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Irreversibility and acausality of a subsystem are established in exactly soluble harmonic models with

reversible and causal dynamics. It is shown that initial conditions, imposed on some dynamical degrees of

freedom may break time reversal invariance for other degrees of freedom. This happens if observations

carried out in any large but finite amount of time can not resolve the spectrum of the eliminated degrees of

freedom, namely, when the spectrum has a condensation point at the ground state. Acausality follows due

to the dominance of the dynamics by almost time-independent modes.
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I. INTRODUCTION

All fundamental forces apart of weak interactions are
time reversal invariant. Hence we expect that effective
theories, constructed for energies well below the energy
scale of weak interactions preserve the symmetry with
respect to time reversal. But coarse graining even of a
reversible dynamical system [1] already leads to a definite
time arrow [2], a dynamical breakdown of the time reversal
invariance. Irreversibility presents itself usually by the
mixing of time derivatives of odd and even powers in the
linearized effective equations of motion. These terms in-
duce other changes in the dynamics, for instance they may
generate complex poles for the Green functions in energy
and endanger the expected causal structure and the unitar-
ity of time evolution. Such a relation between dissipative
forces and acausality is well know in case of the Abraham-
Lorentz-Dirac radiation reaction force in classical electro-
dynamics [3].

The simplest phenomenological treatment of dissipative
forces is the insertion of a term into Newton equation
which is linear in the velocity. The resulting equation
violates time reversal invariance but remains causal. It is
difficult even to imagine how dissipation may lead to
acausality since one would think that we can always con-
struct the solution of the canonical equations of motion by
a simple integration in time. A loophole appears in this
argument when applied to a system involving infinitely
many soft degrees of freedom. Weaker restoring force to
the stationary position means slower motion and we may
need infinitely long time to get all degrees of freedom
moving. We encounter two limits in this procedure, the
long observation time T ! 1 and the large systemN ! 1
which may not commute, rendering the time evolution
nonunique and requiring the consideration of certain de-
tails of the observation to decide the order.

The strategy of effective theories will be used in the
present work to trace the origin of acausal and irreversible
effects starting with an underlying reversible, unitary dy-
namics. The separation of the degrees of freedom into a
system and its environment and the elimination of the

environment variables by means of their equations of
motion allows us to define, at least formally, the effective
dynamics of the system. It is found that irreversibility and
acausality may appear when infinitely many eliminated
environmental degrees of freedom remain unresolved by
the observation. These degrees of freedom provide a sink
for the dissipated energy and a mechanism to smear the
impact of external perturbation in time and thereby gen-
erate irreversibility and acausality.
In particular, we consider exactly soluble systems where

the Lagrangian is quadratic in the coordinates and the
velocities but we believe that our qualitative conclusions
remain valid for interactive systems, too. The possibility of
a phase transition opens here by coupling an observable to
infinitely many normal modes. The way this infinity is
reached may generate singular dependence on the parame-
ters of the model, the hallmark of phase transitions. Such a
broad framework has already been used to explore dissi-
pative dynamics [4,5]. Up to our best knowledge the re-
sulting acausality has not been commented or traced back
to its origin. The generic harmonic model consists of a set
of linearly coupled harmonic oscillators and can be char-
acterized by its spectral functions. A more restricted class
of models is where the environment is realized by a free
field, coupled linearly to a harmonic oscillator, considered
as ‘‘system.’’ In such a model the spectral function of the
environment is determined by the space-time symmetries
of the field theory in question. We shall use this model
together with the generic one given in terms of harmonic
oscillators and analyze both of them on classical and
quantum level. The causal structure is naturally identical
for quantum and classical harmonic systems but the issue
of unitarity can be considered in quantum mechanics only.
Reversibility and causality are always found to be intact

for systems with discrete excitation spectrum, as expected.
But time is needed for the observations to resolve the
discreteness of an excitation spectrum. When the time
available for observation is not sufficient then the discrete
spectrum appears to be spread. This cause a drastic change
if there is a condensation point of the spectrum at the
ground state because no observation carried out in finite
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amount of time can resolve this part of the spectrum. It is
the contribution if these unresolved modes which makes
the effective system dynamics irreversible and acausal,
confirming the important role of information loss in dis-
sipative systems.

The first part of the paper builds up the effective theory
for the system by eliminating the environment. The clas-
sical models consisting of harmonic oscillators or a scalar
field as environment are introduced in Sec. II. The quantum
case is considered in Sec. III starting with a brief summary
of the closed time path (CTP) formalism [6] which is
needed to preserve the transparency offered by Wick theo-
rem, a necessary tool to treat realistic models. Physical
considerations are presented in the second part, starting
with the interpretation of the irreversibility as radiation
damping in Sec. IV. The similarity with spontaneous sym-
metry breaking is addressed in Sec. V. Finally, the con-
clusions are summarized in Sec. VI.

II. CLASSICAL MODELS

We introduce in this section two simple models consist-
ing of linearly coupled harmonic oscillators. One of them
is called system and the rest represents the environment.
The spectrum for the latter can freely be chosen in the first
model and is restricted by space-time symmetries in the
second case. A further notational difference is that the
spectrum is kept discrete in the first case for the sake of
simplicity and the second, field theory based model is
considered in infinite space with continuous spectrum.

A. Harmonic oscillators

The simplest nontrivial quadratic model consists of a
system of linearly coupled harmonic oscillators [5]. The
Lagrangian is written as

L¼m
_y2

2
�m!2

0

2
y2þ �jyþX

n

�
m

_x2n
2
�m!2

n

2
x2n�gnxny

�
(1)

where y and xn denote the system and the n-th harmonic
oscillator coordinate, respectively. The source �j is intro-
duced to diagnose the system dynamics. The equations of
motion

m €y¼ �j�m!2
0y�

X
n

gnxn; m €xn¼�m!2
nxn�gny; (2)

can easily be solved by successive elimination. We impose
the initial conditions

yðtiÞ ¼ _yðtiÞ ¼ 0; (3)

for the system and xnðtiÞ ¼ xhnðtiÞ, _xnðtiÞ ¼ _xhnðtiÞ with
xhnðtÞ ¼ <zne

i!nt for the environment at the initial time
t ¼ ti and go into the limit ti ¼ �1 to recover continuous
frequency spectrum in the Green functions. The solution of
the equations of motion for the Fourier transform

fð!Þ ¼
Z

dxei!tfðtÞ (4)

of the environment coordinates is

xnð!Þ ¼ gn
m½ð!þ i�Þ2 �!2

n�
yð!Þ þ 1

2
½zn�ð!�!nÞ

þ z�n�ð!þ!nÞ�: (5)

The system coordinate is expressed in terms of the
retarded Green function

GrðtÞ ¼
Z
!
Grð!Þe�i!t (6)

as

yðtÞ ¼
Z 1

ti

dt0Grðt� t0Þ
�X

n

gnxhnðt0Þ � �jðt0Þ
�

(7)

where the Fourier transform

Grð!Þ ¼ 1

G�1
0 ð!þ i�Þ � �rð!Þ (8)

is obtained by means of the free inverse propagator

G�1
0 ð!Þ ¼ mð!2 �!2

0Þ (9)

and the self energy

�rð!Þ ¼ 1

m

X
n

g2n
ð!þ i�Þ2 �!2

n

: (10)

Each order of the geometric series resulting from the
expansion of the propagator (8),

Grðt; t0Þ ¼ Gr
0ðt; t0Þ þ

Z
dt1dt1G

r
0ðt; t1Þ�r

0ðt1; t2ÞGr
0ðt2; t0Þ

þ � � � (11)

is nonvanishing for t > t0 only and Gr is causal as long as
the expansion converges. This is the case when the Grð!Þ
has a unique analytic extension in the complex frequency
plane, in case of discrete spectrum. Hence causality is
assured for finite systems or for an infinite set of harmonic
oscillators with spectrum without condensation point.
When the spectrum possesses condensation point then
the frequency Fourier integrals of Grð!Þ with the self
energy (10) in the denominator may not have uniform
convergence causing a dependence on the order the fre-
quency integration and the mode summation are carried
out. When the frequency integral is made first and the
summation over the modes is performed next then the
pole structure of (8)–(10) assures causality which may be
lost by following the opposite order.
An alternative way to find the retarded Green function is

based on the normal modes

~x j ¼
X
n

A�1
jn xn (12)
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which diagonalize the Lagrangian,

L ¼ X
j

�
m

_~x2j
2
�m ~!2

j

2
~x2n

�
þ �j

X
j

A0j~xj: (13)

The retarded Green function for the system coordinate is of
the form

Grð!Þ ¼ X
j

A2
0j

m½ð!þ i�Þ2 � ~!2
j �

(14)

with
P

jA
2
0j ¼ 1 yielding

GrðtÞ ¼ ��ðtÞX
j

A2
0j

m

sin ~!jt

~!j

: (15)

The causal nature of this Green function is again due to the
fact that the frequency integral was dealt with before the
summation over j in this equation.

B. Spectral strengths

It is advantageous at this point to introduce some spec-
tral functions. The spectral strength

�eð�Þ ¼ X
n

�ð��!nÞ g2n
2m!n

(16)

of the environment allows us to write the self energy as

�rð!Þ ¼
Z

d�
2�eð�Þ�

ð!þ i�Þ2 ��2
: (17)

Whenever this self energy is used we tacitly commit our-
selves to a normal modes summation carried out before
frequency integration.

The spectral function of the normal modes is defined by

�mð�Þ ¼ X
j

�ð�� ~!jÞ
A2
0j

2m ~!j

; (18)

and the Green function

Grð!Þ ¼
Z

d�
2�mð�Þ�

ð!þ i�Þ2 ��2
(19)

is naturally retarded,

GrðtÞ ¼ ��ðtÞ
Z

d�2�mð�Þ sin�t; (20)

when the frequency integral is made before the integration
over the spectral variable.

To find a model for dissipative phenomena it is usually
assumed that the environment spectrum has a condensation
point at ! ¼ 0. The long time phenomenology of the
resulting system-environment interactions depends on the
asymptotic of the spectral function at vanishing frequency,
assumed to be �eð�Þ¼Oð�pÞ. An environment with p¼1
called Ohmic and it separates the sub- and super-Ohmic
regimes with p < 1 and p > 1, respectively [5]. The spec-
tral function should approach zero for large frequencies,

lim�!1�eð�Þ ¼ 0 to avoid UV divergences. A simple
realization of an Ohmic environment is given by the
Deby-suppressed Drude model,

�eð�Þ ¼ �ð�Þ g2e�

me�Dð�2
D þ�2Þ (21)

where ge and me are averaged coupling strength and mass
parameter of the environment. The self energy (17) is now

�rð!Þ ¼ �g2e
me�D

1

i!��D

(22)

and Green function (8)

Grð!Þ ¼ 1

mð!2 �!2
0Þ þ �g2e

me�Dð�D�i!Þ
(23)

turns out acausal in general.
One may construct similar phenomenological spectral

function for the normal modes, as well. We assume that the
condensation point of the normal mode spectrum is located
at the lowest frequency !mð� !0Þ and write

�mð�Þ ¼ �ð��!mÞ g2�

~m ~�½ ~�2 þ ð��!mÞ2�
(24)

The Green function can easily be calculated for !m ¼ 0
and we find poles for both sides of the real frequency axis
in Grð!Þ.
The generic, formal feature of a dissipative model is

clearly shown by these examples. We start with a ‘‘micro-
scopic’’ model with a large but finite number of degrees of
freedom which is a closed system with time reversal in-
variant and causal dynamics. These latter properties might
be lost for an infinite system. It is usually the thermody-
namical limit which produces continuous spectrum and the
emerging the condensation points in the spectrum may
generate complex poles for the Green function leading to
a breakdown of time reversal invariance. When some of
these poles end up on the ‘‘wrong‘‘ side of the complex
frequency plane then acausality is observed.

C. Classical field as environment

To place the model into a more realistic context we
consider spectral strength which is fixed by symmetries.
The harmonic oscillators of the environment will then be
described by a free real scalar field �ðt; xÞ in space dimen-
sion d and of mass �. The system coordinate y is coupled
to the field at the origin and the action is chosen to be

S½�;y�¼
Z
dt

�
m _yðtÞ2

2
�m!2

0

2
y2ðtÞ�gyðtÞ�ðt;0Þþ �jðtÞyðtÞ

�

þ
Z
dtddx

�
1

2c2
ð@t�Þ2�1

2
ðr�Þ2��2c2

2ℏ2
�2

�
:

(25)
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The coupling constant will be written as g ¼ ffiffiffiffi
m

p
!0‘

d=2�1

in terms of the parameter ‘ of dimension of length. The
equation of motion for the environment normal modes,

�ðt; kÞ ¼
Z

ddxe�ikx�ðt; xÞ (26)

is

½@2t þ!2ðkÞ��ðt; kÞ ¼ �gc2yðtÞ (27)

where!ðkÞ ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2c2

2ℏ2 þ k2
q

. The corresponding initial con-

ditions are chosen to be �ðti; kÞ ¼ �hðti; kÞ and
@t�ðti; kÞ ¼ @t�hðti; kÞ. The environment normal coordi-
nates are inserted into the system equation of motion

mð@2t þ!2
0ÞyðtÞ ¼ �g

Z d3k

ð2�Þ3 �ðt;kÞ þ �jðtÞ (28)

yielding the solution

yðtÞ ¼
Z 1

ti

dt0Grðt� t0Þ½g�hðt0; x ¼ 0Þ � jðt0Þ� (29)

which satisfies the initial conditions yðtiÞ ¼ _yðtiÞ ¼ 0. The
Fourier transform of the Gr is given by Eq. (8) except that
the self energy is now given by

�rð!Þ ¼
Z ddk

ð2�Þd
g2c2

ð!þ i�Þ2 �!2ðkÞ : (30)

We introduce the spectral weight

�eð�Þ ¼ g2c2
Z ddk

ð2�Þd2!ðkÞ�ð!ðkÞ ��Þ (31)

which allows us to write the self energy as in Eq. (17). In
the case of gapless environment, � ¼ 0, we have

�eð�Þ ¼ g2

2�

�
�

c

�
d�2

�d (32)

with �1 ¼ �2 ¼ 1
2 , �3 ¼ 1=2�, and �5 ¼ 1=ð2�Þ2. The

thermodynamical limit makes the spectrum continues and
the number of soft modes is just right to make up an Ohmic
dissipation in 3 spatial dimensions.

III. QUANTUM MODELS

After having seen the mathematical possibility of gen-
erating irreversible or acausal dynamics we turn to quan-
tum systems. The retarded solution was manufactured in
the classical case and the eventual acausality in the re-
tarded Green function is to be considered by suspicion. On
the contrary, the solution of the Schrödinger equation will
be obtained by functional method, applicable for either
finite or infinite system and the retarded Green function
is thereby constructed in a systematic, unique manner.

A. CTP scheme

The widely employed formalism of quantum mechanics
is based on path integration where the quantities sought are
transition amplitudes between pure states. But the identi-
fication of the causal structure of a quantum system requires
to go beyond such transition amplitudes. In fact, retardation
and causality are expressed by means of expectation values
corresponding some intial state which is not necessarily
stationary. Another, related problem of the transition am-
plitude formalism is that Wick theorem holds for time
ordered Green functions only and we have no easy way of
writing retarded Green functions in perturbation expansion
as a sumof Feynman graphs, an indispensable scheme to the
intuition.Hencewe shall consider expectationvalueswithin
the CTP scheme, proposed by Schwinger long time ago [6]
and has been rediscovered in a number of occasions [7–15].
The main points, used in deriving the effective system
dynamics can be summarized as follows [16,17]. An expec-
tationvalue of an observableO taken at time t can bewritten
in the Schrödinger representation as

hOðtÞi ¼ Tr½Oe�ði=ℏÞðt�tiÞH�ie
i=ℏðt�tiÞH�; (33)

where�i is the densitymatrix in the initial state at time ti. Its
expectation value and Green functions can be obtained by
means of the generator functional

eði=ℏÞW½ĵ� ¼ TrT½e�ði=ℏÞ
R

tf
ti
dt½HðtÞ�jþðtÞOðtÞ��

� �iðT½e�ði=ℏÞ
R

tf
ti
dt½HðtÞþj�ðtÞOðtÞ��Þy (34)

given in the Heisenberg representation where ĵ ¼ ðjþ; j�Þ
is a CTP doublet of sources. W½ĵ� generates the connected
CTP Green functions of OðtÞ. The extension of the single
time axis to two, oppositely oriented time axes, correspond-
ing to the two time evolution operators in Eq. (34) allows us
to generalize the Wick theorem for the extended time con-
tour and to establish perturbation expansion, based on CTP
Feynman graphs. The argument is based on the simple
observation that Wick theorem follows automatically
from a path integral representation of the generator func-
tional,

eiW½ĵ� ¼
Z

D½x̂�eiSCTP½x̂�þi
R

dt½jþðtÞOþðtÞþj�ðtÞO�ðtÞ�; (35)

where the CTP doublet x̂ ¼ ðxþ; xþÞ denote a pair of tra-
jectories for each degree of freedom. The name ‘‘closed
time path‘‘ refers to the boundary condition xþðtfÞ ¼
x�ðtfÞ representing the trace in (34), imposed at an arbitrary

time tf chosen to be at a later instant than the expectation

values taken. The CTP action

SCTP½x̂� ¼ S½xþ� � iS½x�� þ SBC½x̂� (36)

contains the usual action S½xþ� of the theory and another
contribution, SBC½x̂�, incorporating the boundary conditions
in time. Both the initial state of the system, the perturbative
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vacuum, and the final conditions xþðtfÞ ¼ x�ðtfÞ can be

represented by a quadratic term, SBC½x̂� ¼ Oðx̂2Þ. The de-
tailed from of SBC½x̂� is not needed as long as the free
propagators can be constructed in the operator formalism
[16]. The CTP generator functional offers a simple method
to monitor the unitarity of the time evolution. In fact, for
unitary time evolution the norm is preserved andW ¼ 0. In
other words, on has

W½j;�j� ¼ 0 (37)

for any Hermitian operator O.
To find the expectation values we parametrize the

sources as j� ¼ jð1� �Þ=2� �j where � is an arbitrary
real parameter and write

hOðtÞi ¼ �W½ĵ�
�jðtÞ jj ¼ 0 (38)

which is � independent for unitary time evolution. The
source �j represents the external environment which gen-
erates unitary time evolution and guides the system adia-
batically to the desired state in which the expectation value
is sought. The other source, j is a bookkeeping device to
generate the expectation value and is set to zero after the
functional derivative in Eq. (38).

The equations of motion, satisfied by the expectation
values can be inferred from the effective actions, obtained
by means of functional Legendre transformation j $ A for
fixed �j,

�½O� ¼ <W½j� �
Z

dtjðtÞOðtÞ; OðtÞ ¼ �W½j; �j�
�jðtÞ : (39)

The inverse Legendre transform is defined by

<W½j�¼�½O�þ
Z
dxjðtÞOðtÞ; �jðtÞ¼��½O; �O�

�OðtÞ ; (40)

showing that the expectation value is an extremal of the
effective action in the physical case when j ¼ 0 is set.

We briefly summarize now the free generator functional
and the propagator for a harmonic oscillator and a free, real
scalar field governed by the actions

SHO½x� ¼ 1

2

Z
dt½m _xðtÞ2 �m!2

0x
2ðtÞ� ¼ 1

2
xG�1

0 x;

SFT½�� ¼ 1

2

Z
dx

�
@��ðxÞ@��ðxÞ ��2c2

ℏ2
�2ðxÞ

�

¼ 1

2
�D�1

0 �:

(41)

The generator functional (35) for OðtÞ ¼ xðtÞ and OðxÞ ¼
�ðxÞ can be written as

eiWHO½ĵ� ¼
Z

D½x̂�eði=2ÞxĜ�1
0 x̂þiĵ x̂;

eiWFT ½Ĵ� ¼
Z

D½�̂�eði=2Þ�̂D̂�1
0 �̂þiĴ �̂;

(42)

and give

WHO½ĵ� ¼ �1
2ĵĜ0ĵ; WFT½Ĵ� ¼ �1

2ĴD̂0Ĵ: (43)

The CTP propagator D̂ of a local observable �ðxÞ of
bosonic exchange statistics can be parameterized by three
real functions,

hT½�ðxÞ�ðyÞ�i h�ðyÞ�ðxÞi
h�ðxÞ�ðyÞi hT½�ðyÞ�ðxÞ�i�

 !

¼ i
Dnðx; yÞ þ iDiðx; yÞ �Dfðx; yÞ þ iDiðx; yÞ
Dfðx; yÞ þ iDiðx; yÞ �Dnðx; yÞ þ iDiðx; yÞ

 !

¼ iD̂ðx; yÞ (44)

where Dnðx; yÞ ¼ Dnðy; xÞ and Dfðx; yÞ ¼ �Dfðy; xÞ are
the near and far field Green functions and the imaginary
part is Diðx; yÞ ¼ Diðy; xÞ. The causal, retarded and ad-
vanced propagators are defined as D ¼ DnþiDi,
D

r
a ¼ Dn�Df, respectively. Note that the off-diagonal

blocks, Wightman-functions, consist of mass-shell ampli-
tudes only. The only off-shell contribution of the propagator
comes from the near field component and is generated by the
time ordering. This parameterization can be carried over any
two-point function, in particularly self energy, cf. Eq. (57).
The generator functional (43) assumes the form

WHO½ĵ� ¼ �jGr
0
�j� �

2
jGn

0j�
i

2
jGi

0j;

WFT½Ĵ� ¼ �JDr
0
�J � �

2
JDn

0J �
i

2
JDi

0J:

(45)

when the parameterization (44) is used and the effective
actions

�HO½x� ¼ 1

2�
ðxþ �jGaÞGn�1ðxþGr �jÞ;

�FT½�� ¼ 1

2�
ð�þ �JDaÞDn�1ð�þDr �JÞ;

(46)

give rise the equations of motion

x ¼ �Gr �jþ �Gnj; � ¼ �Dr �J þ �DnJ: (47)

The propagator is easiest to find in Fourier space,

Ĝ0ðt; t0Þ ¼
Z d!

2�
e�i!ðt�t0ÞĜ0ð!Þ;

D̂0ðx; yÞ ¼
Z ddþ1k

ð2�Þdþ1
e�ikðx�yÞD̂0ðkÞ;

(48)

where
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Ĝ0ð!Þ

¼ 1

m

1
!2�!2

0þi�
�2�i�ð!2�!2

0Þ�ð�!Þ
�2�i�ð!2�!2

0Þ�ð!Þ � 1
!2�!2

0�i�

0
@

1
A;

D̂0ðkÞ

¼
1

k2�m2þi�
�2�i�ðk2�m2Þ�ð�k0Þ

�2�i�ðk2�m2Þ�ðk0Þ � 1
k2�m2�i�

 !
:

(49)

We shall need the inverse of the free propagator what
can be obtained by using the regulated expression ��ð!Þ ¼
�=ð!2 þ �2Þ� for the Dirac delta in (49) with the result

Ĝ�1
0 ð!Þ¼G�1

0 ð!Þ	̂þ i�
1 �2�ð�!Þ

�2�ð!Þ 1

 !
;

D̂�1
0 ðkÞ¼D�1

0 ðkÞ	̂þ i�
1 �2�ð�k0Þ

�2�ðk0Þ 1

 !
;

(50)

where the matrix

	̂ ¼ 1 0
0 �1

� �
(51)

acts on the CTP indices. Note that the transformation
� ! �� amounts to a complex conjugation of the inverse
propagator and therefore of the propagator itself, as well.
Therefore the transformation � ! �� preserves Gn but
changes the sign of Gf.

B. Quantum harmonic oscillators

We use the CTP scheme first for the system of harmonic
oscillators whose Lagrangian (1) will be written in con-
densed notation as

S½x; y� ¼ 1

2
yG�1

0 yþ 1

2

X
n

xnG
�1
n xn �

X
n

gnxny (52)

without the source term where G�1
n ð!Þ ¼ mð!2 �!2

nÞ.
The generator functional (35) reads as

eði=ℏÞW½ĵ� ¼
Z
D½x̂�D½ŷ�eði=ℏÞS½xþ;yþ��ði=ℏÞS½x�;y��þði=ℏÞĵ ŷ (53)

by suppressing SBC.
When the dynamics is given in terms of normal modes as

in the Lagrangian (13) then the spectral strength (18) can
be used to find the system propagator,

Ĝð!Þ ¼
Z

d�2��mð�Þ
1

!2��2þi�
�2�i�ð!2 ��2Þ�ð�!Þ

�2�i�ð!2 ��2Þ�ð!Þ � 1
!2��2�i�

 !
: (54)

The propagator is causal as long as the frequency integral
in calculating Ĝðt; t0Þ as in Eqs. (14) and (15) is made
before the integration over the spectral variable. When
the integration is first carried out for the spectral variable
then sufficiently singular spectral weight, such as given by
Eq. (24) give acausal propagation.

Another way to solve the model which is better suited to
deal with interactions is the integration over the environ-
ment variables to find the influence functional [18],

eði=ℏÞSi½ŷ� ¼
Z

D½x̂�e
ði=2ℏÞP

n

x̂nĜ
�1
n x̂n�ði=ℏÞP

n

gnx̂ 	̂ ŷ

¼ e�ði=2ℏÞŷ �̂ ŷ: (55)

It defines the self energy

�̂ ¼ 	̂ �̂ 	̂ (56)

with

�̂ ¼ X
n

g2nĜn ¼ �n þ i�i ��f þ i�i

�f þ i�i ��n þ i�i

� �
: (57)

The form

eði=ℏÞW½ĵ� ¼
Z

D½ŷ�eði=2ℏÞŷðĜ�1
0 ��̂Þŷþði=ℏÞĵ ŷ (58)

of the generator functional justifies the use of the dressed
propagator

Ĝ ¼ 1

Ĝ�1
0 � �̂

: (59)

The propagator, shown in the first line of (49) inserted into
Eq. (57) gives

�̂ ¼ 1

m

X
n

g2n

1
!2�!2

nþi�
�2�i�ð!2 �!2

nÞ�ð�!Þ
�2�i�ð!2 �!2

nÞ�ð!Þ � 1
!2�!2

n�i�

 !
(60)

which can be written in terms of the environment spectral strength (16) as

�̂ ¼
Z

d�2��ð�Þ
1

!2��2þi�
�2�i�ð!2 ��2Þ�ð�!Þ

�2�i�ð!2 ��2Þ�ð!Þ � 1
!2��2�i�

 !
(61)
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and straightforward integration of the form (16) gives

�
r
að!Þ ¼ �nð!Þ ��fð!Þ ¼ � �g2e

me�Dð�D � i!Þ

�ið!Þ ¼ � �g2ej!j
me�Dð!2 þ�2

DÞ
:

(62)

The inversion of the 2� 2 matrix in Eq. (59) is trivial and
the result is

G
r
a ¼ 1

G�1
0 ��

r
a
: (63)

C. Quantum field as environment

Now we turn to the model defined by the action (25),
written in a condensed notation as

S½�; y� ¼ 1
2yG

�1
0 yþ 1

2�D�1
0 �þ�Ay: (64)

without the source term where the free system inverse
propagator is given by Eq. (9), the free environment inverse
propagator is

D�1
0 ðkÞ ¼ 1

c2
k02 � k2 ��2c2

ℏ2
(65)

and

Aðk; !Þ ¼ �g�

�
k0

c
�!

�
: (66)

The generator functional (35) assumes the form

eði=ℏÞW½ĵ� ¼
Z

D½ŷ�D½�̂�

� eði=2ℏÞŷĜ
�1
0 ŷþði=2ℏÞ�̂D̂�1

0 �̂þði=ℏÞ�̂ 	̂ Aŷþði=ℏÞĵ ŷ

(67)

where

Ĝ�1
0 ð!Þ¼ ð!2�!2

0Þ	̂þ i�
1 �2�ð�!Þ

�2�ð!Þ 1

 !
(68)

denotes the free system propagator and the inverse environ-

ment propagator D̂�1
0 is given by Eq. (50). The effective

theory for y can easily be obtained by integrating out �,

eði=ℏÞW½ĵ� ¼
Z

D½ŷ�eði=2ℏÞŷðĜ�1
0 �Atr	̂ D̂ 	̂ AÞŷþði=ℏÞĵ ŷ: (69)

This result leads to Eqs. (59) and (56) with �̂ ¼ AtrD̂A.
The actual form of the self energy

�̂ð!Þ ¼ g2c2
Z ddk

ð2�Þd
1

!2�!2ðkÞþi�
�2�i�ð!2 �!2ðkÞÞ�ð�!Þ

�2�i�ð!2 �!2ðkÞÞ�ð!Þ � 1
!2�!2ðkÞ�i�

 !
(70)

yields the retarded, advanced and imaginary parts,

�
r
að!Þ ¼ g2c2½<Idð!Þ � isignð!Þ=Idð!Þ�;

�ið!Þ ¼ g2c2=Idð!Þ; (71)

with

Idð!Þ ¼
Z
jkj<�

ddk

ð2�Þd
1

!2 �!2ðkÞ þ i�
; (72)

� being an UV cutoff. The loop integral for d ¼ 2, 3, 4 and
5 turns out to be

I1¼� i

2cj!j ; I2¼ 1

4�c2
ln

!2

�2c2
� i

4c2
;

I3¼� �

2�2c2
� ij!j
4�c3

;

I5¼� �3

72�3c2
� �!2

24�3c4
� ij!j3
24�2c5

;

(73)

in the case of a gapless environment, � ¼ 0. Note that the
infinitesimal imaginary part of the free inverse propagator
(68) can be omitted in the denominator of the dressed
propagator, (59) because the self energy represents a simi-
lar, finite contribution.

Insertion of Eqs. (71) and (73) into Eq. (63) represents
our final result for the propagator in odd dimensions,

G
r
a

d ¼
1

mdð!2 �!2
dÞ � im!2

0
dð!‘
c Þd�2

;

Gi
d ¼ � m!2

0
dðj!j‘
c Þd�2

m2
dð!2 �!2

dÞ2 þm2!4
0


2
dð!‘

c Þ2ðd�2Þ :
(74)

and in particular,

Gn ¼ 2m2
dð!2 �!2

dÞ
m2

dð!2 �!2
dÞ2 þ 
2

dm
2!4

0ð!‘
c Þ2d�4

;

Gf ¼ � i
dm!2
0ðj!j‘

c Þd�2

m2
dð!2 �!2

dÞ2 þ 
2
dm

2!4
0ð!‘

c Þ2d�4
:

(75)

The length scale ‘ was introduced after Eq. (25) to pa-
rameterize the coupling constant g and md, !

2
d and 
d are

listed in Table I where the UV cutoff is given in terms of
the minimal distance r0 ¼ 2�=�. The even dimension,
d ¼ 2 we find logarithmic terms,
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G
r
a

2 ¼
1

mð!2 �!2
0 � !2

0

4� ln !2

c2�2Þ � isignð!Þg2
4

;

Gi
2 ¼ � g2

4m2ð!2 �!2
0 � !2

0

4� ln !2

c2�2Þ2 þ g4

4

;

(76)

The parameter ‘ can be interpreted as the characteristic
length of interactions. In fact, the observation of the system
with a period � in time leads to a self energy proportional to
ð‘=c�Þd�2 in odd dimensions. The system-environment
interaction is UV or IR dominated for d > 2 or d < 2,
respectively. The renormalized parameters of Table I de-
pend on ‘=r0, the interaction length counted in units of the
minimal length and ‘=c�0 where �0 denotes the time scale
of the sampling of the environment by the system. The UV
renormalization is weak in the super-Ohmic regime, d < 3
but becomes strong and power like for d � 3.

Note the equivalence of the classical and quantum ef-
fective theory for quadratic systems, the identity of the
retarded self energies, Eq. (30) and �n þ�f, given by
Eq. (71), respectively.

The Green functions (74)–(76) are acausal except in the
Ohmic case, d ¼ 3 where the only compromise between
causality and dissipation, an equation of motion which is
quadratic in the frequency with linear damping term is
realized. The normal frequencies are

!� ¼ ð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
� iaÞ!3 (77)

where a ¼ !0‘
c =8�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

�
‘
r0

q
. The theory with !0‘

c < 8�

displays a quantum phase transition at a ¼ 1, the system
becomes overdamped for a > 1. In other odd dimensions
there are poles on the wrong side of the real frequency axis
and causality is lost. One expects dissipation and imagi-
nary, odd terms in the frequency in the denominator in any
odd spatial dimensions apart of three. It remains to be seen
what is left from the causal structure in even dimensions.

When the environment has a gap in its excitation spec-
trum, � � 0 then the loop integral (72) and no dissipation
or acausality is observed at low enough frequencies, j!j<
�c2=ℏ. Dissipation is absent in a similar manner in case of
a finite system because the energy may flow back to the
system and establish an equilibrium.

IV. NONPERTURBATIVE RADIATION DAMPING

We have derived the Green functions for the system
coordinate y by considering classical and quantum effec-
tive theory obtained by eliminating the environment. The
system coordinate y ¼ Gr �j satisfies the equation of motion

�j ¼ ðGrÞ�1y: (78)

What initial conditions do we have to provide to make
the solution unique? The conditions given by Eqs. (3) may
not be sufficient because the effective equation of motion,
Eq. (78), usually contains higher order derivatives in time.
To find the missing conditions let us return to the case
where the environment is made up by a finite, N number of
oscillator and the system coordinate is given by Eq. (7).
Initial conditions for the environment variables appear
through xhnðt0Þ in the solution. Therefore the initial con-
ditions (3) together with the other 2N conditions for the
environment can be adjusted to fix the system coordinates
and its first 2N þ 1 derivatives at the initial time. We have
the opposite problem when the effective equation of mo-
tion is known only without the dynamics of the environ-
ment. In this case the informations in the initial conditions
required beyond (3) actually identify the initial conditions
for the environment.
Such a transmutation of the initial conditions is more

involved in an infinite system. In our field theory models
defined in an infinite volume a part of the environment
excitations generated by the system remain localized in
space and another part moves away and propagates to
infinity. Such a decomposition of the induced field is given
by the near and the far field Green functions. In fact, the
off-diagonal CTP blocks of the propagator are on-shell as
mentioned after Eq. (44) and describe the radiation field.
The off-shell amplitude of the near field Green function
produces localized response. Initial conditions are intro-
duced for the system and the radiation field only. Therefore
the additional initial conditions needed to fix the solution
of the effective equation of motion (78) are belonging to
the radiation field, described by Gf, shown in the second
equation of Eqs. (75). Hence the higher order terms in the
effective equations of motion represent the interaction of
the system with its own radiation field. The near field
renormalizes only the parameters of the free equation of
motion.
The impact of the induced field on the motion of a point

charge is well known in classical electrodynamics, it is the
Abraham-Lorentz force [19]. Its actual form is analogous
to the scalar field in d ¼ 5 because the vector-current
minimal coupling contains a space-time derivative. We
need a single additional initial condition in this case, it is
enough to parameterize the influence of the radiation field
on the initial condition of a point charge. The absence of
higher than third order derivatives with respect of the time
in the Abraham-Lorentz force can be understood easily by
following an expansion in the retardation [20] where the

TABLE I. The renormalized parameters of the retarded Green
function

d md=m !2
d=!

2
0 
d

1 1 1 1
2

3 1 1� 1
�

‘
r0

1
4�

5 1þ 1
12�2

‘
r0
ð!0‘

c Þ2 1�1
8ð ‘r0Þ

3

1þ 1

12�2
‘
r0
ð!0‘

c Þ2
1

24�2
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higher order contributions are suppressed in the point
charge limit. The role of the initial conditions mentioned
above suggests that the runaway solutions should be
avoided in electrodynamics by the use of appropriate initial
conditions for the particle trajectory.

Perturbation expansion is usually employed in the in-
teractions rather than in the retardation. Note that this is
not a useful scheme for higher order derivative terms in the
linearized equation of motion. When these terms are
treated as perturbation then the unperturbed equation
of motion remains second order and no additional
initial conditions are needed to identify the solution but
we have to specify completely the initial radiation
field. These latter explains the absence of perturbative
runaway solutions. The dissipation is a nonperturbative
phenomenon, as well, because the perturbation expansion
breaks down after long enough time and it can not give
account of irreversibility, the impossibility of recovering
the radiated energy loss of the charge from an infinite
volume. Acausality is another nonperturbative effect
because the location of the poles of the retarded Green
function on the complex energy plan is not an analytical
function of the coefficients of the higher order derivative
terms.

V. COARSE GRAINING IN TIME

The examples above show that there are two different
realizations of the dynamics, depending on the order of
integrations over the frequency and the normal modes in
Green functions. We now locate the source of this ambi-
guity in mathematical and physical terms.

It is easy to find the mathematical source of the ambi-
guity. Fubini’s theorem assures that the order of integration
is arbitrary as long as the integrand is a continuous function
of the integral variables. But the Fourier transform of a
Green function of continuous spectrum is singular in a
region called mass-shell and the result, obtained by per-
forming the integrations in different orders may differ.
There are two infrared cutoffs in the dynamics, one is the
spatial size L which is related to the number of particles N
of fixed density and the time of observation T. The removal
of these cutoffs, the limits

lim
N!1 lim

T!1hOi (79)

and

lim
T!1 lim

N!1hOi (80)

may differ. But what is then the correct order?
Mathematical ambiguities always point to a choice in

the preparation or in the observation of the system. It is the
shape of the space-time region where the solution is sought
which introduces this freedom in the present case. One has
to integrate first over the energy-momentum components
with continuous spectrum and sum of the discrete spectrum

next. When the size of the space-time region diverges in
several directions then the component corresponding to the
faster growing size or to the faster decreasing level spacing
of the spectrum is integrated before the others. In other
words, the order of integration over the continuous energy-
momentum spectrum of a theory defined in infinite space-
time depends on the relative speeds of the limits T ! 1
and L ! 1.
One is usually interested in the dynamics of a system

enclosed in a large but finite quantization box. According
to the standard rule of quantum field theory one carries out
the frequency integrals before the momentum integration.
But observations are made in finite length of time with an
unavoidable uncertainty in measuring frequency or energy.
There are two circumstances when this limitation is im-
portant. One is when we encounter unusually slow degrees
of freedom. An example of this case is spontaneous sym-
metry breaking where the time dependence of the order
parameter experiences critical slowing down in the vicinity
of a second order phase transition and any finite restriction
on the observation time leads to the recording of apparently
constant order parameter with symmetry breaking value.
Irreversibility is actually related to a dynamical symmetry
breakdown and appears as a phase transition. Initial con-
ditions imposed on a dynamical system do not lead to the
loss of time reversal invariance because they leave the
equations of motion unaffected. But the elimination of
some dynamical degrees of freedom, the environment,
generates nonlocal effects in time. Hence the initial con-
ditions of the environment may break the symmetry under
time reversal in the effective system dynamics. The com-
plication in establishing such a spontaneous symmetry
breaking arises from the difficulty of finding a local order
parameter, the entropy being a nonlocal quantity.
Another, more phenomenological consideration which

makes the imprecise measurement an important issue is
related to incomplete information. A loss of information
about the dynamics can be viewed as a coarse graining
either in space or in time. It is well known that a coarse
graining in space, the ignorance of spatial correlations or
degrees of freedom may lead to irreversibility when the
system becomes infinite and the slowing down of a certain
part of the dynamics manifests itself as a diverging
Poincaré recursion time. Coarse graining can be imagined
in time, as well. Informations about the environment are
encoded in the complexity of the effective system dynam-
ics and we need precise observations to regain them. One
has to resolve all environment oscillator frequency to
restore completely the environment dynamics. This can
be achieved by observations of finite length as long as
the spectrum is discrete. But such observations leave infi-
nitely many environment degrees of freedom unresolved
when the spectrum has an accumulation point. Therefore a
condensation point of the spectrum at the ground state may
imply irreversibility.
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To understand this point better we implement a long
time cutoff in the model defined by the Lagrangian (1) by
assuming that one observes the product

yðtÞ ! yobsðtÞ ¼ cðtÞyðtÞ (81)

of the system coordinate and an IR cutoff function satisfy-
ing the conditions cðtÞ 	 1 for t 
 T and cðtÞ 	 0 when
t � T. Let us suppose that the external source is localized
in time, jðtÞ ¼ �ðtÞ. Then the observation of yobsðtÞ allows
us to construct the Fourier transform

yobsð!Þ ¼
Z d!0

2�
cð!�!0ÞDrð!0Þ: (82)

We shall attempt to draw conclusion about time reversal
invariance and causality by extracting the environment
spectrum from (82) exclusively.

When N is finite and we have unlimited time of obser-
vation at our disposal, T ¼ 1 then cð!Þ ¼ 1 and we can
resolve the discrete spectrum. As the time of observation
starts to be limited the observed spectrum spreads. In fact,
let us use the Green function (19),

yobsð!Þ ¼ X
	¼�

	
Z d!0

2�
d�

cð!�!0Þ�eð�Þ
!0 þ i�� 	�

(83)

and shift the integral variables, !0 ! !0 þ!, � ! �þ
	!0. The result is the expression

yobsð!Þ ¼ X
	¼�

	
Z d��ð	Þ

m ð�Þ
!þ i�� 	�

; (84)

including the apparent spread spectral functions

�ð	Þ
m ð�Þ ¼ 1

2�

X
j

cð	ð�� ~!jÞÞ
A2
0j

2m ~!j

: (85)

Let us choose for the sake of definiteness the IR time cutoff

cðtÞ ¼ e�ðt2=2T2Þ: (86)

The spectral functions

�ð	Þ
m ð�Þ ¼ Tffiffiffiffiffiffiffi

2�
p XN

j¼0

e�ðT2=2Þð�� ~!jÞ2 A2
0j

m!j

; (87)

are plotted the simple spectrum !j ¼ !0=j, j ¼ 1; 2; . . .

and mixing A2
0j ¼ 1=N for different N in Fig. 1. For long

enough observation time, T ! 1, the discrete peaks can be
resolved in Fig. 1(a). But whatever long observation time is
allowed, a condensation point in the spectrum always
yields unresolved peaks. In fact, the peaks at frequencies
~! and ~!0 can be resolved when T � 1=j ~!� ~!0j, a con-
dition not satisfied by any pair of peaks by finite T in
case of a condensation point. This phenomenon is already
visible as the slight increase of the local minima of the
spectral function in Fig. 1(a) around !=!0 	 1:05. The
overlap of the peaks is more visible for shorter observation
time as shown in Fig. 1(b). Finally, for an even shorter
observation time, shown in Fig. 1(c), there is hardly any
evidence left from the discrete nature of the spectrum.
The choice between the schemes (79) and (80) is now

simple. If there is time to resolve all peak, for instance for
discrete spectrum, then one should apply the prescription
(79). If the observation time is too short to recognize every
peak then the procedure (80) is justified. But no finite
amount of time is enough to resolve all peak when the
spectrum has a condensation point. More precisely, finite
time observations resolve finite number of degrees of free-
dom and the rest is dumped into the continuous part of the
spectrum. Such a loss of information leads to an apparent
breakdown of time reversal invariance when infinitely
many unresolved peaks suck the energy from the resolved
part of the dynamics without having time to return it.
What is the time needed to discover the spontaneously

generated time arrow? The shift of poles due to the spread
of the discrete spectrum generated by a large IR cutoff T is
OðT�1Þ. Irreversibility appears through the finite life time
of excitations which is OðTÞ in this case, betraying its
artificial origin. When there is a part of the spectrum which
remains unresolved then its analytic continuation may
generate poles at distance larger than OðT�1Þ from the
origin and may shift poles by more than OðT�1Þ.
Consequently, the life time of elementary excitations can
be shorter than OðTÞ and irreversibility may become a
genuine, cutoff independent phenomenon.
It is instructive to compare explicit and spontaneous

breakdown of the time reversal invariance within our
Gaussian model. An explicit irreversibility, achieved by
adding a finite, non-Hermitian term to the Hamiltonian
leads to complex action. In the case of spontaneous sym-
metry breaking of time reversal invariance the action is
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FIG. 1 (color online). The apparent spectral function �ð	Þ
m for m ¼ 1, !j ¼ !0=j, N ¼ 20, (a) T ¼ 2000, (b) T ¼ 700, (c) T ¼ 100

as functions of !=!0.
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real. Hence the equation of motion is a real function of i!
and poles of the Green functions with nonvanishing real
part appear in pairs, !� ¼ �!1 þ i!2. The term with
alternating sign, �!1 is the remnant of the formal time
reversal invariance of the original, elementary dynamics
and the imaginary part, i!2 reflects irreversibility.

Explicit breakdown of time reversal invariance leads to
nonunitary time dependence in quantum models. But the
spontaneous breakdown of the time reversal invariance by
soft modes preserves formal unitary time evolution as long
as all degrees of freedom are followed. In fact, the form
(45) of the generator functional is always valid and gives
W ¼ 0 for arbitrary �j when j ¼ 0 is imposed. The system
state ’’leaks’’ to the environment, indicated by the complex
poles of the system Green functions but unitarity is main-
tained on the level of the whole system. Naturally one
needs infinitely long time to confirm unitarity by observa-
tions, the detailed time evolution appears nonunitary in any
finite time interval.

Causality can be tested by monitoring the response of a
source localized in time before its action. The translation
invariance in time is broken by the initial conditions and
such a test has to be performed by acting with the source at
different times, rendering causality a nonlocal feature in
frequency space. A more formal way of seeing this is to
note that the location of the poles of the free Green func-
tions is a nonanalytic function of the coefficients of the
higher order time derivative terms in the free Lagrangian.
The uniqueness of the analytic continuation of the propa-
gator on the complex energy plan protects causality when
the spectrum is discrete. But condensation points or a
continuous part in the spectrum may shift poles to the
nonphysical sheet. In more physical terms, the abundant
soft modes may render the causality test unreliable. In fact,
one attempts in this test to determine the time of an
external source by observing the system coordinate and a
restriction on the observation time may make the recon-
struction of the time of the external perturbation difficult
when the dominant modes are almost time independent.

VI. SUMMARY

The origin of irreversibility and acausality is identified
in this work in the framework of simple harmonic systems.
The detailed equations of motion of the model are causal
and appear formally invariant under time reversal but the

effective dynamics of a single degree of freedom may be
irreversible and acausal. In other words, time reversal
invariance and causality might be lost when infinitely
many reversible and causal degrees of freedom are prop-
erly cooperating. Such a loss of symmetry which is present
in the elementary equations of motion is a reminiscent of
spontaneous symmetry breaking. The initial conditions
imposed on the environment generate a dynamical break-
down of time reversal invariance which may persist in time
in the when the environment modes are sufficiently soft.
Both irreversibility and acausality can be related to the

insufficient frequency resolution in the infrared. This issue is
negligible for systems with discrete frequency spectrum but
becomes important when the spectrum has a condensation
point at the ground state. The limited frequency resolution
leads to extrapolations which suggest the spread of the
spectrum lines and the presence of dissipative forces.
Verification of causality, the temporal order of the action of
an external source and the appearance of its consequences is
rendered unreliable by the unresolved, continuous part of the
spectrum consisting of almost time-independent modes.
The breakdown of time reversal invariance, the appear-

ance of complex poles in the Green functions is usually
followed by acausal behavior in lacking of a specific
mechanism to protect the unphysical sheet against the
intrusion of poles. Within the class of the models consid-
ered the only exception was the massless scalar field
environment in three spatial dimensions where irreversi-
bility is reflected by the lowest odd power of the frequency
in the equation of motion and the pole is happened to stay
on the physical sheet.

We do not attempt to clarify the origin of the arrow of

time in this work. But it can be seen in our calculation that

the time arrow for the system is set by the initial conditions

imposed on the environment. This is a mechanism which,

in a manner similar to the sensitivity of an unstable equi-

librium position against fluctuations may spread a time

arrow, set for some degrees of freedom by a sufficiently

restrictive initial condition over the rest of the system

irrespectively whatever weakly may they be coupled.
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