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We study the hadron-quark phase transition in the interior of neutron stars. For the hadronic sector, we

use a microscopic equation of state involving nucleons and hyperons derived within the Brueckner-

Hartree-Fock many-body theory with realistic two-body and three-body forces. For the description of

quark matter, we employ the Dyson-Schwinger approach and compare with the MIT bag model. We

calculate the structure of neutron star interiors comprising both phases and find that with the Dyson-

Schwinger model, the hadron-quark phase transition takes place only when hyperons are excluded, and

that a two-solar-mass hybrid star is possible only if the nucleonic equation of state is stiff enough.
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I. INTRODUCTION

The possible appearance of quark matter (QM) in the
interior of massive neutron stars (NSs) is one of the main
issues in the physics of these compact objects. Calculations
of NS structure, based on a microscopic nucleonic equation
of state (EOS), indicate that for the heaviest NS, close to the
maximum mass (about two solar masses), the central parti-
cle density reaches values larger than 1=fm3. In this density
range, the nucleon cores (dimension � 0:5 fm) start to
touch each other, and it is hard to imagine that only nucle-
onic degrees of freedom can play a role. On the contrary, it
can be expected that even before reaching these density
values, the nucleons start to lose their identity, and quark
degrees of freedom are excited at a macroscopic level.

Unfortunately, it is not straightforward to predict the
relevance of quark degrees of freedom in the interior of
NSs for the different physical observables, like cooling
evolution, glitch characteristics, neutrino emissivity, and
so on. In fact, the other NS components can mask the
effects coming directly from QM. In some cases, the
properties of quark and nucleonic matter are not very
different, and a clear observational signal of the presence
of the deconfined phase inside a NS is indeed hard to find.

The value of the maximum mass of a NS is one quantity
that is sensitive to the presence of QM. If the QM EOS is
sufficiently soft, the quark component is expected to ap-
pear in NSs and to affect appreciably the maximum mass
value. In fact, the recent claim of discovery of a two-
solar-mass NS [1] has stimulated the interest in this issue.
Purely nucleonic EOS are able to accommodate masses
comparable with this large value [2–6]. However, the ap-
pearance of hyperons in beta-stable matter could strongly
reduce the maximum mass that can be reached by a bar-
yonic EOS [6–10]. In this case, the presence of nonbar-
yonic, i.e, ‘‘quark’’ matter would be a possible manner to
stiffen the EOS and reach large NS masses. Heavy NSs
thus would be hybrid quark stars. In this paper, we will
discuss this issue in detail.

Unfortunately, while the microscopic theory of the nu-
cleonic EOS has reached a high degree of sophistication,
the QM EOS is poorly known at zero temperature and at
the high baryonic density appropriate for NSs. One has,
therefore, to rely on models of QM, which contain a high
degree of arbitrariness. At present, the best one can do is to
compare the predictions of different quark models and to
estimate the uncertainty of the results for the NS matter as
well as for the NS structure and mass. Continuing a set of
previous investigations using different quark models
[11–15], we employ in this paper the Dyson-Schwinger
model (DSM) for QM [16–19] in combination with a
definite baryonic EOS, which has been developed within
the Brueckner-Hartree-Fock (BHF) many-body approach
of nuclear matter, comprising nucleons and also hyperons.
Confrontation with previous calculations shall also be
discussed.
The paper is organized as follows. In Sec. II, we review

the determination of the baryonic EOS in the BHF ap-
proach. Section III concerns the QM EOS according to the
DSM, comparing also with the MIT bag model for refer-
ence. In Sec. IV, we present the results regarding NS
structure, combining the baryonic and QM EOS for beta-
stable nuclear matter. Section V contains our conclusions.

II. EOS OF HYPERNUCLEAR MATTER
WITHIN BRUECKNER THEORY

The Brueckner-Bethe-Goldstone theory is based on a
linked cluster expansion of the energy per nucleon of
nuclear matter (see Ref. [20], chapter 1 and references
therein). The fundamental quantity of interest in this
many-body approach is the Brueckner reaction matrix G,
which is the solution of the Bethe-Goldstone equation,
written in operatorial form as

Gab½W�¼Vabþ
X
c

X
p;p0

Vacjpp0i Qc

W�Ecþ i"
hpp0jGcb½W�;

(1)
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where the indices a, b, c indicate pairs of baryons and the
Pauli operator Qc and energy Ec characterize the propaga-
tion of intermediate baryon pairs. The pair energy in a
given channel c ¼ ðB1B2Þ is
EðB1B2Þ ¼ TB1

ðkB1
Þ þ TB2

ðkB2
Þ þUB1

ðkB1
Þ þUB2

ðkB2
Þ
(2)

with TBðkÞ ¼ mB þ k2=2mB, where the various single-
particle potentials are given by

UBðkÞ ¼
X

B0¼n;p;�;��
UðB0Þ

B ðkÞ (3)

and are determined self-consistently from the G matrices,

UðB0Þ
B ðkÞ ¼ X

k0<kðB
0 Þ

F

Rehkk0jGðBB0ÞðBB0Þ½EðBB0Þðk; k0Þ�jkk0i: (4)

The coupled Eqs. (1)–(4) define the BHF scheme with the
continuous choice of the single-particle energies. In con-
trast to the standard purely nucleonic calculation, the addi-
tional coupled-channel structure due to hyperons renders
the calculations quite time consuming.

Once the different single-particle potentials are known,
the total nonrelativistic baryonic energy density, ", can be
evaluated:

" ¼ X
B¼n;p;�;��

X
k<kðBÞF

�
TBðkÞ þ 1

2
UBðkÞ

�
: (5)

It has been shown that the nuclear EOS can be calculated
with good accuracy in the Brueckner two hole-line ap-
proximation with the continuous choice for the single-
particle potential, and that the results in this scheme are
quite close to the calculations which include also the three
hole-line contribution [21].

The basic input quantities in the Bethe-Goldstone equa-
tion are the nucleon-nucleon (NN), nucleon-hyperon (NY),
and hyperon-hyperon (YY) two-body potentials V. The
inclusion of nuclear three-body forces (TBFs) is crucial
in order to reproduce the correct saturation point of sym-
metric nuclear matter. The present theoretical status of
microscopically derived TBFs is quite rudimentary, and
in most approaches semiphenomenological TBFs are used
that involve several free parameters usually fitted to the
relevant data. An important constraint is the consistency
with a given two-body force, i.e., both two-body and three-
body forces should be based on the same theoretical foot-
ing and use the same microscopical parameters in their
construction. Recent results [6,22] have been published
within this framework, using meson-exchange TBFs that
employ the same meson-exchange parameters as the
underlying NN potential.

In this paper, we use results obtained in this manner
based on the Argonne V18 (V18) [23], the Bonn B (BOB)

[24], and the Nijmegen 93 (N93) [25] potentials, and
compare also with the widely used phenomenological
Urbana-type (UIX) TBFs [26] (in combination with the
V18 potential). We remind the reader that in our approach
the TBF is reduced to a density-dependent two-body force
by averaging over the position of the third particle, assum-
ing that the probability of having two particles at a given
distance is given by the two-body correlation function
determined self-consistently.
In the past years, the BHF approach has been extended

with the inclusion of hyperons [7,27,28], which may ap-
pear at sufficiently large baryon density in the inner part of
a NS, and lower the ground state energy of the dense
nuclear matter phase. In our work, we use the Nijmegen
soft-core NSC89 NY potential [29] that is well adapted to
the available experimental NY scattering data and also
compatible with � hypernuclear levels [30,31].
Unfortunately, up to date no YY scattering data and there-
fore no reliable YY potentials are available. We therefore
neglect these interactions in our calculations, which is
supposedly justified, as long as the hyperonic partial den-
sities remain limited.
We have previously found rather low hyperon onset

densities of about 2 to 3 times normal nuclear matter
density for the appearance of the �� and � hyperons
[7,10,27,28] (other hyperons do not appear in the matter).
Moreover, an almost equal percentage of nucleons and
hyperons are present in the stellar core at high densities.
The inclusion of hyperons produces an EOS which turns
out to be much softer than the purely nucleonic case, with
dramatic consequences for the structure of the NS (see
below). We do not expect substantial changes when intro-
ducing refinements of the theoretical framework, such as
hyperon-hyperon potentials [28], relativistic corrections,
etc. Three-body forces involving hyperons could produce
a substantial stiffening of the baryonic EOS. Unfortunately,
they are essentially unknown, but can be expected to be
weaker than in the nonstrange sector. Another possibility
that is able to produce larger maximum masses is the
appearance of a transition to QM inside the star. This
will be discussed in the next sections.

III. QUARK PHASE

The properties of cold nuclear matter at large densities,
i.e., its EOS and the location of the phase transition to
deconfined QM, remain poorly known. The difficulty in
performing first-principle calculations in such systems can
be traced back to the complicated nonlinear and nonper-
turbative nature of quantum chromodynamics (QCD).
Therefore, one can presently only resort to more or less
phenomenological models for describing QM, and in this
paper we illustrate results obtained by adopting the DSM.
A brief comparison with results from the MIT bag model
will also be made.
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A. Dyson-Schwinger equations approach

For the deconfined quark phase, we adopt a model based
on the Dyson-Schwinger equations of QCD, which pro-
vides a continuum approach to QCD that can simulta-
neously address both confinement and dynamical chiral
symmetry breaking [16,17]. It has been applied with
success to hadron physics in vacuum [18,19,32,33], and
to QCD at nonzero chemical potential and temperature
[34–38]. Recently, efforts have been made to calculate
the EOS for cold quark matter and compact stars [39,40].

Our starting point is QCD’s gap equation for the quark
propagator Sðp;�Þ at finite quark chemical potential �,
which reads1

Sðp;�Þ�1 ¼ Z2½i�pþ i�4ðp4 þ i�Þ þmq� þ �ðp;�Þ;
(6)

with the renormalized self-energy expressed as

�ðp;�Þ ¼ Z1

Z � d4q

ð2�Þ4 g
2ð�ÞD��ðp� q;�Þ

� �a

2
��Sðq;�Þ�a

�ðq; p;�Þ; (7)

where
R
� represents a translationally invariant regulariza-

tion of the integral, with � the regularization mass-scale.
Here, gð�Þ is the coupling strength, D��ðk;�Þ is the

dressed gluon propagator, and �a
�ðq; p;�Þ the dressed

quark-gluon vertex. Moreover, �a are the Gell-Mann ma-
trices, andmq is the�-dependent current-quark bare mass.

The quark-gluon vertex and quark wave function renor-
malization constants, Z1;2ð�2;�2Þ, depend on the renor-

malization point � , the regularization mass-scale �, and
the gauge parameter.

At finite chemical potential, the quark propagator can
assume a general form with rotational covariance

Sðp;�Þ�1 ¼ i�pAðp2; pu; u2Þ þ Bðp2; pu; u2Þ
þ i�4ðp4 þ i�ÞCðp2; pu; u2Þ; (8)

where we have written u ¼ ð0; i�Þ. Please note that we
ignore quark Cooper pairing herein. Diquark condensate
and color superconductivity have been considered in the
DSM [41–43], and we will extend our analysis to that case
in the future.

The kernel, Eq. (8), depends on the gluon propagator and
the quark-gluon vertex at finite chemical potential.
However, little is known about them except at very high
chemical potential, where perturbation theory is applied.
We have to extend to finite � the DSM that has been
successfully applied to hadron physics at � ¼ 0.

The Ansätze at zero chemical potential are typically
implemented by writing

Z1g
2D��ðp� qÞ�a

�ðq; pÞ
¼ Gððp� qÞ2ÞDfree

�� ðp� qÞ�
a

2
��ðq; pÞ; (9)

whereinDfree
�� ðk � p� qÞ ¼ ð��� � k�k�

k2
Þ 1
k2
is the Landau-

gauge free gluon propagator, Gðk2Þ is a model effective
interaction, and ��ðq; pÞ is a vertex Ansatz.
Herein, we consider the widely used ‘‘rainbow approxi-

mation’’

��ðq; pÞ ¼ ��; (10)

and a Gaussian-type effective interaction [44]

Gðk2Þ
k2

¼ 4�2D

!6
k2e�k2=!2

; (11)

involving two parameters D and !. This is a finite-width
representation of the Munczek-Nemirovsky model [45]
used in Ref. [40], which expresses the long-range behavior
of the renormalization-group-improved effective interac-
tion in Refs. [19,46,47]. Equation (11) delivers an
ultraviolet-finite model gap equation. Hence, the regulari-
zation mass-scale � can be removed to infinity and the
renormalization constants Z1;2 set equal to one. In this

model, there is no interaction between different flavors of
quarks. Therefore, the gap equations for the different fla-
vors are independent of each other. Here, we consider the
light flavors u, d, and s, neglecting heavier ones.
Usually, there exist two solutions of Eq. (6) in the chiral

limit, i.e., when mq ¼ 0. One solution with nonzero quark

mass function MðpÞ � BðpÞ=AðpÞ is called Nambu solu-
tion, and represents a phase with dynamical chiral symme-
try breaking and confinement. The other solution with zero
mass function at the chiral limit is called Wigner solution,
which represents a phase with chiral symmetry and decon-
finement. The Nambu phase is realized in vacuum, and
provides the basement for describing physics in vacuum.
The phase transition to deconfinement at finite chemical
potential, without considering hadron degrees of freedom,
is investigated in Ref. [37]. For strange quarks, only the
Nambu solution exists in vacuum [48]. The appearance of
the Wigner phase for strange quarks at finite chemical
potential will be investigated in the following.
In Ref. [37], the �q � 0 Ansatz is specified as the same

as in vacuum. It is reasonable in the Nambu phase, but not
in the Wigner phase. In this article, we introduce a further
parameter in order to study a possible density dependence
of the effective interaction. Considering asymptotic free-
dom at high chemical potential, we extend the effective
interaction at finite chemical potential in a simple manner,

Gðk2;�Þ
k2

¼ 4�2D

!6
e�	�2=!2

k2e�k2=!2
; (12)

1In our Euclidean metric: f��; ��g ¼ 2���; �
y
� ¼ ��; �5 ¼

�4�1�2�3; ab ¼ P
4
i¼1 aibi; ab ¼ P

3
i¼1 aibi; and P� timelike

) P2 < 0.
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introducing the parameter 	, which controls the rate of
approaching asymptotic freedom. In the following, we will
study the dependence of our results on this parameter,
marked as DS	. Compared to this model, the MIT bag
model with noninteracting quarks corresponds to 	 ¼ 1.
For simplicity, we assume the same effective interaction
Eq. (12) for each flavor.

The parameters D and ! of the model, Eq. (12), and the
quark masses can be determined by fitting meson proper-
ties in vacuum [44]. We choose the set of parameters ! ¼
0:5 GeV and D ¼ 1 GeV2. For simplicity, we use current-
quark masses mu;d ¼ 0, while ms ¼ 115 MeV is obtained

by fitting the K meson mass in vacuum, which is a little
different from the usually used value ms � 150 MeV in
the MIT bag model.

The EOS of cold QM is given following Refs. [37,40].
We express the quark number density as

nqð�Þ ¼ 6
Z d3p

ð2�Þ3 fqðjpj;�Þ; (13)

fqðjpj;�Þ ¼ 1

4�

Z 1

�1
dp4trD½��4Sqðp;�Þ�; (14)

where the trace is over spinor indices only. The quark
thermodynamic pressure at zero temperature can be ob-
tained as

Pqð�qÞ ¼ Pqð�q;0Þ þ
Z �q

�q;0

d�nqð�Þ: (15)

The total density and pressure for the quark phase are
given by summing contributions from all flavors. For com-
parison with the bag model, we write the pressure of the
quark phase as

PQð�u;�d;�sÞ ¼
X

q¼u;d;s

~Pqð�qÞ � BDS; (16)

where

~Pqð�qÞ �
Z �q

�q;0

d�nqð�Þ; (17)

BDS � � X
q¼u;d;s

Pqð�q;0Þ: (18)

Theoretically, we can choose arbitrary values of �q;0,

where the Wigner phase exists. For massless quarks, the
Wigner phase exists in vacuum and at finite chemical
potentials; the results of nqð�qÞ are shown in the upper

panel of Fig. 1. Therefore, we choose �u;0 ¼ �d;0 ¼ 0,
and the corresponding results of ~Pqð�qÞ are shown in the

lower panel of Fig. 1. For strange quarks, the Wigner phase
with nonzero value of ns can only be obtained with chemi-
cal potential �s and the parameter 	 above some thresh-
olds [48]; see the upper panel of Fig. 2. Therefore, we set
�s;0 as the value of the starting point of the Wigner phase

with each	. The single-quark number density and pressure
~Ps for strange quarks are shown in Fig. 2.
Now, only BDS needs to be fixed in this model. For u and

d quarks, we can use the ‘‘steepest-descent’’ approxima-
tion [49],

P½S� ¼ TrLn½S�1� � 1
2 Tr½�S�; (19)

which is consistent with the gap equation within the ‘‘rain-
bow’’ approximation. In vacuum, we obtain the pressure
difference between the Nambu phase and theWigner phase
for massless quarks [37]

B � P½SN� � P½SW� ¼ 45 MeV fm�3: (20)

Interpreting the Nambu phase as the real vacuum with
P½SN� ¼ 0, we then obtain the pressure of the Wigner
phase for light quarks in vacuum Pu;dð�0 ¼ 0Þ ¼
�45 MeV fm�3 and the effective bag constant B

nf¼2

DS ¼
90 MeV fm�3. However, due to the introduction of the
parameter 	, the ‘‘steepest-descent’’ approximation is not
consistent with the gap equation and we cannot use it to
calculate Psð�s;0Þ. Therefore, in our model we simply set

BDS ¼ 90 MeV fm�3 as a parameter, neglecting the ambi-
guity from Psð�s;0Þ.

u,d
u,

d
u,

d

FIG. 1 (color online). Quark number density (upper panel) and
pressure ~Pq, Eq. (17), (lower panel) for massless quarks at finite

chemical potentials. Different curves correspond to different
values of the parameter 	 ¼ 0, 0.5, 1, 2, 4,1. The curve denoted
DS-MN corresponds to the results in Ref. [40].
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In summary, with respect to the MIT bag model with
free quarks, the pressure of the DSM at a fixed chemical
potential is lower, which corresponds to an increasing bag
constant as chemical potential (density) increases. In the
next section, we will show a density-dependent effective
bag constant for beta-stable QM in the interior of NSs.

B. MIT bag model

We adopt the MIT bag model assuming massless u and d
quarks, s quarks with a current mass of ms ¼ 150 MeV,
and either a fixed bag constant B ¼ 90 MeV fm�3, or a
density-dependent bag parameter,

Bð�Þ ¼ B1 þ ðB0 � B1Þ exp
�
�


�
�

�0

�
2
�

(21)

with B1 ¼ 50 MeV fm�3, B0 ¼ 400 MeV fm�3, and 
 ¼
0:17. This approach has been proposed in [11], and it
allows the symmetric nuclear matter to be in the pure
hadronic phase at low densities, and in the quark phase at
large densities, while the transition density is taken as a
parameter. Several possible choices of the parameters have
been explored in [11], and all give a NS maximum mass in
a relatively narrow interval, 1:4M� & Mmax & 1:7M�.

It has also been found [11,50] that within the MIT bag
model (without color superconductivity) with a density-
independent bag constant B, the maximum mass of a NS

cannot exceed a value of about 1.6 solar masses. Indeed,
the maximum mass increases as the value of B decreases,
but too small values of B are incompatible with a transition
density � * ð2; . . . ; 3Þ�0 in symmetric nuclear matter, as
indicated by heavy ion collision phenomenology. (These
baryon densities are usually reached in numerical simula-
tions [51] of heavy ion collisions at intermediate energies
without yielding indications of ‘‘exotic’’ physics.) For a
more extensive discussion of the MIT bag model, the
reader is referred to [11].

IV. RESULTS AND DISCUSSION

A. Beta-stable hadronic matter

In order to study the structure of NSs, we have to
calculate the composition and the EOS of cold, neutrino-
free, catalyzed matter. We require that the NS contains
charge-neutral matter consisting of baryons (n, p, �,
��) and leptons (e�, ��) in beta-equilibrium, and com-
pute the EOS in the following standard way [2,3,52]: The
Brueckner calculation yields the energy density of baryon/
lepton matter as a function of the different partial densities,
"ð�n; �p; ��; ��; �e; ��Þ, by adding the contribution of

noninteracting leptons to Eq. (5). The various chemical
potentials (of the species i ¼ n, p, �, ��, e, �) can then
be computed straightforwardly,

�i ¼ @"

@�i

; (22)

and the equations for beta-equilibrium,

�i ¼ bi�n � qi�e; (23)

(bi and qi denoting baryon number and charge of species i)
and charge neutrality,

X
i

�iqi ¼ 0; (24)

allow one to determine the equilibrium composition
f�ið�Þg at given baryon density � and finally the EOS,

Pð�Þ ¼ �2 d

d�

"ðf�ið�ÞgÞ
�

¼ �
d"

d�
� " ¼ ��n � ": (25)

In Fig. 3, we compare the EOS obtained in the BHF
framework when only nucleons and leptons are present
(thick lines), and the corresponding ones with hyperons
included (thin lines). Calculations have been performed
with different choices of the NN potentials, i.e., the Bonn
B, the Argonne V18, and the Nijmegen N93, all supple-
mented by a compatible microscopic TBF [6]. For com-
pleteness, we also show results obtained with the Argonne
V18 potential together with the phenomenological Urbana
IX as TBFs.
We notice a strong dependence on both the chosen NN

potential, and on the adopted TBF, the microscopic ones

FIG. 2 (color online). Same as Fig. 1, but for strange quarks
with ms ¼ 115 MeV.
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being more repulsive than the phenomenological force.
The presence of hyperons decreases strongly the pressure,
and the resulting EOS turns out to be almost independent
of the adopted NN potential, due to the interplay between
the stiffness of the nucleonic EOS and the threshold den-
sity of hyperons [6]. The softening of the EOS has serious
consequences for the structure of NSs, leading to a maxi-
mum mass of less than 1.4 solar masses [6,7,10], which is
below observed pulsar masses [53].

B. Quark matter in beta-equilibrium

In compact stars, we need to consider matter in beta-
equilibrium,

d $ uþ eþ �e $ uþ�þ �� $ s; (26)

and charge neutrality, which gives the constraints in pure
QM

�d ¼ �u þ�e ¼ �u þ�� ¼ �s; (27)

2nu � nd � ns
3

� �e � �� ¼ 0: (28)

The numerical results of baryon number density �B ¼
ðnu þ nd þ nsÞ=3 and pressure versus baryon chemical
potential �B ¼ �u þ 2�d are shown in Fig. 4 for the
several cases discussed above.

For the hadronic case, we display results only for the
Bonn-B NN potential, which gives the stiffest EOS without
hyperons, and thus is themost favored for reaching largeNS
masses. In this case, the thick solid (dashed) curve indicates
results obtained without (with) hyperons. For QM, we plot
results with the MIT bag model, with mu;d ¼ 0, ms ¼
150 MeV, and a bag constant B ¼ 90 MeV fm�3, or a

density-dependentBð�Þ, Eq. (21) (thin curves). The remain-
ing curves are results obtained with the DSM and several
choices of the model parameter 	.
The crossing points of the baryon and quark pressure

curves (marked with a square) represent the transition
between baryon and QM phases under the Maxwell con-
struction. The projections of these points (dotted lines) on
the baryon and quark density curves in the upper panel
indicate the corresponding transition densities from low-
density baryonic matter to high-density QM. Some quali-
tative considerations can be done. In particular, we notice
that the phase transition from hadronic to QM occurs at low
values of the baryon chemical potential when the MIT bag
model is used to describe the quark phase, whereas much
higher values are required with the DSM. In some extreme
cases, such as DS0, no phase transition at all is possible. In
fact, the DSM EOS is generally stiffer than the hadronic
one, and the value of the transition density is high. We also
notice that with the DSM no phase transition exists if the
hadronic phase contains hyperons.
After these indications, we study in the following the

phase transition with the more sophisticated Gibbs
construction.

FIG. 3 (color online). Pressure vs the baryon number density
of hadronic NS matter. Thick curves show results for purely
nucleonic matter, whereas thin curves include hyperons.

FIG. 4 (color online). Baryon density (upper panel) and pres-
sure (lower panel) vs the baryon chemical potential of NS matter
for different models. The vertical dotted lines indicate
the positions of the phase transitions under the Maxwell
construction.
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C. Phase transition in beta-stable matter

A realistic model of the phase transition between bar-
yonic and quark phase inside the star is the Gibbs con-
struction [2,14,54], which determines a range of baryon
densities where both phases coexist, yielding an EOS con-
taining a pure hadronic phase, a mixed phase, and a pure
QM region. The crucial point of the Gibbs construction, as
suggested by Glendenning [54], is that both the hadron and
the quark phase are separately charged, while preserving
the total charge neutrality. This implies that NS matter can
be treated as a two-component system, and therefore can
be parametrized by two chemical potentials. Usually one
chooses the pair (�e, �n), i.e., electron and baryon chemi-
cal potential. The pressure is the same in the two phases to
ensure mechanical stability, while the chemical potentials
of the different species are related to each other, satisfying
chemical and beta stability. As a consequence, the pressure
turns out to be a monotonically increasing function of the
density. We note that our Gibbs treatment is the zero
surface tension limit of the calculations including finite-
size effects [14,55].

The Gibbs conditions for chemical and mechanical
equilibrium between both phases read

�u þ�e ¼ �d ¼ �s; (29)

�p þ�e ¼ �n ¼ �� ¼ �u þ 2�d; (30)

��� þ�p ¼ 2�n; (31)

pHð�e;�nÞ ¼ pQð�e;�nÞ ¼ pMð�nÞ: (32)

From these equations, one can calculate the equilibrium
chemical potentials of the mixed phase corresponding to
the intersection of the two surfaces representing the hadron
and the quark phase, which allows one to calculate the

charge densities �H
c and �Q

c and therefore the volume
fraction � occupied by QM in the mixed phase, i.e.,

��Q
c þ ð1� �Þ�H

c ¼ 0: (33)

From this, the energy density "M and the baryon density
�M of the mixed phase can be determined as

"M ¼ �"Q þ ð1� �Þ"H; (34)

�M ¼ ��Q þ ð1� �Þ�H: (35)

In Fig. 5 (upper panel), we display results for the EOS
including the Gibbs hadron-quark phase transition, using
the same conventions as in Fig. 4. We notice that the phase
transition constructed with the DSM turns out to be quite
different from the one obtained using the MIT bag model.
In the former case, if the coexistence region does exist, it is
shifted to higher baryonic density. For comparison, the
results with the simple Maxwell construction are shown
in the lower panel of the figure, the main difference being
the presence of a plateau typical of the first-order phase

transitions with one conserved charge, and the absence of a
mixed phase.
In order to clarify the fundamental difference between

MIT model on one side and DSM on the other side, we plot
in Fig. 6 the effective density-dependent bag constant

Bð�Þ � "ð�Þ � "freeð�Þ (36)

FIG. 5 (color online). Pressure vs baryon density of NS matter
with the Gibbs (upper panel) or the Maxwell (lower panel) phase
transition construction for different models.

FIG. 6 (color online). Effective bag constant obtained with the
MIT model and the DSM.
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obtained with the DSM in NS matter. One observes that
Bð�Þ is a monotonically increasing function in contrast to
the empirical density dependence introduced with the MIT
model. We point out that monotonically increasing bag
parameters have also been found with the color dielectric
model [13] and the Nambu-Jona-Lasinio (NJL) model
[56], whereas the density dependence in the bag model
was introduced by hand in order to delay the occurrence of
the phase transition as much as possible, see Ref. [11]. It
thus appears that an increasing bag parameter is a generic
feature of many microscopic quark models.

D. Neutron star structure

We assume that a NS is a spherically symmetric distri-
bution of mass in hydrostatic equilibrium. The equilibrium
configurations are obtained by solving the Tolman-
Oppenheimer-Volkoff equations [52] for the pressure P
and the enclosed mass m,

dP

dr
¼ �Gm"

r2
ð1þ P="Þð1þ 4�r3P=mÞ

1� 2Gm=r
; (37)

dm

dr
¼ 4�r2"; (38)

G being the gravitational constant. Starting with a central
mass density "ðr ¼ 0Þ � "c, we integrate out until the
density on the surface equals the one of iron. This gives
the stellar radius R and the gravitational mass is then

MG � mðRÞ ¼ 4�
Z R

0
drr2"ðrÞ: (39)

We have used as input the EOS obtained with the Gibbs or
Maxwell construction discussed above and shown in Fig. 5.
For the description of the NS crust, we have joined the
hadronic EOS with the ones by Negele and Vautherin [57]
in the medium-density regime, and the ones by Feynman-
Metropolis-Teller [58] and Baym-Pethick-Sutherland [59]
for the outer crust.

The results are plotted in Figs. 7 and 8, where we display
the gravitational massMG (in units of the solar massM� ¼
2� 1033 g) as a function of the radius R and central baryon
density �c. We present results obtained with two extreme
choices of the hadronic EOS yielding rather low or very
high maximum NS masses, namely, the UIX and BOB
models, respectively. The maximum masses are in these
cases 1:84M� and 2:50M� with only nucleons, and
1:30M� and 1:37M� including hyperons.

The possible effects of the hadron-quark phase transition
are very different with the MIT model and the DSM: In the
case of the MIT model, the phase transition begins at very
low baryon density and thus effectively impedes the ap-
pearance of hyperons [14]. Consequently, the resulting
maximum mass of the MIT hybrid star is 1:5M�, lower
than the value of the nucleonic star, but higher than that of
the hyperon star given before.

On the contrary, with the DSM no phase transition can
occur and no hybrid star can exist if hyperons are intro-
duced. If hyperons are excluded, the phase transition from
nucleon matter to QM takes place at rather large baryon
density. The maximum mass of the hybrid star has a
slightly smaller value than that with only nucleons, and
decreases as the density of the phase transition decreases.
For example, when the nucleonic Bonn-B NN potential is
used, the maximum mass of hybrid stars is only a little
lower than 2:5M� with 	 ¼ 0:5, and decreases to about
2M� with 	 ¼ 2. The same happens if the nucleonic
UIX interaction is adopted, in which case the maximum

FIG. 8 (color online). Same as Fig. 7, but with the UIX model.

FIG. 7 (color online). Gravitational NS mass vs the radius
(right panel) and the central baryon density (left panel) for
different EOS employing the BOB hadronic model. The thick
(thin) lines represent the configurations calculated with the
Gibbs (Maxwell) construction.
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mass of the hybrid star cannot exceed 1:84M�. We remind
the reader that with the value 	 ¼ 0 corresponding to
the unmodified DSM without density-dependent interac-
tion strength, no phase transition at all is possible. With
	 increasing to 1, we can obtain a smooth change from
the pure hadronic NS to the results with the MIT bag
model.

We also notice a large difference in the structure of
hybrid stars. In fact, whereas stars built with the MIT bag
model have a pure hadron phase at low density, followed
by a mixed phase and a pure quark core at higher density,
the ones obtained with the DSM contain only a hadron
phase and a mixed phase, and probably no pure quark
interior. The scenario resembles the one obtained within
the NJL model [12,56], where at most a mixed phase is
present, without a pure quark phase.

Another resemblance to the NJL model is the fact that
with the Maxwell construction no stable hybrid stellar
configurations are obtained. This is seen in Figs. 7 and 8,
where the stellar configurations built with a Maxwell con-
struction are represented by the thin lines, and are charac-
terized by a plateau. The sudden onset of the high-density
quark phase renders the star unstable, with maximum mass
values (of purely hadronic stars) which turn out to be
slightly larger than the ones calculated with the Gibbs
construction.

A clear difference between the two models exists as far
as the radius is concerned. Hybrid stars built with the DSM
are characterized by a larger radius and a smaller central
density, whereas hybrid stars constructed with the MIT bag
model are more compact.

V. CONCLUSIONS

We have investigated the capability of the DSM for QM
to provide hybrid NS configurations in combination with a
microscopic hadronic EOS obtained within the BHF for-
malism including also the appearance of hyperons. We
found that the unmodified DSM does not allow a hadron-
quark phase transition, thus requiring the introduction of an
empirical density dependence of the quark interaction
strength. Even in this case, however, the early appearance
of hyperons in hadronic matter inhibits the phase transi-
tion. Only in the fictitious case of restricting to pure
nucleon matter, a phase transition at large baryon density
is possible, and a hybrid star with 2M� is only allowed if
the nucleonic EOS is stiff enough to produce a NS with
2M�. Furthermore, stable hybrid stars are only obtained
with the Gibbs phase transition construction, but not with
the Maxwell construction.
These features of the DSM are very different from MIT-

type quark models, and we have attributed it to the inter-
action between quarks in the DSM, which can be repre-
sented as a density-dependent bag constant. We have found
a different density dependence of the effective bag constant
in the DSM and the MIT quark model.
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