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We explore equilibrium solutions of nontopological solitons in a general class of scalar field theories

which include global Uð1Þ symmetry. We find new types of solutions, tube-shaped and crust-shaped

objects, and investigate their stability. Like Q-balls, the new solitons can exist in supersymmetric

extensions of the standard model, which may be responsible for baryon asymmetry and dark matter.

Therefore, observational signals of the new solitons would give us more information on the early Universe

and supersymmetric theories.
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I. INTRODUCTION

In a pioneering work by Friedberg, Lee and Sirlin in
1976 [1], nontopological solitons were introduced in a
model with aUð1Þ-symmetric complex scalar field coupled
to a real scalar field. In contrast with topological defects,
they are stabilized by a global Uð1Þ charge, and their
energy density is localized in a finite space region without
gauge fields. In 1985, Coleman showed such solitons exist
in a simpler model with an SOð2Þ [viz. Uð1Þ] symmetric
scalar field only, and called them Q-balls [2].

Q-balls have attracted much attention in particle cos-
mology since Kusenko pointed out that they can exist in all
supersymmetric (SUSY) extensions of the standard model
[3]. Specifically, Q-balls can be produced efficiently in the
Affleck–Dine mechanism [4] and could be responsible for
baryon asymmetry [5] and dark matter [6].Q-balls can also
influence the fate of neutron stars [7]. Based on these
motivations, stability of Q-balls has been intensively
studied [8–11].

Observational signatures of SUSY Q-balls has been
studied [12], and their mass and flux were constrained by
experimental data of the searches for magnetic monopoles
and heavy cosmic rays [13]. Currently, direct searches for
neutral Q-balls and for electrically charged Q-balls are in
progress in Super-Kamiokande II [14] and in the SLIM
Experiment [15], respectively. Furthermore, it has been
shown that gravitational waves are emitted during Q-ball
formation and could be detected by next-generation gravi-
tational detectors [16],

In spite of increasing concern about nontopological
solitons in SUSY, other equilibrium solutions has not
been studied so much, while topological defects have
several types according to the symmetry. In this paper,

we address a fundamental question: Are their any other
nontopological solitons in different forms? If new solitons
exist in the theories which allow for Q-balls, their obser-
vational signals would give us new informations on SUSY
Q-ball models. Here, we reanalyze scalar field theories
which include global Uð1Þ symmetry.

II. EQUILIBRIUM SOLUTIONS

We begin with a review of Q-ball solutions. Consider an
SOð2Þ-symmetric scalar field � ¼ ð�1; �2Þ, whose action
is given by

S ¼
Z

d4x

�
� 1

2
���@�� � @��� Vð�Þ

�
;

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2
a¼1

�a�a

vuut :

(1)

Because of the symmetry, there is a conserved charge,

Q �
Z

d3x

�
�1

@�2

@t
��2

@�1

@t

�
: (2)

Assuming spherical symmetry and homogeneous phase
rotation,

� ¼ �ðrÞðcos!t; sin!tÞ; (3)

one has a field equation,

d2�

dr2
þ 2

r

d�

dr
þ!2� ¼ dV

d�
: (4)

This is equivalent to the field equation for a single static
scalar field with a potential V! ¼ V �!2�2=2.
Equilibrium solutions �ðrÞ with a boundary condition

d�

dr
ðr ¼ 0Þ ¼ 0; �ðr ! 1Þ ¼ 0; (5)
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exist if minðV!Þ< V!ð0Þ and dV!=d�ð0Þ> 0. This con-
dition is rewritten as

min

�
2½V � Vð0Þ�

�2

�
<!2 <m2 � d2V

d�2
ð0Þ: (6)

If one regards the radius r as ‘‘time’’ and the scalar
amplitude �ðrÞ as ‘‘the position of a particle,’’ one can
understand Q-ball solutions in words of Newtonian me-
chanics, as shown in Fig. 1(a). Equation (4) describes a one-
dimensional motion of a particle under the conserved force
due to the potential �V!ð�Þ and the ‘‘time’’-dependent
friction�ð2=rÞd�=dr. If one chooses the ‘‘initial position’’
�ð0Þ appropriately, the static particle begins to roll down
the potential slope, climbs up and approaches the origin
over infinite time.

To demonstrate numerical solutions later, we adopt a
simple model,

V ¼ 1
2m

2�2 ���3 þ ��4; with m2; �; � > 0: (7)

and rescale the quantities as

~x� � �ffiffiffiffi
�

p x�; ~� � �

�
�;

~m �
ffiffiffiffi
�

p
�

m; ~! �
ffiffiffiffi
�

p
�

!:

(8)

Then, the existing condition (6) becomes

0< �2 < 1
2; �2 � ~m2 � ~!2: (9)

(1) Q-tubes. For the same SOð2Þ model, we suppose a
string-like configuration,

� ¼ �ðRÞ½cosðn’þ!tÞ; sinðn’þ!tÞ�; (10)

where n is a non-negative integer and ðR;’; zÞ is the
cylindrical coordinate system. The field equation becomes

d2�

dR2
þ 1

R

d�

dR
� n2�

R2
þ!2� ¼ dV

d�
: (11)

If n ¼ 0, the field equation is the same as (4) except for a
numerical coefficient. Therefore, Q-ball-like solutions of
�ðRÞ exist. If n � 1, there is no regular solution which
satisfies�ð0Þ � 0. However, if we adopt a different bound-
ary condition,

�ðR ¼ 0Þ ¼ �ðR ! 1Þ ¼ 0; (12)

there is a new type of regular solutions. We introduce an
auxiliary variable c which is defined by �ðRÞ ¼ Rnc ðRÞ,
Then, Eq. (11) becomes

d2c

dR2
þ 2nþ 1

R

dc

dR
þ!2c ¼ R�n dV

d�

���������¼Rnc
: (13)

If we choose c ð0Þ appropriately, we obtain a solution c ðRÞ
which is expressed in the Maclaurin series without odd
powers in the neighborhood of R ¼ 0. In terms of the
original variable �ðRÞ, the nth differential coefficient

�ðnÞð0Þ ¼ c ð0Þ should be determined by the shooting
method, while any lower derivative vanishes at R ¼ 0.
We plot some solutions in Fig. 2(a).
We can illustrate existence of the new solutions with

n � 1 by analogy with a particle motion in Newtonian
mechanics, as shown in Fig. 1(b). Equation (11) describes
a one-dimensional motion of the particle under the con-
served force due to the potential �V!ð�Þ and two non-
conserved forces, the friction �ð1=RÞd�=dR and the
repulsive force n2�2=R2. If n ¼ 1, by choosing the ‘‘initial
velocity’’ d�=dRð0Þ appropriately, the particle goes down
and up the slope, and at some point, � ¼ �max, it turns
back and approaches the origin over infinite time. If n � 2,

d�=dRð0Þ vanishes; instead, the nth derivative �ðnÞð0Þ
gently pushes the particle at � ¼ 0. Therefore, with the

FIG. 1 (color online). Interpretation of (a) Q-ball solutions and
(b) new soliton solutions by analogy with a particle motion in
Newtonian mechanics.
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appropriate choice of �ðnÞð0Þ, the particle moves along a
similar trajectory to that of n ¼ 1. This argument also
indicates that the existence condition of the new soliton
solutions are the same as that of Q-balls, (6) or (9).
Solutions with the same behavior as the n ¼ 1 solutions
were obtained by Kim et al. [17], who studied the
SOð3Þ-symmetric scalar field without Q-charge.

Nonzero components of the energy-momentum tensor
are given by

�Tt
t ¼ 1

2

�
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dR
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2 þ n2�2

2R2
þ!2

2
�2 þ V;

TR
R ¼ 1

2

�
d�

dR

�
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�
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2
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(14)

The nonzero component Tt
’ indicates that the solutions

possess angular momentum. Each term of the energy-
momentum tensor is presented in Fig. 2(b) and 2(c).
Although the present analysis does not include gravity,
we can estimate gravitational effects in the weak field
approximation as follows. If we define the gravitational
potential � as � � gtt þ 1, and take it into account up to
its first order, the Einstein equations yield the extended
Poisson equation,

@�@�� ¼ 4�Gð�Tt
t þ Ti

iÞ ¼ 8�Gð!2�2 � VÞ; (15)

where Ti
i is the trace of the spatial components. Except for

n ¼ 0 cases, the gravitational source in (15) vanishes in the
center in the x-y plane. Furthermore, this field configura-
tion has planar symmetry in the z direction. Therefore, we
collectively call the new solitons Q-tubes.
Because SOð2Þ is a subgroup of SOðN � 3Þ or

SUðN � 2Þ, Q-tubes with n ¼ 0 as well as Q-balls can
appear in any SOðNÞ or SUðNÞ theory. By contrast, we
suspect that Q-tubes with n � 1 can appear only in Uð1Þ
theory, since their string-like configuration is topologically
unstable in theories with SOðN � 3Þ or SUðN � 2Þ.
(2) Q-crusts. Next, we consider an SOð3Þ �

Uð1Þ-symmetric scalar field � ¼ ei�ð�1; �2; �3Þ, whose
action is given by

S ¼
Z

d4x

�
� 1

2
���@��

� � @��� Vð�Þ
�
;

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
a¼1

�a�a

vuut :

(16)

Assuming

� ¼ ei!t�ðrÞðcos’ sin	; sin’ sin	; cos	Þ; (17)

we obtain the field equation,

d2�

dr2
þ 2

r

d�

dr
� 2�

r2
þ!2� ¼ dV

d�
: (18)

If we adopt a boundary condition,

�ðr ¼ 0Þ ¼ �ðr ! 1Þ ¼ 0; (19)

we find a regular solution�ðrÞ, like aQ-tube solution with
n ¼ 1. We plot some solutions in Fig. 3(a).

FIG. 2 (color online). Examples of Q-tube solutions. (a) shows
�ðrÞ for four cases. (b) and (c) show each term of the energy-
momentum tensor for two of the solutions, where we put ~m2 ¼ 0:6.
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Nonzero components of the energy-momentum tensor
are given by

�Tt
t ¼ 1

2
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dr

�
2 þ�2

r2
þ!2

2
�2 þ V;

Tr
r ¼ 1

2

�
d�

dr

�
2 ��2

r2
þ!2

2
�2 � V;

T	
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2

�
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dr
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2 þ!2

2
�2 � V:

(20)

In this case, Tt
’ vanishes, which means that the solutions

possess no angular momentum. Each term of the energy-
momentum tensor is also shown by Fig. 3(b). The extended
Poisson equation is given by

@�@�� ¼ 4�Gð�Tt
t þ Ti

iÞ ¼ 8�Gð!2�2 � VÞ: (21)

We find that the kinetic term !2�2, which is responsible
for Q-charge, is dominant but vanishes in the center.
Therefore, we call the solutions Q-crusts.

III. PROPERTIES OF THE SOLUTIONS

Stability of Q-balls has been discussed essentially by
energetics. The total energy of the system is defined by

E ¼
Z

d3x

�
1

2
!2�2 þ 1

2
ð@i�Þ2 þ V

�
; (22)

where @i denotes a spatial derivative. For a fixed model
Vð�Þ and the phase assumption (3), there remains a free
parameter, ! or Q; accordingly, there is a family of equi-
librium solutions. For such a family, if E increases as a
function of Q but dE=dQ decreases, energetics prohibits
oneQ-ball splitting into two under fixedQ. In this case, we
can understand that Q-balls are stable under the assump-
tion (3). In connection with this argument, Paccetti Correia
and Schmidt showed a useful theorem that stability is
determined by the sign of ð!=QÞdQ=d! [9].
Sakai and Sasaki [10] proposed a simple method of

analyzing stability using catastrophe theory [18] as fol-
lows. Catastrophe theory reveals stability of a mechanical
system completely once behavior variable(s), control pa-
rameter(s), and a potential are given. Therefore, an essen-
tial point is to choose those variables in the Q-ball system
appropriately. For a given potential Vð�Þ and chargeQ, we
consider virtual displacement 
�ðrÞ near the equilibrium
solution �ðrÞ. If we redefine ! by

! � Q

	Z
�2

!ðxÞd3x; (23)

the domain of definition of ! is extended to off-
equilibrium configurations. Using this !, we can represent
a continuous deformation by a one-parameter family of
displacement functions, 
�!ðrÞ. Then, the energy (22) is
regarded as a function of !: Eð!Þ � E½�!�. Because
dE=d! ¼ ð
E=
�!Þd�!=d! ¼ 0 when �! is an equi-
librium solution,!may be regarded as a behavior variable
and E as the potential. The charge Q is given by hand, or
physically, it is determined by initial conditions; therefore,
it should be regarded as a control parameter. Catastrophe
theory tells us that stability changes at dQ=dE ¼ 0 or
dQ=d! ¼ 0, which are consistent with the above
arguments.
Properties ofQ-balls in the model (7) were elucidated as

follows [10].
(i) ~m2 > 1=2: Vð0Þ is the absolute minimum. There is

no bound on Q, and all equilibrium solutions are
stable.

(ii) ~m2 < 1=2: Vð0Þ is a local minimum but the absolute
minimum is located at � � 0. For each ~m2, there is
a maximum charge, Qmax, above which equilibrium
solutions do not exist. For Q<Qmax, stable and
unstable solutions coexists.

It turns out that properties of Q-tubes and Q-crusts also
depend on whether ~m2 > 1=2 or ~m2 < 1=2. Therefore, in
the following, we show numerical results for ~m2 ¼ 0:6 and
~m2 ¼ 0:3 as typical examples.

FIG. 3 (color online). Examples of Q-crust solutions.
(a) shows �ðrÞ for two cases. (b) shows each term of the
energy-momentum tensor for the solution with �2 ¼ 0:49.
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(1) Q-tubes. In this case, E and Q diverge because they
are infinitely long. Therefore, we define the energy and
charge per unit length, respectively, as

e ¼ 2�
Z 1

0
dR

�
1

2
!2�2 þ 1

2

�
d�

dR

�
2 þ n2�2

2R2
þ V

�
;

q ¼ 2�!
Z 1

0
�2dR:

(24)

In accordance with the normalization (8), we rescale the
energy/charge variables as

~e � �2

�2
; ~q � �ð3=2Þ

�
q;

~E � �ð3=2Þ

�
E; ~Q � �Q:

(25)

We show the ~q-~e relations for ~m2 ¼ 0:6 and for ~m2 ¼
0:3 in Fig. 4. From a viewpoint of these relations, basic
properties for Q-tubes are the same as those for Q-balls as
described above. They are summarized as follows.
(i) ~m2 > 1=2: There is no bound on q, and all equilib-

rium solutions are stable. For fixed q, Q-tubes with
lower n are energetically more stable.

FIG. 4 (color online). Existence domain of Q-tube solutions in
~q-~e space and their stability. We put ~m2 ¼ 0:6 and ~m2 ¼ 0:3 in
(a) and in (b), respectively. The solid and dashed lines represent
stable and unstable solutions, respectively.

FIG. 5 (color online). Existence domain ofQ-crust solutions in
~Q- ~E space and their stability. We put ~m2 ¼ 0:6 and ~m2 ¼ 0:3 in
(a) and in (b), respectively.
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(ii) ~m2 < 1=2: For each ~m2, there is a maximum charge,
qmax. For q < qmax, stable and unstable solutions
coexist for fixed q. Interestingly, Q-tubes with
higher n can have larger q.

(2) Q-crusts. Similarly, we show the ~Q- ~E relations for
~m2 ¼ 0:6 and for ~m2 ¼ 0:3 in Fig. 5. For reference, we
show the results for Q-balls, too. [Note that Q-balls can
appear not only in Uð1Þ theories but also in a wide class of
theories which include global Uð1Þ symmetry.] What we
find for Q-crusts is summarized as follows.

(i) ~m2 > 1=2: There is no bound on Q, and all equilib-
rium solutions are stable. For fixed Q, Q-balls are
energetically more stable thanQ-crusts, as expected.

(ii) ~m2 < 1=2: For each ~m2, there is a maximum charge,
Qmax. For Q<Qmax, stable and unstable solutions
coexist. Interestingly, Q-crusts can have larger Q
than Q-balls.

We should note that the above results are based on the
phase assumption (10) or (17). Stability against perturba-
tions on the phase configuration (10) or (17) cannot be
revealed by the present energetic analysis and should be
studied by dynamical analysis.

IV. SUMMARYAND DISCUSSIONS

We explore equilibrium solutions of nontopological sol-
itons in a general class of scalar field theories which
include global Uð1Þ symmetry, and then we find new types
of solitons: Q-tubes in Uð1Þ theories and Q-crusts in
SOð3Þ �Uð1Þ theories. Because only n ¼ 0 Q-tubes
have homogeneous phase like Q-balls, they can appear in
a wide class of theories which include Uð1Þ symmetry.
Except for n ¼ 0 Q-tubes, there is a dip in kinetic energy
in the center. In contrast with cosmic global strings or
global monopoles, their gravitational mass can be finite
without gauge fields.

We also investigate stability of equilibrium solutions for
the model (7) under the phase assumption (10) or (17) by
calculating their charge and energy (or those per unit

length). The charge-energy relations indicate that, if Vð0Þ
is the absolute minimum, there is no bound on charge, and
all solutions are stable. On the other hand, if Vð0Þ is a local
minimum but the absolute minimum is located at � � 0,
there is a maximum charge, above which equilibrium so-
lutions do not exist. For fixed charge below the maximum,
stable and unstable solutions coexists. It is interesting that
Q-tubes with a higher winding number can have a larger
charge density and that Q-crusts can have a larger charger
charge than Q-balls. Stability against these phase configu-
rations is beyond the present energetic analysis and should
be studied by dynamical analysis, which is our next subject.
UnlikeQ-crusts, ourQ-tubes solutions are infinitely long

and unrealistic in themselves. Nevertheless,Q-tubes are the
more interesting because they can appear in the minimal
(i.e., Uð1Þ) models and several researchers have already
performed numerical simulations in those models [19].
Those simulations showed that a filament structure appears
just before Q-ball formation and maintains its shape for a
certain time. We conjecture that such a filament structure is
semi-Q-tubes. Furthermore, according to recent simulations
of the collision of two Q-balls [20], two apparent rings are
formed. We suspect that they are loop Q-tubes. Further
fundamental investigations of Q-tubes and the other soli-
tons together with advanced simulations of Q-ball forma-
tion may confirm the above conjectures and elucidate
observational consequences of Q-ball formation in SUSY.
It may be also interesting to explore analogous new solitons
in nonrelativistic atomic Bose–Einstein condensates [21].
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