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In nonrelativistic quantum mechanics and in relativistic quantum field theory, the time coordinate t is a

parameter and thus the time-reversal operator T does not actually reverse the sign of t. In contrast, in the

five-dimensional approach to relativistic quantum mechanics introduced by Feynman, time t is a quantum-

mechanical operator. In this paper it is shown how one can use this five-dimensional approach to extendT
and PT symmetry from nonrelativistic to relativistic quantum mechanics and implement time-reversal as

an operation that effects T tT ¼ �t just as P effects PxP ¼ �x, with PT thus effecting

PT x�PT ¼ �x�. Some illustrative relativistic quantum-mechanical models are constructed whose

associated Hamiltonians are non-Hermitian but PT symmetric, and it is shown that for each such

Hamiltonian the energy eigenvalues are all real.
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I. INTRODUCTION

In nonrelativistic quantummechanics the position xðtÞ is
taken to be an operator while the time t is only a c-number
parameter. To make quantum mechanics relativistic our
approach here is to treat time and space on an equivalent
footing. There are two possibilities: one can either demote
the spatial coordinates to parameters or promote the time
coordinate to an operator. The former prescription is used
in quantum field theory, where the field operators are
treated as functions of the spacetime parameters x and t,
but one can also construct sensible quantum-mechanical
theories via the latter approach, which was introduced by
Feynman [1] and Nambu [2]. In such theories a new
parameter is needed to parameterize evolution, and thus
one introduces a fifth coordinate � that is an SOð3; 1Þ
Lorentz scalar. In this five-dimensional formalism the
space and time coordinates x�ð�Þ become operator func-
tions of � and one obtains an SOð3; 1Þ-invariant relativistic
first-quantized generalization of the nonrelativistic
Heisenberg algebra ½xj; pk� ¼ i�j;k:

½x�ð�Þ; p�ð�Þ� ¼ i���; ½x�ð�Þ; p�ð�Þ� ¼ i��
� ; (1)

where ��� is the SOð3; 1Þ Minkowski metric.
The dynamics in this formalism is SOð3; 1Þ invariant in

the four operators x�, but is nonrelativistic in the fifth
coordinate � [because the dynamics is not SOð4; 1Þ or
SOð3; 2Þ invariant], and propagation is forward in �.
However, just as the nonrelativistic quantum-mechanical
operator xðtÞ can propagate forward and backward with
respect to its time parameter t, in relativistic quantum
mechanics all four components of x�ð�Þ can propagate
forward and backward in � [3]. The five-dimensional for-
malism of [1,2] readily incorporates forward and backward

time propagation, so one can introduce antiparticles with
first quantization alone without requiring the second-
quantization techniques of quantum field theory.

When the five-dimensional Hamiltonian operator Ĥ is
Hermitian and its eigenfunctions have the separable form
c nðx�; �Þ ¼ �nðx�Þe�iEn� and when its states obey the
standard Dirac completeness relation

X jnihnj ¼ I; (2)

the five-space forward propagator takes the form

G5ðx�f ; �; x�i ; 0Þ ¼ �i�ð�Þhx�f je�iĤ�jx�i i
¼ �i�ð�ÞX�nðx�f Þ��

nðx�i Þe�iEn�: (3)

This propagator obeys a Schrödinger equation that is first
order in �:

ði@� þ ĤÞG5ðx�; �; 0; 0Þ ¼ �ð�Þ�4ðx�Þ: (4)

The four-dimensional propagators in the five-
dimensional formalism are constructed by integrating out
the fifth coordinate. Given (3), the associated four-
dimensional propagator is then defined as

G4ðx�f ; x�i Þ ¼ N
Z 1

�1
d�G5ðx�f ; �; x�i ; 0Þ; (5)

where N is a normalization constant. Using the integral
representation

�ð�Þ ¼ � 1

2�i

Z 1

�1
d�

e�i��

�þ i	
; (6)

one then obtains

G4ðx�f ; x�i Þ ¼ N
X�nðx�f Þ��

nðx�i Þ
�En þ i	

: (7)*cmb@wustl.edu
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PHYSICAL REVIEW D 84, 105038 (2011)

1550-7998=2011=84(10)=105038(9) 105038-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.84.105038


Finally, since the wave functions are eigenfunctions of Ĥ,
G4ðx�f ; x�i Þ obeys

� ĤG4ðx�; 0Þ ¼ N�4ðx�Þ: (8)

The primary objective in using the approach of [1,2] is to

choose a five-dimensional Ĥ so that G4ðx�; 0Þ obeys a
differential wave equation of the form

D4G4ðx�; 0Þ ¼ �4ðx�Þ; (9)

where D4 is one of the familiar wave operators that appear
in quantum field theory (such wave operators are typically
higher than first derivative in time). [Normalizing
G4ðx�; 0Þ according to (9) would fix the constant N.]
Thus, in the simple case where the five-dimensional

Hamiltonian has the form Ĥ ¼ �̂p2 � ðp̂0Þ2 þm2, (7) is
the Fourier transform of the standard four-dimensional
scalar field Feynman propagator D4 ¼ @�@

�. Because

forward propagation in � gives the correct i	 prescription
for the causal Feynman contour in four dimensions, D4 ¼
@�@

� is the usual four-dimensional Klein-Gordon opera-

tor. Using the five-dimensional formalism, one can solve
for a one-body quantum-mechanical Schrödinger-type
propagator in five-space, and from it one can construct a
many-body quantum-field-theoretic propagator in four-
space. The five-space formalism also permits one to choose
five-space Hamiltonians for which the resulting four-space
propagator does not obey an equation of the form (9) with a
familiarD4. In this paper we construct some simple models
that lead to a propagator equation with a familiar D4 and
some that have a more general structure.

When Lorentz invariance was introduced in classical
mechanics, it described the invariance properties of the
line element ds2 ¼ dt2 � dx2. In addition to invariance
under the continuous orthochronous Lorentz transforma-
tions, the line element also possesses a set of discrete
invariances, namely, space reflection P : x ! �x, t ! t,
time-reversal T : x ! x, t ! �t, and their product
spacetime reflection PT : x ! �x, t ! �t. However,
when time-reversal was introduced into quantum mechan-
ics byWigner, the time reflection of the i@=@t operator was
achieved not by replacing t by�t but rather by takingT to
be an antiunitary operator that transforms i into �i
(T : i ! �i); time t was treated as a c-number parameter
that is not affected by T . In relativistic quantum field
theory time-reversal is also not implemented by making
the direct replacement t ! �t even though the line ele-
ment ds2 ¼ dt2 � dx2 possesses this time-reversal invari-
ance. As noted above, in the five-dimensional relativistic
quantum-mechanical approach used here, we treat time as
an operator and thus we can implement a time-reversal
operation that acts directly on the time. We can also imple-
ment PT transformations directly on the time operator.

The ability to implement a PT transformation on the
time operator is appealing because of the implications of
PT invariance for Hamiltonians that are not Hermitian. In

the last few years it has been recognized [4–7] that a
quantum-mechanical Hamiltonian that is not Hermitian
may still have an entirely real set of energy eigenvalues.
In the cases that were explicitly considered in [4–7], the
reality of the eigenvalues was traced to the existence of an
underlying invariance of the Hamiltonian with respect to a
combined PT reflection. Thus, while Dirac Hermiticity of
the Hamiltonian is sufficient for reality of eigenvalues, it is
not necessary. (Of course, Hamiltonians with entirely real
eigenvalues can be both PT invariant and Dirac-
Hermitian.) However, recently it has been shown [8] that
a Hamiltonian that is not PT invariant cannot have an
entirely real set of energy eigenvalues. This means that
PT invariance, in contrast to Dirac Hermiticity, is neces-
sary for the reality of energy eigenvalues [9]. (If one knows
only that a Hamiltonian is not Dirac-Hermitian, one can
say nothing about the reality of the eigenvalues.) Thus,
PT invariance of a Hamiltonian is a broader requirement
than Dirac Hermiticity.
In the non-Hermitian PT -invariant context we apply

the five-dimensional formalism described above. To do this
we recall [9] that when a Hamiltonian is PT invariant, its
eigenvalues are either real or they come in complex-

conjugate pairs. Consequently, both Ĥ and its Dirac-

Hermitian conjugate Ĥy have the same eigenspectrum,
and they are related by some similarity transform V [10]

VĤV�1 ¼ Ĥy: (10)

In this case, if jni is a right eigenvector jRi of Ĥ, then hnjV
rather then hnj is a left eigenvector hLj of Ĥ. Consequently,
the energy-eigenstate-completeness relation (2) is replaced
by

X jRihLj ¼ X jnihnjV ¼ I; (11)

and (3) and (7) are replaced by

G5ðx�f ; �; x�i ; 0Þ ¼ �i�ð�Þhx�f je�iĤ�jx�i i
¼ �i�ð�ÞXhx�f jnie�iEn�hnjVjx�i i; (12)

G4ðx�f ; x�i Þ ¼ N
X hx�f jnihnjVjx�i i

�En þ i	
: (13)

The propagator (13) is the relevant one in the PT case,

and with its PT -symmetric Ĥ, it also obeys (8).
Invariance under PT reflection is a more physical

requirement than Hermiticity because the proper ortho-
chronous Lorentz group has a complex PT extension.
Until now, this aspect of the Lorentz group has not been
utilized because transformations that reverse the sign of the
time have not been considered. In the present paper we
consider such transformations and explicitly extend PT
symmetry to the relativistic quantum-mechanical domain.
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In particular, we study some simple non-Hermitian but
PT -symmetric SOð3; 1Þ-invariant model Hamiltonians
using the five-dimensional formalism and for each
Hamiltonian we show that all of the energy eigenvalues
are real.

II. A SIMPLE FIVE-DIMENSIONAL
PT -SYMMETRIC HAMILTONIAN

The generic five-dimensional action has the form I ¼R
�
0 d�

0Lð�0Þ, where � is the end point of integration.

We begin with a simple example that illustrates the five-
dimensional formalism. Specifically, we take a Lagrangian
of the form

L ¼ m

2
_x� _x� �m!2

2
ðx�x� � 2ia�x

� � a�a
�Þ; (14)

where � ¼ ð0; 1; 2; 3Þ, the dot denotes differentiation with
respect to �, and a� is a real, external, �-independent four-
vector operator that commutes with x�. As constructed, the
action is a relativistic SOð3; 1Þ scalar function of the four
x� coordinates, but it is nonrelativistic in the fifth coordi-
nate �. We define a canonical momentum

p� � �I

� _x�
¼ m _x�; (15)

and then eliminate _x� to obtain a canonical Hamiltonian

H ¼ p� _x� � L

¼ 1

2m
p�p

� þm!2

2
ðx�x� � 2ia�x

� � a�a
�Þ: (16)

The Hamiltonian (16) is not Dirac-Hermitian because of
the ia�x

� term.

Next, we assign P and T quantum numbers to the x�

and p� operators, just as we do with the nonrelativistic x
and p ¼ dx=dt; to wit, we take the three spatial compo-
nents xk to be P odd [Pxkð�ÞP�1 ¼ �xkð�Þ] and T even
[T xkð�ÞT �1 ¼ xkð��Þ], and take the three spatial com-
ponents pk ¼ dxk=d� to be P odd [Ppkð�ÞP�1 ¼
�pkð�Þ] and T odd [T pkð�ÞT �1 ¼ �pkð��Þ].
Similarly, we take the time component x0 to be P even
[Px0ð�ÞP�1 ¼ x0ð�Þ] and T odd [T x0ð�ÞT �1 ¼
�x0ð��Þ] and take the time component p0 ¼ dx0=d� to
be P even [Pp0ð�ÞP�1 ¼ p0ð�Þ] and T even
[T p0ð�ÞT �1 ¼ p0ð��Þ]. With these assignments the
four x� are PT odd while the four p� are PT even.
Because T also converts i to �i, these assignments are
consistent with the commutation algebra in (1). We sum-
marize these assignments as follows:

Finally, we take the four-vector a� to be PT even. For our
purposes we will need a to be P even and thusT even, and
a0 to be P odd and thus T odd. In the five-space the
Hamiltonian (16) is conjugate to � and not to x0. Neither P
nor T affect � because � is only a parameter, so with
p� _x� ¼ p�p

�=m being PT even, the Hamiltonian is

PT symmetric.
To determine the energy eigenvalues we take the space-

time metric to be diagð���Þ ¼ ð�1; 1; 1; 1Þ. Writing x� ¼
ðt; x; y; zÞ, we obtain a wave-mechanics representation of
the algebra (1) when p� ¼ �i@=@x�; that is,

p0 ¼ �i
@

@t
; pk ¼ �i

@

@xk
: (18)

Consequently, in five-space the Schrödinger equation takes
the form

i
@c ð�; x�Þ

@�
¼

�
� 1

2m
��� @

@x�
@

@x�

þm!2

2
ðx� � ia�Þðx� � ia�Þ

�
c ð�; x�Þ:

(19)

The substitution y� ¼ x� � ia� brings (19) to the form

i
@c ð�; y�Þ

@�
¼

�
1

2m

�
@2

@t2
� @2

@y2

�

þm!2

2
ðy2 � t2Þ

�
c ð�; y�Þ; (20)

and reduces the Schrödinger equation to a four-
dimensional harmonic oscillator with Minkowski signa-
ture. Noting that

�
1

2m

�
@2

@t2
� @2

@y2

�
þm!2

2
ðy2� t2Þ

�
e�m!ðy2�t2Þ=2

¼2!e�m!ðy2�t2Þ=2; (21)

we see that the t-dependent sector contributes a positive
zero-point energy equal to !=2 just as the y-dependent
sector does. Because all the eigenvalues of a harmonic
oscillator are real, the five-space energy eigenvalues of
(19) are given by

E5 ¼ ðnx þ ny þ nz þ nt þ 2Þ!; (22)

where each of nx, ny, nz and nt ranges over the positive

integers. Thus, while the Hamiltonian (16) is not
Hermitian, all of its energy eigenvalues are real.
For this model the five-space propagator obeys

�
i
@

@�
þ 1

2m

@

@x�

@

@x�
�m!2

2

� ðx� � ia�Þðx� � ia�Þ
�
G5ðx�; �; 0; 0Þ

¼ �ð�Þ�4ðx�Þ (23)
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and we show in Appendix A that

G5ðx�; �; 0; 0Þ

¼ �ð�Þ 1

ðsin!�Þ2 exp

�
im! cos!�ðx� � ia�Þðx� � ia�Þ

2 sin!�

�
:

(24)

The propagator of the associated four-dimensional theory
is then obtained via (5), and it obeys (8) with the

PT -symmetric Ĥ ¼ �@�@
�=2mþm!2ðx� � ia�Þ�

ðx� � ia�Þ=2.
Using the PT -theory techniques described in [6], one

can demonstrate the reality of the eigenvalues algebraically
without actually solving the Schrödinger equation. To do

so, one must construct an operator eQ that possesses four

key properties: (i) a similarity transformation using eQ

preserves the commutation relations; (ii) Q is a

Hermitian operator (so that eQ is not unitary); (iii) like V in

(10), eQ effects the transformation

e�QHeQ ¼ Hy; (25)

(iv) the operator

~H ¼ e�Q=2HeQ=2 (26)

obeys ~Hy ¼ ~H. The existence of such a Q operator im-
plies that the energy eigenvalues of H are all real.

We now construct the Q operator for our simple five-
dimensional model. Note that the momentum operator will
effect the transformation

e�b�p�x�eb

p
 ¼ x� þ ib�; (27)

and leave the commutation relations (1) untouched for any
four-vector b� that commutes with both x� and p�. Given
(27), we identify Q as the Hermitian operator 2a�p�

because

e�2a�p�He2a

p


¼ 1

2m
p�p

� þm!2

2
ðx�x� þ 2ia�x

� � a�a
�Þ ¼ Hy:

(28)

Similarly, the transformation

e�a�p�Hea

p
 ¼ 1

2m
p�p

� þm!2

2
x�x

� ¼ ~H (29)

generates an equivalent Hamiltonian ~H that is manifestly
Hermitian.

InPT quantummechanics one introduces an operator C
that is required to obey

½C; H� ¼ 0; C2 ¼ I: (30)

One constructs this operator by making the ansatz C ¼
eQP , where the operator P obeys P 2 ¼ I. In this form the
operator C fulfills the condition C2 ¼ I provided that Q

satisfies PQP ¼ �Q. With e�Q generating e�QHeQ ¼
Hy, the operator C obeys C�1HC ¼ H if P generates
PHP ¼ Hy. For the Q and H of interest here, both
PQP ¼ �Q and PHP ¼ Hy hold provided that a0 is
P odd and a is P even. With this choice for the parity of

a�, we then identify C ¼ eQP . (Previously, we had re-
quired that a� be PT even.) Then, if both a� and p� are
PT even, the operator Q is PT even. As constructed, C
thus obeys ½C;PT � ¼ 0, as expected [8,9] when all energy
eigenvalues are real [11].

III. FIVE-DIMENSIONAL PAIS-UHLENBECK
OSCILLATOR

In 1950 Pais and Uhlenbeck [12] explored the question
of whether the Pauli-Villars regulator associated with the
fourth-order equation of motion

ð@2t �r2 þM2
1Þð@2t �r2 þM2

2Þ�ðx; tÞ ¼ 0 (31)

and propagator

Dðk2Þ ¼ 1

ðk2 þM2
1Þðk2 þM2

2Þ
¼ 1

M2
2 �M2

1

�
1

k2 þM2
1

� 1

k2 þM2
2

�
; (32)

where k2 ¼ �ðk0Þ2 þ k2, could be physically viable, or
whether it was merely a mathematical technique to regulate
Feynman integrals. To this end they replaced the scalar field
�ðx; tÞ by a single coordinate zðtÞ and examined single
momentum modes !2

1 ¼ k2 þM2
1 and !2

2 ¼ k2 þM2
2.

The resulting nonrelativistic quantum-mechanical limit of
the equation of motion (31) and the propagator (32),

ð@2t þ!2
1Þð@2t þ!2

2ÞzðtÞ ¼ 0;

GðEÞ ¼ 1

!2
1 �!2

2

�
1

E2 �!2
1

� 1

E2 �!2
2

�
; (33)

is known as the PU oscillator.
Pais and Uhlenbeck found that if the theory were quan-

tized with a standard positive-metric Hilbert space, the
energy spectrum would not be bounded below. One can
evade this negative-energy problem by quantizing the the-
ory in a negative-metric Hilbert space, but as the relative
minus sign in (33) indicates, the disadvantage of doing so
is that one obtains states of negative Dirac norm and
evidently loses unitarity.
The PU oscillator was revisited in 2008 [13,14] and a

new realization of the theory was found in which the
Hilbert space has neither negative-energy nor negative-
norm states. In this realization the Hamiltonian is not
Dirac-Hermitian but is instead PT invariant. The norm
is given by hLjRi ¼ hnjVjni, rather than by the Dirac norm
hnjni, and the completeness relation is given by (11) rather
than by (2). In analogy with (13), the relative minus signs
in (32) and (33) are generated by the presence of the V
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operator in the propagator and not by quantizing with an
indefinite metric. This realization took a long time (more
than half a century) to discover because the Hamiltonian of
the theory appeared to be Dirac-Hermitian even though it is
not. (In Refs. [13,14] the nonrelativistic PT realization of
the PU oscillator is studied, and in Ref. [14] the relativistic
scalar field theory is examined.)

For the case of the nonrelativistic PU oscillator, the
equation of motion (33) for the coordinate zðtÞ can be
derived by a stationary variation of the PU oscillator action

IPU ¼ �

2

Z
dt½€z2 � ð!2

1 þ!2
2Þ _z2 þ!2

1!
2
2z

2�; (34)

where �, !1 and !2 are positive constants. Since _z serves
as the conjugate of both z and €z, the action is constrained.
One thus replaces _z by a new variable x, and using the
method of Dirac constraints, one obtains [15,16] the
Hamiltonian

HPU ¼ p2
x

2�
þ pzxþ �

2
ð!2

1 þ!2
2Þx2 �

�

2
!2

1!
2
2z

2 (35)

with two canonical pairs that obey ½x; px� ¼ i and
½z; pz� ¼ i.

In the realization of the theory for which the energy
eigenvalues are bounded below, HPU appears to be
Hermitian but it is not. Specifically, one solves the
Schrödinger equation for the ground state of the system
with energy E0 ¼ ð!1 þ!2Þ=2. The eigenfunction is

c 0ðz; xÞ ¼ exp

�
�

2
ð!1 þ!2Þ!1!2z

2 þ i�!1!2zx

� �

2
ð!1 þ!2Þx2

�
: (36)

This eigenfunction diverges exponentially for large z, so
integration by parts generates surface terms that cannot be
discarded. Thus, one cannot represent the operator pz by
�i@z. However, one can replace z by iz (this is equivalent
to working in a Stokes wedge in the complex-z plane that
includes the imaginary z axis but not the real one [13]), and
represent pz by �i@iz ¼ �@z. The eigenfunction then
vanishes exponentially as z becomes large. The highly
unusual implication of the structure of (36) (and the reason
it took so long to find) is that while both conjugate pairs of
coordinates are obtained from the same Lagrangian, the
commutator ½x; px� ¼ i is realized by Hermitian operators,
while the commutator ½z; pz� ¼ i is realized by anti-
Hermitian operators. As a result, the pzx cross-term in
(35) is not Hermitian, and the Hamiltonian HPU is also
not Hermitian.

Rather than using non-Hermitian operators, we make the
similarity transformation

y ¼ e�pzz=2ze��pzz=2 ¼ �iz;

q ¼ e�pzz=2pze
��pzz=2 ¼ ipz;

(37)

to construct Hermitian operators y and q that obey ½y; q� ¼
i. In terms of y and q the Hamiltonian now takes the form

HPU ¼ p2

2�
� iqxþ �

2
ð!2

1 þ!2
2Þx2 þ

�

2
!2

1!
2
2y

2; (38)

where for notational simplicity we have replaced px by p.
The Hamiltonian HPU is now manifestly non-Hermitian.
While HPU is not Hermitian, the P and T quantum-

number assignments

make HPU symmetric under PT reflection. Introducing
the operator

Q ¼ �pqþ 
xy;

� ¼ 1

�!1!2

log

�
!1 þ!2

!1 �!2

�
;


 ¼ ��2!2
1!

2
2;

(40)

we then find that [13,14] the similarity-transformed PU
Hamiltonian

~H PU ¼ e�Q=2HPUe
Q=2

¼ p2

2�
þ q2

2�!2
1

þ �

2
!2

1x
2 þ �

2
!2

1!
2
2y

2 (41)

represents two uncoupled harmonic oscillators. The trans-
formed Hamiltonian ~HPU in (41) is both Hermitian and
manifestly positive definite. This realization of the quan-
tum theory, which is associated with the non-Hermitian
HPU, has no negative-norm or negative-energy eigenstates
[17].

Because the transformation with eQ=2 is not unitary, the
propagator

DðHPUÞ ¼ hx0; y0je�iHPUtjx; yi
¼ hx0; y0jeQ=2e�i ~HPUte�Q=2jx; yi (42)

associated withHPU does not transform into the propagator

Dð ~HPUÞ ¼ hx0; y0je�i ~HPUtjx; yi (43)

that one would ordinarily associate with a two-uncoupled-

oscillator system. The state hx; yjeQ=2 is not the conjugate

of e�Q=2jx; yi, and the propagators in (42) and (43) are not
equivalent; for this realization of the PU Hamiltonian we
must use (42) and not (43). The dependence on the operator

V ¼ e�Q is crucial because it generates the relative minus
sign in (33).
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We now illustrate PT invariance in relativistic quantum
mechanics by applying the five-dimensional formalism to
the PU oscillator. We will see that a straightforward cova-
riant generalization of the PU oscillator does not lead back
to (32). Consequently, in the next section we provide an
alternate five-dimensional formalism that does.

To generalize the PU oscillator to relativistic quantum
mechanics we replace (34) by

I ¼ �

2

Z �

0
d�½ €z� €z� � ðM2

1 þM2
2Þ _z� _z� þM2

1M
2
2z�z

��;
(44)

where the dot denotes differentiation with respect to �.
Because of constraints associated with this action, the
Hamiltonian has the form

H ¼ ðpxÞ�ðpxÞ�
2�

þ ðpzÞ�x� þ �

2
ðM2

1 þM2
2Þx�x�

� �

2
M2

1M
2
2z�z

�: (45)

Recalling the transformation in (37), we let y� ¼ �iz�

and q� ¼ iðpzÞ�. On setting ðpxÞ� ¼ p� we obtain two
canonical pairs of operators that obey

½x�ð�Þ; p�ð�Þ� ¼ i���; ½q�ð�Þ; y�ð�Þ� ¼ i���; (46)

and a Hamiltonian of the form

H ¼ p�p
�

2�
� iq�x

� þ �

2
ðM2

1 þM2
2Þx�x�

þ �

2
M2

1M
2
2y�y

�: (47)

The assignments

in which x0 changes sign under T , then establish that HPU

is PT symmetric.
Next, we introduce the operator

Q ¼ �p�q
� þ 
x�y

�;

� ¼ 1

�M1M2

log

�
M1 þM2

M1 �M2

�
;


 ¼ ��2M2
1M

2
2;

(49)

and find that

~H ¼ e�Q=2HeQ=2

¼ p�p
�

2�
þ q�q

�

2�M2
1

þ �

2
M2

1x�x
� þ �

2
M2

1M
2
2y�y

�:

(50)

Thus, the energy eigenvalues of the PT -symmetric
Hamiltonian H are all real.
We show in Appendix A that if we set M1 ¼ M and

M2 ¼ 0, the five-space propagator is

G5ðx�; y�; �; 0; 0; 0Þ ¼ �ð�Þ e
iB=A

A2
; (51)

where

2B=� ¼ Mx�x
�ðsinM��M� cosM�Þ �M3y�y

� sinM�

þ 2iM2x�y
�ð1� cosM�Þ;

A ¼ 2� 2 cosM��M� sinM�: (52)

The propagator of the associated four-dimensional the-
ory may now be obtained by performing the integral in (5),

and the resulting propagator will obey (8) with Ĥ ¼
�ð1=2�Þ@=@x�@=@x� � x�@=@y� þ �M2x�x

�=2. While

of interest in itself, this propagator is not of the generic
Pauli-Villars form given in (32). Thus, in Sec. IV we
provide an alternate choice for the five-dimensional
Hamiltonian that will lead to (32).

IV. ALTERNATE FORMULATION OF THE
FIVE-SPACE PU OSCILLATOR

Given the structure of (31) we take the five-space Ĥ to
have the operator form

Ĥ ¼ �½�ðp̂0Þ2 þ �̂p2 þM2
1�½�ðp̂0Þ2 þ �̂p2 þM2

2�: (53)

For this Hamiltonian the five-dimensional energies are
given by

E5¼�½�ðp0Þ2þ �p2þM2
1�½�ðp0Þ2þ �p2þM2

2�; (54)

where the momenta in (54) are the eigenvalues of the
operators in (53). Inserting these energies into (7), we
obtain the Pauli-Villars propagator in (32), with (9) being
satisfied.
Equation (53) leads directly to (32), but its use here is

nonstandard because it does not have a simple Lagrangian
counterpart. In the previous examples and in the derivation
of the Klein-Gordon propagator, one can start with a five-
dimensional action (of the form

R
�
0 d� _x� _x� for the specific

Klein-Gordon case) and by a canonical procedure derive a
Hamiltonian from it. The Lagrangians in these examples
are quadratic functions of the coordinates, so the procedure
is straightforward and yields Hamiltonians that are also
quadratic. However, the Hamiltonian (53) is not quadratic;
it is quartic because the wave operator in (31) is a fourth-
order derivative operator [18]. Since the Lagrangian is
given by Lð _x�Þ ¼ p� _x� �Hðp�p

�Þ and since p� ¼
@L=@ _x�, one can in principle construct Lð _x�Þ if one knows
Hðp�p

�Þ. Doing so for (53) is difficult, so we start directly
with Hðp�p

�Þ. Once we have Hðp�p
�Þ, we can then use

the representation in (7) without needing to know the
structure of the Lagrangian.
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We can recover the four-dimensional Pauli-Villars
propagator, but at first it appears that the Hamiltonian in
(53) is Hermitian. Moreover, in the second-order Klein-

Gordon case with Ĥ ¼ �ðp0Þ2 þ �p2 þM2
1 and real E5 the

Hamiltonian is Hermitian. However, in the fourth-order
case, we note that ðp0Þ2 is given as

ðp0Þ2 ¼ 1

2
ðE2

1 þ E2
2 � ½ðE2

1 � E2
2Þ2 � 4E5�1=2Þ; (55)

where E2
i ¼ �p2 þM2

i . Thus, now there can be real values
of E5 for which ðp0Þ2 is complex and for which the

operator ðp̂0Þ2, and thus Ĥ, is not Hermitian. (Note that
with E5 being real, the Hamiltonian must be PT
invariant.)

In addition, we note that for general M1 and M2, if we
take E5 to be zero, the eigenfunctions associated with the

operator Ĥ in (53) will have the form c 1 ¼ e�iE1tþi �p� �x and
c 2 ¼ e�iE2tþi �p� �x. However, if we then set M1 ¼ 0 and
M2 ¼ 0, there will be eigenfunctions of the form c a ¼
e�iptþi �p� �x and c b ¼ n�x

�e�iptþi �p� �x, where n� is the unit

timelike vector n� ¼ ð1; 0; 0; 0Þ. Of the two c a and c b

eigenfunctions, only c a is stationary; c b grows linearly in
the time coordinate, which indicates that the Hamiltonian
has Jordan-block form and that it has an incomplete set of

eigenvectors. Consequently, the Hamiltonian Ĥ in (53)

cannot be diagonalized and is not Hermitian. Since Ĥ is
not Hermitian when E5 ¼ M1 ¼ M2 ¼ 0, it must also not
be Hermitian for a range of values of these parameters. In
Ref. [14] it was found that in the equal-frequency limit
!1 ¼ !2 of the PU oscillator, the Hamiltonian in (38) is
also nondiagonalizable and non-Hermitian.

The solutions to (55) thus break up into two sectors. In
one sector the Hamiltonian is Hermitian and the energy
eigenvalues are unbounded below (4E5 < ðM2

1 �M2
2Þ2). In

the other sector the Hamiltonian is not Hermitian and the
energies are bounded below (4E5 > ðM2

1 �M2
2Þ2), just as

in the case of the nonrelativistic PU oscillator. If E5 is real,
the Hamiltonian is PT invariant in both cases. In the

sector where Ĥ is Hermitian the four-space propagator is
given by (7). In the non-Hermitian sector the four-space
propagator is given by (13) and as before, the V operator
then generates the relative minus sign in the Pauli-Villars
propagator [19]. Our five-space treatment of the Pauli-
Villars propagator based on (53) recovers the key features
of the analyses of Refs. [13,14]. We see that one can extend
PT symmetry to the five-dimensional formalism, and
while we have not directly studied the time-reversal and
PT properties of the time operator in the Pauli-Villars
case, those properties follow directly from the commuta-
tion relations (1) depending on how they are explicitly
specified for ðp̂Þ0.

V. SUMMARY

Using a number of elementary models, we have shown
in this paper that the standard techniques of PT quantum

mechanics extend and apply to relativistic quantum me-
chanics, where the time-reversal operator T reverses the
sign of the time operator x0. We conclude that relativistic
PT -symmetric quantum mechanics is physically viable.
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APPENDIX A: CONSTRUCTION OF
FIVE-SPACE PROPAGATORS

To construct propagators that obey the five-dimensional

equation ði@� þ ĤÞG5ðx�; �; 0; 0Þ ¼ �ð�Þ�4ðx�Þ, we first
recall how a propagator is constructed when the eigen-

modes of Ĥ are plane waves. For the nonrelativistic
quantum-mechanical free particle in one space dimension
there is a plane-wave basis and the propagator is given by

G1ðx; t; 0; 0Þ ¼ � i�ðtÞ
2�

Z
dpe�ipx�ip2t=m: (A1)

When i@t acts on �i�ðtÞ, we generate the �ðtÞ�ðxÞ term,
while if we omit the �ðtÞ function, the rest of the propagator
obeys

�
i
@

@t
þ 1

2m

@2

@x2

�
R1ðx; t; 0; 0Þ ¼ 0; (A2)

where G1ðx; t; 0; 0Þ ¼ �ðtÞR1ðx; t; 0; 0Þ. The Fourier trans-
form in (A1) can be performed analytically and yields

G1ðx; t; 0; 0Þ ¼ �ðtÞ
�

m

2�it

�
1=2

eimx2=2t: (A3)

The term ISTAT ¼ mx2=2t in the exponent is the value of
the classical action I ¼ ðm=2ÞRt

0 dt _x
2 for the stationary

path €x ¼ 0 between the end points ðx ¼ 0; t ¼ 0Þ and ðx; tÞ.
If one were to calculate this propagator as a path integralR½dx�eiI over a complete basis of paths between the end

points, one would obtain the same eiISTAT phase, but one
would not know the multiplicative prefactor. This prefactor
is determined by requiring that the propagator obey (A2).
(If one does not have a plane-wave basis, one can evaluate
the propagator via a path integral and then use the
Schrödinger equation to determine the prefactor.)
For the one-dimensional harmonic oscillator (where the

basis is not plane waves), the path integral again has the
form eiISTAT , where ISTAT is the value of I ¼ ðm=2Þ�R

T
0 dt½ _x2 �!2x2� as evaluated in the stationary path €xþ

!2x ¼ 0 between the end points ðx ¼ 0; t ¼ 0Þ and ðx ¼
xf; t ¼ TÞ. Noting that _x2 �!2x2 ¼ dðx _xÞ=dt� x €x�
!2x2, we obtain ISTAT ¼ mxf _xf=2. The solution to the

equation of motion is xðtÞ ¼ xf sin!t= sin!T, _xðtÞ ¼
!xf cos!t= sin!T, so we obtain ISTAT ¼
m!x2f cos!T=2 sin!T. With this form for ISTAT, the pre-

factor evaluates to ðsin!TÞ�1=2 and the propagator is
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G1ðx; T; 0; 0Þ ¼ �ðTÞ
�

1

sin!T

�
1=2

exp

�
im!x2 cos!T

2 sin!T

�
:

(A4)

The propagator (24) is the shifted covariant generalization
of this result.

The propagator associated with the PU oscillator action
given in (34) has already been reported in the literature
[20], and because the action is quadratic, the

R
d½z� path

integral between end points with fixed z and _z has the form
expðiISTATÞ with the appropriate ISTAT. Here, we present a
simplified version of the propagator in which we set !1 ¼
!, !2 ¼ 0. In this case the classical action reduces to

IPU ¼ �

2

Z
dtð €z2 �!2 _z2Þ; (A5)

and the stationary classical equation of motion is given by

@2t ð€zþ!2zÞ ¼ 0: (A6)

Noting that

@tð _z €z�z@3t z�!2z _zÞ ¼ €z2 �!2 _z2 � z@2t ð€zþ!2zÞ;
(A7)

on evaluating ISTAT between z ¼ 0, _z ¼ 0 at t ¼ 0, and
zðTÞ, _zðTÞ at t ¼ T, we obtain

ISTAT ¼ ð�=2Þð _zðTÞ€zðTÞ � zðTÞ@3t zðTÞ �!2zðTÞ _zðTÞÞ:
(A8)

Hence, introducing

!�AðTÞ ¼ _zðTÞð!T � sin!TÞ �!zðTÞð1� cos!TÞ;

AðTÞ ¼ _zðTÞð1� cos!TÞ � zðTÞ! sin!T;

AðTÞ ¼ 2� 2 cos!T �!T sin!T;

(A9)

we find that the solution to (A6) that satisfies the boundary
conditions takes the form

zðtÞ ¼ ��ð1� cos!tÞ � ð
=!Þ sin!tþ 
t;

_zðtÞ ¼ ��! sin!t� 
 cos!tþ 
;

€zðtÞ ¼ ��!2 cos!tþ 
! sin!t;

@3t zðtÞ ¼ �!3 sin!tþ 
!2 cos!t:

(A10)

In this solution ISTAT obeys

2AðTÞ
�

ISTAT ¼ ! _z2ðTÞðsin!T �!T cos!TÞ
� 2!2zðTÞ _zðTÞð1� cos!TÞ
þ!3z2ðTÞ sin!T: (A11)

Finally, we verify that this function is a solution to
the Schrödinger equation associated with (35) and identify

the prefactor as A�1=2ðTÞ. The propagator is thus

A�1=2ðTÞeiISTAT . Its covariant generalization, obtained by
using (37), is given in (51).
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