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In this paper, we propose a first-order action functional for a large class of systems that generalize the

relativistic perfect fluids in the Kähler parametrization to noncommutative spacetimes. The noncommu-

tative action is parametrized by two arbitrary functions Kðz; �zÞ and fð ffiffiffiffiffi�p j2Þ that depend on the fluid

potentials and represent the generalization of the Kähler potential of the complex surface parametrized by

z and �z, respectively, and the characteristic function of each model. We calculate the equations of motion

for the fluid potentials and the energy-momentum tensor in the first order in the noncommutative

parameter. The density current does not receive any noncommutative corrections and it is conserved

under the action of the commutative generators P� but the energy-momentum tensor is not. Therefore, we

determine the set of constraints under which the energy-momentum tensor is divergenceless. Another set

of constraints on the fluid potentials is obtained from the requirement of the invariance of the action under

the generalization of the volume preserving transformations of the noncommutative spacetime. We show

that the proposed action describes noncommutative fluid models by casting the energy-momentum tensor

in the familiar fluid form and identifying the corresponding energy and momentum densities. In the

commutative limit, they are identical to the corresponding quantities of the relativistic perfect fluids. The

energy-momentum tensor contains a dissipative term that is due to the noncommutative spacetime and

vanishes in the commutative limit. Finally, we particularize the theory to the case when the complex fluid

potentials are characterized by a function Kðz; �zÞ that is a deformation of the complex plane and show that

this model has important common features with the commutative fluid such as infinitely many conserved

currents and a conserved axial current that in the commutative case is associated to the topologically

conserved linking number.
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I. INTRODUCTION

The formulation of a theory of the noncommutative
fluids was motivated initially by the observation that the
Abelian noncommutative Chern-Simons theory at level n is
equivalent to the Laughlin theory at level 1=n [1,2] thus
establishing a connection among the theories of noncom-
mutative fields, fluid dynamics, quantum Hall effect and the
matrix theory. The connection between the fractional quan-
tum Hall effect and the noncommutative field theory has
been subsequently studied for the Haldanemodel in Ref. [3]
while the noncommutative fluid model from Ref. [1] was
used to determine the density fluctuations in Ref. [4] and
the topological order of the fractional Hall effect in Ref. [5]
(see for a review Ref. [6]). A different motivation for the
study of the noncommutative fluids is given by the fact that
the volume-preserving transformations leave invariant the
structure of noncommutative configuration spaces as well
as the equations of motion of the non-Abelian Lagrangian
fluids [7–10]. More recently, different fluid models have

appeared in the context of Uð1Þ gauge fields in curved
noncommutative spaces [11] and in the study of the cos-
mological perturbations of the perfect fluid [12].
Reference [13] proposed a generalized symplectic structure
of two models of irrotational and rotational noncommuta-
tive nonrelativistic fluids, respectively.
When studying the noncommutative fluids, it is certainly

important to investigate models that reduce to relativistic

fluids in the limit of commutative spacetime. This task is

facilitated by the existence of a formulation in terms of the

action functional of a large class of relativistic (perfect)

fluids. In this formulation the fluid degrees of freedom that

enter a first-order Lagrangian are given by the fluid poten-

tials in either the (real) Clebsch parametrization [14] or the

(complex) Kähler parametrization [15]. Although a proof

of the equivalence of the two parameterizations is missing,

it is known that both of them remove the obstruction to

define a consistent Lagrangian which is due to the Chern-

Simons term that is necessary in order to describe the

nonzero vorticity and can be generalized to include the

supersymmetry [15,16]. The complex parametrization of

the fluid potentials has two interesting properties. First,

there are infinitely many conserved charges for the non-

singular Kähler potentials that characterize a geodesically
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complete complex manifold. Second, the Hamiltonian
dynamics is governed by a set of simple second-class
constraints among the fluid degrees of freedom. In particu-
lar, that Hamiltonian structure of the constraints has
permitted a detailed analysis of the metafluid dynamics
in Ref. [17], the formulation of the conformal fluids in
Ref. [18] and the quantization of a large class of non-
supersymmetric fluids in Ref. [19]. Also, the Kähler
parametrization has been used to formulate the supersym-
metric hydrodynamics in Ref. [20] and to construct the
Navier-Stokes equations from the AdS/CFT and fluid cor-
respondence in Ref. [21].

In this paper, we propose an action for the noncommu-
tative fluid that generalizes the action of the relativistic
fluid in the Kähler parametrization to the noncommutative
space M� defined by the relations

½x�; x�� ¼ i���; (1)

where �, � ¼ 0, 1, 2, 3 and ��� is a constant antisym-
metric matrix. Our action reduces to the previous action
from Ref. [15] in the commutative limit ��� ! 0. The
noncommutative action is not Poincaré invariant since
the relevant group in the general noncommutative space
given by the relation (1) is the volume-preserving group
rather than a deformation of the Poincaré group. We de-
termine a set of constraints on the fluid potentials such
that the Lagrangian is invariant under the volume-
preserving group. By choosing the commuting conjugate
operators P� to x�, we show that, contrary to the commu-

tative case, the energy-momentum tensor of the noncom-
mutative fluid is not divergenceless under the action of
P�’s. However, we are able to determine a set of con-

straints for the fluid potentials under which the energy-
momentum tensor is conserved under the commutative
translations.

This paper is organized as follows. In the next section,
we propose the action of a large class of noncommutative
fluids parametrized by the generalizations of the Kähler
potential and an arbitrary function on the fluid currents that
characterizes particular models from this class. Also, we
derive the equations of motion at first order in ���. In

Sec. III, we derive the energy-momentum tensor and the
equation of state. In the commutative limit, they take the
form of the corresponding equations of the relativistic
perfect fluid. In Sec. IV, we determine the constraints on
the fluid potentials under which the noncommutative
Lagrangian is invariant at zeroth and first order in the
noncommutative parameter. In Sec. V, we present a simpler
model which generalizes the fluid potentials on the com-
plex plane. We show that in this model there are infinitely
many conserved currents as in the commutative case,
which makes the model particularly interesting because,
in general, the generalizations of the fluid do not have this
property. The last section is devoted to discussions.

II. NONCOMMUTATIVE FLUID ACTION

The class of relativistic perfect fluids on the four-
dimensional Minkowski spaceM can be described in terms
of the scalar potentials f�ðxÞ; zðxÞ; �zðxÞg which are smooth
functions from C1ðMÞ ¼ ff: M ! Cg. The potential �ðxÞ
is purely real while the fields zðxÞ and �zðxÞ are complex
conjugate to each other, respectively. The class is parame-
trized by two arbitrary functions: Kðz; �zÞ that is the Kähler
potential associated to the two dimensional manifold of
coordinates z and �z and fð�Þ which depends on the local
fluid density �. The relativistic fluid is characterized by the
equations of state that involve the local pressure p and
the energy density ", respectively. The dynamics conserves
the energy-momentum tensor T�� and the fluid density

current j� and can be derived from a first-order
Lagrangian functional in the potentials.1 The Lagrangian
has two more symmetries: the parametrization of the fluid
potentials which leads to the conservation of infinitely
many two-dimensional currents J� and the axial symmetry

which leads to the conservation of the topological charge!
that describes the linking number of the vortices formed in
the fluid [15,19].
Consider the noncommutative space M� with the alge-

bra of complex function F ðM�Þ. A well-known property
[22] is that this structure is isomorphic to the algebra
ðC1ðMÞ; �Þ where �: C1ðMÞ � C1ðMÞ ! C1ðMÞ is the
Moyal product defined as

f � g ¼ feði=2Þ���@Q� ~@�g: (2)

We take for the tangent space mapping

½@�; @�� ¼ 0: (3)

Since the algebra of functions contains the same objects
with the usual dot product replaced by the star product, the
perfect fluid is still characterized by its potentials
f�ðxÞ; zðxÞ; �zðxÞg with the interaction given by the star
multiplication which could possibly affect the physical
properties of the system. The action functional of the
noncommutative fluid that generalizes the commutative
action from Ref. [15] is given by the following relation:

S½j�; �; z; �z� ¼
Z

d4x½�j� � ð@��þ i@zK � @�z

� i@�zK � @� �zÞ� � f

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�j� � j�

q �
: (4)

The Lagrangian from Eq. (4) describes a large class of
noncommutative fluids parametrized by the arbitrary func-

tions Kðz; �zÞ and fð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�j� � j�p Þ. In what follows, we are

going to study the action (4) for a general noncommutative
field j� until Sec. IV where we will investigate the

1The metric on the Minkowski space has the signature
ð�;þ;þ;þÞ. The current four-vector is defined as j� ¼ �u�

where u� ¼ dx�=d� is the velocity four-vector and u�u� ¼ �1.
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consequences of the generalization of the relation �u� to
the noncommutative theory. In general, Kðz; �zÞ is not asso-
ciated with a noncommutative Kähler manifold which can
be viewed as a deformation quantization of a Kähler mani-
fold (see, e.g. Refs. [23–25]. However, the commutative
sector ofKðz; �zÞ is the Kähler potential on the commutative
sector of the ðz; �zÞ manifold. In what follows, we make the
simplifying truncation of the partial derivatives of the
generalized Kähler potential at zero order in ��� which

allows one to apply the Leibniz rule. If higher orders in the
noncommutative parameter are considered, the Leibniz

rule does not generally hold. The function fð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�j� � j�
p Þ

should coincide with fð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�j�j�
p Þ in the commutative limit

��� ! 0. In this way, one can established the correspon-

dence principle between the noncommutative perfect fluids
given by the action (4) and the commutative perfect fluids
studied in Refs. [15,19]. For small values of ���, the

linearized Lagrangian from the equation (4) takes the form

L½j�;�;z; �z�¼�j�ð@��þi@zK �@�z�i@�zK �@� �zÞ
þ1

2
���j�ð@�@zK �@�@�z�@�@��zK �@�@� �zÞ

� i

2
���@�j

� �@�ð@��þi@zK �@�z

�i@�zK �@� �zÞ�f

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�j2� i

2
���@�j

�@�j�

s �
:

(5)

A first difference to be noted between the commutative and
the noncommutative fluids is that the current j� is prop-
agating in the noncommutative case. Also, even in the
lowest order in the noncommutative parameter, the
Lagrangian contains higher-order derivatives in the fields.
The Euler-Lagrange equations of motion can be obtained
in the usual way by imposing the invariance of the action
(4) under infinitesimal variations of the fields with vanish-
ing boundary conditions for the fields and the derivatives.
As can be seen from Eq. (4), the equations of motion have
the general form

	L
	


¼@L
@


� @

@x�

�
@L

@ð@�
Þ
�
þ @2

@x�@x�

�
@L

@ð@2��
Þ
�
¼0: (6)

By calculating Eq. (6) for the scalar potential �ðxÞ, one can
easily show that

@�j
� ¼ 0: (7)

The equation of motion of the current j� takes the follow-
ing form

f0
j�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�j2 � i
2�

��@�j
�@�j�

q
¼ ð@��þ i@zK � @�z� i@�zK � @� �zÞ

� 1

2
���ð@�@zK � @�@�z� @�@ �zK � @�@� �zÞ: (8)

Here, f0 denotes the derivative of f with respect to its
variable. The equation of motion of the potential zðxÞ can
be obtained in the same way from the Eq. (6). After some
algebra, one can show that it has the following form:

2ij�@2z�zK �@� �z
þ1

2
���j�ð@z@�@zK �@�@�z�@z@�@��zK �@�@� �zÞ

þ1

2
���@�j

� � ð@z@�@zK �@�z�@z@�@ �zK �@� �zÞ

þ1

2
���@�½j�ð@2zzK �@�@�z�@2z�zK �@�@� �zÞ�

þ1

2
���@�½@�j�ð@2zzK �@�z�@2z�zK �@� �zÞ�

þ1

2
���@2��ðj�@�@zKÞþ

1

2
���@�j

� �@2��@zK¼0: (9)

The equation of motion of �zðxÞ can be obtained from
Eq. (9) by replacing the appropriate derivative with respect
to z by the derivative with respect to �z or by using (6). By
either way, the result is

�2ij�@2�zzK �@�z
þ1

2
���j�ð@�z@�@zK �@�@�z�@ �z@�@��zK�@�@� �zÞ

þ1

2
���@�j

� �ð@ �z@�@zK �@�z�@�z@�@ �zK �@� �zÞ

�1

2
���@�½j�ð@2z�zK �@�@�z�@2�z �zK �@�@� �zÞ�

�1

2
���@�½@�j�ð@2z�zK �@�z�@2�z �zK �@� �zÞ�

�1

2
���@2��ðj� �@�@�zKÞ�1

2
���@�j

� �@2��@�zK¼0: (10)

Note that the derivatives with respect to the spacetime
coordinates do not commute with the derivatives with
respect to the complex fields z and �z, respectively. The
first of the equations of motion (7) has a simple interpre-
tation. It shows that the current j� is invariant under the
transformations generated by the operators P� ¼ @�. This

equation does not receive any noncommutative corrections
and it is in agreement with the generalization of the trans-
lation group defined by Eq. (3). The remaining equations
of motion do not have such simple interpretation but
more algebra shows that they reduce to the corresponding
equations in the commutative limit. In particular, Eqs. (9)
and (10) do not imply any longer that there are infinitely
many conserved currents associated with the reparamete-
rization invariance of any Kähler surface. We will return to
this point in Sec. V.

III. ENERGY-MOMENTUM TENSOR

The class of perfect relativistic fluids in the Minkowski
spacetime which are generalized to the noncommutative
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spacetime by the action (4) is characterized by the
divergenceless density current and the divergenceless
energy-momentum tensor. These properties are related to
the equations of motion of the fluid and with the translation
invariance of theLagrangian.Aswehave seen in the previous
section, the density current of the noncommutative fluid
is divergenceless and, by identifying the generators of the

translations with the derivatives @�, it is related to the trans-

lation invariance, too.
The energy-momentum tensor of the noncommutative

fluid can be defined by coupling it with a c-number metric
tensor g��ðxÞ and by taking the functional derivative of the
action with respect to the metric. In this way, we obtain the
relation

T�� ¼ ���

2
4�j�ð@��þ i@zK � @�z� i@�zK � @� �zÞ þ 1

2
���j�ð@�@zK � @�@�z� @�@ �zK � @�@� �zÞ

� i

2
���@�j

� � @�ð@��þ i@zK � @�z� i@�zK � @� �zÞ � f

0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�j�j� þ i

2
���@�j

� � @�j�
s 1

A
3
5

þ 2j�ð@��þ i@zK � @�z� i@�zK � @� �zÞ � ���j�ð@�@zK � @�@�z� @�@ �zK � @�@� �zÞ
þ i���@�j� � @�ð@��þ i@zK � @�z� i@�zK � @� �zÞ � f0 �

�
j�j� þ i

2
���@�j� � @�j�

�
: (11)

In general, the divergence of the energy-momentum tensor (11) will not vanish. In order for this to happen, one has to
impose constraints on the fields. It can be shown that by using the equations of motion (23) and (24) the energy-momentum
tensor is divergenceless for the solutions of the following constraints:

@�

0
B@f0 j�j�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�j2 � i
2�

��@�j
�@�j�

q � f

1
CA� j�@

�

0
B@f0 j�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�j2 � i
2�

��@�j
�@�j�

q
1
CA ¼ 0; (12)

@�@�j
� �@�ð@��þ i@zK �@�z� i@�zK �@� �zÞ�@�j� �@�@�ð@��þ i@zK �@�z� i@�zK �@� �zÞþ@�j� �@�@�j�¼0: (13)

In the form given by Eq. (11), it is unclear how the commutative perfect fluid is generalized to the noncommutative space.
In order to make the relationship between the two more transparent, we take for the noncommutative j� the following
natural generalization of the current:

j� ¼ � � u�; (14)

where u� ¼ dx�=d� does depend on � only. Then it is easy to verify that

f

0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�j�j� þ i

2
���@�j

� � @�j�
s 1

A ¼ f

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�j�j�

q �
: (15)

By performing the corresponding simplification and by using the equation of motion of j� (23), one can show that the
energy-momentum tensor has the following form

T�� ¼ ���pð�Þ þ ½"ð�Þ þ pð�Þ�u�u� þ i���@�� � u�@�ð@��þ i@zK � @�z� i@�zK � @� �zÞ; (16)

where

pð�Þ ¼ �f0 � f� j�ð@��þ i@zK � @�z� i@�zK � @� �zÞ þ 1

2
���j�ð@�@zK � @�@�z� @�@�zK � @�@� �zÞ

� i

2
���@�j

� � @�ð@��þ i@zK � @�z� i@�zK � @� �zÞ; (17)

"ð�Þ ¼ fþ j�ð@��þ i@zK � @�z� i@�zK � @� �zÞ � 1

2
���j�ð@�@zK � @�@�z� @�@�zK � @�@� �zÞ

þ i

2
���@�j

� � @�ð@��þ i@zK � @�z� i@�zK � @� �zÞ: (18)
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The above relations show that the action (4) is the general-
ization of the perfect fluid to the noncommutative case
because Eqs. (16)–(18) reduce in the limit ��� ! 0 to
the known relations for the energy-momentum tensor,
the pressure and the energy density [15]. The pressure
is the generalization of the Legendre transformation
of the specific energy to the noncommutative fluid. The
divergencelessness of the energy-momentum tensor is ap-
parent in Eq. (16) from which we note the last term that
involves the product between the velocity and the combi-
nation of potentials that include the nonzero vorticity. This
resembles a dissipative term that is a consequence of the
noncommutative structure of the spacetime. If we require
that all momentum density be generated by the flow of the
energy density, it follows that

���j�@�j� �@�ð@��þ i@zK �@�z� i@�zK �@� �zÞ¼0: (19)

If the fluid is generalized to include more conserving
charges, one could use Eq. (19) to define u� which is the
analogue of choosing the frame for the commutative fluid.

IV. VOLUME PRESERVING SYMMETRY

The noncommutative structure of spacetime given by
Eq. (1) is invariant under the following generalization of
the volume preserving transformations [14]:

	x� ¼ ½x�; h�; (20)

where the parameter hðxÞ is an arbitrary continuos function
on x�’s. The brackets from the above equation involve the
Moyal product and at the first order in ��� take the form

½f; g� ¼ i���@�f � @�g: (21)

In general, the Lagrangian given in relation (5) is not
invariant under the transformations (20) due to the arbitra-
riness of the functions �ðxÞ, zðxÞ, �zðxÞ, Kðz; �zÞ and fðxÞ.
Thus, by requiring that the Lagrangian be invariant under
the volume-preserving transformations, constraints need to
be imposed on these functions. It can be easily verified that
the fields of the theory transform under Eq. (20) as follows:

	
¼½
;h�; 	c �¼½c �;h�;
	ð@�
Þ¼ ½@�
;h�þ½
;@�h�; (22)

where 
 and c � are scalar and vector fields, respectively.
The transformation of the derivative holds for vector fields,
too. By varying the Lagrangian (5) with respect to Eq. (20),
one obtains a bi-polynomial in the powers m of the anti-
symmetric matrix ��� and the degree n of the derivatives
of the arbitrary parameter hðxÞ. Consequently, the invari-
ance of the Lagrangian is guaranteed if the terms of its
variation vanish at each order in m and n, respectively. By
keeping in mind this organization, we obtain from the
terms linear in ��� the following equations:

f0
j�@�j�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�j2 � i
2�

��@�j
�@�j�

q
¼ �@�½j�ð@��þ i@zK � @�z� i@�zK � @� �zÞ�; (23)

j�ð@��þ i@zK � @�z� i@�zK � @� �zÞ ¼ 0: (24)

The quadratic terms in ��� involve second- and third-order
partial derivatives of h. The second-order derivatives
couple with ��� as well as j� and different couplings
generate independent constraints. The result is the follow-
ing set of equations

@�j
�@�ð@��þ i@zK � @�z� i@�zK � @� �zÞ
þ @�j

�@�ð@��þ i@zK � @�z� i@�zK � @� �zÞ
þ 2j�½@½�@zK � @��@�z� ðz $ �zÞ� ¼ 0; (25)

@�j
�½@�@��þ i@�@zK �@�zþ i@zK �@�@�z
�ðz$ �zÞ�þj�½@�@zK �@�@�z�ðz$ �zÞ�¼0; (26)

@�j
�ð@��þ i@zK �@�z� i@�zK �@� �zÞ
þj�ð@�@zK �@�z�@�@�zK �@� �zÞ¼0; (27)

where we have used the standard antisymmetrization
convention with respect to the spacetime indices a½�b�� ¼
1
2 ða�b� � a�b�Þ. Constraints with higher powers of ���

arise from higher-order corrections to the Lagrangian. If
the spacetime noncommutativity is assumed to hold at high
energy, only the linear terms in the antisymmetric matrix
are relevant to the theory and the invariance of the
Lagrangian under the generalized volume transformations
is determined by the constraints (23) and (24) alone. Also,
if the theory is studied on shell, some simplification of the
above set of constraints is obtained.

V. A SIMPLER MODEL

The noncommutative perfect fluids discussed in the
previous sections form a general class since the functions

Kðz; �zÞ and fð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�j� � j�
p Þ are not required to satisfy any

property other than differentiability to an arbitrary order.
This makes the dynamics quite complicated, even at first
order in the noncommutative parameter. A slightly simpler
model can be obtained by taking

Kðz; �zÞ¼ z� �z; f

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�j� �j�

q �
¼c

2
�2¼�c

2
j2; (28)

where c is a c-number constant. In this model, the function
Kðz; �zÞ represents the generalization of the Kähler potential
of the complex plane and, at the first order in the non-
commutative parameter, it is a noncommutative deforma-
tion of the complex plane. The particular form of the
function f is typical to the perfect fluid. The Lagrangian
(5) of this particular model can be casted into the following
form at first-order ���:
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L ¼ �j�ð@��þ i�z � @�z� iz � @� �zÞ
þ 1

2
���j�ð@� �z � @�@�z� @�z � @�@� �zÞ

� i

2
���@�j

� � @�ð@��þ i�z � @�z� iz � @� �zÞ

þ c

2
j2: (29)

The equations of motion can be obtained by using the
relations (28) into the general equations (7)–(10) or by
recalculating them from scratch:

@�j
� ¼ 0; (30)

cj� � ð@��þ i�z � @�z� iz � @� �zÞ
þ 1

2�
��ð@� �z � @�@�z� @�z � @�@� �zÞ ¼ 0; (31)

j�@� �z ¼ j�@�z ¼ 0: (32)

The first remark that one can make about the dynamics of
this particular model is that the equations of motion of �, z
and �z potentials do not receive any noncommutative cor-
rection. Next, we note that the relations (32) imply the
existence of an infinite set of currents,

J�½G� ¼ �2Gðz; �zÞ � j�; (33)

where the generators Gðz; �zÞ are arbitrary commutative
functions on their arguments. The currents J�½G� are di-

vergenceless at zero order in the noncommutative parame-
ter because at this order the Leibniz rule holds. To the
currents (33) correspond the conserved charges

Q½G� ¼
Z

d3xJ0½G�: (34)

These properties show that the particular model described
by the functions (28) shares similar properties with the
whole class of the commutative relativistic perfect fluids
and with a special regime of the supersymmetric fluids
[15,19].

Next, we can particularize the constraints (23)–(27) on
the field potentials under which the Lagrangian (29) be-
comes invariant under the volume-preserving symmetry. If
we consider the on-shell invariance, then the constraints
take the simpler form:

cj�@�j� þ @�ðj�@��Þ ¼ 0; (35)

j�ð@��þ i�z@�z� iz@� �zÞ ¼ 0;(36)

@�j
�@�ð@��þ i�z@�z� iz@� �zÞ
þ @�j

�@�ð@��þ i�z@�z� iz@� �zÞ þ 2j�½@½� �z@��@�z
� ðz $ �zÞ� ¼ 0; (37)

@�j
�½@�@��þ i@� �z � @�zþ i �z � @�@�z
� ðz $ �zÞ� þ j�½@� �z � @�@�z� ðz $ �zÞ� ¼ 0; (38)

@�j
�ð@��þ i �z@�z� iz@� �zÞþj�ð@� �z �@�z�@�z �@� �zÞ¼0:

(39)

The fluid properties of the model are described by the
energy-momentum tensor and the equation of state which
can be easily obtained from Eqs. (16)–(18) and put into the
following form:

T�� ¼ ���pð�Þ þ ½"ð�Þ þ pð�Þ�u�u�
þ i���@�� � u�@�ð@��þ i�z@�z� iz@� �zÞ; (40)

where

pð�Þ¼�f0 �f�j�@��

þ1

2
���j�ð@� �z �@�@�z�@�z �@�@� �zÞ

� i

2
���@�j

� �@�ð@��þ i �z �@�z� iz �@� �zÞ; (41)

"ð�Þ ¼ fþ j�@��

� 1

2
���j�ð@� �z � @�@�z� @�z � @�@� �zÞ

þ i

2
���@�j

� � @�ð@��þ i�z@�z� iz@� �zÞ: (42)

From these equations, we see that the present model rep-
resents a generalization of the relativistic perfect fluid
which preserves the infinite conserved currents associated
with the reparameterization invariance of the complex
manifold which is described by the complex potentials z
and �z at zeroth order in the noncommutative parameter.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we have proposed the functional action (4)
for a large class of noncommutative fluids that generalizes
the relativistic perfect fluids formulated in the Kähler
parametrization to the noncommutative spacetime. The
noncommutative fluids are characterized by Kðz; zÞ and

fð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�j� � j�p Þ which generalize the corresponding arbi-

trary functions from the commutative case with the restric-
tion of the partial derivatives to the zeroth order in the
noncommutative parameter that makes the Leibniz prop-
erty hold. Without this technical restriction, there are more
contributions at first order in ���. We have derived the
equations of motion of the fluid potentials to the first order
in the noncommutative parameter. Also, we have calcu-
lated the energy-momentum tensor. The equation of
motion for the � field (7) does not receive any noncommu-
tative corrections and it represents the divergencelessness
of the density current j� like in the commutative case.
However, the energy-momentum tensor is not divergence-
less. That implies that T�� is not invariant under trans-

lations if the dual operators P� ¼ @� commute with each

other. If one requires that the energy-momentum tensor of
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the noncommutative theory be invariant, the constraints
(12) and (13) should be imposed on the fields. Note that
Eq. (7) holds in the 
-Minkowski spacetime, too. Actually,
the current conservation suggests that the action (4) be
valid in all noncommutative spaces where the translations
are generated by commuting P� ¼ @�. The equation of

motion of the current j� contains commutative terms that
are the same as the ones obtained for commutative fluids
and noncommutative corrections. Also, one can show that
the equations (9) and (10) for the fields z and �z can be
reduced to the corresponding equations in the commutative
case if the current conservation (7) is used in those terms
that are independent of ���. By particularizing the func-
tionsKðz; zÞ and f to the relations (28), we have shown that
other properties of the commutative fluids can be general-
ized to the noncommutative ones. In particular, the models
specified by (28) have infinitely many conserved currents
J�½G� in the Leibniz approximation for the partial

derivatives. This feature alone makes the model quite
interesting, since in general the currents are not conserved
for generalizations of the perfect fluid.
Another important quantity that is conserved in the com-

mutative case is the axial current which is related to the
topologically conserved linking number of vortices [15].
Therefore, it is desirable to see if the noncommutative fluids
have divergenceless axial currents. We can generalize the
axial current k� to the noncommutative case by applying

the correspondence principle adopted in this paper

K� ¼ �����ð@��þ i@zK � @�z� i@�zK � @� �zÞ � @�ð@��
þ i@zK � @�z� i@�zK � @� �zÞ; (43)

where ����� is the four-dimensional antisymmetric tensor
with �0123 ¼ 1. If we calculate the divergence of K� at first
order in ���, we see, after lengthy calculations, that it fails
to be zero by a term of the form

� 2i��������ð@2z�zK@� �z@�@�zþ @ �z@
2
zK@� �z@�z@�zþ @2�z@zK@� �z@� �z@�zþ @2z�zK@�@� �z@�zÞ

� ð@2z�zK@� �z@�@�zþ @�z@
2
zK@� �z@�z@�zþ @2�z@zK@� �z@� �z@�zþ @2z�zK@�@� �z@�zÞ

� i��������@z�zK@� �z@�zð@2zK@�@�z@�@�z� @2�zK@�@� �z@�@� �zÞ: (44)

This relation shows that K� would not be conserved unless
further constraints were imposed on the potentials.
However, we can show that for the particular model pre-
sented in the section V,

@�K
� ¼ 0: (45)

Thus, the generalization of the Kähler potential for the
complex plane and the perfect fluid shares most of the
properties with the commutative fluids.

It is interesting to investigate further the noncommuta-
tive fluids of the type presented in this paper along several
lines. One of the most important problems is to describe
concrete models that preserve the noncommutative
Poincaré symmetry. This can be achieved by taking for
M� the 
-Minkowski spacetime. As mentioned above, the
noncommutative generalization of the translation operators
satisfy Eq. (1) so all the conclusions derived for it con-
cerning the invariance of the density current and the
energy-momentum tensor are expected to continue true.
Another interesting issue is to analyze the fluids obtained

by relaxing the Leibniz rule for the partial derivative
and work within the full noncommutative structure.
This would modify all the equations of motion and the
constraints by adding extra terms that contain ���.
Therefore, one should be able to recover the relativistic
fluid in the commutative limit as we have done in the
present paper. However, the conservation of the general-
ized parametrization currents might not hold without
other constraints. And finally, it would be interesting to
study the symplectic structure on the phase space of the
fluid induced by the underlying noncommutative structure
of spacetime.
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