fðrÞ

rf2ðrÞ � f0ðrÞ
2rfðrÞ

�
a ¼ 0;

(31)

A00
y þ

�
� 1

2r
þ f0ðrÞ

fðrÞ
�
A0
y � ~q2fðrÞ � ~!2

rf2ðrÞ Ay ¼ 0; (32)

AL ¼ uT
R3

q�1r3=2fðrÞðr�1=2aÞ0; (33)

where ð ~!; ~qÞ � 3
4�T ð!; qÞ are dimensionless variables,

a denotes A0
t, and AL is the longitudinal mode defined

as AL � qAt þ!Ax. Note that we have written
Eqs. (27)–(30) in a general form so that they should also
be suitable for the noncritical model being studied later.

Similarly, we could write similar equations for the non-
critical version of the Sakai-Sugimoto model, but for brev-
ity we just list the main results like Eqs. (26) and (31)–(33):

S4 ¼ �ð2�l2sÞ2
2

T4Nf

e�
u2T
R3

Z d4k

ð2�Þ4
1

r

� ½fðrÞAið�k; rÞ@rAiðk; rÞ
� Atð�k; rÞ@rAtðk; rÞ�jr¼1

r¼0 ði ¼ x; y; zÞ; (34)

a00 þ
�
f0ðrÞ
fðrÞ �

1

r

�
a0 þ

�
1

r2
� f0ðrÞ

rfðrÞ þ
~!2 � ~q2fðrÞ

f2ðrÞ
�
a ¼ 0;

(35)

A00
y þ

�
f0ðrÞ
fðrÞ �

1

r

�
A0
y þ ~!2 � ~q2fðrÞ

f2ðrÞ Ay ¼ 0; (36)

AL � u2T
R4

1

q
rfðrÞ

�
a

r

�0
: (37)

Here the only difference from the Sakai-Sugimoto model
in notation lies in the specific definitions of the dimension-
less variables ~! and ~q:

~! � !

0:8�T
; ~q � q

0:8�T
: (38)

We now express the flavor brane actions in terms of AL,Ay,

Az and a, as mentioned in last subsection. Because similar
calculations have been done in the literature many times,
we here merely list the final results. For the Sakai-
Sugimoto model, we have

S8 ¼ �ð2�l2sÞ2
2

T8NfVS4

Z d4k

ð2�Þ4
� ffiffiffiffiffiffiffiffiffiffiffiffi�geff

p
grrfgttq�1ALð�k; rÞaðk; rÞ

þ giiAið�k; rÞ@rAiðk; rÞgjr¼1
r¼0 ði ¼ y; zÞ; (39)

and for the noncritical model

S4 ¼ �ð2�l2sÞ2
2

T4Nf

e�
u2T
R3

�
Z d4k

ð2�Þ4 r
�1f�q�1ALð�k; rÞaðk; rÞ

þ fðrÞAið�k; rÞ@rAiðk; rÞgjr¼1
r¼0 ði ¼ y; zÞ: (40)

Some remarks are due about these equations which will
determine later calculations. Explicitly, these equations are
more involved than the related ones in Ref. [7], which have
already been confirmed in Ref. [8] for D3/D7-brane setup.
We can attribute these complexities to the introduction of
the flavor branes and the nonconformality of the model.
However, once these EOMs are turned into standard
Schrödinger types, and taking high-momentum and high-
frequency limits, we will find that these complications will
automatically disappear and the equations are qualitatively
in common with those of Ref. [7].
We now proceed by following Ref. [7] to turn these

EOMs into standard Schrödinger types and discuss some
general features of effective potentials, respectively. We
will find that the general discussions for potentials will
reveal some physical pictures for the DIS processes being
considered in this paper.
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The equations obeyed by new fields have the following
common form irrespective of the models:

� c 00
L þ VLðrÞc L ¼ 0 ðfor time component aÞ;

(41)

�c 00
TþVTðrÞc T ¼0 ðfor transverse componentAyorAzÞ:

(42)

For the Sakai-Sugimoto model, the explicit field transfor-
mations and effective potentials are as follows:

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ð1� r3Þr1=2
s

c L; (43)

VLðrÞ¼ 1

rð1�r3Þ2
�

1

16r
ð�3�78r3þ45r6ÞþK2� ~q2r3

�
;

(44)

Ay ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1=2

1� r3

s
c T; (45)

VTðrÞ ¼ 1

rð1� r3Þ2
�

1

16r
ð5� 46r3 þ 5r6Þ þ K2 � ~q2r3

�
:

(46)

While for the noncritical model, we have following respec-
tive ones:

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r

ð1� r5Þ
s

c L; (47)

VLðrÞ ¼ 1

ð1� r5Þ2
�
1

4r2
ð�1� 48r5 þ 24r10ÞþK2 � ~q2r5

�
;

(48)

Ay ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r

ð1� r5Þ
s

c T; (49)

VTðrÞ ¼ 1

ð1� r5Þ2
�
1

4r2
ð3þ 8r10 � 36r5Þ þ K2 � ~q2r5

�
:

(50)

In these equations, we have defined the dimensionless
current virtuality as K2 � ~q2 � ~!2. We will take this
virtuality to be spacelike, which amounts to saying that
the process considered here is like the lepton deep inelastic
scattering off the proton. But as noted in Ref. [7], the final
results will also be suitable for timelike virtuality if we take
the high-momentum limit (especially if ~q2 � K2). Since
we are interested in the internal structure of holographic
quark-gluon plasma, we should use a high-energy probe to
explore this just like the DIS processes in pQCD. One basic

difference between the plasma and a single hadron is that
the former has an intrinsic scale (temperature). In short, we
are focusing on the following kinematic parameter space:

~! � 1; ~q � 1; K2 � 1: (51)

Under the above kinematics, these effective potentials can
be further approximated as follows.7 For the Sakai-
Sugimoto model, we have

VLðrÞ ¼ 1

rð1� r3Þ2
�
� 3

16r
þ K2 � ~q2r3

�
; (52)

VTðrÞ ¼ 1

rð1� r3Þ2
�

5

16r
þ K2 � ~q2r3

�
; (53)

while for the noncritical model, we have

VLðrÞ ¼ 1

ð1� r5Þ2
�
� 1

4r2
þ K2 � ~q2r5

�
; (54)

VTðrÞ ¼ 1

ð1� r5Þ2
�
3

4r2
þ K2 � ~q2r5

�
: (55)

Equations (41), (42), and (52)–(55) are the main ingre-
dients for later extraction of the structure functions of
holographic plasma.
We have seen that, in the interesting kinematic regime

symbolized by Eq. (51), for both the Sakai-Sugimoto
model and its noncritical version, the effective potentials8

for longitudinal as well as transverse modes are qualita-
tively similar to those of the N ¼ 4 SYM case with(out)
flavors [7,8]. More explicitly, the maximum of the longi-
tudinal potential can be positive (corresponding to poten-
tial barrier), negative (with no barrier at all), or zero
according to the value of ~q=K4 (for the Sakai-Sugimoto
model) or ~q2=K7 (for the noncritical model). While effec-
tive, the potentials for the transverse modes are more
involved because they start from a positive infinity and
then fall to negative infinity very rapidly, which may
complicate later analysis using WKB approximation to
construct the wave function c T . Recalling the fact that
the dilaton vacuum for the Sakai-Sugimoto model is not a
constant while for the noncritical version it is constant,
these facts together seem to indicate that the nonconfor-
mality of the Sakai-Sugimoto model is not essential to the
physical picture of the high-energy scattering process. This
is a by-product of the general behavior analysis for the

7For the following four potentials, we have ignored polyno-
mials of r in their final expressions. Strictly speaking, this is not
right; but since we are concerned, in particular, with their
behavior near the boundary r ¼ 0, which directly determines
the polarization tensor, and their behavior at the horizon r ¼ 1 is
just for the incoming wave boundary condition, we believe this
choice is reasonable.

8We should have plotted these effective potentials for illus-
tration as in Refs. [7,8], but we skip it here for brevity since the
plots are basically the same.
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effective potentials; later we will confirm this observation
by direct extraction of the structure functions for both
holographic models.

Before concluding this section, we briefly summarize
the physical picture in Ref. [7] governing high-energy DIS
from the viewpoint of nonrelativistic quantum mechanics.
For the longitudinal mode, when the potential barrier
builds in (corresponding to the small spatial-momentum
case), the wave function cannot be imposed on the incom-
ing wave boundary condition at the horizon due to the high
and narrow barrier, which indicates zero structure function.
When taking into account the nonperturbative tunneling
effect, a small exponentially suppressed structure function
can be obtained. Therefore, in the following sections, we
focus merely on the high spatial-momentum limit. In this
regime, the wave function will be complex and an incom-
ing wave boundary condition can be imposed at the hori-
zon. Moreover, in this high-energy regime, a partonic
picture for the plasma exists.

III. STRUCTURE FUNCTION OF HOLOGRAPHIC
QUARK-GLUON PLASMA

Now we have all the elements to calculate the polariza-
tion tensor defined in Eq. (14). As mentioned above, we
should focus on the high-momentum kinematics besides
the one defined in Eq. (51). This means that theK2 terms in
effective potentials can be ignored as well, which makes
semianalytical solutions for these Schrödinger equations
possible. In this section, we follow the standard WKB
approach in nonrelativistic quantum mechanics to con-
struct these solutions. We present the calculations in detail
for the Sakai-Sugimoto model and then list the final results
for its noncritical version.

We first discuss the longitudinal mode. Under the high-
momentum approximation discussed in the previous para-
graph, the Schrödinger equation for longitudinal mode
then takes the following simple form near r ’ 0:

c 00
LðrÞ þ

�
3

16r2
þ ~q2r2

�
c LðrÞ ¼ 0: (56)

Its general solution is a linear combination of the Bessel
and Neumann functions:

c Lðr ’ 0Þ ¼ c1~q
1=4r1=2J1=8

�
~qr2

2

�
þ c2~q

1=4r1=2N1=8

�
~qr2

2

�
;

(57)

and the constants c1, c2 will be determined by imposing an
incoming wave boundary condition at the horizon, which
requires matches of solutions at different regimes.

Near r ’ 1, the Schrödinger equation can be approxi-
mated as

c 00
LðrÞ þ

~q2

9ð1� rÞ2 c LðrÞ ¼ 0: (58)

Its general solution is

c Lðr ’ 1Þ ¼ c3ð1� rÞð1=2Þ�ðið~q=3ÞÞ þ c4ð1� rÞð1=2Þþðið~q=3ÞÞ:
(59)

Recalling Eqs. (43) and (45) and imposing an incoming
wave boundary condition at the horizon make us to con-
clude that c4 ¼ 0, thus leaving the general solution near the
horizon to be

c Lðr ’ 1Þ ¼ c3ð1� rÞð1=2Þ�ið~q=3Þ: (60)

Besides, we have to study in detail the solution suitable
for an intermediate regime far from the singularities at
r ¼ 0 and r ¼ 1. In this regime, the Schrödinger equation
is approximated as

c 00
LðrÞ þ

~q2r2

ð1� r3Þ2 c LðrÞ ¼ 0: (61)

For convenience, we now define the so-called canonical
momentum pðrÞ and action sðrÞ:

pðrÞ ¼ ~qr

1� r3
; sðrÞ ¼

Z r

0
pðrÞdr ¼

Z r

0
dr

~qr

1� r3
:

Then the two linear independent solutions in the intermedi-
ate regime under WKB approximation are

c ð1Þ
L ðrÞ ¼ 1ffiffiffiffiffiffiffiffiffi

pðrÞp cos½sðrÞ þ�1�; (62)

c ð2Þ
L ðrÞ ¼ 1ffiffiffiffiffiffiffiffiffi

pðrÞp sin½sðrÞ þ�2�: (63)

The asymptotic behaviors for pðrÞ and sðrÞ at singularities
are necessary for the solution matching underlying differ-
ent regimes:

pðr ’ 0Þ ’ ~qr and pðr ’ 1Þ ’ ~q

3ð1� rÞ ; (64)

sðr ’ 0Þ ’ ~qr2

2
and

sðr ’ 1Þ ’ � ~q

3
logð1� rÞ þ constant: (65)

The next step is to match these solutions to determine c1,
c2, and c3. In doing this, we need the asymptotic expansion
for the Bessel or Neumann function for a very large vari-
able9:

J1=8

�
~qr2

2

�
’

ffiffiffiffiffiffiffiffiffiffiffi
4

�~qr2

s
cos

�
~qr2

2
� �

16
� �

4

�
; (66)

9Although r is small here, ~q is large and we therefore regard
~qr2=2 to be large enough.
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N1=8

�
~qr2

2

�
’

ffiffiffiffiffiffiffiffiffiffiffi
4

�~qr2

s
sin

�
~qr2

2
� �

16
� �

4

�
: (67)

It is then easily found that, if we choose �1 ¼ �2 ¼
�5�=16 and c2 ¼ ic1, the matching of solutions in differ-
ent regimes is accomplished. Note that the condition
c2 ¼ ic1 is the main result from the solution matching,
which is also a direct reflection of the incoming wave
boundary condition imposed at the horizon.

Now we easily arrive at the boundary behavior for the
wave function c LðrÞ as

c Lðr ’ 0Þ ¼ c1~q
1=4r1=2J1=8

�
~qr2

2

�
þ ic1~q

1=4r1=2N1=8

�
~qr2

2

�

� c1~q
1=4r1=2Hð1Þ

1=8

�
~qr2

2

�
: (68)

In the second line of Eq. (68), we have written the solution
as the first-kind Hankel function with order 1=8.

The effective potential for transverse mode is more
involved, but the analysis under WKB approximation is
similar; therefore we here list just the final results.
Matching of solutions in three different regimes (near
horizon, near boundary, and intermediate regime far from
these singularities) results in the following boundary be-
havior for transverse modes Ay and Az:

c Tðr ’ 0Þ ¼ ci1~q
1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3=2

1� r3

s
Hð1Þ

3=8ð~qr2=2Þ: (69)

The only undetermined constants c1 and ci1 can be ex-
pressed in terms of boundary values of the gauge field
ALðr ¼ 0Þ � ALð0Þ or Ay;zðr ¼ 0Þ � Aið0Þ, respectively.

This can be achieved by using Eqs. (33), (43), and (45),
and the final results essential for later extraction of struc-
ture functions are listed below. For longitudinal mode, we
have

ALðr ’ 0Þ ¼ c1
uT
R3

q�1~q1=4r3=2ð1� r3Þ

�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ð1� r3Þr1=2
s

Hð1Þ
1=8

�
~qr2

2

��0
; (70)

aðr ’ 0Þ ¼ c1~q
1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1=2

ð1� r3Þ

s
Hð1Þ

1=8

�
~qr2

2

�
; (71)

c1 ¼ �i�23=4q

�ð1=8Þ~q1=8
R3

uT
ALð0Þ; (72)

and for transverse modes Ai (i ¼ y, z), we have

Aiðr ’ 0Þ ¼ ci1~q
1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3=2

1� r3

s
Hð1Þ

3=8

�
~qr2

2

�
; (73)

ci1 ¼
i�~q1=8

23=4�ð3=8ÞAið0Þ: (74)

With these solutions, we can derive the expressions for the
thermal polarization tensor defined in Eq. (14):

Im�LLðk; TÞ ¼
ffiffiffi
2

p
ls

12�2ð1=8Þgs
�NfNcT~q

1=4; (75)

Im�yyðk; TÞ ¼ Im�zzðk; TÞ

¼
ffiffiffi
2

p
�ls

54�2ð3=8Þgs
�NfNcT

3~q3=4; (76)

and other components are exactly vanishing. Referring to
the above results for the polarization tensor, we have listed
just the imaginary parts that are directly related to the
structure function. In fact, the real part of the polarization
tensor are divergent and therefore need to be regularized.
(Here, however, we have skipped these details.) Moreover,
we here for simplification assume the regularization will
not introduce new terms into the imaginary parts.
Therefore, the structure functions F1 and F2 are easily
derived via Eqs. (17)–(19):

F1ðk; TÞ ¼
ffiffiffi
2

p
ls

108�2ð3=8Þgs
�NfNcT

3~q3=4

’ ls
gs

�NfNcT
3~q3=4; (77)

F2ðk; TÞ ¼ !2

q2

�
Q2x

�

ffiffiffi
2

p
ls

12�2ð1=8Þgs
�NfNcT~q

1=4 þ 2xF1

�
’ 2xF1: (78)

In the first line of Eq. (78), one can easily show that the first
term can be ignored when comparing to the second one in
the interesting kinematic regime ~q=K4 � 1. Following
Ref. [7], we now express the two structure functions in
terms of the Bjorken variable x defined in Sec. II B and the
flavor current virtuality Q2 as

F1ðx;Q2Þ ¼
ffiffiffi
2

p
ls

108�2ð3=8Þgs
�NfNcT

3

�
3Q2

8�xT2

�
3=4

� �NfNcT
3

�
3Q2

8�xT2

�
3=4

; (79)

F2ðx; Q2Þ ’ 2xF1ðx;Q2Þ � 2�NfNcT
3x

�
3Q2

8�xT2

�
3=4

:

(80)

In obtaining the above two equations, we have used one
approximate relation ~! ’ ~q to express the spatial momen-
tum as q ’ Q2=ð2xTÞ.
Before closing this subsection, we briefly carry out

similar analysis for the noncritical model. Since in the
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previous subsection the general procedure for using the
WKB method to solve the Schrödinger problem was pre-
sented in detail, we here list just the corresponding key
results. The solution for the longitudinal mode near bound-
ary r ¼ 0 behaves as

ALðr ’ 0Þ ¼ C1

u2T
R4

q�1~q1=7rð1� r5Þ

�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1� r5

s
Hð1Þ

0

�
2

7
~qr7=2

��0
; (81)

aðr ’ 0Þ ¼ C1~q
1=7 rffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r5
p Hð1Þ

0

�
2

7
~qr7=2

�
; (82)

C1 ¼ � i�

7

q

~q1=7
R4

u2T
ALð0Þ; (83)

and for transverse mode AiðrÞ ði ¼ y; zÞ,

Aiðr ’ 0Þ ¼ Ci
1~q

1=7 rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r5

p Hð1Þ
2=7

�
2

7
~qr7=2

�
; (84)

Ci
1 ¼

i�~q1=7

72=7�ð2=7ÞAið0Þ: (85)

The polarization tensor can be derived by inserting these
solutions into the on-shell action Eq. (40):

Im�LLðk; TÞ ¼
ffiffiffi
3

p
RNfNc

56
ffiffiffi
2

p
�gsls

; (86)

Im�yyðk; TÞ ¼
7

ffiffiffi
6

p
�RNfNc

25�2ð2=7Þgsls
T2

�
~q

7

�
4=7

: (87)

Then the structure functions are

F1ðk; TÞ ¼
7

ffiffiffi
6

p
RNfNc

50�2ð2=7Þgsls
T2

�
~q

7

�
4=7 ’ NfNcT

2

�
~q

7

�
4=7

;

(88)

F2ðk; TÞ ¼ !2

q2

�
Q2x

�

ffiffiffi
3

p
NfNc

56
ffiffiffi
2

p
�gsls

þ 7
ffiffiffi
6

p
RNfNc

25�2ð2=7Þgsls
xT2

�
~q

7

�
4=7

�
’ 2xF1ðk; TÞ: (89)

In the first line of Eq. (89), one can easily show that the first

term can be neglected in the interesting regime ~q4=7 � K2,
so we have the approximate equality of the third line as in
the Sakai-Sugimoto model. We now express these results
in terms of the Bjorken variable x and the flavor current
virtuality Q2 as in the Sakai-Sugimoto model:

F1ðx;Q2Þ ’ 7
ffiffiffi
6

p
R

50�2ð2=7Þgsls
NfNcT

2

�
5Q2

8�xT2

�
4=7

� NfNcT
2

�
5Q2

8�xT2

�
4=7

; (90)

F2ðx;Q2Þ ’ 2xF1ðx;Q2Þ � 2NfNcT
2x

�
5Q2

8�xT2

�
4=7

: (91)

Equations (77)–(80) and (88)–(91) comprise the main
results of this paper. Now we have a short remark on these
results and also a brief comparison between these two
models as well as the well-investigatedN ¼ 4 SYM case.
The first point is that we have an analogy of the Callan-

Gross relation F2 ’ 2xF1 in the interesting kinematic re-
gime considered in this paper. In pQCD, this relation holds
only at relatively large values of the Bjorken variable x,
where parton structures of hadrons are dominated by the
valence quarks. This relation has already been obtained in
DIS offN ¼ 4 SYM plasma with(out) flavors, and here it
also holds for the Sakai-Sugimoto model as well as its
noncritical version. Since the setups of holographic dual of
sQGP are very general, and, what is more, the physical
picture underlying the R or the flavor current DIS off the
plasma is quite simple and general, these surprising facts
seem to indicate that it may be a general relation for
holographic quark-gluon plasma.
The second key point is concerned with the nonconfor-

mal characteristic of the Sakai-Sugimoto model, which is
also the main motivation for the present study. Because, in
our interesting kinematic regime, the two structure func-
tions are related to each other by the Callan-Gross relation,
we then mainly focus on the function F1. It is clear that for
two models F1 presents scaling behavior on their depen-
dence on temperature T and dimensionless spatial momen-
tum ~q. Their dependence on dimensionless momentum ~q is
approximately the same, while on temperature is quite
different: �T3 for the Sakai-Sugimoto model and �T2

for the noncritical model. Recalling that the latter scaling
behavior �T2 has also been valid in Ref. [7] for the
N ¼ 4 SYM plasma, we may think of the essential effect
of the nonconformality of the Sakai-Sugimoto model as the
T3-scaling behavior of the F1 structure function. However,
this guess needs further confirmation or cancellation be-
cause the nonconformality of the Sakai-Sugimoto model is
not well-controlled. Moreover, because the gauge coupling
constant of strong interaction has a logarithmic running
with an evolving energy scale, and simple gravity realiza-
tion of this kind of gauge theory has been established by
combining top-down and bottom-up approaches in
Ref. [19], it may be interesting to resort to this kind of
model to probe the effect of gauge coupling running on the
internal structure of sQGP.
The last point we would like to stress is about the

prefactors for the structure functions. Similar to Ref. [8],
NfNc counts the number of freedom of the plasma, and we
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here probe the quark sector. The models considered in this
paper have left some stringy imprints on the quantities of
the field theoretical side. (Here they are the plasma struc-
ture function.) This can be easily read from Eqs. (77), (78),
(88), and (89), which have explicit dependence on the
string-coupling constant gs and the string length ls.
Moreover, the behavior concerning these two stringy pa-
rameters seems to be different between the Sakai-
Sugimoto model and its noncritical version. These facts
seem to be very strange and even unacceptable because we
here focused on the field-side quantities, and they should
not show explicit dependence on the parameters on the
gravity or string side. Compared to related results of the
N ¼ 4 SYM plasma, these undesirable behaviors have
not come out there, which seems to say that the D3-brane
geometry is a much better gravity dual of some quantum
field theory in describing field theoretical physical quanti-
ties under the gauge/gravity duality technique. However, if
we recall that the models we take here are different from
realistic QCD theory, then it is acceptable that the results
are counterintuitive from the viewpoint of field theoretical
considerations.

IV. SUMMARYAND OUTLOOK

In this paper, we have used a high-temperature version
of the Sakai-Sugimoto model, a quite successful gravity
dual model of QCD-like theory, to explore the internal
structure of holographic quark-gluon plasma. The physical
process we analyze here is like the well-investigated DIS in
standard QCD, but with the scattered proton replaced by
the plasma system and the mediated electromagnetic cur-
rent simulated by the flavor current, as in Ref. [8]. We have
seen that the procedure under the gauge/gravity duality
technique to study DIS off holographic quark-gluon
plasma is quite general and easily promoted to other
gauge/gravity duality setups. The results obtained in this
paper for the structure function under the Sakai-Sugimoto
model is quite different from the well-studied N ¼ 4
SYM plasma with(out) flavors. This should be regarded
as the effect of the nonconformality of the Sakai-Sugimoto
model, which is the most important motivation for our

present study. To confirm this, we have also chosen the
noncritical version of the Sakai-Sugimoto model for a
comparative study. We found that the structure functions
for the latter model and theN ¼ 4 SYM plasma are much
alike. The result of this paper seems to contradict intuition
from the fact of asymptotic freedom of pQCD. But we
should keep in mind that holographic quark-gluon plasma
considered in this paper is a strongly coupled system, and
thus we should not expect it to behave exactly as the
weakly interacting regime of realistic QCD. In fact, a
more realistic holographic QCD model taking care of the
running of the gauge coupling constant was proposed in
Ref. [19], and we expect to use this model to explore the
effect of gauge coupling running on the structure of sQGP.
In realistic QCD, Nf and Nc are of Oð1Þ, while the

applicability of the gravity dual of SUðNcÞ gauge theory
usually requires a large Nc limit. Therefore, we cannot
directly compare our results with the data from heavy-ion
collision. One prescription to overcome this obstacle is
to consider the flavor backreaction to the background
geometry and then carry out similar calculations in the
Nf=Nc � 1 limit. Although the hadronic matter produced

in heavy-ion collision is of high temperature and high
density, in this paper we take into account only the high-
temperature element as in the literature. So, in this sense,
our present models are not so realistic and need to be
promoted to the high-energy and high-density quark-gluon
plasma case. Fortunately, under the gauge/gravity duality
setup, the matter density also has a gravity realization—R
charge or flavor charge—which can be realized by rotating
the color brane along the internal space or as the time
component of the flavor gauge field, respectively. Then
the analysis of DIS off quark-gluon plasma at high density
and high temperature can also be carried out by including
this element in the model setup. We leave these problems
for future investigations.
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