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The circle compactification of the 6-dimensional (2,0) superconformal theory of AN�1 type leads to the

5-dimensional SUðNÞ maximally supersymmetric gauge theory. Instanton solitons embody Kaluza-Klein

modes and are conjectured to be composed of partonic constituents. We realize such a parton of 1=N

instanton topological charge at the intersection of magnetic flux sheets. After a further compactification

with nontrivial Wilson-line expectation value, instantons or calorons have been shown to be split into

fundamental monopoles of fractional instanton charge. In the symmetric phase with trivial Wilson-line

expectation value, Bogomol’nyiPrasadSommerfield instanton partons emerge more concretely as non-

Abelian Bogomol’nyiPrasadSommerfield monopoles of minimum charge allowed in Dirac quantization.
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I. INTRODUCTION AND
CONCLUDING REMARKS

The 6-dimensional (2,0) superconformal theory has
arisen as the decoupling limit on multiple M5 branes as
well as the low-energy limit of type IIB string theory on
ADE type singularities [1]. Its non-Abelian nature and N3

degrees of freedom on N M5 branes have remained myste-
rious so far [2,3]. Its low-energy dynamics upon the com-
pactification on a circle leads to the 5-dimensionalN ¼ 2
Yang-Mills theory. Surprisingly, instantons play the role of
Kaluza-Klein (KK) modes [4,5]. There has been some
recent work arguing that the this 5-dimensional theory,
although apparently nonrenormalizable, may contain all
the degrees of freedom of the 6-dimensional (2,0) theory
and so finite [6,7].

An instanton in SUðNÞ gauge theory has 4N zero modes
instead of the four zero modes which are expected for the
position of a single particle. This led to a speculation that a
single instanton in SUðNÞ theory is made of N instanton
partons of 1=N instanton topological charge [8–10]. On the
other hand, the fractional KK momentum states have ap-
peared before on multiply wound string on a circle and
have played an important role in the study of black holes
[11,12]. Similarly multiple D4 branes on top of each other
could be regarded as a single M5 wrapping a circle several
times. Such interpretation might allow the existence of
1=N fractional KK momentum states in 5-dimensional
theory, which can be regarded as instanton partons. The
black hole solutions for multiple D4 branes were used to
show that the second order transition occurs at the tem-
perature at instanton parton mass, indicating the instanton
partons are real objects [13]. However, the exact nature of

such instanton partons has remained quite elusive so far,
even after a considerable effort to identify them [14,15].
The standard lore is that there is no localized classical field
configuration in R4 which has the 1=N instanton charge.
In this work, we show that such instanton partons can

appear more concretely in several places. First we show
that they appear naturally at the intersection of magnetic
flux sheets in 5-dimensional gauge theory when the mag-
netic flux is the minimum amount undetectable by adjoint
matters. After compactification on a circle with a nontrivial
Wilson line, instantons or calorons are known to be decom-
posed to fundamental monopoles of fractional instanton
charge [16]. This 5-dimensional theory compactified on
a circle is the (2,0) theory compactified on two torus. The
complex coupling of 4 dimensions is the moduli parameter
of the torus and the S-duality of the 4-dimensional theory is
the moduli transformation of the torus. The Wilson loop
would be a manifestation of the nontrivial ‘‘Wilson sur-
face’’ of non-Abelian 2-form field on torus. When this
Wilson loop is trivial, we construct here Bogomol’nyi
PrasadSommerfield (BPS) instanton partons as non-
Abelian BPS monopoles by providing their asymptotic
behavior outside their ‘‘quantum core.’’
For any localized physical system, one would expect that

the total KK momentum or instanton number to be integer
as we require the periodicity under the circle direction.
Instantons are at best dipolelike and are localized.
However, if one considers a system extended to infinity,
the reason might be compelling. Our construction of
instanton partons requires the field configuration to be
extended to spatial infinity either by magnetic flux sheet
or magnetic charge.
Instantons or calorons in the SUðNÞ maximally

supersymmetric gauge theory R1þ3 � S1 with nontrivial
Wilson line are composed of the fundamental consti-
tuents, N kinds of magnetic monopoles, which carry
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fractional instanton number [16–18]. The mass of a given
fundamental monopole would take a fractional value of
the instanton mass which depends on the Wilson-line
expectation value. Classically each fundamental magnetic
monopole has four zero modes. A single caloron or
instanton would be made of N distinct fundamental mono-
poles. All these monopoles and calorons preserve half-
supersymmetry and so are BPS objects. Especially when
the Wilson line becomes trivial, N � 1 distinct monopole
become massless and form a non-Abelian cloud around the
remaining massive monopole [19,20].

Merons [21,22] are another example of fractional in-
stanton number. Merons come only with half instanton
number and have log-divergent energy. They cannot be
the instanton partons we are looking for as they have
infinite energy in large distance. They have divergent
attractive forces among them, and so they are not BPS.
Moreover there is no obvious way to construct a 1=N
version of the meron solution for N � 3.

We do not know how to describe or quantize the
6-dimensional (2,0) theory in the symmetric phase. It is a
purely quantum theory as a three-form tensor field is
self-dual. After the circle compactification, we have the
5-dimensional gauge theory with dimensionful coupling
constant. Of course we should include instantons as non-
perturbative objects, which should include instanton par-
tons. It is somewhat easier to approach (2,0) theory in the
Coulomb phase, in which case however instanton partons
disappear as M5 branes get separated from each other.
After all the gauge bosons in the 5d theory in Coulomb
phase are made of massless Abelian.

Instanton partons would appear only in the symmetric
phase. In R1þ4, they should always come together for any
localized physical states such that the total topological
charge is an integer. We have classical instanton configu-
rations which are imagined to be made of partons. If a
single instanton is regarded to have N parton constituents,
the 4N instanton moduli space would originate from the
spatial and gauge group coordinates of its spatial position
and also its orientation. Thus each of the instanton partons
would have only four zero modes which should specify its
spatial coordinate and gauge algebra coordinate. Clearly it
is a bit of a hard task. As only instantons appear in the
localized physical states, one may just need to define their
group orientations relative to each other’s. Note that the
zero modes corresponding to the group orientation of a
single instanton is due to the ‘‘global part’’ of non-Abelian
gauge group, not the local orientation which depends on
the local gauge transformation.

Here we show that instanton partons appear classically
in 5 dimensions at the intersecting point of two magnetic
flux sheets. The gauge orientation of the instanton parton is
fixed by the gauge orientation of the flux sheets. While we
assume that N distinct instanton partons form a single
instanton, it is not clear how to characterize it even in the

long distance. We do not have definite idea about the
topological charge of the gauge field on three sphere with
zero field strength except for the SUð2Þ case, in which case
the half winding is allowed.
As we do not have definite progress in flat 5 dimensions,

we compactify the theory on one more circle, ending up
with the (2,0) theory compactified on two-torus with a
trivial Wilson line. Fortunately instanton partons seem to
appear more clearly after this. Each instanton partons upon
compactification on a circle has a long-distance profile
which is BPS and has 1=N instanton topological charge.
They have nontrivial magnetic profile whose Dirac string
cannot be observed by any matter in the adjoint represen-
tation. This is a more elaborated version of the fact that the
regular ’t Hooft-Polyakov monopole configuration has
twice the large charge than what is required by Dirac
quantization with adjoint matter only.
Our point of view on instanton partons in R1þ3 � S1 is

that they are somewhat similar to magnetic monopoles in
4-dimensional maximally supersymmetric gauge theory.
Monopoles arise as solitons in the weak coupling limit.
Their classical field profile, which is Abelian and BPS, is
correct outside the core region, which is the Compton
wavelength ofW-boson. Its BPS central charge determines
its mass, which is identical to the classical energy obtained
by integrating the energy density from the spatial infinity to
the core region. Inside the core region, the field profile is
non-Abelian and also quantum in the sense that it is less
than theW-boson Compton length. For instanton partons in
R1þ3 � S1 in the symmetric phase, we construct the BPS
classical field profile outside the core region of the
Compton length size of another KK-mode parton along
the new circle. Such instanton partons can exist because of
the nontrivial magnetic flux profile at the spatial infinite.
Even though it is defined by a diagonal part of the unbro-
ken gauge group, there is no instability as it is locally BPS.
Let us consider the instanton partons as the fractional

KK modes on the N M5 branes wrapping torus with trivial
holonomy or trivial Wilson-line expectation value. There
are several ways to wrap the torus. Depending on which,
one could have the 1=N KK momentum mode along either
direction of torus. Naturally the fractional KK modes
would get excited at the energy scale which is the mini-
mum of the one-Nth fraction of the KK momentum along
both compactification directions. The x5 direction is the
monopole direction and x4 is the electric direction. Similar
to the fact that a monopole core size is that of W-boson
Compton length, the core size of the instanton parton is N
times larger than the radius of the electric direction circle.
From the perspective that the SUðNÞ (2,0) theory is a

common two-torus the physics gets complicated. S-duality,
which is the moduli transformation on the 4-dimensional
theory, plays an important role.
The core of a instanton parton in R1þ3 � S1 is N times

larger than the naive Kaluza-Klein scale. This is consistent
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with the expectation that the fully quantum mechanical
6-dimensional theory including all instanton partons are
effective at the energy scale above one-Nth fraction of the
KK momenta along both compactified directions.

The idea that instanton partons are playing an important
role in the strongly coupled regime and are crucial in color
confinement has been developed extensively [23–25]. It
seems that instantons cannot provide an explanation for
confinement. Both strong coupling and topology must be
taken into consideration for the confinement problem in
4 dimensions. Our instanton partons as Euclidean time
objects may be also possible if there is no fundamental
matter field, or all color fields are arranged so that only
adjoint matter fields are appearing. It is not clear how our
explicit construction of instanton partons would help in
making some progress along this direction.

Our way to construct instanton partons by using the
center ZN of the group SUðNÞ could not be generalizable
to other simple laced groups of DE types as their center
group is much smaller. It would be interesting to find a way
to overcome this deficiency.

One of the key issues on M5 branes is what are the
fundamental degrees of freedom as the counting of the
degrees of freedom in gravity or anomaly calculation leads
to N3. For the ADE series, the number is argued to be
exactly the product of the size of the group and the dual
Coxeter number [26–28]. The number of zero modes for a
single instanton is 4 times the dual Coxeter number,
implying the number of instanton partons per a single
instanton is that number again. Collie and Tong [14,15]
have proposed an intriguing idea that the degrees of free-
dom could be accounted for if the instanton partons some-
how belong to the adjoint representation. Our point of view
is somewhat different. We think that instead 1=4 BPS
junctions of self-dual strings in the Coulomb phase should
play a role in the counting, and recently we have provided
some supporting argument which shows the number of 1=4
BPS states in the Coulomb phase matches one-third of the
product of the dual Coxeter number and the dimension of
the group for all ADE cases [29].

The reality of instanton partons can be settled only when
we understand the symmetric phase of the (2,0) theory
wrapped on a circle. Our approach is a step forward to
give a definite picture of instanton partons. Some sort of
exact calculation involving the (2,0) theory on circles or
torus is needed to settle the issue.

The plan of this work is as follows. In Sec. II, we
review 5-dimensional gauge theory and show some frac-
tional winding is possible. Also instanton partons are
shown to appear at the intersection point of magnetic
flux sheets. In Sec. III, we review the compactification
of the (2,0) theory on a two-torus. In Sec. IV, we explore
the KK modes around a two-torus when there is nontrivial
Wilson-line expectation value. The constituents are mag-
netic monopoles and charged W-bosons. In Sec. V, we

describe the BPS field profile for the instanton partons in
5-dimensional gauge theory on R1þ3 � S1 at the symmet-
ric phase.

II. AN�1 TYPE (2,0) THEORY ON R1þ4�S1

The ADE (2,0) theory has the self-dual 3-form field
strength and so no adjustable coupling constant [1].
There is no natural non-Abelian generalization of 2-form
gauge field and no classical Lagrangian. Thus the (2,0) is
supposed to be defined only quantum mechanically. The
AN�1 type theory arises from N M5 branes and has
a simple low-energy description upon a circle compactifi-
cation

x5 � x5 þ 2�R6: (1)

The low-energy dynamics of the AN�1 (2,0) theory upon
circle compactification becomes the 5-dimensional
N ¼ 2 SUðNÞ supersymmetric gauge theory with the
Lagrangian

L5 ¼ 1

2g25
TrFMNF

MN þ . . . ; (2)

whereM, N ¼ 0; 1 . . . 4 and the dots are for fermionic and
scalar contributions. The instantons are KK modes of the
compactification, and so its mass is identified with the KK
momentum, leading to the relation

Minstanton ¼ 8�2

g25
¼ 1

R6

: (3)

In Abelian (2,0) theory in 6 dimensions, there are self-dual
three-form field strengths. The 5-dimensional gauge field
and field strength can be identified as AM � BM5 and
FMN �HMN5. The momentum density along x5 is propor-
tional to �H0��H5�� ��F��

~F��, which is the topologi-

cal charge density.
A general instanton configuration satisfies the self-dual

equation F�� ¼ ~F�� � �����F��=2 where �, � ¼ 1, 2,

3, 4, and its mass becomes

P 5 ¼ � 1

2g25

Z
d4xTrF��F�� ¼ � 8�2

g25
�; (4)

where instanton charge is the Pontryagin index

� ¼ 1

16�2

Z
d4xTrF��

~F�� ¼ 1

8�2

Z
d4x@�W�; (5)

where Chern-Simons current is

W� ¼ �����Tr

�
A�@�A� � 2i

3
A�A�As

�
: (6)

The gauge field becomes pure gauge at the boundary A� ¼
iUy@�U and so the instanton charge becomes the winding

number
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�ðUÞ ¼ i

24�2

Z
S31

TrðUydUÞ3; (7)

which characterizes the asymptotic behavior of the gauge
field. When the function U is a well-defined map from
three sphere to non-Abelian gauge group, the winding
number of the gauge at the spatial infinity is the third
homotopy group which is �3ðGÞ ¼ Z. One can choose
the gauge where the gauge field becomes trivial at spatial
infinity but has some singularities in finite region which is
characterized by nontrivial winding numbers.

A single instanton in a semisimple gauge group G has
4hG zero modes where hG is the dual Coxeter number. We
assume that a single instanton consists of hG partons of
equal topological charge and four zero modes [30].
Instanton parton is expected to be BPS and has the topo-
logical charge

P 6 ¼ 8�2

g25

1

hG
: (8)

Table I shows the dual Coxeter number hG and the center
group for semisimple Lie group G.

We will see later that instanton partons can be realized
easily for the AN�1 ¼ SUðNÞ gauge theories by using the
rather large center group. On the other hand, our method
does not easily generalize to other simple laced groups. To
get a single instanton parton in SUðNÞ case, we regard
that the gauge field configuration is sort of classical in
large spatial region and is characterized by the fractional
winding number. In the theory with matters in adjoint
representation only, the gauge function U: S31 ! SUðNÞ
can be multivalued modulo the center of the gauge
group ZN , which leaves A� ¼ iUy@�U single-valued.

One hopes to find such UðxÞ such that the winding number
� fractional, say, 1=N. Unfortunately, we could not
find such map except for N ¼ 2 case at the moment and
it is not clear whether such multivalued map UðxÞ exists
for N � 3.

To see half-winding map for N ¼ 2 case, consider the
Euler angles �,’, c on S31 by using the map from the three

sphere to SUð2Þ: g ¼ ei’�3=2ei��2=2eic �3=2. The relation
�i �gdg ¼ �i

2 �i defines the left-invariant 1-forms

�1¼ cosc sin�d’�sinc d�;

�2¼ sinc sin�d’þcosc d�;

�3¼dc þcosd’:

(9)

The metric on the S31 is

ds2 ¼ 1

4
ðd�2 þ sin2�d’2 þ ðdc þ cos�d’Þ2Þ: (10)

The volume form is

dV ¼ 1

8
�1 ^ �2 ^ �3 ¼ � 1

8
sin�d� ^ d’ ^ dc : (11)

Now the range of �, ’, c is

0����; 0� c þ’�4�; 0� c �’�4�; (12)

which is equivalent to

0 � � � �; 0 � ’ � 2�; 0 � c � 4�: (13)

Let us choose a double-valued mapU2 from S31 to SUð2Þ
which is given as

U2¼ei’�3=2ei��2=2eic �3=4

¼ þcos�2e
þi’=2 þsin�2e

þi’=2

�sin�2e
�i’=2 þcos�2e

�i’=2

0
@

1
A�diagðeþic =4;e�ic =4Þ:

(14)

This is locally well-defined but double-valued under c !
c þ 4� by �1. The gauge field A� ’ i �U@�U is single-

valued and its winding number � ¼ 1=2. If we consider
only the adjoint matter field, such a gauge transformation
is allowed in principle, implying the possibility of BPS
half-instantons. The very same solution A� ¼ i �U@�U con-

sidered everywhere is a good one, and is very similar to
ordinary instanton with zero size. This is pure gauge every-
where apart from the singularity at the origin that contains
all the F ~F charge. The generalization to SUðNÞ for a 1=N
winding would probably be impossible. The previous con-
struction relies on the existence of the Hopf fibration for
S3=S1 ¼ S2 and for SUðNÞ not all the circles passing
trough a point are equivalent, and only a discrete set are
the ones passing through the center of the group. It is of
course possible to embed the previous map in SUðNÞ since
a minimal winding is always an SUð2Þ embedding, but this
would still give a 1=2 fractional map. Thus the fractional
instanton number in terms of fractional winding needs a
further understanding.
Other objects in the literature with fractional instanton

number are the merons where again only the 1=2 fraction is
realized. This object was first introduced in [21]. The BPS

TABLE I. The dual Coxeter number and the center of the
universal covering group G.

G hG center

AN�1 N ZN

BN 2N � 1 Z2

CN N þ 1 Z2

D2N 4N � 2 Z2 � Z2

D2Nþ1 4N Z4

E6 12 Z3

E7 18 Z2

E8 30 {1}

F4 9 {1}

G2 4 {1}
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instanton solution is A� ¼ 	��x�=ðjxj2 þ �2Þ where 	��

are ’t Hooft tensor matrices and � is the instanton scale.
This self-dual solution breaks the conformal symmetry and
has eight zero modes. The meron solution is very similar in
A� ¼ 	��x�=ð2jxj2Þ where the size parameter is zero and

the 1=2 factor is the crucial difference. Although the decay
of the gauge potential is A� 1=x as for the instanton, the
field strength leading term is F� 1=x2 and not F� �2=x4.
The meron is thus log-divergent, both in UV and IR. It
carries 1=2 instanton charge and is clearly not self-dual.
Note that the instanton charge is completely hidden in the
singularity, the field strength outside is nonzero but has
vanishing charge. The UV singularity can be smoothed out
by a � scale, although this is no longer the classical sta-
tionary point. The F� 1=x2 behavior at infinity, like
monopoles in three dimensions, it has been suggested,
could be used to explain confinement in four dimension
[22] with a generalized Polyakov mechanism. The log
divergence in the action would be overcome for suffi-
ciently strong coupling like the BKT phase transition in
two dimension. The meron can also be embedded in gauge
theories with higher N. The instanton charge still remains
1=2 (the embedding does not affect this) and thus it cannot
be considered the instanton partons for N > 2. There is
some evidence that this mechanism could indeed be active
in SUð2Þ [31] but, due to the fact that merons are not
in general related with the center of the gauge group for
N � 3, is unlikely that this is the mechanism for confine-
ment for general N. The fact that the previous two con-
structions give only fractional instanton charge 1=2,
suggests that there should be a relation between them but
at the moment is not clear.

We started requesting our instanton parton to be BPS,
smooth and with 1=N fractional instanton charge. Even
forgetting about the first two conditions, we have not even
showed so far the possibility of 1=N fraction of charge. We
show now that isolated 1=N fractional instanton configu-
rations in R4 appear naturally when one considers two
intersecting magnetic flux sheets (or surface operators).
Let us start by considering two magnetic flux sheets on
1–2 and 3–4 planes with trivial holonomy in the funda-
mental representation. Their nonvanishing magnetic fluxes
are, for example,

F12 ¼ 2�diagð1; 0; � � � ; 0Þ
ðx1Þ
ðx2Þ;
F34 ¼ 2�diagð1; 0; � � � ; 0Þ
ðx3Þ
ðx4Þ: (15)

Their vector potential is

A�dx
�¼diagðdArgðx1þix2ÞþdArgðx3þix4Þ;0;0;���;0Þ:

(16)

The magnetic flux is such that such volume operators
cannot be detected by the matter in the fundamental rep-
resentation. Such configuration is not BPS. The two sheets

meet at the origin. The topological charge at the meeting
point is

� ¼ 1; (17)

which is a single instanton. Instead if there are only adjoint
matter fields, the undetectable magnetic flux would have
the trivial holonomy modulo the group center. We choose
two nontrivial magnetic flux sheets intersecting on the
origin with magnetic flux to be

F12¼2�

N
diagðN�1;�1;���;�1;�1Þ
ðx1Þ
ðx2Þ;

F34¼2�

N
diagð1;�Nþ1;1;���;1;1Þ
ðx3Þ
ðx4Þ;

(18)

whose vector potential is

A�dx
�¼þ 1

N
diagðN�1;�1;���;�1;�1ÞdArgðx1þix2Þ

þ 1

N
diagð1;�Nþ1;1;���;1;1ÞdArgðx3þix4Þ:

(19)

Such configuration is not BPS. The two sheets meet at the
origin. (Such flux sheets are sometimes named as center
vortices and have been argued to play the key role in
confinement [32].)
The topological charge at the meeting point is easily

evaluated to be

� ¼ 1

N
; (20)

which is that of an instanton parton. When one considers
the lattice gauge theory with only adjoint matter field, such
configurations could be relevant. In the continuum instead
this configuration is singular. We could smooth it out,
making the magnetic flux supported on an area greater
than zero. But this would lead to a classically unstable
configuration.
However, one can include additional interaction to the

theory, for example, the six-order potential for a pair of
adjoint scalar fields [33,34]

Tr j½½�; ��	; �	 � v2�Þj2 (21)

so that one can have the stable vortices of ZN topology in
the maximally broken phase and the magnetic flux whose
vector potential takes the asymptotic form given above.
(Here we use Yang-Mills instead of Chern-Simons kinetic
term and so the vortices cannot be BPS but satisfy the
equation of motion with a given topology and stable.)
Then the instanton charge at the intersection is again given
by 1=N.
In short, it is difficult to describe isolated BPS instanton

parton configurations in R4, even if we restrict the BPS
condition and ask only smoothness and 1=N fractional
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charge. It seems a no-go, although we do not have enough
information to state a precise theorem. They seem to
appear only with additional external infinitely energetic
devices, like intersecting vortex sheets.

III. AN�1 TYPE (2,0) THEORY ON R1þ3�T2

Once we compactify the (2,0) on a circle, let us proceed
to compactify it further on a torus so that

ðx4; x5Þ � ðx4; x5 þ 2�R6Þ;
ðx4; x5Þ � ðx4 þ 2�R5; x

5 � �R6Þ:
(22)

While we do not know the (2,0) theory, we naively expect
that the Kaluza-Klein modes on the torus are characterized
by the momentum factor

exp

�
in4

x4

R5

þ in5

�
x5

R6

þ �x4

2�R5

��
: (23)

The 4-dimensional mass for a given mode, ignoring the
interaction, would be

Mðn4;n5Þ¼ 1

R5

jn4þ�n5j¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R2
5

�
n4þ�n5

2�

�
2þn25

R2
6

vuut : (24)

(Here we are imagining a massless Abelian scalar field in
(2,0) theory whose field equation is ð�@20þ

P
5
i¼1@

2
i Þ�¼0.)

Let us consider the effect of the SLð2; ZÞ modular trans-
formation of the torus. Under the SLð2; ZÞ transformation

� ! ~� ¼ a�þ b

c�þ d
; (25)

where a, b, c, d 2 Z and ad� bc ¼ 1, we transform the
torus to

ðx4;x5Þ�ðx4;x5þ2�R6jc�þdjÞ;
ðx4;x5Þ�

�
x4þ 2�R5

jc�þdj ;x
5�2�R6jc�þdjRe~�

�
:

(26)

The momentum factor of a single-valued KK mode is
transformed to

exp

�
i~n4

jc�þdjx4
R5

þ i~n5

�
x5

R6jc�þdjþ
jc�þdjRe~�x4

R5

��
;

(27)

and its free field mass is transformed to

~M ~n4;~n5 ¼
jc�þ dj

R5

j~n4 þ ~�~n5j: (28)

With the transformation of the quantum numbers

ð~n5; ~n4Þ ¼ ðn5; n4Þ d �b
�c a

� �
; (29)

we get the invariance of the mass term,

~Mð~n4; ~n5Þ ¼ Mðn4; n5Þ: (30)

From the 5-dimensional gauge theory point of view, the
above SLð2; ZÞ transformation becomes a bit different and
also specific. The low-energy 4-dimensional Lagrangian is

L4¼� 1

2g24
TrFmnF

mn� 1

g24
TrF2

m4�
�

16�2
TrFmn

~Fmnþ���

¼� 1

16�
ImTrf�ðFmnþi ~FmnÞ2g� 1

g24
TrF2

m4þ ...; (31)

where m, n ¼ 0, 1, 2, 3 and ~Fmn ¼ 1
2 �

mnpqFpq with

�0123 ¼ 1 and the dots denote the contributions from
scalars, fermions and also all the Kaluza-Klein modes
of x4 compactification. The four-dimensional coupling
constant is

4�

g24
¼ 8�2R5

g25
¼ R5

R6

; (32)

and the 4-dimensional complex coupling parameter

� ¼ �

2�
þ 4�i

g24
(33)

is the complex structure of the two-torus. The conjugate
momentum density is

�i ¼ 2

g24
F0i � �

4�2
Bi; (34)

where

Bi ¼ 1

2
�ijkFjk; (35)

and the Gauss law is

Di�i þ � � � ¼ 0; (36)

where the dots denote the contributions from matters and
KK modes.
The 5th-directional KK modes are instantons. The linear

momentum (4) along x5 is

P 5 ¼ � 2

g25

Z
d4xTrBiFi4 ¼ n5

R6

; (37)

where the Pontryagin index � ¼ �n5 and 8�
2=g25 ¼ 1=R6.

The linear momentum along x4 is proportional to

P 4 ¼ � 2

g25

Z
d4xTrF0iF4i

¼ � 1

2�R5

Z
d4xTr�iF4i þ �

2�

R6P 6

R5

: (38)

The quantization should be

P 4 ¼ 1

R5

�
n4 þ �n5

2�

�
; (39)

where
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n4 ¼ � 1

2�

Z
d4Tr�iF4i: (40)

Here we are ignoring all the contributions from other
matter fields. The energy functional can be written as

H ¼ 1

g25

Z
d4xTrðF2

0i þ F2
04 þ B2

i þ F2
4iÞ

¼ 1

g25

Z
d4xTrððF0i�sin�Fi4Þ2þðBi� cos�Fi4Þ2þF2

04Þ

þ P 4 sin�þ P 5 cos�; (41)

and so the BPS bound is given by the mass (24)

H �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP 4Þ2 þ ðP 5Þ2

q
¼ Mðn4; n5Þ: (42)

The BPS equation becomes F04 ¼ 0 and

F0i ¼ Fi4 sin�; Bi ¼ Fi4 cos�: (43)

While we do not explore the detail of the supersymmetry,
all KK modes are 1=2 BPS and the quantum states should
such that they are all transforming to each other under the
SLð2; ZÞ transformation. Note that SLð2; ZÞ duality, which
is certainly there for the 6-dimensional theory compactified
on a two-torus, is not necessarily expected a priori for the
5-dimensional theory compactified on a circle. It would of
course be a natural fact if the conjecture equivalence
between the 5-dimensional and 6-dimensional theories
would be true [6,7].

As we have compactified the 5-dimensional theory on a
circle, the gauge invariant Wilson-loop

W ¼ TrP expi
Z

dx4A4 (44)

can have nontrivial expectation value. There are allowed
large gauge transformations which are multivalued but
leave the adjoint matters single-valued. An example is

Uðx4Þ ¼ exp

�
ix4

R5N
diagðN � 1;�1;�1; . . . ;�1Þ

�
: (45)

The above transformation is single-valued modulo the
center group ZN . The expectation value of A4 can be
arranged by such large-gauge transformation and Weyl
reflections so that

hA4i ¼ 1

R5

ðh1; h2; . . .hNÞ; (46)

such that
P

aha ¼ 0,

h1 � h2 � � � � � hN � h1 � 1: (47)

When the gauge symmetry is broken completely to
Abelian subgroups, all expectation values are different,
h1 > h2 > � � �> hN > h1 � 1. After T-duality on x4 cir-
cle, the values ha=R5 can be interpreted as the position of
D3 branes in the dual circle of radius 1=ð2�R5Þ.

The Wilson-line expectation value is the degrees of
freedom for the virtual non-Abelian flux through the x4

circle as it is a generalization of the Aharonov-Bohm
phase. From the (2,0) theory of point of view, we have
now torus and twoform tensor gauge field. While we
do not know the detail non-Abelian formalism, the above
Wilson-line expectation value captures the physics of the
non-Abelian Aharonov-Bohm effect due to the virtual
threeform flux. The gauge symmetry is spontaneously
broken by the ‘‘Wilson surface.’’

IV. W-BOSONS AND MONOPOLES AS
FRACTIONAL KK MOMENTUM MODES

As we consider the case of the (2,0) theory compactified
on a two-torus with nontrivial Wilson line, the gauge
symmetry is spontaneously broken. First of all, there would
be massive charged vector bosons whose electric charge is
quantized. By the Gauss law, the canonical momentum is
quantized as

�i ¼ 2

g24
F0i � 2xiQe

4�r3
; (48)

where

Qe¼1

2
diagðq1;�q1þq2;�q2;...;�qN�2þqN�1;�qN�1Þ;

(49)

where qi are integers. Each charged vector boson for the
roots of the broken generators are quantum mechanically
BPS, denoting fundamental strings connecting two D3
branes in the T-dual picture. While the configuration can
arise only quantum mechanically, its Abelian profile is
BPS so F0i ¼ Fi4 and

A4 � hA4i � g24
4�r

Qe: (50)

The energy for W-boson connecting a and aþ 1 brane
would be obtained by the quantization. Another way is just
to calculate its BPS charge from the spatial infinity and
convert it to the energy

ðP 4Þa ¼ 2

g24

Z
d3x@iTrF0iA4 ¼ ha � haþ1

R5

: (51)

Here the W-boson mass is the fractional P 4 momentum.
There would be another x4-dependent W-boson which can
be identified as the fundamental string connecting Nth and
1st D3 branes and would have mass and charge

ðP 4ÞN ¼ hN � h1 þ 1

R5

; (52)

Qe ¼ 1

2
ð�qN; 0 � � � ; 0; qNÞ: (53)

The total momentum along x4 would be

P 4 ¼ XN
a¼1

qaðP 4Þa; (54)
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and the total electric charge would be

Qe ¼ 1

2
diagð�qN þ q1;�q1; � � � � qN�1 þ qNÞ: (55)

A single KK mode along x4 direction would be the sum of
these N fundamental W-bosons which carry zero electric
charge and linear momentum 1=R5. This is the fundamen-
tal string wrapping once around the dual x4 circle in the
type II B picture. There would be fundamental strings
connecting any pair of D3 branes after wrapping the dual
circles many times which correspond to the KK modes
with higher x4 momentum. The Wilson-loop symmetry-
breaking shows how such modes with fractional momen-
tum along x4 direction appear.

Let us now review the magnetic monopoles and calorons
which appear the modes for fractional x5 KK momentum
[16–18]. The time-independent fundamental monopole so-
lutions give by the solution of the BPS equation

Bi ¼ 1

2
�ijkFjk ¼ DiA4 � @4Ai � xiQm

r3
: (56)

The asymptotic form of the magnetic field and the scalar
field can be transformed to be Abelian:

Bi ¼ xiQm

r3
; A4 ¼ hA4i �Qm

r
: (57)

The well-known smooth BPS monopole configuration de-
scribes the non-Abelian core region. The magnetic charge
is given by

Qm ¼ 1

2
diagðp1;�p1 þ p2;�p2 þ p3; � � � ;

� pN�2 þ pN�1;�pN�1Þ: (58)

Each of the ath fundamental magnetic monopole carries
also an electric charge due to the Witten effect and so the
electric field becomes

2

g24
F0i � 2xiQe

4�r3
� �

4�2
Bi; (59)

where the electric charge is

Qe ¼ �

2�
Qm: (60)

Thus the ath fundamental magnetic monopole has the
instanton number

ðP 5Þa¼�8�2

g25
�¼� 2

g25

Z
d4x@iTrðBiA4Þ¼�ha�haþ1

R6

:

(61)

Thus they carry fractional x5 KK momentum. In addition,
the fractional electric charge means they carry an electric
charge proportional to �, or the fractional x4 KK momen-
tum proportional to �, leading to the mass

ma ¼ ha � haþ1

R5

j�j: (62)

Each fundamental magnetic monopole has four zero modes
for its position and phase, and is interpreted as D string
connecting a and aþ 1th D3 branes in a type IIB picture.
In addition there is a time-dependent fundamental

monopole solution which arises from the KK mode of
charge

QKK ¼ ð�pN; 0 � � � ; 0; 0; pNÞ: (63)

The BPS configuration is obtained by first making the large
gauge transformation to get a new the new expectation
value

hA4inew ¼ 1

R5

diag

�
h1 � N � 1

N
; h2 þ 1

N
; � � � hN þ 1

N

�
:

(64)

The BPS configuration in the Abelian region is the similar
magnetic field and the 4th gauge field becomes

A4 ¼ hA4inew �QKK

r
: (65)

Its instanton charge or x5 linear momentum is

ðP 5ÞN ¼ �hN � h1 þ 1

R6

: (66)

In this gauge the KK fundamental monopole is time-
independent and has again four zero modes. With a large
gauge transformation, one goes back to the original
Wilson-line value, and the KK monopole has the x4 time
dependence in the core region. A single instanton is made
ofN � 1 distinct fundamental BPS monopoles and a single
fundamental KK BPS monopole and the x5 KK linear
momentum t is

ðP 5Þinstanton ¼
XN
a¼1

paðP 5Þa ¼ � 1

R6

: (67)

The total magnetic charge vanishes and so calorons or
instantons on R3 � S1 are magnetic dipoles at best. There
would no force between these N fundamental monopoles
and they could regarded as constituent parts of calorons.
Let us consider the decompactification limit R5 ! 1,

The non-Abelian core size of each monopole would be of
order R5. If their separation scale is D is fixed, the core of
these monopoles would overlap each other, and it would be
hard to separate them. The analysis of a single caloron in
SUð2Þ case shows that the distance D between monopoles
and the instanton scales � are related in the decompactifi-
cation limit as

�2 � R5D: (68)

In order to get a finite scale instanton configuration in
infinite R5, we need to put the distance between monopole
component to vanish. When there are multi-instantons, the
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generalization of the above scaling law is not clear as there
are many scales in the problem.

When one analyzes the superpotential for the
4-dimensional pure N ¼ 1 gauge theory to find out the
gluino condensation, one see that the natural object to give
such contribution is not the instanton, but instanton par-
tons. We believe that this aspect is not still well-understood
in 4 dimensions. When one compactifies this theory on a
circle, the magnetic monopole constituents of instantons
lead to the extended Toda-type superpotential. Because of
the presence of the adjoint fermion field, the potential has
the minimum when all constituent monopoles have the
same action, the 1=N of instanton action [35]. However,
this is a dynamical process of minimization, and is highly
dependent on the matter content. See [36,37] for the more
recent development along this direction.

V. INSTANTON PARTONS

Instead of having a nontrivial Wilson line with a circle
compactification x4 � x4 þ 2�R5, let us consider the sym-
metric phase with the trivial Wilson line,

hA4i ¼ diagð0; 0; : � � � 0Þ: (69)

A single caloron discussed in the previous section now can
be regarded as constructed of one massive KK monopole
and N � 1 massless monopoles. Massless monopoles are
not gauge-invariant and would form a non-Abelian cloud
around the KK monopole. Depending on the size of the
cloud, the configuration interpolates the BPS monopole
solution and the singular instanton [19,20]. In addition,
KK modes of the gauge field carrying the momentum P 4

would arise quantum mechanically and they would de-
scribe massive particles in the adjoint representation of
the unbroken gauge group SUðNÞ.

We argue here that there exist a new class of objects in
this symmetric phase. In the symmetric phase of N M5
branes wrapping a torus, another interpretation is possible:
a single M5 brane wrapping the torus N times. There are
several different ways to realize this which are character-
ized by two natural numbers ðw4; w5Þ such thatw4w5 ¼ N.
Here a single M5 brane wraps x4 cycle w4 times and x5

cycle w5 times. The fractional momentum along x4 and x5

may be possible in principle with

P 4 ¼ 1

R5

�
n4
w4

þ �nm
2�w5

�
; (70)

P 5 ¼ nm
w5R6

: (71)

Here we just consider the case where (w4 ¼ 1,w5 ¼ N). In
this case the object would carry just 1=N instanton charge.

We want to imagine that a single instanton is made of N
instanton partons which present in R4 space and the group
space. Each of the instanton partons is supposed to be BPS
and have four zero modes. The 4N zero modes of a single

instanton may denote the position variables of N instanton
partons in spatial and group coordinates. Instanton partons
are also regarded as a KK modes for 1=N KK momentum
on a single M5 wrapping the x5 circle N times. Thus we
think that instanton partons are BPS objects of 1=N
instanton mass and four zero modes living only in the
symmetric phase of the gauge group. In the phase with
nontrivial Wilson line, all instanton partons would be con-
fined. After a further circle compactification on x4 circle
and nontrivial Wilson line, instantons or calorons would be
decomposed to fractional instantons or monopoles.
There are several gauge equivalent ways to express this

symmetric phase (69) and we use a large gauge trans-
formation (45) to transform the above vacuum to

hA4i ¼ 1

NR5

diagðN � 1;�1; . . .� 1Þ: (72)

They denote the position of D3 branes on the dual circle of
circumference 1=R5 and one can see that both of the above
two vacua denote the configuration where N D3 branes are
on top of each other.
We imagine that a fundamental BPS instanton parton

appears as a BPS magnetic monopole in large distance,
even though the gauge symmetry is not broken to Abelian
subgroup. The second vacuum (72) appears as if the gauge
symmetry is broken partially. We are imagining a magnetic
monopole configuration which is allowed only with matters
in adjoint representation. The magnetic charge would be
smaller than the case where lthere is a fundamental repre-
sentation, as our electric probe in the adjoint representation
is cruder. Monopole configuration in large distance is given
by the Wu-Yang construction,

Aidx
i¼

�AU
i dx

i¼þQð1�cos�Þd’; �<�
2þ�

AD
i dx

i¼�Qð1þcos�Þd’; �>�
2��

: (73)

The gauge transformation between upper and lower hemi-
sphere is

AD ¼ GAU �G� idG �G; (74)

where

G ¼ e�2iQ’: (75)

We require the above configuration to be BPS, which means
that Fij ¼ �ijkFk4. As Fij ¼ �ijkQxk=r

3, we get the 4th

component of the gauge field to be

A4 ¼ hA4i �Q

r
: (76)

When there exists the matter in the fundamental repre-
sentation, we require G to be single-valued. A simple case
which has a single-valued transition function is the single
caloron with magnetic charge

Qinstanton ¼ 1

2
diagð1;�1; 0; . . . ; 0Þ: (77)
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One can calculate the topological charge to be that of
instanton,

P 5 ¼ 16�2R5

g25
TrðQA4Þ ¼ 8�2

g25
¼ 1

R6

: (78)

The amount of the charge is that of the smooth BPS
monopole configuration with non-Abelian core. This
monopole is gauge-equivalent to a limit of a single caloron
configuration in the symmetric phase where the non-
Abelian cloud has been sent to infinity.

As we assume all the D4 branes are on top of each other,
all finite energy open strings have both of their ends on D4
branes. Thus there is only an adjoint matter field and so the
mathematically allowed transition function G could be in
the center of the SUðNÞ group. For example we can choose
the charge to be

Qparton ¼ 1

2N
diagð1;�N þ 1; 1; . . . 1Þ: (79)

The transition function G is multivalued by the group
center. Such charge is acceptable as the Dirac quantization
is satisfied by only adjoint matter fields. The BPS configu-
ration for A4 is

A4¼hA4i�Q

r
¼ 1

NR5

diag

�
N�1�R5

2r
;�1þR5

2r
ðN�1Þ;

�1�R5

2r
;��� ;�1�R5

2r

�
: (80)

As one moves into the core from the spatial infinity, A4

breaks the gauge symmetry toUð1Þ � SUðN � 1Þ and then
again reaches again the symmetric region when r 
 R5=2

A4ðr¼2R5Þ
 1

NR5

diagðN�2;N�2;�2;��� ;�2Þ: (81)

This partially broken region seems to be strange to have.
Indeed the quantum core should be reached earlier. The
topological charge from the spatial infinity would be

P 5¼16�2R5

g25
TrQhA4i¼ lim

r!1
8�2

Ng25

�
1�R5

2r
ðN�1Þ

�

¼ 8�2

Ng25
¼ 1

NR6

: (82)

For the magnetic monopoles, the field energy outside the
non-Abelian core saturates the energy bound, implying
the inner region is non-Abelian, and quantum in the sense
it is of the Compton wavelength of W-bosons. For the
instanton partons, let us again assume that the BPS energy
is exhausted from the field energy outside the core region
r > Rc. As

16�2R5

g25
TrðQA4Þðr¼RcÞ¼ 8�2

Ng25

�
1� R5

2Rc

ðN�1Þ
�
¼0;

(83)

we see the quantum core region is

r & Rc ¼ 1

2
ðN � 1ÞR5: (84)

This value is at the boundary roughly where the gauge
symmetry SUðNÞ is broken to Uð1Þ � SUðN � 1Þ. One
would say the BPS field configuration is valid outside the
core region

r * Rc 
 NR5; (85)

and so locally stable. Instanton parton configuration given
here carries almost all energy outside the core region.
Inside the core region, the field configuration (80) should
not be trusted. We expect new degrees of freedom or
quantum features to show up at the core scale.
This is consistent with the following view. The original

theory is 6-dimensional and is UV-finite. First it is com-
pactified on a circle R6 and then on a circle R5. Let us
assume that instanton partons and the KK momentum
partons along R5 circle become effective at their mass
scales 1=ðNR6Þ and (1=NR5), respectively. Thus, the
(2,0) theory compactified on torus is quantum in the length
scale satisfying

‘quantum & maxðNR5; NR6Þ: (86)

In other words, the (2,0) theory appears in the energy scale
higher than 1=‘quantum. Our description of the instanton

parton in terms of 4-dimensional theory is valid in the
weak coupling limit g24=4� ¼ R6=R5 < 1 or

R6 <R5: (87)

If we have chosen the case R5 < R6, we have to make the
S-dual transformation to get the weak coupling limit, re-
sulting in the previous example.
We need N instanton partons to make a single instanton.

We can choose N � 1 distinct partons whose ath charge is

Qa ¼ 1

N
diagð1; . . . ;�N þ 1; . . . ; 1Þ; (88)

where aþ 1th entry is�N þ 1. They could be regarded as
independent of x4 in the gauge where the A4 takes the
expectation value (72). To make a single instanton, we
need N partons of distinct type. The last one is like a KK
monopole. Let us now construct another KK-monopole-
like parton by considering the vacuum expectation value

hA4i ¼ 1

NR
diagð�1; N � 1;�1; . . . ;�1Þ; (89)

which is equivalent to the symmetric vacuum (72) by a
large gauge transformation, and consider the magnetic
charge

QKK ¼ 1

2N
diagð�N þ 1; 1; . . . ; 1Þ: (90)

STEFANO BOLOGNESI AND KIMYEONG LEE PHYSICAL REVIEW D 84, 106001 (2011)

106001-10



Again the Abelian part of the KK parton configuration is

A4¼hA4i�QKK

r
¼ 1

NR
diag

�
�1þ R

2r
ðN�1Þ;N�1� R

2r
;

�1� R

2r
;����1� R

2r

�
: (91)

The mass of this KK-parton is

P 5 ¼ 1

NR6

: (92)

Of course we have to make a large x4-dependent trans-
formation to make this KK parton to put in the previous
symmetric vacuum (72). In this vacuum (72), all funda-
mental partons except the KK parton are independent of x4.
We think that a single instanton is made of N � 1 distinct
partons of mass 8�2=ðNg2Þ and magnetic charge Qa and
the KK parton of the same mass and magnetic chargeQKK.
Each parton has the core of size NR5. The total magnetic
charge vanishes as

XN�1

a¼1

Qa þQKK ¼ 0: (93)

Nowwewould make another large gauge transformation
to get to the symmetric vacuum hA4i ¼ 0. In this obviously
symmetric vacuum all partons would be x4-dependent.
While the core region of each fundamental partons would
x4-dependent, the Bi configuration outside the core regions
remain Abelian and simple.

The picture emerging here is that a single instanton in
R3 � S1 is made of N partons of equal fractional
Pontryagin number 1=N. While it is not clear how to count
the zero modes for each partons, one could assign four zero
modes for its position and phase. One would wonder
whether there are additional zero modes for non-Abelian
transformation. As in the single caloron in the symmetric
phase with massless monopoles sent to infinity, there may
be some global color problem which does not allow addi-
tional internal zero modes, and so we may expect similar
global color problem for instanton partons.

To make a single instanton, we need N distinct instanton
partons so that the total magnetic charge vanishes. The core
size of each instanton parton would be NR5 if R6 < R5. As
one puts instanton partons close to each other so that their
cores overlap, the Cartan parts far outside the core would
cancel each other, leaving a dipole moment. Interior region
could develop the classical profile of a single caloron in the
symmetric phase with finite cloud size.

The instanton partons are different from the monopoles
in the previous section as obvious from their charge.

The relation can be understood as follows. We have to
make a change of variables from the monopole base
to the parton base. The monopole base is the simple
roots ð1;�1; 0; . . . ; 0Þ; . . . ; ð0; . . . ; 0; 1;�1Þ plus the one
corresponding to the KK monopole ð�1; 0; . . . ; 0; 1Þ.
The parton base is the N generators ð1; . . . ; 1;
�ðN � 1Þ; 1; . . . ; 1Þ. Note that for N ¼ 2 the parton base
is half of the monopole base. This is because the ’t Hooft-
Polyakov monopoles have twice the charge of the funda-
mental Dirac monopole which is the one used for the
parton. Clearly the base is redundant because only N � 1
are linear-independent. The fact is that on top of the charge
conservation we need also to impose the instanton number
conservation. In the symmetric phase the KK monopole
carries all the instanton charge, and this fixes that every
parton is made with a 1=N fraction of the KK monopole.
We thus have the change of basis matrix, respectively, for
N ¼ 2, 3, 4

0 1=2

1 1=2

 !
;

�1=3 0 1=3

2=3 0 1=3

2=3 1 1=3

0
BB@

1
CCA;

�1=2 �1=4 0 1=4

1=2 �1=4 0 1=4

1=2 3=4 0 1=4

1=2 3=4 1 1=4

0
BBBBB@

1
CCCCCA:

(94)

The exact nature of these partons in the (2,0) theory
compactified on a circle is not clear yet. The 4N zero
modes of a single instanton is made of four center of
mass and one zero mode for the scale and 4N � 5 modes
for the gauge orientation. This indicates that the position
vector of instanton partons knows the instanton position
and its gauge orientation. As the ADHM data made of
hypermultiplets ð
�; B�Þ where 
� is the bifundamentals

of SUðNÞ �UðkÞ and B� are adjoint hypermultiplets of

UðkÞ, we could regard the bifundamental 
 is the data for
the positions of instanton partons. Further analysis along
this direction may yield some insight.
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