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Based on the strong coupling expansion, we reinvestigate the two-dimensional OðNÞ sigma model by

the use of Padé-Borel approximants. The conventional strong coupling expansion of the mass squareM in

momentum space in � ¼ 1=g2 is inverted to give � expanded in 1=M. Borel transform of � with respect

to M is carried out and the result is improved as the rational function by the Padé method. We find the

behavior of Padé-Borel transformed bare coupling at 18th order is consistent for N � 3 with that of

continuum scaling to the four-loop perturbation theory. We estimate the nonperturbative mass gap at

N � 3 and find agreement with the exact result by Hasenfratz et. al.
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I. INTRODUCTION

Nearly four decades ago, the quark confinement was
shown by Wilson at the strong bare coupling region [1].
For weak coupling, perturbation theory clarified for the
Yang-Mills system that bare coupling g tends to vanish as
the lattice spacing a ! 0 [2]. The motivation of the present
work is to attempt to extrapolate the large a behavior of
bare coupling to the asymptotically free behavior at weak
coupling. For the purpose, we like to reformulate the strong
coupling expansion by changing the primary variable from
bare coupling to the lattice spacing itself.

Lattice serves us a suitable regularization, since in lattice
field theories the lattice spacing a explicitly appears in the
action and enters into the physical quantities. For instance,
the dimensionless correlation length � represents a physi-
cal length scale divided by a. It is given at strong coupling
as a series R in ðg2Þ�1 and it determines, in an implicit
manner, the a dependence of the bare coupling. Mutual
roles of g and � are exchanged by inverting the relationR.
Thus we address the question whether the small � series of
g allows us to confirm directly the weak coupling behavior
predicted by perturbation theory.

In the present paper, in a nonlinear OðNÞ model at
two dimensions, we make an attempt to approximate the
asymptotic behavior of bare coupling in the continuum
limit via its large a expansion. The model is of interest as
a testing ground of our approach, since it enjoys asymp-
totic freedom and dynamical mass generation for N � 3
[3]. In addition to the large N limit, we also consider the
case of finite N.

As the basic variable, rather than the correlation length
in lattice space, we adopt mass M in momentum space
defined by the zero momentum limit of the two-point field
correlation. The lattice spacing a is included in the mass
which is rescaled to be dimensionless and then M must
vanish in the continuum limit a ! 0 [see Eq. (2.7)]. Now

the strong coupling expansion gives a series of M in
� ¼ ðg2Þ�1. By inverting the series, we express � as a
power series in 1=M, which is equivalent to large a expan-
sion. As it would be, the nave series fails to confirm the
continuum behavior of �. However, it is nontrivial and
interesting to examine, when both Padé and Borel tech-
niques are applied on the series, whether the continuum
scaling emerges at finite N or not.
Before proceeding to following sections, we remark on

the role of the Borel transform in our approach. We use the
Borel transform as a device of dilation operation around
the continuum limit. The response of scale transformation
on fðMÞ is probed by rescaling M to �M in f and taking
the � ! 0 limit. Then, it is said f scales with the exponent
� if

fð�MÞ ! ���fðMÞ; � ! 0: (1.1)

The above criterion of scaling is implemented by introduc-
ing � defined by

� ¼ 1� �; 0 � � � 1 (1.2)

and performing expansion to some finite orders in � [4,5].
Suppose the function approaches M��. Then, expanding
it to �L and setting � ¼ 1, one has ðMð1� �ÞÞ�� !

L!
�ð1þ�Þ�ðL��þ1ÞM

��. Further, if we take the limit M!1,

L ! 1 with M=L ¼ �M fixed, we obtain

M�� ! 1

�ð1þ �Þ
�
M

L

��� ¼ 1

�ð1þ �Þ
�M��: (1.3)

That is, the limit � ! 0 has transitioned to the limit � ! 1
with the cut off L. Then the scaling behavior with exponent
� manifests itself in the power of �Mð¼ M=LÞ. Note that
the universal quantity � is left unchanged. On the other
hand, when same operation is acted on f in the series formP

akM
�k valid at large M, we have �f ¼ Pðak=k!Þ �M�k

with a larger convergence radius, which is just the Borel
transform of the original series. We thus interpret the Borel
transform as a realization of scale transformation. We do*yamada.hirofumi@it-chiba.ac.jp
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not need integrating �f back to f. Though the information of
fðMÞ over the whole range of M is not obtained, what we
need in lattice field theories is the behavior of fðMÞ in the
neighborhood of M ¼ 0.

II. DESCRIPTION OF THE MODEL

On the two-dimensional square lattice, the continuous
spin fields ~� ¼ ð�1; �2; . . . ; �NÞ are set on every site. The
action of the system is given by

S ¼ ��
X
n

X
�¼1;2

~�n � ~�nþe�; (2.1)

where e1 ¼ ð1; 0Þ, e2 ¼ ð0; 1Þ, and

� ¼ 1

g2
: (2.2)

The fields are constrained to satisfy at every site, ~�2 ¼ N.
The mass variable M defined via the zero momentum

limit of the propagator ðPn expðip � nÞh ~�ð0Þ � ~�ðnÞiÞ�1 is
given by

M ¼ 2D�

�
; (2.3)

where susceptibility � and second moment � are, re-
spectively, given by � ¼ 1

N

P
nh ~�ð0Þ � ~�ðnÞi and � ¼

1
N

P
nn

2h ~�ð0Þ � ~�ðnÞi. D denotes the dimension of lattice

space andD ¼ 2 in the present work. Let us summarize the
continuum limit of the model and large a expansion of �.

The perturbative renormalization group predicts that, for
N � 3, the correlation length behaves at weak coupling as

� ¼ C� exp

�
2�N�

N � 2

��
2�N�

N � 2

��1=ðN�2Þ�
1þ X1

k¼1

ak
�k

�
;

(2.4)

where the multiplied constant C� is specified only non-

perturbatively. Hasenfratz et. al. has computed it via a
thermodynamic Bethe ansatz [6], giving

C� ¼ 32�1=2

�
e1��=2

8

�
1=ðN�2Þ

�

�
1þ 1

N � 2

�
: (2.5)

The terms ak�
�k (k ¼ 1; 2; 3; . . . ) in (2.4) are contribu-

tions of kþ 2-loop levels and three- [7] and four-loop [8]
results were computed in the literature. They are given as

a1 ¼ 1

NðN � 2Þ ð�0:0490� 0:0141NÞ;

a2 ¼ 1

N2ðN � 2Þ2 � ð0:0444þ 0:0216N

þ 0:0045N2 � 0:0129N3Þ: (2.6)

Though three and higher loop contributions disappear in
the continuum limit for the bare coupling, we cannot take
out the limit because only the series to finite order is at

hand. Hence, we include known three- and four-loop con-
tributions in our analysis.

It is known that M�1=2 has functional form of �, the
same as Eq. (2.4) but with another multiplicative constant,
say CM. However, Monte Carlo data [9] showed that the
difference is less than a percent at N ¼ 4. Since the two
constants agree with each other in the large N limit, the
difference between C� and CM may actually be negligible

for all N � 3. Thus the estimation of the mass gap via
strong coupling expansion becomes the estimation of C�

and this is one of the aims of our work.
Since the mass M approaches ��2 in the continuum

limit, the physical mass of dimension 2 is given by

m2
phys ¼ lim

a!0
Ma�2 ¼ C�2

� �2
L; (2.7)

where �L is the finite mass scale given by

�L ¼ a�2 exp

�
2�N�

N � 2

��
2�N�

N � 2

��1=ðN�2Þ�
1þ X1

k¼1

ak
�k

�
:

(2.8)

From (2.4) and ��M�1=2, we have continuum � to four-
loop order as a function of M,

�� N � 2

4�N
log

x

C2
�

þ 1

2�N
log

�
1

2
log

x

C2
�

�

þ
�2�NðN � 2Þa1 þ logð12 log x

C2
�

Þ
�NðN � 2Þ log x

C2
�

þ 1

�NðN � 2Þ2ðlog x
C2
�

Þ2
�
4�NðN � 2Þð�a1 þ N�a21

� 2�Na2Þ þ 2ð1þ 2�NðN � 2Þa1Þ log
�
1

2
log

x

C2
�

�

� log

�
1

2
log

x

C2
�

�
2
�
; (2.9)

where

x ¼ 1

M
: (2.10)

On the series expansion at largeM, we borrow the result
in the work of Butera and Comi [10] who computed a
strong coupling series of � and � to �21. Using the result,
we have expansion of M in powers of �,

M ¼ 1

�
� 4þ 2ð3þ 2NÞ

2þ N
�

þ 2ð16þ 32N þ 17N2 þ 2N3Þ
ð2þ NÞ2ð4þ NÞ �3

� 16ð�1þ NÞ
ð2þ NÞ2 �4 þOð�5Þ: (2.11)

By inverting the above relation, we have

HIROFUMI YAMADA PHYSICAL REVIEW D 84, 105025 (2011)

105025-2



� ¼ x� 4x2 þ 2ð10N þ 19Þx3
N þ 2

� 8ð14N þ 25Þx4
N þ 2

þ 2ð338N3 þ 2593N2 þ 6084N þ 4512Þx5
ðN þ 2Þ2ðN þ 4Þ þ � � � :

(2.12)

Based on the series (2.12), we discuss the approximation
of the continuum limit by the use of the Padé-Borel ap-
proximation scheme. We attempt to recover the asymptoti-
cally free behavior (2.9) from (2.12) and then estimate C�.

III. LARGE N LIMIT

The large N limit serves as a good benchmark of our
approach. So we consider that case first and then turn to
finite N in the next section.

In the large N limit, only the one-loop contribution to �
survives to give

�� 1

4�
logðx=C2

�Þ;
C� ¼ ð32Þ�1=2 ¼ 0:176 776 69 . . . :

(3.1)

As briefly presented in the introduction, the Borel trans-
form is given by a certain limit of delta expansion [5].
Explicitly, the logarithm is expanded and gives at � ¼ 1
that logðx=ð1� �ÞÞ ! logxþP

L
l¼1

1
l to the order L. Then

using the asymptotic expansion
P

L
l¼1 1=l ¼ logLþ 	E þ

0ðL�1Þ (	E denotes Euler’s constant), we have logx !
logðxLÞ þ 	E in the L ! 1 limit. Let x be small enough
with �x ¼ xL kept finite, then the result represents the Borel
transform of logx. Denoting the operation of the Borel
transform by B we thus find B½logx� ¼ log �xþ 	E.
Using an abbreviated symbol �� ¼ B½��, we then obtain

��� 1

4�
ðlogð �x=C2

�Þ þ 	EÞ ¼ ��cont: (3.2)

The large M expansion of � reads

� ¼ x� 4x2 þ 20x3 � 112x4 þ 676x5 � 4304x6 þ � � � :
(3.3)

The Borel transform of the above series results to divide
the nth order coefficient by the factorial of n,

�� ¼ �x� 4

2!
�x2 þ 20

3!
�x3 � 112

4!
�x4 þ 676

5!
�x5

� 4304

6!
�x6 þ � � � : (3.4)

Then as a crucial step, we use the Padé method to extrapo-
late the above series to larger �x. The resultant Padé-Borel
approximants enable us to capture the scaling behavior to
be seen in the scaling region as we can see below.

As a preliminary study, we have examined the behaviors
of ½m=n� approximants of �� over almost all possible pairs
of m, n at orders mþ n ¼ 4; 5; . . . ; 20. On the contrary to

the condensed matter models undergoing second-order
phase transition, critical behavior of the present model is
known from perturbation theory as logarithmic and slowly
varying. Hence it is conceivable that good behaviors come
from the cases where the difference between m and n is
small. The numerical experiment confirmed this is indeed
the case. We have also compared the approximants of three
types, Padé-Borel, Borel-only, and Padé-only improve-
ments. The result at sixth order is shown in Fig. 1. As
already reported in [5], Borel-only improvement is not
sufficient for observing the asymptotic freedom. The
Padé-only case (�½3=3� in Fig. 1) is also insufficient as is

clear from Fig. 1. However, the Padé-Borel approximant
shows enough improvement for quantitative approxima-
tion. Though the Padé-only approximation is found to be
improved at higher orders, the best performance is
achieved by the Padé-Borel approximant at every order
we analyzed. We therefore focus on the Padé-Borel ap-
proximant hereafter.
Now, let us turn to the evaluation of the mass gap by

estimating C�. Since we know information at weak cou-

pling, the estimation is carried out by fitting ��cont to ½m=n�
order approximants of ��, ��½m=n�, by adjusting the value of

C�. In practice, we consider the difference between ��½m=n�
and ��cont and plot the difference by changing the value of
C�. At just proper value of C�, the two functions touch

each other at a point �x0 and the difference is tiny over an
interval including �x0. A typical case is shown in Fig. 2 and
the result of estimation of C� is shown in Table I. For the

reason previously written, we list only the results around
the diagonal Padé. Though the reason is not known to us,
the orders 6, 10, 14, and 18 give the best approximation
among nearby orders.

IV. FINITE N DOWN TO N¼ 3

In this section we study the weak coupling behavior
from the Padé-Borel approximants for a finite number of
spin components. First we discuss the Borel transform of
(2.9) to compare it with Padé-Borel approximants of large
the M series (2.12).

β[3/3]
−

β[3/3]

β         (Borel)

1-loop (Naive)

1-loop (Borel)

[6/0]
−

FIG. 1. Plot of improved � and �� at sixth order. Two dashed
lines (one for � and the other for ��) represent behaviors at
continuum. The horizontal axis corresponds to log �x ¼ logð1= �MÞ
and logx ¼ logð1=MÞ (for the Padé-only case).
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Let us consider the Borel transform of the two-loop
contribution. We find

B½loglogx� ¼ loglog �xþ 	E

log �x
þ 
ð2Þ � 	2

E

2ðlog �xÞ2 þOððlog �xÞ�3Þ:

(4.1)

The result is simplified by absorbing 	E into the log. Then
we obtain

B½loglogx�� logðlog �xþ	EÞþ 
ð2Þ
2ðlog �xþ	EÞ2

þOððlog �xÞ�3Þ:

(4.2)

Note that the second term should be included when the
four-loop contribution is taken into account. At two- and
three-loop orders, we need only the first term. In a similar
manner, for contributions at three- and four-loop orders,
we find as follows:

B
�

1

logx

�
¼ 1

log �xþ 	E

þOððlog �xÞ�3Þ; (4.3)

B
�
loglogx

logx

�
¼ logðlog �xþ 	EÞ

log �xþ 	E

þOððlog �xÞ�3Þ; (4.4)

B
�

1

ðlogxÞ2
�
¼ 1

ðlog �xþ 	EÞ2
þOððlog �xÞ�3Þ; (4.5)

B
�
loglogx

ðlogxÞ2
�
¼ logðlog �xþ 	EÞ

ðlog �xþ 	EÞ2
þOððlog �xÞ�3Þ; (4.6)

B
�ðloglogxÞ2

ðlogxÞ2
�
¼ ðlogðlog �xþ 	EÞÞ2

ðlog �xþ 	EÞ2
þOððlog �xÞ�3Þ:

(4.7)

Thus the result of the Borel transform to the four-loop
level reads

��¼ N� 2

4�N

�
log

�x

C2
�

þ	E

�
þ 1

2�N
log

�
1

2

�
log

�x

C2
�

þ	E

��
þ

�2�NðN� 2Þa1 þ log½12 ðlog �x
C2
�

þ	EÞ�
�NðN� 2Þðlog �x

C2
�

þ	EÞ

þ 1

�NðN� 2Þ2ðlog �x
C2
�

þ	EÞ2
�
4�NðN� 2Þð�a1 þN�a21 � 2�Na2Þ þ 2ð1þ 2�NðN� 2Þa1Þ log

�
1

2

�
log

�x

C2
�

þ	E

��

� log

�
1

2

�
log

�x

C2
�

þ	E

��
2
�
þ 
ð2Þ

4�Nðlog �x
C2
�

þ	EÞ2

¼ ��cont: (4.8)

At large �M, we have from (2.12),

�� ¼ �x� 4

2!
�x2 þ 2ð10N þ 19Þ �x3

3!ðN þ 2Þ � 8ð14N þ 25Þ �x4
4!ðN þ 2Þ þ � � � :

(4.9)

As in the previous section, we further improve the large �M
series by the Padé method. We have checked that also at

finite N, the diagonal Padé method provides the best be-

haviors. Skipping low-order results, we explicitly present

only the results at 18th order for various N. Figure 3 shows

the plots of ��½9=9� and ��cont at one- and two-loop levels (at

N ¼ 3; 4; 5, ��cont at three- and four-loop levels are also

plotted) as functions of log �x. At N � 6 three- and four-

loop ��cont are very close to that at two-loop at �x > 0 and we

log x

FIG. 2. Subtracted function ��½9=9� � ��cont ¼ ��½9=9� � f 1
4� �

ðlog �x=C2
� þ 	EÞg. Plotted curve is for C� ¼ 0:178 68.

TABLE I. Evaluation result denoted as Capp of the nonpertur-
bative constant C� in

1
4� ðlogð �x=C2

�Þ þ 	EÞ. Rigorous value of C�

is ð32Þ�1=2 ¼ 0:176 776 69 . . . .

½m=n� Capp ½m=n� Capp

½3=3� 0.183 27 ½7=7� 0.179 11

½4=3� 0.187 34 ½8=7� 0.180 41

½3=4� 0.187 22 ½7=8� 0.180 38

½4=4� 0.184 63 ½8=8� 0.179 72

½5=5� 0.181 38 ½9=9� 0.178 68

½6=5� 0.182 66 ½10=9� 0.179 00

½5=6� 0.182 64 ½9=10� 0.179 01

½6=6� 0.181 78 ½10=10� 0.178 75
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have omitted them. At N ¼ 3; 4, though the scaling to the
four-loop level is not so clear, the behavior of ��½9=9� is
roughly consistent with the continuum one for log �x 2
½2; 4�. At N ¼ 5, linearlike behavior with correct slope is
observed around log �x� 2, which signals scaling behavior.
From N � 8, we observe continuum scaling at the two-
loop level.

Now, having examined continuum scaling, we evaluate
constant C� as in the same manner at N ¼ 1. Namely, we

consider ��½9=9� � ��cont and search for the value of C� by

fitting ��cont to ��½9=9� by changing values of C�. The result is

summarized in Table II and Fig. 4. We may say that, for all
N � 3, especially forN ¼ 3 and 4, ��½9=9� yields a good four-
loop estimation of the nonperturbative constantC�. However

we see that, at N � 8, the estimated value Capp is slightly

larger than the exact one. Note that an excess of the estima-
tion is observed also in the largeN limit. On the contrary, for
N � 7, Capp is slightly smaller than C�. We would like to

discuss the issue in the next section. To summarize, we
conclude that the approximation level is satisfactory.

V. DISCUSSION

From previous two sections, at larger N, we found that
the four-loop estimation of C� gives excess to the exact

value. For example, at ½9=9� approximants, the excess
reads �0:0001, �0:0011, and �0:0019 at N ¼ 8, 15,
and 1, respectively. As long as �x is not so small, every
multiple-loop (above the one-loop level) contribution de-
creases asN becomes large and vanishes atN ¼ 1. Hence,

N=20

1-loop

2-loop

N=8

N=6

N=5
3-loop

4-loop

N=4

N=3

FIG. 3. Plots of ��½9=9� at N ¼ 20, 8, 6, 5, 4, 3, and ��cont at one-
and two-loop results (plus three- and four-loop results for N ¼ 3,
4, and 5) as functions of log �x.

TABLE II. Result of estimation of the constant C� (implied by
Capp). The last column shows the result of Botera and Comi [10].

N C
2-loop
app C

3-loop
app C

4-loop
app C� CBC

3 0.0068 0.0094 0.0112 0.0125

4 0.0336 0.0373 0.0398 0.0416 0.039

5 0.0584 0.0615 0.0639 0.0652 0.065

6 0.0771 0.0797 0.0818 0.0826 0.084

7 0.0913 0.0934 0.0953 0.0955

8 0.1021 0.1038 0.1055 0.1054 0.106

9 0.1106 0.1121 0.1136 0.1132

10 0.1175 0.1187 0.1201 0.1195 0.121

11 0.1231 0.1242 0.1255 0.1247

12 0.1278 0.1288 0.1299 0.1290 0.130

13 0.1318 0.1326 0.1337 0.1327

14 0.1352 0.1359 0.1369 0.1358 0.137

15 0.1381 0.1388 0.1397 0.1386

N

Cξ

FIG. 4. Plot of true value of C� (solid curve) and its estimation
at N ¼ 3; 4; 5; 6; . . . ; 15 (black points) carried out via Padé-Borel
approximants ��½9=9� compared with four-loop ��cont.
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at large enough N, the five, sixth, � � � -loop contributions
may be safely neglected in our study. Then the main factor
of the discrepancy would come from the lattice artifact. To
find evidence, let us discuss the large N limit because that
case provides us a quantitative example as we can see
below.

At N ¼ 1, � behaves for small M as

� ¼ � 1

4�
log

M

32
þ M

32�

�
log

M

32
þ 1

�
þOðM2 logMÞ:

(5.1)

Note that this is just the one-loop result. The second and
higher order terms represent lattice artifacts which disap-
pear in the continuum limit. They involve the logarithm
and delay the approach of � to the continuum limit. In fact,
use of the Borel transform has the notable advantage that it
reduces the correction to

�� ¼ � 1

4�

�
log

�M

32
� 	E

�
� �M

32�
þOð �M2Þ: (5.2)

Here we have used

B ½M logM� ¼ � �M; (5.3)

B ½M� ¼ 0: (5.4)

For original � [see Eq. (5.1)], the second term is of order
M logM, but for ��, �M and the deviation from the asymp-
totic scaling is much reduced when �M is small enough. The
correction, however, still affects the small �M behavior of
the transformed bare coupling. We have examined scaling
and evaluated C� by keeping the first-order correction

� �M
32� . From Table III, it is apparent that incorporation of

the OðM logMÞ ¼ Oða2 loga2Þ term improves the approxi-
mation. At ½9=9� order the excess is only �0:0001. This
means that Padé-Borel approximants actually recover the
small M behavior very well but, at the same time, the
residual effect of the correction is still non-negligible for

higher accuracy. We thus find that the main factor of the
discrepancy comes from the lattice artifact as long as N is
large enough.
Next, consider the case of lower N ¼ 3� 7, where the

estimated value of C� is slightly lower than the exact one.

As a typical case, consider the N ¼ 3 case. Three- and
four-loop effects contribute to ��cont � 0:4694 at x ¼ �x0
( log �x0 � 3:2) by amounts �0:02 and �0:01, respectively.
Though they carry with small fractions of total ��, they are
not negligible at all, since Capp increases by 0.0026 and

0.0018 when three- and four-loop effects are taken into
account, and the magnitude of C� itself is small. Therefore,

loop contributions above four would be still active for
estimating C� and even have the possibility to push Capp

to be larger than C�. For small N, in addition to the lattice

artifact, a discrepancy may come also from lack of higher
loops.
On the lattice artifact, it is crucial to reduce the effect

for obtaining a precise result for all N � 3. It has been
reported in [11] that the standard action gives

a2ðloga2ÞN=ðN�2Þ as the leading lattice artifact near the
continuum limit. It has the maximum value at N ¼ 3
giving the contribution �a2ðloga2Þ3. The Borel transform
would reduce the effect of such a logarithmic term but the
effect would remain to obscure the asymptotic scaling at
finite �x.
In general, the leading lattice artifact may not be known

completely. Then, one way to resolve the issue is to con-
struct or to use the lattice action in which such artifacts are
reduced from the outset. As an example, we report the
result of Symanzik’s modification of lattice action [12] in
the large N limit. In the Symanzik improvement program,
one generalizes the action element from 1� ~�n � ~�nþe� toP

K
k¼0 Ak ~�n � ~�nþke� . By expanding the action in a and

minimizing the lattice artifact at the level of action, one
can obtain the optimized set of coefficients Ak (k¼0;1;2;
3; . . . ;K). Then, the direct effect is the modification of the
unperturbed propagator from ½2P�¼1;2ð1� cosap�Þ��1 ¼
½P�a

2p2
� �P

�a
4p4

�=12þOða6p6Þ��1 to the one closer

to the continuum limit ½a2P�p
2��1. For instance, to the

first order (K ¼ 2) we have

�X
�

�
5
2 � 8

3 cosap� þ 1
6 cos2ap�

���1

¼
�
a2
X
�

p2 � a6
X
�

p6
�=90þOða8p8Þ

��1
: (5.5)

At the infinite order (K ¼ 1) the action becomes an infi-
nite series composed of field couplings between two sites
along � of all distances. The result in momentum space is
simple modification of the propagator to the continuum
limit ½a2P�p

2��1. Since in the large N limit, � is given by

the gap equation written only with the propagator with
mass square M, we can easily obtain the large M series

TABLE III. Result of estimation of the constant C� (implied
by Capp) in the large N limit when the correction � �M

32� to the

asymptotic scaling is taken into account. Only the results of
diagonal approximants are shown. Rigorous value of C� is

ð32Þ�1=2 ¼ 0:176 776 69 . . . .

½m=n� Capp

½2=2� 0.187 126

½3=3� 0.177 873

½4=4� 0.178 509

½5=5� 0.177 355

½6=6� 0.177 484

½7=7� 0.176 892

½8=8� 0.177 036

½9=9� 0.176 891

½10=10� 0.176 900
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both at first- and infinite-order improved actions (for a
detailed presentation, see the first citation in Ref. [4]).
For example, at the first order it follows that

� ¼
Z �

��

d2p

ð2�Þ2
1

Mþ P
�¼1;2

ð52 � 8
3 cosp� þ 1

6 cos2p�Þ

¼ 1

M
� 5

M2
þ 1157

36M3
� 8419

36M4
þOðM�5Þ: (5.6)

At infinite-order improvement, the right-hand side be-
comes just the integral of ðMþP

�¼1;2p
2
�Þ�1 and expan-

sion of � in 1=M is straightforward. It now suffices for us
to repeat the same procedure for the approximation of (3.1)
and the constant C� at the first and inifinite orders of

improved actions. Here note that the change of action
induces the change of the value of nonuniversal C�. C� ¼
0:237 760 7 . . . and 0:285 145 6 . . . at first and infinite or-
ders, respectively. Table IV summarizes the result of our
approximation. The improved action improves the ap-
proximation accuracy both at the first and at infinite orders.
Though the improved lattice action is conventionally used
in the Monte Carlo analysis and perturbation theory, it is
also useful in our approach.
In the present work, we have analyzed Padé-Borel ap-

proximants of strong coupling expansion in nonlinear
sigma model and find good behaviors approximating the
continuum limit. We close the paper by pointing out that,
even working with the standard action, further higher order
computation would improve the result for all N including
the limit N ! 1. Padé-Borel approximants may become
effective at larger �x (smaller �M) and the two unwanted
effects, lattice artifacts and omitted loop contributions,
would be weaker there. Then, continuum scaling at smaller
�M with a clearer sign of asymptotic freedom near N ¼ 3
would be seen, which allows us accurate evaluation of the
mass gap for all N � 3.
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TABLE IV. Ratio of Capp (approximant of C�) to the exact
value of C� in standard, first-order, and infinite-order improved

actions. The blanks represent absence of extremum zero of
��½n=n� � ��. However, even in those cases, the difference (the

subtracted function) exhibits almost stationary behavior around
the point, say also �x0, at which ��½n=n� � �� vanishes and the first

derivative takes minimum value. The estimation of C� at such �x0
yields accurate values.

½m=n� Standard First order Infinite order

½3=3� 1.036 73 1.011 02

½4=4� 1.044 43 1.011 37 0.999 244

½5=5� 1.026 04 1.005 05

½6=6� 1.028 30 1.005 16 0.999 914

½7=7� 1.013 20 1.001 68

½8=8� 1.016 65 1.001 99 0.999 990

½9=9� 1.010 77 1.001 03

½10=10� 1.011 45 1.001 03 0.999 999
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