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We expose simple and practical relations between the integrated four- and five-point one-loop

amplitudes of N � 4 supergravity and the corresponding (super-)Yang-Mills amplitudes. The link

between the amplitudes is simply understood using the recently uncovered duality between color and

kinematics that leads to a double-copy structure for gravity. These examples provide additional direct

confirmations of the duality and double-copy properties at loop level for a sample of different theories.
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I. INTRODUCTION

One of the remarkable theoretical ideas emerging in the
last decade is the notion that gravity theories are intimately
tied with gauge theories. The most celebrated connection is
the AdS/CFT correspondence [1] which relates maximally
supersymmetric Yang-Mills gauge theory to string theory
(and supergravity) in anti-de Sitter space. Another surpris-
ing link between the two theories is the conjecture that to
all perturbative loop orders the kinematic numerators of
diagrams describing gravity scattering amplitudes are
double copies of the gauge-theory ones [2,3]. This
double-copy relation relies on a novel conjectured duality
between color and kinematic diagrammatic numerators of
gauge-theory scattering amplitudes. At tree level, the
double-copy relation encodes the Kawai-Lewellen-Tye
(KLT) relations between gravity and gauge-theory ampli-
tudes [4].

The duality between color and kinematics offers a
powerful tool for constructing both gauge and gravity
loop-level scattering amplitudes, including nonplanar con-
tributions [3,5–7]. The double-copy property does not rely
on supersymmetry and is conjectured to hold just as well in
a wide variety of supersymmetric and nonsupersymmetric
theories. In recent years there has been enormous progress
in constructing planar N ¼ 4 super-Yang-Mills ampli-
tudes. For example, at four and five points, expressions
for amplitudes of this theory—believed to be valid to all
loop orders and nonperturbatively—have been constructed
[8]. (For recent reviews, see Refs. [5,9]). Many of the new
advances stem from identifying a new symmetry, called
dual conformal symmetry, in the planar sector of N ¼ 4
super-Yang-Mills theory [10]. This symmetry greatly en-
hances the power of methods based on unitarity [11,12] or
on recursive constructions of integrands [13]. The non-
planar sector of the theory, however, does not appear to
possess an analogous symmetry. Nevertheless, the duality
between color and kinematics offers a promising means for
carrying advances in the planar sector of N ¼ 4 super-
Yang-Mills theory to the nonplanar sector and then to

N ¼ 8 supergravity. In particular, the duality interlocks
planar and nonplanar contributions into a rigid structure.
For example, as shown in Ref. [3], for the three-loop four-
point amplitude, the maximal cut [14] of a single planar
diagram is sufficient to determine the complete amplitude,
including nonplanar contributions.
Here we will explore one-loop consequences of the

duality between color and kinematics for supergravity
theories with 4 � N � 6 supersymmetries. These cases
are less well understood than the cases of maximal super-
symmetry. (Some consequences for finite one-loop ampli-
tudes in nonsupersymmetric pure Yang-Mills theory have
been studied recently [15]). Since the duality and its
double-copy consequence remain a conjecture, it is an
interesting question to see if the properties hold in the
simplest nontrivial loop examples with less than maximal
supersymmetry. In particular, we will explicitly study the
four- and five-point amplitudes of these theories. These
cases are especially straightforward to investigate because
the required gauge theory and gravity amplitudes are
known. Our task is then to find rearrangements that expose
the desired properties. The necessary gauge-theory four-
point amplitudes were first given in dimensional regulari-
zation near four dimensions in Ref. [16], and later in a form
valid to all orders in the dimensional-regularization pa-
rameter [17]. At five points, the dimensionally regularized
gauge-theory amplitudes near four dimensions were pre-
sented in Ref. [18]. The four-graviton amplitudes in theo-
ries with N � 6 supersymmetries were first given in
Ref. [19]. More recently, the maximally-helicity-violating
(MHV) one-loop amplitudes of N ¼ 6 and N ¼ 4 su-
pergravity were presented, up to rational terms in the latter
theory [20].1

Here we point out that the double-copy relations can
be straightforwardly exploited, allowing us to obtain
complete integrated four- and five-point amplitudes of

1While completing the present paper, version 2 of Ref. [20]
appeared, giving the missing rational terms of the N ¼ 4
supergravity five-point amplitudes.
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N � 4 supergravity amplitudes as simple linear combi-
nations of corresponding gauge-theory amplitudes.
Because these relations are valid in any number of dimen-
sions, we can use previously obtained representations of
QCD andN ¼ 4 super-Yang-Mills four-point amplitudes
valid withD-dimensional momenta and states in the loop to
obtain such representations forN � 4 supergravity. These
D-dimensional results are new, while our four-dimensional
results reproduce ones found in Refs. [19,20]. Relations
between integrated N ¼ 4 super-Yang-Mills andN ¼ 8
supergravity four-point one- and two-loop amplitudes had
been described previously in Ref. [21].

For cases with larger numbers of external legs, the loop
momentum is expected to become entangled with the
relations making them more intricate. Nevertheless, we
expect that the duality should lead to simple structures at
one-loop for all multiplicity, and once understood these
should lead to improved means for constructing gravity
loop amplitudes. Indeed, the duality has already been
enormously helpful for constructing four- and five-point
multiloop amplitudes in N ¼ 8 supergravity [3,5–7].

This paper is organized as follows. In Sec. II we review
some properties of scattering amplitudes, including the
conjectured duality between color and kinematics and the
gravity double-copy property. Then in Sec. III, we give
some one-loop implications, before turning to supergrav-
ity. We also make a few comments in this section on
two-loop four-point amplitudes. We give our summary
and outlook in Sec. IV. Two appendices are included
collecting gauge-theory amplitudes and explicit forms of
the integrals used in our construction.

II. REVIEW

In this section we review some properties of gauge and
gravity amplitudes pertinent to our construction of super-
gravity amplitudes. We first summarize the duality be-
tween color and kinematics which allows us to express
gravity amplitudes in terms of gauge-theory ones. We then
review decompositions of one-loop N ¼ 4, 5, 6 super-
gravity amplitudes in terms of contributions of matter
multiplets, simplifying the construction of the amplitudes.

A. Duality between color and kinematics

We can write a massless m-point L-loop-level gauge-
theory amplitude where all particles are in the adjoint
representation as

ð�iÞL
gm�2þ2L

Aloop
m ¼ X

j

Z dDLp

ð2�ÞDL

1

Sj

njcjQ
�j

p2
�j

: (2.1)

The sum runs over the set of distinct m-point L-loop
graphs, labeled by j, with only cubic vertices, correspond-
ing to the diagrams of a �3 theory. The product in the
denominator runs over all Feynman propagators of each

cubic diagram. The integrals are over L independent
D-dimensional loop momenta, with measure dDLp ¼Q

L
l¼1 d

Dpl. The ci are the color factors obtained by dress-

ing every three vertex with an ~fabc ¼ i
ffiffiffi
2

p
fabc ¼

Trf½Ta; Tb�Tcg structure constant, and the ni are kinematic
numerator factors depending on momenta, polarizations
and spinors. For supersymmetric amplitudes expressed in
superspace, there will also be Grassmann parameters in the
numerators. The Sj are the internal symmetry factors of

each diagram. The form in Eq. (2.1) can be obtained in
various ways; for example, starting from covariant
Feynman diagrams, where the contact terms are absorbed
into kinematic numerators using inverse propagators.
Any gauge-theory amplitude of the form (2.1) possesses

an invariance under ‘‘generalized gauge transformations’’
[2,3,22–24] corresponding to all possible shifts, ni ! ni þ
�i, where the �i are arbitrary kinematic functions (inde-
pendent of color) constrained to satisfy

X
j

Z dDLp

ð2�ÞDL

1

Sj

�jcjQ
�j

p2
�j

¼ 0: (2.2)

By construction this constraint ensures that the shifts by �i

do not alter the amplitude (2.1). The condition (2.2) can be
satisfied either because of algebraic identities of the inte-
grand (including identities obtained after trivial relabeling
of loop momenta in diagrams) or because of nontrivial
integration identities. Here we are interested in �i that
satisfy (2.2) because of the former reason, as the relations
we will discuss below operate at the integrand level. We
will refer to these kind of numerator shifts valid at the
integrand level as point-by-point generalized gauge trans-
formations. One way to express this freedom is by taking
any function of the momenta and polarizations and multi-
plying by a sum of color factors that vanish by the color-
group Jacobi identity, and then repackaging the functions
into �i’s over propagators according to the color factor of
each individual term. Some of the resulting freedom cor-
responds to gauge transformations in the traditional sense,
while most does not. These generalized gauge transforma-
tions will play a key role, allowing us to choose different
representations of gauge-theory amplitudes, aiding our
construction of gravity amplitudes from gauge-theory
ones.
The conjectured duality of Refs. [2,3] states that to all

loop orders there exists a form of the amplitude where
triplets of numerators satisfy equations in one-to-one cor-
respondence with the Jacobi identities of the color factors,

ci ¼ cj � ck ) ni ¼ nj � nk; (2.3)

where the indices i, j, k schematically indicate the diagram
to which the color factors and numerators belong to.
Moreover, we demand that the numerator factors have
the same antisymmetry property as color factors under
interchange of two legs attaching to a cubic vertex,
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ci ! �ci ) ni ! �ni: (2.4)

At tree level, explicit forms satisfying the duality have
been given for an arbitrary number of external legs and any
helicity configuration [25]. An interesting consequence of
this duality is nontrivial relations between the color-
ordered partial tree amplitudes of gauge theory [2] which
have been proven in gauge theory [26] and in string theory
[27]. Recently these relations played an important role in
the impressive construction of the complete solution to all
massless open string tree-level amplitudes [28]. The dual-
ity has also been studied from the vantage point of the
heterotic string, which offers a parallel treatment of color
and kinematics [22]. A partial Lagrangian understanding
of the duality has also been given [23]. The duality (2.3)
has also been expressed in terms of an alternative trace-
based representation [29], emphasizing the underlying
group-theoretic structure of the duality. Indeed, at least
for self-dual field configurations and MHV amplitudes,
the underlying infinite-dimensional Lie algebra has been
very recently been identified as area preserving diffeomor-
phisms [30].

At loop level, less is known though some nontrivial tests
have been performed. In particular, the duality has been
confirmed to hold for the one-, two- and three-loop four-
point amplitudes of N ¼ 4 super-Yang-Mills theory [3].
It is also known to hold for the one- and two-loop four-
point identical helicity amplitudes of pure Yang-Mills
theory [3]. Very recently it has also been shown to hold
for the four-loop four-point amplitude of N ¼ 4 super-
Yang-Mills theory [6], and for the five-point one-, two- and
three-loop amplitudes of the same theory [7].

B. Gravity as a double copy of gauge theory

Perhaps more surprising than the gauge-theory aspects
of the duality between color and kinematics is a directly
related conjecture for the detailed structure of gravity
amplitudes. Once the gauge-theory amplitudes are ar-
ranged into a form satisfying the duality (2.3), correspond-
ing gravity amplitudes can be obtained simply by taking a
double copy of gauge-theory numerator factors [2,3],

ð�iÞLþ1

ð�=2Þn�2þ2L
Mloop

m ¼ X
j

Z dDLp

ð2�ÞDL

1

Sj

nj~njQ
�j

p2
�j

; (2.5)

where Mloop
m are m-point L-loop gravity amplitudes. The

~ni represent numerator factors of a second gauge-theory
amplitude, the sum runs over the same set of diagrams as in
Eq. (2.1). At least one family of numerators (nj or ~nj) for

gravity must be constrained to satisfy the duality (2.3)
[3,23]. This is expected to hold in a large class of gravity
theories, including all theories that are low-energy limits of
string theories. We obtain different gravity theories by
taking the ni and ~ni to be numerators of amplitudes from
different gauge theories. Here we are interested inN � 4

supergravity amplitudes in D ¼ 4. For example, we obtain
the pure supergravity theories as products of D ¼ 4 Yang-
Mills theories as,

N ¼ 8 supergravity: ðN ¼ 4sYMÞ � ðN ¼ 4 sYMÞ;
N ¼ 6 supergravity: ðN ¼ 4 sYMÞ � ðN ¼ 2 sYMÞ;
N ¼ 5 supergravity: ðN ¼ 4 sYMÞ � ðN ¼ 1 sYMÞ;
N ¼ 4 supergravity: ðN ¼ 4 sYMÞ � ðN ¼ 0 sYMÞ;

(2.6)

whereN ¼ 0 super-Yang-Mills is ordinary nonsupersym-
metric Yang-Mills theory, consisting purely of gluons.
(N ¼ 7 supergravity is equivalent to N ¼ 8 supergrav-
ity, so we do not list it).
Since the duality requires the numerators and color

factors to share the same algebraic properties (2.3), (2.4),
and (2.2) implies that

X
j

Z dDLp

ð2�ÞDL

1

Sj

�j~njQ
�j

p2
�j

¼ 0; (2.7)

so that the gravity amplitude (2.5) is invariant under the
same point-by-point generalized gauge transformation
nj ! nj þ �j as in gauge theory.

At tree level, the double-copy property encodes the KLT
[4] relations between gravity and gauge theory [2]. The
double-copy formula (2.5) has been proven at tree level for
pure gravity and forN ¼ 8 supergravity, when the duality
(2.3) holds in the corresponding gauge theories [23]. At
loop level a simple argument based on the unitarity cuts
strongly suggests that the double-copy property should
hold if the duality holds in gauge theory [3,23]. In any
case, the nontrivial part of the loop-level conjecture is the
assumption of the existence of a gauge-theory loop ampli-
tude representation that satisfies the duality between color
and kinematics. The double-copy property (2.5) has been
explicitly confirmed in N ¼ 8 supergravity through four
loops for the four-point amplitudes [3,6] and through two
loops for the five-point amplitudes [7]. (The three- and
four-loop N ¼ 4 super-Yang-Mills and N ¼ 8 super-
gravity four-point amplitudes had been given earlier, but
in a form where the duality and double copy are not
manifest [31–34]).

C. Decomposing one-loop N � 4
supergravity amplitudes

To simplify the analysis, we consider amplitudes with
only gravitons on the external legs. (One can, of course, use
an on-shell superspace as described in Ref. [35] to include
other cases as well). At one loop it is well known that the
graviton scattering amplitudes of various supersymmetric
theories satisfy simple linear relations dictated by the
counting of states in each theory. In Table I we give
the particle content of relevant supergravity multiplets.
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(The N ¼ 5 matter multiplet is the same as the N ¼ 6
matter one, hence, it is not explicitly listed. Similarly, the
N ¼ 8 supergravity multiplet is equivalent to theN ¼ 7
one). Looking at this table, we can easily assemble some
simple relations between the contributions from different
multiplets circulating in the loop,

M1�loop
N¼6 ð1; 2; . . . ; mÞ
¼ M1�loop

N¼8 ð1; 2; . . . ; mÞ � 2M1�loop
N¼6;mat:ð1; 2; . . . ; mÞ;

M1�loop
N¼5 ð1; 2; . . . ; mÞ
¼ M1�loop

N¼8 ð1; 2; . . . ; mÞ � 3M1�loop
N¼6;mat:ð1; 2; . . . ; mÞ;

M1�loop
N¼4 ð1; 2; . . . ; mÞ
¼ M1�loop

N¼8 ð1; 2; . . . ; mÞ � 4M1�loop
N¼6;mat:ð1; 2; . . . ; mÞ

þ 2M1�loop
N¼4;mat:ð1; 2; . . . ; mÞ; (2.8)

where the subscript ‘‘mat’’ denotes a matter multiplet
contribution. Thus, in the rest of the paper, wewill consider
only one-loop amplitudes with the two types of matter
going around the loop in addition to the N ¼ 8 ampli-
tudes. The remaining N � 4 amplitudes (with generic
amounts of N � 4 matter) can be assembled by linear
combination of these three types.

III. IMPLICATIONS OF THE
DUALITYAT ONE-LOOP

In this section we first present a few general one-loop
implications of the duality between color and kinematics.
Our initial considerations are general and apply as well to
nonsupersymmetric theories. We will then specialize to
N � 4 supergravity four- and five-point amplitudes, tak-
ing advantage of special properties ofN ¼ 4 super-Yang-
Mills theory.

A. Implications for generic one-loop amplitudes

As shown in Ref. [36] all color factors appearing in a
one-loop amplitude can be obtained from the color factors
of ‘‘ring diagrams’’, that is the ðm� 1Þ!=2 one-particle-
irreducible (1PI) diagrams in the shape of a ring, as illus-
trated in Fig. 1 for the cyclic ordering 1; 2; . . . ; m. We will
denote the color and kinematic numerator factors of such a

diagram with external leg ordering 1; 2; . . . ; m by c123���m
and n123���mðpÞ. Its color factor is given by the adjoint trace,

c123...m ¼ TrA½~fa1 ~fa2 ~fa3 � � � ~fam�; (3.1)

where ð~faiÞbc ¼ ~fbaic.
The color factors of the one-particle-reducible diagrams

are simply given by antisymmetrizations of ring-diagram
ones as dictated by the Jacobi relations (2.3). For example,
the color factor of the diagram with a single vertex external
to the loop shown in Fig. 2 is

c½12�3���m � c123���m � c213���m: (3.2)

If we have a form of the amplitude where the duality holds,
then the numerator of this diagram is

n½12�3���mðpÞ � n123���mðpÞ � n213���mðpÞ: (3.3)

The color factors of other diagrams, with multiple vertices
external to the loop, can similarly be obtained with further
antisymmetrizations such as c½½12�3�...m ¼ c½12�3...m �
c3½12�...m. In this way all color factors and numerators can

be expressed in terms of the ones of the ring diagram, so it
serves as our ‘‘master’’ diagram.
It is also useful to consider representations where the

dual Jacobi relations do not hold. For anym-point one-loop
amplitude, we can use the color-group Jacobi identity to
eliminate all color factors except those of the master
diagram and its relabelling. Indeed, this is how one arrives
at the adjoint-representation color basis [36]. In this color
basis we express the one-loop amplitude in terms of a sum
over permutations of a planar integrand,

A1�loopð1;2; . . . ;mÞ

¼gm
X

Sm=ðZm�Z2Þ

Z dDp

ð2�ÞDc123...mAð1;2; . . . ;m;pÞ; (3.4)

where Að1; 2; . . . ; m;pÞ is the complete integrand of the
color-ordered amplitude, A1�loopð1; 2; . . . ; mÞ. The sum
runs over all permutations of external legs (Sn), but with
the cyclic (Zm) and reflection (Z2) permutations modded
out. In this representation all numerator factors except for
the m-gon ones are effectively set to zero, since their color

TABLE I. Particle content of relevant supergravity multiplets.
The scalars are taken to be real for counts in this table.

Scalars Spin 1=2 Spin 1 Spin 3=2 Spin 2

N ¼ 8 70 56 28 8 1

N ¼ 6 gravity 30 26 16 6 1

N ¼ 5 gravity 10 11 10 5 1

N ¼ 4 gravity 2 4 6 4 1

N ¼ 6 matter 20 15 6 1

N ¼ 4 matter 6 4 1

FIG. 1. the one-loop m-gon master diagram for the cyclic
ordering 1; 2; . . . ; m.
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factors no longer appear in the amplitude. This is equiva-
lent to a generalized gauge transformation applied to the
numerators2

n123���mðpÞ ! n123���mðpÞ þ�123���mðpÞ

¼ Að1; 2; 3; . . . ; m;pÞ Y
m

�¼1

p2
�;

ni ! ni þ �i ¼ 0; for 1PRgraphs i; (3.5)

where the product
Q

p2
� runs over the inverse propagators

of the m-gon master diagram. In this representation the
m-gon numerators are in general nonlocal to account for
propagators carrying external momenta present in the
one-particle reducible (1PR) diagrams but not in master
diagrams. In general, the new numerators in Eq. (3.5) will
not satisfy the duality relations (2.3).

Recall that generalized gauge invariance implies that
only one of the two copies of numerators needs to satisfy
the duality in order for the double-copy property to work.
For the first copy we use the duality-violating representa-
tion (3.5) where all one-particle reducible numerator fac-
tors are eliminated in favor of nonlocal m-gon master
numerator factors. For the second copy we use the
duality-satisfying numerators, ~n12...m. Then according to
the double-copy formula (2.5), by making the substitution
ci ! ~ni in Eq. (3.4), we obtain a valid gravity amplitude.
We then have

M1�loopð1; 2; . . . ; mÞ

¼
�
�

2

�
m X
Sm=ðZm�Z2Þ

Z dDp

ð2�ÞD ~n123...mðpÞAð1; 2; . . . ; m;pÞ;

(3.6)

where ~n12...mðpÞ is the m-gon master numerator with the
indicated ordering of legs and we have replaced the gauge-
theory coupling constant with the gravity one.

At first sight, it may seem surprising that only them-gon
numerators are needed, but as noted above, these master

numerators contain all the nontrivial information in the
amplitudes. The nontrivial step in this construction is to
find at least one copy ofm-gon numerators ~ni such that the
duality relations (2.3) hold manifestly.
So far these considerations have been general. An im-

portant simplification occurs if the numerators of one of the
gauge-theory copies are independent of the loop momenta,
~n123...mðpÞ ¼ ~n123...m. We can then pull these numerators
out of the integral in Eq. (3.6) giving relations between
integrated gravity and gauge theory amplitudes. Below we
will identify two cases where this is indeed true: the four-
and five- point one-loop amplitudes of N ¼ 4 super-
Yang-Mills theory [7,37]. Taking one copy to be the
N ¼ 4 super-Yang-Mills amplitude and the other to be
a gauge-theory amplitude with fewer supersymmetries, we
then get a remarkably simple relation between integrated
one-loop (N þ 4) supergravity and super-Yang-Mills am-
plitudes with N supersymmetries,

M1�loop
Nþ4 susyð1; 2; . . . ; mÞ

¼
�
�

2

�
m X
Sm=ðZm�Z2Þ

~n123...mA
1�loop
N susyð1; 2; . . . ; mÞ; (3.7)

valid for m ¼ 4, 5. This construction makes manifest the
remarkably good power counting noted inRefs. [20,38].We
do not expect higher points to be quite this simple, but we do
anticipate strong constraints between generic one-loop am-
plitudes of gravity theories and those of gauge theory.

B. Four-point one-loop N � 4
supergravity amplitudes

We now specialize the above general considerations to
four-point supergravity amplitudes. There is only one inde-

pendent four-graviton amplitude,M1�loop
N susyð1�; 2�; 3þ; 4þÞ,

as the others either vanish or are trivially related by relabel-
ings. As a warmup exercise, we start with N ¼ 8 super-
gravity and we reevaluate this supergravity amplitude using
the above considerations. Our starting point is the N ¼ 4
super-Yang-Mills one-loop four-point amplitude [37,39],

A1�loop
N¼4 ð1; 2; 3; 4Þ ¼ istg4Atreeð1; 2; 3; 4Þðc1234I12344

þ c1243I
1243
4 þ c1423I

1423
4 Þ; (3.8)

FIG. 2. The basic Jacobi relation between three one-loop graphs that can be used to express any color factor or kinematic numerator
factor for any one-loop graph in terms of the parent m-gons.

2Here we have absorbed a phase factor i into the numerator
definition, inj ! nj, compared to Eq. (2.1), as is convenient for
one-loop amplitudes. For the remaining part of the paper we will
use this convention.
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where s ¼ ðk1 þ k2Þ2 and t ¼ ðk2 þ k3Þ2 are the usual
Mandelstam invariants, and the tree amplitude is

Atreeð1�; 2�; 3þ; 4þÞ ¼ ih12i4
h12ih23ih34ih41i ; (3.9)

where the angle brackets hiji (also ½ij� below) denotes
spinor products. (See e.g. Ref. [40]). The function I12344 is

the massless scalar box integral defined in Eqs. (B6) and
(B7) of Appendix B. The other box integrals are just relab-
elings of this one. The expression in Eq. (3.8) in terms of the
box integral (B6) is valid in dimensions D< 10.

The first color factor in Eq. (3.8) is given by

c1234 ¼ ~fba1c ~fca2d ~fda3e ~fea4b; (3.10)

and the others are just relabelings of this one. The kine-
matic numerator in each case is

n1234 ¼ n1243 ¼ n1423 ¼ istAtreeð1; 2; 3; 4Þ: (3.11)

These numerators happen to have full crossing symmetry,
but that is a special feature of the four-point amplitude in
N ¼ 4 super-Yang-Mills theory. Because the triangle and
bubble diagrams vanish, Eq. (3.11) is equivalent to the
duality relations (2.3). Indeed, applying a Jacobi-like
identity to these box numerators gives a vanishing triangle
numerator, n12½34� ¼ n1234 � n1243 ¼ 0, as required. Thus,
this representation of the amplitude trivially satisfies the
duality.

Using Eq. (3.6), by replacing color factors with numer-
ators and compensating for the coupling change, we then
immediately have the four-point N ¼ 8 supergravity am-
plitude,

M1�loop
N¼8 ð1; 2; 3; 4Þ ¼ �

�
�

2

�
4½stAtreeð1; 2; 3; 4Þ�2

� ðI12344 þ I12434 þ I14234 Þ; (3.12)

which matches the known amplitude [37,41].
We now generalize to supergravity amplitudes with

fewer supersymmetries. Specifically, consider the
one-loop four-graviton amplitudes with the N ¼ 6 and
N ¼ 4matter multiplets in the loop. These multiplets can
be expressed as products of two gauge-theory multiplets:

N ¼ 6matter: ðN ¼ 4 sYMÞ � ðN ¼ 1 sYMÞmat:;

N ¼ 4matter: ðN ¼ 4 sYMÞ � ðscalarÞ; (3.13)

where the N ¼ 1 Yang-Mills matter multiplet consists of
a Weyl fermion with two real scalars (this combination
actually has two-fold supersymmetry so it can also be
thought of as a N ¼ 2 matter multiplet), and on the
second line ‘‘(scalar)’’ denotes a single real scalar.

Following Eq. (3.6), we get the gravity amplitude by
taking the first copy of the gauge-theory amplitude and
replacing the color factors with the kinematic numerator of
the second copy, constrained to satisfy the duality (2.3),
and switching the coupling to the gravitational one.

Because the duality satisfying N ¼ 4 super-Yang-Mills
kinematic factors at four points (3.11) are independent of
the loop momentum, they simply come out of the integral
as in Eq. (3.7) and behave essentially the same way as color
factors. Thus, we have a remarkably simple general for-
mula at four points,

M1�loop
Nþ4 susyð1; 2; 3; 4Þ

¼
�
�

2

�
4
istAtreeð1; 2; 3; 4ÞðA1�loop

N susyð1; 2; 3; 4Þ

þ A
1�loop
N susyð1; 2; 4; 3Þ þ A

1�loop
N susyð1; 4; 2; 3ÞÞ; (3.14)

where A
1�loop
N susy are one-loop color- and coupling-stripped

gauge-theory amplitudes for a theory with N (including
zero) supersymmetries. We were able pull out an overall
stAtreeð1; 2; 3; 4Þ because of the crossing symmetry appar-
ent in Eq. (3.11).
Using Eq. (3.14) we can straightforwardly write down

the four-graviton supergravity amplitude M1�loop
N¼6;mat:ð1�;

2�; 3þ; 4þÞ with the N ¼ 6 matter multiplet in the loop.
We use the N ¼ 1 one-loop amplitude representation3

from Ref. [17] which is valid to all order in the
dimensional-regularization parameter �:

A1�loop
N¼1;mat:ð1�; 2�; 3þ; 4þÞ
¼ ig4Atreeð1�; 2�; 3þ; 4þÞðtJ4ðs; tÞ � I2ðtÞÞ;

A
1�loop
N¼1;mat:ð1�; 2�; 4þ; 3þÞ
¼ ig4Atreeð1�; 2�; 3þ; 4þÞ

�
tJ4ðs; uÞ � t

u
I2ðuÞ

�
;

A
1�loop
N¼1;mat:ð1�; 4þ; 2�; 3þÞ
¼ ig4Atreeð1�; 2�; 3þ; 4þÞ

�
I2ðtÞ þ t

u
I2ðuÞ

� tJ4ðt; uÞ � tID¼6�2�
4 ðt; uÞ

�
; (3.15)

where the integrals I2, J4 and ID¼6�2�
4 are defined in

Appendix B. Using Eq. (3.14) we can see that the bubble
integrals cancel and we have the amplitude in a form valid
to all orders in �. Also using the relation J4 ¼ ��ID¼6�2�

4 ,

we get

M1�loop
N¼6;mat:ð1�; 2�; 3þ; 4þÞ

¼
�
�

2

�
4 1

s
½stAtreeð1�; 2�; 3þ; 4þÞ�2½ID¼6�2�

4 ðt; uÞ
þ �ð�ID¼6�2�

4 ðt; uÞ þ ID¼6�2�
4 ðs; tÞ þ ID¼6�2�

4 ðs; uÞÞ�:
(3.16)

3Here we removed the factor of ið�1Þmþ1ð4�Þ2�� present in
the integrals of Ref. [17], where m is 2 for the bubble, 3 for the
triangle and 4 for the box. (Compare Eq. (B1) with Eq. (A.13) of
Ref. [17]).
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Using the explicit value of ID¼6�2�
4 given in Eq. (B14), we get the remarkably simple result to order �0,

M1�loop
N¼6;mat:ð1�; 2�; 3þ; 4þÞ ¼

ic�
2

�
�

2

�
4½stAtreeð1�; 2�; 3þ; 4þÞ�2 1

s2

�
ln2

��t

�u

�
þ �2

�
þOð�Þ

¼ � ic�
2

�
�

2

�
4 h12i4½34�4

s2

�
ln2

��t

�u

�
þ �2

�
þOð�Þ; (3.17)

where the constant c� is defined in Eq. (B3). On the last line we plugged in the value of the tree amplitude,
stAtreeð1�; 2�; 3þ; 4þÞ ¼ �ih12i2½34�2. Indeed, this reproduces the known result from Ref. [19].

Now consider the four-graviton amplitude with anN ¼ 4 supergravity matter multiplet going around the loop. We take
the four-gluon amplitudes with a scalar in the loop from Ref. [17]. These are

A
1�loop
scalar ð1�; 2�; 3þ; 4þÞ ¼ �ig4Atreeð1�; 2�; 3þ; 4þÞ

�
1

t
ID¼6�2�
2 ðtÞ þ 1

s
J2ðtÞ � t

s
K4ðs; tÞ

�
;

A
1�loop
scalar ð1�; 2�; 4þ; 3þÞ ¼ �ig4Atreeð1�; 2�; 3þ; 4þÞ

�
t

u2
ID¼6�2�
2 ðuÞ þ t

su
J2ðuÞ � t

s
K4ðs; uÞ

�
;

A1�loop
scalar ð1�; 4þ; 2�; 3þÞ ¼ �ig4Atreeð1�; 2�; 3þ; 4þÞ

�
� tðt� uÞ

s2
J3ðuÞ � tðu� tÞ

s2
J3ðtÞ � t2

s2
I2ðuÞ � tu

s2
I2ðtÞ

� t

u2
ID¼6�2�
2 ðuÞ � 1

t
ID¼6�2�
2 ðtÞ � t

su
J2ðuÞ � 1

s
J2ðtÞ þ t

s
ID¼6�2�
3 ðuÞ

þ t

s
ID¼6�2�
3 ðtÞ þ t2u

s2
ID¼6�2�
4 ðt; uÞ � t

s
K4ðt; uÞ

�
; (3.18)

where the integral functions are given in Appendix B.
Using Eq. (3.14), we immediately have a form for the
contributions of an N ¼ 4 supergravity matter multiplet
valid to all orders in �,

M1�loop
N¼4;mat:ð1�; 2�; 3þ; 4þÞ

¼
�
�

2

�
4½stAtreeð1�; 2�; 3þ; 4þÞ�2

�
�ðt� uÞ

s3
J3ðuÞ

� ðu� tÞ
s3

J3ðtÞ � t

s3
I2ðuÞ � u

s3
I2ðtÞ þ 1

s2
ID¼6�2�
3 ðuÞ

þ 1

s2
ID¼6�2�
3 ðtÞ þ tu

s3
ID¼6�2�
4 ðt; uÞ � 1

s2
K4ðt; uÞ

� 1

s2
K4ðs; tÞ � 1

s2
K4ðs; uÞ

�
: (3.19)

Expanding this through order �0 and using integral identi-
ties from Refs. [17,42] (see also Appendix B) to reexpress
everything in terms of six-dimensional boxes, bubbles and
rational terms, we obtain

M1�loop
N¼4;mat:ð1�; 2�; 3þ; 4þÞ

¼ 1

2

�
�

2

�
4 h12i2½34�2
½12�2h34i2 ½ic�s

2 þ sðu� tÞ
� ðI2ðtÞ � I2ðuÞÞ � 2ID¼6�2�

4 ðt; uÞstu� þOð�Þ; (3.20)

matching the result of Ref. [19].

C. Five-point one-loop N � 4 supergravity amplitudes

Our construction at five points is again directly based on

Eq. (3.6). We only need to construct M1�loop
N susyð1�; 2�;

3þ; 4þ; 5þÞ; the other nonvanishing amplitudes are related

by parity and relabeling. Our starting point is the known
one-loop five-point amplitudes of N ¼ 4 super-Yang-
Mills theory. The original construction of the amplitude
[11,18] uses a basis of scalar box integrals. Rearranging
these results into the adjoint-representation color basis
gives

A1�loopð1;2;3;4;5Þ¼g5
X

S5=ðZ5�Z2Þ
c12345A

1�loopð1;2;3;4;5Þ:

(3.21)

The sum runs over the distinct permutations of the external
legs of the amplitude. This is the set of all 5! permutations,
S5, but with cyclic, Z5, and reflection symmetries, Z2,
removed, leaving 12 distinct permutations. The color fac-
tor c12345 is the one of the pentagon diagram shown in
Fig. 3, with legs following the cyclic ordering as in
Eq. (3.1). The color-ordered one-loop amplitudes of
N ¼ 4 super-Yang-Mills theory are

A1�loop
N¼4 ð1;2;3;4;5Þ¼ i

2
Atreeð1;2;3;4;5Þðs34s45Ið12Þ3454

þs45s15I
1ð23Þ45
4 þs12s15I

12ð34Þ5
4

þs12s23I
123ð45Þ
4 þs23s34I

234ð51Þ
4 ÞþOð�Þ;

(3.22)

where sij ¼ ðki þ kjÞ2 and the IabcðdeÞ4 are box integrals

where the legs in parenthesis connects to the same vertex,

e.g. Ið12Þ3454 is the box diagram in Fig. 3. The explicit value

of Ið12Þ3454 is given in Eq. (B8), and the values of the
remaining box integrals are obtained by relabeling. If we
insert these explicit expressions in Eq. (3.22) then the
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polylogarithms cancel after using identities (see

Refs. [11,18]) leaving the expression for A
1�loop
N¼4 given in

Eq. (A1) of Appendix A. The representation (3.22) of the
amplitude does not manifestly satisfy the duality.

A duality satisfying representation of the amplitude was
found in Ref. [7]:

A1�loop
N¼4 ð1�; 2�; 3þ; 4þ; 5þÞ

¼ g5h12i4
� X
S5=ðZ5�Z2Þ

c12345n12345I
12345
5

þ X
S5=Z

2
2

c½12�345n½12�345
1

s12
Ið12Þ3454

�
; (3.23)

where I123455 is the scalar pentagon, and Ið12Þ3454 is the one-

mass scalar box integral, as shown in Fig. 3. The explicit
values of these integrals through Oð�0Þ are collected in
Appendix B. Each of the two sums runs over the distinct
permutations of the external legs of the integrals. For
I123455 , the set S5=ðZ5 � Z2Þ denotes all permutations but

with cyclic and reflection symmetries removed, leaving 12

distinct permutations. For Ið12Þ3454 the set S5=Z
2
2 denotes all

permutations but with the two symmetries of the one-mass
box removed, leaving 30 distinct permutations. Note that
we pulled out an overall factor h12i4, which we do not
include in the numerators. (If promoted to its supersym-
metric form it should then be included [7]). The numer-
ators defined in this way are then [7]

n12345 ¼ �½12�½23�½34�½45�½51�
4i�ð1; 2; 3; 4Þ ; (3.24)

and

n½12�345 ¼ ½12�2½34�½45�½53�
4i�ð1; 2; 3; 4Þ ; (3.25)

where 4i�ð1; 2; 3; 4Þ ¼ 4i����	k
�
1 k

�
2k

�
3k

	
4 ¼ ½12�h23i�

½34�h41i � h12i½23�h34i½41�. It is not difficult to confirm
that the duality holds for this representation, for example,

n12345 � n21345 ¼ n½12�345: (3.26)

A nice feature of this representation is that the numerator
factors of both the pentagon and box integrals do not
depend on loop momentum, allowing us to use Eq. (3.7).
This will greatly simplify the construction of the corre-
sponding supergravity amplitudes.
We first consider the one-loop five-pointN ¼ 8 ampli-

tude. In this case we have several useful representations.
Proceeding as in Sec. III B, using Eq. (3.7), we can obtain
the five-point amplitude forN ¼ 8 by replacing the color
factors in Eq. (3.21) with the numerator factors of
Eq. (3.24), multiplying by the overall factor h12i4, and
putting in the gravitational couplings. This yields

M1�loop
N¼8 ð1�; 2�; 3þ; 4þ; 5þÞ

¼ i

2

�
�

2

�
5h12i4 X

S5=Z2

n12345A
treeð1�; 2�; 3þ; 4þ; 5þÞ

� s12s23I
123ð45Þ
4 þOð�Þ; (3.27)

where the sum runs over all permutations of external legs,
denoted by S5, but with reflections Z2 removed. To obtain a
second representation, we can instead replace the color
factors in Eq. (3.23) with their corresponding numerator
factors, yielding an alternative expression for the ampli-
tude,

M1�loop
N¼8 ð1�; 2�; 3þ; 4þ; 5þÞ

¼
�
�

2

�
5h12i8

� X
S5=ðZ5�Z2Þ

ðn12345Þ2I123455

þ X
S5=Z

2
2

ðn½12�345Þ2 1

s12
Ið12Þ3454

�
; (3.28)

where the sums run over the same permutations as in
Eq. (3.23). We have checked that in D ¼ 4 both formulas
(3.27) and (3.28) are equivalent to the known five-point
amplitude from Ref. [43] (after reducing the scalar penta-
gon integrals to one-mass box integrals),

M1�loop
N¼8 ð1�; 2�; 3þ; 4þ; 5þÞ
¼

�
�

2

�
5h12i8 X

S5=Z
2
2

d123ð45ÞN¼8 I123ð45Þ4 þOð�Þ; (3.29)

where the box coefficient is given by

d123ð45ÞN¼8 � �1
8hð1; f2g; 3Þhð3; f4; 5g; 1Þtr2½6k1 6k2 6k3ð6k4 þ 6k5Þ�;

(3.30)

and the ‘‘half-soft’’ functions are

hða; f2g; bÞ � 1

ha2i2h2bi2 ;

hða; f4; 5g; bÞ � ½45�
h45iha4ih4biha5ih5bi : (3.31)

Indeed it is straightforward to check that

FIG. 3. Pentagon and box integrals appearing in the N ¼ 4
super-Yang-Mills five-point one-loop amplitudes. The complete
set of such integrals is generated by permuting external legs and
removing overcounts.
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h12i4d123ð45ÞN¼8 ¼ i

2
s12s23ðn12345Atreeð1�; 2�; 3þ; 4þ; 5þÞ

þ n12354A
treeð1�; 2�; 3þ; 5þ; 4þÞÞ; (3.32)

where the pentagon numerator is given in Eq. (3.24).
Let us now study amplitudes with fewer supersymme-

tries starting with the five-graviton amplitude with the
N ¼ 6 matter multiplet running around the loop. We
pick the helicities ð1�; 2�; 3þ; 4þ; 5þÞ for the gravitons;
as noted above all other helicity or particle configurations
can be obtained from this. For the N ¼ 6 and N ¼ 4
matter multiplets from Eq. (3.7) we have

MN¼6;mat:ð1�;2�;3þ;4þ;5þÞ
¼
�
�

2

�
5h12i4 X

S5=ðZ5�Z2Þ
n12345A

1�loop
N¼1;mat:ð1�;2�;3þ;4þ;5þÞ;

MN¼4;mat:ð1�;2�;3þ;4þ;5þÞ
¼
�
�

2

�
5h12i4 X

S5=ðZ5�Z2Þ
n12345A

1�loop
scalar ð1�;2�;3þ;4þ;5þÞ;

(3.33)

where n12345 is given in Eq. (3.24) and the sums run over all
permutations, but with cyclic ones and the reflection
removed.

There are a number of simplifications that occur because
of the permutation sum in Eq. (3.33) and because of the
algebraic properties of theN ¼ 4 sYM numerators (n12345
and permutations). Because the matter multiplet contribu-
tions have neither infrared nor ultraviolet divergences [44],
all 1=�2 and 1=� divergences cancel. InN ¼ 6 supergrav-
ity, this manifests itself by the cancellation of all bubble and
triangle integral contributions, as noted in Ref. [20]. In the
case of N ¼ 4 supergravity, the cancellation is not com-
plete but the sum over bubble-integral coefficients vanishes
to prevent the appearance of a 1=� singularity. A rational
function remains which can bewritten in a relatively simple
form once the terms are combined and simplified. Note that
the amplitudes generated by Eq. (3.33) do not immediately
exhibit these properties; instead, the cancellations and
simplifications occur between the terms in the 12-fold
permutation sum. However, these simplifications are
straightforward to carry out, and indeed using numerical
analysis it is a simplematter to rearrange our results into the
same form as those of Ref. [20].

The final form of the N ¼ 6 results after simplifica-
tions are then [20]

M1�loop
N¼6;mat:ð1�; 2�; 3þ; 4þ; 5þÞ

¼ �
�
�

2

�
5h12i8 X

Z3ð345Þ

�h13ih23ih14ih24i
h34i2h12i2

�

� ðd324ð51ÞN¼8 I324ð51Þ4;trunc þ d314ð52ÞN¼8 I314ð52Þ4;trunc Þ þOð�Þ; (3.34)

where the summation runs over the three cyclic permuta-
tions of legs 3, 4, 5 in the box integrals and coefficients.

The factor d123ð45ÞN¼8 is exactly the coefficient (3.30) of the

N ¼ 8 theory and the integral I123ð45Þ4;trunc given in Eq. (B9) of

Appendix B is the one-mass box integral but with its
infrared divergent terms subtracted out. Similarly, the sim-
plified N ¼ 4 supergravity results are

M1�loop
N¼4;mat:ð1�; 2�; 3þ; 4þ; 5þÞ

¼
�
�

2

�
5
�
h12i8 X

Z3ð345Þ

�h13ih23ih14ih24i
h34i2h12i2

�
2

� ðd324ð51ÞN¼8 I324ð51Þ4;trunc þ d314ð52ÞN¼8 I314ð52Þ4;trunc Þ

þ ic�
X5
i¼3

ðc1i lnð�s1iÞ þ c2i lnð�s2iÞÞ þ ic�R5

�
þOð�Þ;

(3.35)

where the coefficient of logð�s13Þ coming from the bubble
integrals is

c13¼1

2

h12i4½31�½52�
h13ih25ih45i

�
�h24i2h4j2þ5j4�h1j3j4�2

h34i2h45ih4j1þ3j4�2

�h23i
h34i

�h15ih25ih1j3j5�h5j2j4�
h35i2h45ih5j1þ3j5� �h14ih24ih1j3j4�h4j2þ5j4�

h34i2h45ih4j1þ3j4�
�

þh24i
h34i

�h14ih23ih1j3j4�h3j2þ5j4�
h34i2h35ih4j1þ3j4� þh25ih5j2j4�

h35ih45i
�
� h15ih1j3j5�
h45ih5j1þ3j5��

h14ih1j3j4�
h45ih4j1þ3j4�

���
þð4$5Þ;

(3.36)

and the others are given by the natural label swaps, c1i ¼
c13j3$i and c2i ¼ c1ij1$2. The rational terms follow the
notation of Ref. [20],

R5 ¼ Rb
5 þ

X
Z2ð12Þ�Z3ð345Þ

Ra
5 ; (3.37)

where

Ra
5 ¼ � 1

2
h12i4 ½34�

2½25�h23ih24i
h34i2h25ih35ih45i ;

Rb
5 ¼ �h12i4 ½34�½35�½45�h34ih35ih45i : (3.38)

The sum in Eq. (3.37) corresponds to the composition of
the two permutations of negative-helicity legs 1 and 2 and
the three cyclic permutations over the positive-helicity legs
3, 4 and 5, giving six terms in total. (Results for general
MHV amplitudes may be found in Ref. [20]).
Inserting the results from Eq. (3.33) into Eq. (2.8) im-

mediately converts the results we obtained for the matter
multiplets into those for theN ¼ 4, 5, 6 gravity multiplets
(the pure supergravities). For the N ¼ 4 and N ¼ 6
gravity multiplets these match the results of Ref. [20].
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Thus we have succeeded in expressing the four- and
five-point integrated amplitudes of N � 4 supergravity
amplitudes as simple linear combinations of corresponding
gauge-theory ones. To generalize this construction to
higher points, one would need to find duality satisfying
representations of m-point one-loop N ¼ 4 super-Yang-
Mills amplitudes.

D. Comments on two loops

An interesting question is whether the same considera-
tions hold at higher loops. Consider the two-loop four-point
amplitude ofN ¼ 4 super-Yang-Mills theory [39,41]:

A2�loop
4 ð1; 2; 3; 4Þ

¼ �g6stAtree
4 ð1; 2; 3; 4ÞðcP1234sI2�loop;P

4 ðs; tÞ
þ cP3421sI

2�loop;P
4 ðs; uÞ þ cNP1234sI

2�loop;NP
4 ðs; tÞ

þ cNP3421sI
2�loop;NP
4 ðs; uÞ þ cyclicÞ; (3.39)

where ‘þ cyclic’ instructs one to add the two cyclic permu-
tations of (2, 3, 4) and the integrals correspond to the scalar
planar and nonplanar double-box diagrams displayed in
Fig. 4. As at one-loop, the color factor for each diagram is

obtained by dressing each cubic vertex with an ~fabc. It is
then simple to check that all duality relations (2.3) hold.

According to the double-copy prescription (2.5), we
obtain the corresponding N ¼ 8 supergravity amplitude
by replacing the color factor with a numerator factor,

cP1234 ! nP1234 ¼ is2tAtreeð1; 2; 3; 4Þ;
cNP1234 ! nNP1234 ¼ is2tAtreeð1; 2; 3; 4Þ; (3.40)

including relabelings and then swapping the gauge cou-
pling for the gravitational one. The planar and nonplanar
color factor of Eq. (3.40) are replaced by the same quantity
since nP1234 ¼ nNP1234 as can be seen in Eq. (3.39). (The

kinematic numerators are forced to be equal by a Jacobi-
like identity that relates the difference of these two
numerators to a third vanishing numerator of a diagram
containing a triangle subgraph). The prescription (3.40)
gives the correct N ¼ 8 supergravity amplitude, as al-
ready noted in Ref. [41].

As explained in Sec. II, generalized gauge invariance
implies that we need have only one of the two copies in a
form manifestly satisfying the duality (2.3). The color
Jacobi identity allows us to express any four-point color
factor of an adjoint representation in terms of the ones in

Fig. 4 [36]. If the duality and double-copy properties hold
we should then be able to obtain integrated N � 4 super-
gravity amplitudes starting fromN � 4 super-Yang-Mills
theory and applying the replacement rule (3.40). Indeed, in
Ref. [45], explicit expressions for the four-point two-loop
N � 4 supergravity amplitudes, including the finite
terms, are obtained in this manner.
Two-loop supergravity amplitudes are UV finite and

their IR behavior is given in terms of the square of the
one-loop amplitude [46]:

Mð2�loopÞ
4 ð�Þ=Mtree

4 ¼ 1

2
½M1�loop

4 ð�Þ=Mtree
4 �2 þ finite:

(3.41)

The amplitudes of Ref. [45] satisfy this relation and the
finite remainders are given in a relatively simple form.
These two-loop results then provide a rather nontrivial
confirmation of the duality and double-copy properties
for cases with less than maximal supersymmetry.

IV. CONCLUSIONS

The duality between color and kinematic numerators
offers a powerful means for obtaining loop-level gauge
and gravity amplitudes and for understanding their
structure. A consequence of the duality conjecture is that
complete amplitudes are controlled by a set of master
diagrams; once the numerators are known in a form that
makes the duality between color and kinematics manifest,
all others are determined from Jacobi-like relations. In this
form we immediately obtain gravity integrands via the
double-copy relation.
In the present paper, we used the duality to find ex-

amples where integrated supergravity amplitudes are ex-
pressed directly as linear combinations of gauge-theory
amplitudes. In particular, we constructed the integrated
four- and five-point one-loop amplitudes ofN � 4 super-
gravity directly from known gauge-theory amplitudes.
This construction was based on identifying representations
of N ¼ 4 super-Yang-Mills four- and five-point ampli-
tudes that satisfy the duality. Because the relations are valid
in D dimensions, by using known D-dimensional forms of
gauge-theory four-point amplitudes we obtain correspond-
ing ones for supergravity. The agreement of our four- and
five-point N � 4 supergravity results with independent
evaluations [19,20] in D ¼ 4 provides evidence in favor of
these conjectures holding for less than maximal supersym-
metry. The two-loop results in Ref. [45] provide further
nontrivial evidence.
The examples we presented here are particularly

simple because the numerator factors of one copy of the
gauge-theory amplitudes were independent of loop mo-
menta. Duality satisfying representations of one-loop
N ¼ 4 sYM amplitudes have not been worked out beyond
five points as yet, but initial investigations of such forms
suggest that the numerator factors will in general become

FIG. 4. The two-loop cubic diagrams appearing in the two-
loop four-point N ¼ 4 and N ¼ 8 supergravity amplitudes.
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dependent on loop momenta, as one might expect from
power counting. However, even in these more general
cases, we expect useful constraints to arise at the integrated
level. These constraints, for example, lead to KLT-like
relations visible in box-integral coefficients, such as those
found in Refs. [43,47]. It would be very interesting to
further explore relations between gravity and gauge theory
after having carried out the loop integration.

There are a number of other interesting related prob-
lems. It would of course be important to unravel the under-
lying group-theoretic structure responsible for the duality
between color and kinematics. Some interesting progress
has recently made for self-dual field configurations and for
MHV tree amplitudes, identifying an underlying diffeo-
morphism Lie algebra [30]. Another key problem is to find
better means for finding representations that automatically
satisfy the duality and double-copy properties. Such gen-
eral representations are known at tree level for any choice
of helicities [25]. We would like to have similar construc-
tions at loop level, instead of having to find duality satisfy-
ing forms case by case. In particular, no examples have as
yet been constructed at loop level at six and higher points.

In summary, using the duality between color and kine-
matics we exposed a surprising relation between integrated
four- and five-point one-loop amplitudes ofN � 4 super-
gravity and those of gauge theory. We look forward to
applying these ideas to further unravel the structure of
gauge and gravity loop amplitudes.
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APPENDIX A: THE ONE-LOOP FIVE-POINT
YANG-MILLS AMPLITUDES

This appendix collects the five-point one-loop Yang-
Mills amplitudes used to construct the five-point super-
gravity amplitudes. The external states are gluons and all
amplitudes can be obtained from two configurations,
ð1�; 2�; 3þ; 4þ; 5þÞ and ð1�; 2þ; 3�; 4þ; 5þÞ, using relab-
eling and parity. These results are from Ref. [18] which the
reader is invited to consult for further details. The results
are presented in the four-dimension helicity (FDH) regu-
larization scheme [16], which is known to preserve super-
symmetry at one-loop.
The five-gluon color-ordered and coupling-stripped am-

plitudes with the N ¼ 4, N ¼ 1 matter multiplet and a
real scalar going around the loop can be expressed as

A
1�loop
N¼4 ð1; 2; 3; 4; 5Þ ¼ c�V

gAtree
5 ;

A
1�loop
N¼1;mat:ð1; 2; 3; 4; 5Þ ¼ �c�ðVfAtree

5 þ iFfÞ;

A1�loop
scalar ð1; 2; 3; 4; 5Þ ¼ 1

2
c�ðVsAtree

5 þ iFsÞ; (A1)

where the tree amplitudes are

Atree
5 ð1�; 2�; 3þ; 4þ; 5þÞ ¼ ih12i4

h12ih23ih34ih45ih51i ;

Atree
5 ð1�; 2þ; 3�; 4þ; 5þÞ ¼ ih13i4

h12ih23ih34ih45ih51i : (A2)

The function,

Vg ¼ � 1

�2

X5
j¼1

ð�sj;jþ1Þ�� þ X5
j¼1

ln

� �sj;jþ1

�sjþ1;jþ2

�

� ln

��sjþ2;j�2

�sj�2;j�1

�
þ 5

6
�2 (A3)

is independent of the helicity configuration. In contrast to
Ref. [18], we have set the dimensional-regularization scale
parameter,�, to unity. For the ð1�; 2�; 3þ; 4þ; 5þÞ helicity
configuration we have,

Vf ¼ � 1

�
þ 1

2
½lnð�s23Þ þ lnð�s51Þ� � 2; Vs ¼ � 1

3
Vf þ 2

9
;

Ff ¼ � 1

2

h12i2ðh23i½34�h41i þ h24i½45�h51iÞ
h23ih34ih45ih51i

L0ð�s23
�s51

Þ
s51

;

Fs ¼ � 1

3

½34�h41ih24i½45�ðh23i½34�h41i þ h24i½45�h51iÞ
h34ih45i

L2ð�s23
�s51

Þ
s351

� 1

3
Ff � 1

3

h35i½35�3
½12�½23�h34ih45i½51�

þ 1

3

h12i½35�2
½23�h34ih45i½51� þ

1

6

h12i½34�h41ih24i½45�
s23h34ih45is51 ; (A4)
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and the corresponding functions for the ð1�; 2þ; 3�; 4þ; 5þÞ helicity configuration,

Vf ¼ � 1

�
þ 1

2
½lnð�s34Þ þ lnð�s51Þ� � 2; Vs ¼ � 1

3
Vf þ 2

9
;

Ff ¼ �h13i2h41i½24�2
h45ih51i

Ls1ð�s23
�s51

;�s34
�s51

Þ
s251

þ h13i2h53i½25�2
h34ih45i

Ls1ð�s12
�s34

;�s51
�s34

Þ
s234

� 1

2

h13i3ðh15i½52�h23i � h34i½42�h21iÞ
h12ih23ih34ih45ih51i

L0ð�s34
�s51

Þ
s51

;

Fs ¼ �h12ih23ih34ih41i2½24�2
h45ih51ih24i2

2Ls1ð�s23
�s51

;�s34
�s51

Þ þ L1ð�s23
�s51

Þ þ L1ð�s34
�s51

Þ
s251

þ h32ih21ih15ih53i2½25�2
h54ih43ih25i2

2Ls1ð�s12
�s34

;�s51
�s34

Þ þ L1ð�s12
�s34

Þ þ L1ð�s51
�s34

Þ
s234

þ 2

3

h23i2h41i3½24�3
h45ih51ih24i

L2ð�s23
�s51

Þ
s351

� 2

3

h21i2h53i3½25�3
h54ih43ih25i

L2ð�s12
�s34

Þ
s334

þ L2ð�s34
�s51

Þ
s351

�
1

3

h13i½24�½25�ðh15i½52�h23i � h34i½42�h21iÞ
h45i

þ 2

3

h12i2h34i2h41i½24�3
h45ih51ih24i � 2

3

h32i2h15i2h53i½25�3
h54ih43ih25i

�
þ 1

6

h13i3ðh15i½52�h23i � h34i½42�h21iÞ
h12ih23ih34ih45ih51i

L0ð�s34
�s51

Þ
s51

þ 1

3

½24�2½25�2
½12�½23�½34�h45i½51� �

1

3

h12ih41i2½24�3
h45ih51ih24i½23�½34�s51 þ

1

3

h32ih53i2½25�3
h54ih43ih25i½21�½15�s34 þ

1

6

h13i2½24�½25�
s34h45is51 : (A5)

In contrast to Ref. [18], in Eqs. (A4) and (A5) we use unrenormalized amplitudes; this distinction actually has no effect on
the corresponding gravity amplitudes since the difference drops out in Eq. (3.33). The functions appearing in the above
expressions are

L0ðrÞ ¼ lnðrÞ
1� r

; L1ðrÞ ¼ lnðrÞ þ 1� r

ð1� rÞ2 ; L2ðrÞ ¼ lnðrÞ � ðr� 1=rÞ=2
ð1� rÞ3 ;

Ls1ðr1; r2Þ ¼ 1

ð1� r1 � r2Þ2
�
Li2ð1� r1Þ þ Li2ð1� r2Þ þ lnr1 lnr2 � �2

6
þ ð1� r1 � r2ÞðL0ðr1Þ þ L0ðr2ÞÞ

�
: (A6)

As discussed in Sec. III C, these gauge-theory amplitudes serve as building blocks for the corresponding N � 4
supergravity amplitudes.

APPENDIX B: INTEGRALS

In this appendix we collect the integrals used in our expressions from various sources and adjust normalization to match
our conventions. The m-point scalar integrals in D dimensions are defined as

Im ¼
Z dDp

ð2�ÞD
1

p2ðp� K1Þ2ðp� K1 � K2Þ2 . . . ðp� K1 � K2 � . . .� Km�1Þ2
; (B1)

where the Ki’s are the external momenta which can be on
or off shell.

The D ¼ 4� 2� bubble with momentum K is

I2ðK2Þ ¼ ic�
�ð1� 2�Þ ð�K2Þ��; (B2)

where

c� ¼ 1

ð4�Þ2��

�ð1þ �Þ�2ð1� �Þ
�ð1� 2�Þ : (B3)

The D ¼ 4� 2� one-mass triangle is

I3ðK2
1Þ ¼

�ic�
�2

ð�K2
1Þ�1��; (B4)

where K1 is the massive leg momentum and the two-mass
triangle is

I3ðK2
1 ; K

2
2Þ ¼

�ic�
�2

ð�K2
1Þ�� � ð�K2

2Þ��

ð�K2
1Þ � ð�K2

2Þ
; (B5)

where K1 and K1 are the two massive leg momenta.
For amplitudes with four massless external particles we

have the zero-mass box I12344 � I4ðs; tÞ where s ¼ ðk1 þ
k2Þ2, t ¼ ðk2 þ k3Þ2 and the ki are massless momenta. An
all order in � expansion in terms of hypergeometric func-
tions is [48]

I4ðs; tÞ ¼ 2ic�
�2st

�
t��

2F1

�
��;��; 1� �; 1þ t

s

�

þ s��
2F1

�
��;��; 1� �; 1þ s

t

��
; (B6)

which through order �0 is
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I4ðs; tÞ ¼ ic�
st

�
2

�2
ðð�sÞ�� þ ð�tÞ��Þ � ln2

��s

�t

�
� �2

�

þOð�Þ: (B7)

Similarly, the one-mass box through �0 is [48],

Ið12Þ3454 ¼� 2ic�
s34s45

�
� 1

�2
½ð�s34Þ��þð�s45Þ���ð�s212Þ���

þLi2

�
1�s12

s34

�
þLi2

�
1�s12

s45

�
þ1

2
ln2

�
s34
s45

�
þ�2

6

�

þOð�Þ; (B8)

where legs 1 and 2 are at the massive corner. An all orders
in � form in terms of hypergeometric functions may be

found in Ref. [48]. The integral Ið12Þ3454;trunc is given by drop-

ping the term multiplied by 1=�2,

Ið12Þ3454;trunc ¼ � 2ic�
s34s45

�
Li2

�
1� s12

s34

�
þ Li2

�
1� s12

s45

�

þ 1

2
ln2

�
s34
s45

�
þ �2

6

�
þOð�Þ: (B9)

Finally, we use the pentagon integral whose expansion to
order �0 is [48]

I123455 ¼ X
Z5

�ic�ð�s51Þ�ð�s12Þ�
ð�s23Þ1þ�ð�s34Þ1þ�ð�s45Þ1þ�

�
1

�2

þ 2Li2

�
1� s23

s51

�
þ 2Li2

�
1� s45

s12

�
� �2

6

�
þOð�Þ;
(B10)

where the sum is over the five cyclic permutations of
external legs.

We also need integrals in higher dimensions. The tri-
angle and bubble integrals are obtained by direct integra-
tion and the box integrals by dimension-shifting relations
[48]. Explicitly, the D ¼ 6� 2� bubble is

ID¼6�2�
2 ðK2Þ ¼ �ic�

2�ð1� 2�Þð3� 2�Þ ð�K2Þ1��; (B11)

whereas the D ¼ 6� 2� one-mass triangle is

ID¼6�2�
3 ðK2

1Þ ¼
�ic�

2�ð1� �Þð1� 2�Þ ð�K2
1Þ��: (B12)

The zero-mass D ¼ 6� 2� box can be expressed as a
linear combination of the four-dimensional one-mass
boxes and one-mass triangles:

ID¼6�2�
4 ðs;tÞ¼ 1

sþ t

�
st

2
I4ðs;tÞ� i

c�
�2

ðð�sÞ��þð�tÞ��Þ
�
:

(B13)

Note that it is finite and equal to

ID¼6�2�
4 ðs;tÞ¼�i

c�
2ðsþ tÞ

�
ln2

��s

�t

�
þ�2

�
þOð�Þ: (B14)

We also make use of the integral combination from
Ref. [17],

Jm ¼ ��ID¼6�2�
m ; Km ¼ ��ð1� �ÞID¼8�2�

m : (B15)

Through order �0, these become

J4 ¼ 0þOð�Þ; K4 ¼ � i

6ð4�Þ2 þOð�Þ;

J3 ¼ i

2ð4�Þ2 þOð�Þ: (B16)
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