
Gribov pendulum in the Coulomb gauge on curved spaces

Fabrizio Canfora,1,* Alex Giacomini,2,† and Julio Oliva2,‡

1Centro de Estudios Cientı́ficos (CECS), Casilla 1469, Valdivia, Chile
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In this paper the generalization of the Gribov pendulum equation in the Coulomb gauge for curved

space-times is analyzed on static spherically symmetric backgrounds. A rigorous argument for the

existence and uniqueness of solution is provided in the asymptotically AdS case. The analysis of the

strong and weak boundary conditions is equivalent to analyzing an effective one-dimensional Schrödinger

equation. Necessary conditions in order for spherically symmetric backgrounds to admit solutions of the

Gribov pendulum equation representing copies of the vacuum satisfying the strong boundary conditions

are given. It is shown that asymptotically flat backgrounds do not support solutions of the Gribov

pendulum equation of this type, while on asymptotically AdS backgrounds such ambiguities can appear.

Some physical consequences are discussed.
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I. INTRODUCTION

The Yang-Mills Lagrangian L is one of the basic blocks
of the standard model:

L¼ trF��F
��; ðF��Þa ¼ ð@�A� � @�A� þ ½A�;A��Þa:

(1)

The degrees of freedom of the theory are encoded in the
connection ðA�Þa, which is a Lie algebra valued one form.

The action functional is invariant under finite gauge trans-
formations, which act on the gauge potential as

A� ! UyA�UþUy@�U (2)

whereas the physical observables are invariant under
proper gauge transformations. The latter has to be every-
where smooth, and it has to decrease fast enough at infinity
such that a suitable norm, to be specified later, converges.1

This invariance is related with the existence of first-class
constraints, which in turn imply that the degrees of free-
dom of the theory are less than the number of algebraically
independent components of the gauge potential.

Up to now, the program of using from the very beginning
gauge-invariant variables has been completed only in the
cases of topological field theories in 2þ 1 dimensions [2],
while it is still far from clear how to perform practical
computations in a completely gauge-invariant way for
Yang-Mills theories in 2þ 1 and 3þ 1 dimensions.
Furthermore, the gauge-fixing problem is also relevant in
the classical theory since, when using the Dirac bracket
formalism, the Faddeev-Popov determinant appears in the

denominators of the Dirac-Poisson brackets (see, for in-
stance, the detailed analysis in [3]).
A gauge-fixing condition is the common practical solu-

tion, the most convenient choices being the Coulomb
gauge and the Lorenz gauge2:

@iAi ¼ 0; @�A� ¼ 0; (3)

where i ¼ 1; . . . ; D are the spacelike indices and � ¼
0; 1; . . . ; D are space-time indices.
This procedure has enormous value, allowing perturba-

tive computations around the trivial vacuum A� ¼ 0.

However, the existence of a proper gauge transformation
(2) preserving one of the conditions (3) would spoil the
whole quantization procedure. In [5], Gribov showed that3

a proper gauge fixing is not possible.
In the path integral formalism, an ambiguity in the gauge

fixing corresponds to smooth zero modes of the Faddeev-
Popov (FP) operator satisfying suitable boundary condi-
tions. In order to define the path integral in the presence of
Gribov copies, it has been suggested to exclude classical
A� backgrounds which generate zero modes of the FP

operator (see, in particular, [5,7–11]; two nice reviews
are [12,13]). This possibility is consistent with the usual
perturbative point of view since, in the case of SUðNÞ
Yang-Mills theories, for a ‘‘small enough’’ potential A�

(with respect to a suitable functional norm [11]), there are
no zero-modes of the FP operator in the Landau or
Coulomb gauge.
It is alsoworth emphasizing that the issue of gauge-fixing

ambiguities cannot be ignored in any case. In particular,
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1A key reference on the problem of defining a proper gauge

transformation is [1].

2Other gauge fixings are possible such as the axial gauge, the
temporal gauge, etc.; nevertheless these choices have their own
problems (see, for instance, [4]).

3Furthermore, it has been shown by Singer [6], that if Gribov
ambiguities occur in Coulomb gauge, they occur in all the
gauge-fixing conditions involving derivatives of the gauge field.
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even if gauge-fixing choices free of Gribov ambiguities can
be found, still the presence of Gribov ambiguities in other
gauges gives rise to a breaking of the BRS symmetry at
a nonperturbative level (see, for instance, [14–17]).

Abelian gauge theories on flat space-time are devoid of
this problem, since the Gribov copy equation for the
smooth gauge parameter � is

@i@
i� ¼ 0 or @�@

�� ¼ 0 (4)

which on flat space-time (once the time coordinate has
been Wick-rotated: t ! i�) has no smooth nontrivial solu-
tions fulfilling the physical boundary conditions. In fact,
the situation changes dramatically when we consider an
Abelian gauge field propagating on a curved background: it
was shown in [18] that, quite generically, a proper gauge
fixing in the Abelian case cannot be achieved. Further-
more, it has been recently pointed out [19] that, at least in
the case of gravitational theories in 2þ 1 dimensions,
gauge-fixing ambiguities may provide one with a valuable
tool to achieve SUSY breaking.

For these reasons, the issue of the Gribov copies in the
case of non-Abelian gauge theories on curved spaces as
well as on spaces with nontrivial topologies is of interest.
In many physically relevant situations (such as close to a
black hole, in neutron stars and even more in quarks and
hybrid star [20] and in cosmological setups) the curved
nature of space-time cannot be ignored. Thus, in those
situations it is important to consider the dynamics of
QCD on a curved background. In the present paper we
will analyze the issue of the appearance of Gribov copies
by analyzing the curved generalization of the Gribov pen-
dulum equation in the Coulomb gauge.4 Here we will
consider the class of static curved space-times with spheri-
cal symmetry as backgrounds. We will construct necessary
conditions in order for spherically symmetric backgrounds
to admit solutions of the Gribov pendulum equation rep-
resenting copies of the vacuum and satisfying the strong
boundary conditions. We will show with explicit examples
that the curvature of the space-time can generate quite
nontrivial deformations of the Gribov horizon.

The paper is organized as follows. In Sec. II, the curved
generalization of the Gribov pendulum in the Coulomb
gauge will be constructed, and the strong and weak bound-
ary conditions will be given. In Sec. III we analyze the
existence of copies in the background corresponding to
AdS space-time. In Sec. IV it will be shown that smooth
solutions of the Gribov pendulum equation exist and
the analysis of the boundary conditions in terms of an
effective Schrödinger equation will be also discussed.
In Sec. V, background metrics admitting copies of the
vacuum satisfying the strong boundary condition will be

constructed. Some conclusions will be drawn in the last
section.

II. CURVED GRIBOV PENDULUM

The main goal of the present paper is to analyze the new
features of Gribov ambiguities in the Coulomb gauge on a
curved spherically symmetric background. The metric of
the curved backgrounds which will be considered here is

ds2¼�g2ðrÞdt2þf2ðrÞdr2þr2ðd�2þsin�2d�2Þ: (5)

The Coulomb gauge condition on the non-Abelian gauge
potential Aa

� of the SUð2Þ gauge group reads

Aa
0 ¼ 0; riAa

i ¼ 0; (6)

where the spatial indices correspond to i ¼ 1, 2, 3 and the
ri stands for the Levi-Civita connection of the metric (5),
with spatial indices. It is easy to see that due to the form of
the metric (5), the Coulomb gauge condition transforms
covariantly with respect to the three-dimensional spatial
metric ds2� of t ¼ const surfaces

ds2� ¼ ðg�Þijdxidxj :¼ f2ðrÞdr2 þ r2d�2; (7)

where d� stands for the line element of the two sphere.
The gauge fixing (6) then can be written as

riAa
i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

detg�
p @jð

ffiffiffiffiffiffiffiffiffiffiffiffi
detg�

p
gji
�
Aa
i Þ ¼ 0: (8)

Let us consider an element of the gauge group of the
following form:

Uðx�Þ ¼ exp

�
i
�ðrÞ
2

xi�i

�
(9)

where �i are the flat Pauli matrices and xi is a normalized
radial contravariant vector on g�, which in the above
coordinate system reads

~x ¼ ðsin� cos�; sin� sin�; cos�Þ;
so that

I ¼ ðxi�iÞðxj�jÞ; (10)

I being the 2� 2 identity matrix. It can be seen that
Uy ¼ U�1. Let us consider a background gauge potential
A�
i of the following form:

A�
i ¼ i"ijk

xj�k

r2
’ðrÞ; (11)

where "ijk is the three-dimensional Levi-Civita tensor.

Note that A�
i is divergence free for any radial function’ðrÞ:

riA�
i ¼ 0; 8 ’ðrÞ: (12)

We will choose the above gauge potential in Eq. (11). Even
if this is not the most general transverse potential, we
choose it because it discloses very clearly the differences

4We will consider the Coulomb instead of the Landau gauge in
order to avoid the subtleties related to the Wick rotation on
curved space-times.
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between the solutions of the Gribov pendulum equation on
flat and curved space-times.5 We are now in the position to
derive the curved generalization of the Gribov pendulum
equation. One has to ask then for a gauge transformation of
the non-Abelian gauge potential A�

i in Eq. (11) generated
by the group element U in Eq. (9) satisfying

riðU�1A�
i UþU�1@iUÞ ¼ 0: (13)

The existence of solutions for the equation above is a
necessary condition for the appearance of Gribov copies
of A�

i . Explicitly on the spherically symmetric space-times
we are considering the gauge-fixing equations imply that

�
r2�0

f

�0 ¼ 2fð1� 2’Þ sin�; (14)

where primes denote derivation with respect to the radial
coordinate. Note that this equation is invariant under the
transformation f ! Cf and ð1� 2’Þ ! C�2ð1� 2’Þ,
provided C is a constant.

Strong and weak boundary conditions on curved spaces

Here, we will discuss the weak and strong boundary
conditions for the function � in Schwarzschild-like coor-
dinates as in Eq. (5). The importance of carefully distin-
guishing copies satisfying strong and weak boundary
conditions comes from the following fact (well known in
the flat case). When the solution of the Gribov pendulum
equation satisfies the weak boundary conditions

� !
r!1ð2nþ 1Þ�þOð1=r	Þ; 	 > 0; (15)

the corresponding copy

Uðx�Þ ¼ exp

�
i
�ðrÞ
2

xj�j

�

¼ 1 cos

�
�ðrÞ
2

�
þ ixj�j sin

�
�ðrÞ
2

�
; (16)

does not approach to an element of the center of the gauge
group at spatial infinity. A copy of this type is not problem-
atic since it can be discarded with the argument that it
changes the definition of (non-Abelian) charge at infinity
and so it does not give rise to a proper gauge transformation
(see [1,5]).

On the other hand, when a solution of the Gribov pen-
dulum equation satisfies the strong boundary conditions,
the corresponding copy does approach to an element of the
center of the gauge group at spatial infinity. A copy of this
type is particularly problematic since it belongs to the class
of proper gauge transformations and would represent a
failure of the whole gauge-fixing procedure. Of course,

this was one of the main arguments behind the Gribov-
Zwanziger idea of ‘‘cutting’’ the path integral when the
first copies satisfying the strong boundary conditions ap-
pear. Indeed, the worst case would be to have a copy of the
vacuum A� ¼ 0 fulfilling the strong boundary conditions

since, in this case, not even usual perturbation theory
leading to the standard Feynman rules in the Landau or
Coulomb gauge would be well defined. In QCD on flat
space this does not happen but we will show here that
whenever the theory is considered in a curved background,
the situation becomes much more delicate.
Weak boundary conditions: The weak boundary condi-

tion for a copy on the metric (5), corresponds to look for a
solution of the curved Gribov pendulum equation Eq. (14)
which behaves as

� !
r!1ð2nþ1Þ�þOð1=r	Þ; 	>0; ’ !

r!1constþoð1=rÞ;
�!
r!0

2m�þOðr
Þ; 
>0; m;n2Z: (17)

As it occurs on flat space-time [12], as far as the be-
havior of the solution � close to the origin is concerned,
both in the case of weak and in the case of strong boundary
conditions one has to require that the condition in Eq. (17)
holds otherwise the copy generated by the solution �
would not be regular at the origin. As it will be discussed
in the next sections, in the case in which a star is considered
as a gravitational background, the situation is quite
different.
Since the Christoffell symbols do not enter directly in

the expression U�1A�UþU�1@�U (since U behaves as

a scalar under diffeomorphisms), in terms of � both the
strong and the weak boundary conditions keep forms
similar to the corresponding flat cases. In particular, this
implies that also on a spherically symmetric curved space
as in Eq. (5) the gauge transformation generated by an

element of the group of the form Uðx�Þ ¼ expði �ðrÞ2 xi�iÞ
will change the definition of non-Abelian charge as a
surface integral at spatial infinity unless �ðrÞ approaches
to 2n� (strong boundary condition).
On flat space-time, a vector potential AC

� which gener-

ates a Coulomb-like electric field decays as

AC
� �

r!1
1

r
þO

�
1

rp

�
with p > 1; (18)

in order for the corresponding electric field to decay as
1=r2. On AdS space-time, the metric function f is given in
Eq. (24). Therefore, the electric field has to decay also as
1=r2 in order to generate a finite charge. One can see this as
follows: the electric (as well as the non-Abelian) charge
can be written in this way

QðaÞ ¼ �
Z
@�

d2x
ffiffiffiffiffiffiffiffiffi

@�

q
n�s�F

ðaÞ��; (19)

where a is in the adjoint representation of suð2Þ, @� is the
boundary of the spacelike section �, with induced metric

5The more general ansatz (see, for instance, [12]) for the
background gauge potential which gives rise to a spherically
symmetric Gribov pendulum equation does not add new quali-
tative features
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@�, n� is a normalized future pointing timelike vector

(n�n
� ¼ �1) and s� is normal to @� and normalized as

s�s
� ¼ 1. Thus, in the AdS case, in order to have a finite

charge the electric field has to decay as 1=r2 and corre-
spondingly the vector potential generating an electric field
has to decay as 1=r.

Therefore, as it happens on flat space-times (see, for
instance, [5]), in the case of the weak boundary conditions,
one has to require the function ’ðrÞ appearing in the ansatz
for the transverse vector potential in Eq. (11), to decay as

’ðrÞ �
r!1 constþOð1=rÞ: (20)

Strong boundary conditions: The strong boundary
condition on the metric (5) given in Schwarzschild-like
coordinates corresponds to ask that when r ! 1, the so-
lution of the curved Gribov pendulum equation Eq. (14)
behaves as

� !
r!12n�þOð1=r	Þ; ’ðrÞ �

r!1
1

r"
; 	; " > 0;

(21)

while close to the origin the condition in Eq. (17) must hold
in order the copy generated by � to be regular.

At a first glance, the curved Gribov pendulum in vacuum
(which corresponds to Eq. (14) with’ ¼ 0) could look like
a flat Gribov pendulum (in which case f ¼ 1) in a non-
trivial background gauge field. If this would be the case,
then it would also be easy to construct examples of curved
background supporting copies of the vacuum satisfying the
strong boundary conditions. Obviously, a non-Abelian
gauge theory on a curved background supporting copies
of the vacuum satisfying the strong boundary conditions
would be pathological. However in many important cases
(such as constant curvature backgrounds and spherically
symmetric black hole space-times), such a resemblance is
misleading. As it will be shown in the next sections, in
these cases solutions of the curved Gribov pendulum equa-
tion representing copies of the vacuum satisfying the
strong boundary conditions cannot be constructed.

Defining � ¼ �ðrÞ by

�0 ¼ @�

@r
¼ f

r2
; (22)

the curved Gribov pendulum Eq. (14) can be transformed
in the following useful form

@2�

@�2
¼ 2r2ð1� 2’Þ sin�; (23)

where the variable r has to be expressed in terms of � using
Eq. (22). As it will be discussed in the next section, this
form of the equation allows to deal in a very effective way
with the problem of imposing strong and weak boundary
conditions.

We will first focus on the case of AdS as a background
metric. According to the AdS/CFT correspondence, it is

possible to explore the nonperturbative regime of super-
symmetric Yang-Mills theories by performing semiclassi-
cal computations in the bulk of asymptotically AdS
background [21,22]. Recently, this correspondence has
also been extended to the context of condensed matter
physics (see for two recent reviews [23]).
The metric (5) reduces to the metric on AdS space-time,

provided

fðrÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

l2

q ; (24)

where l is the AdS curvature. Equation (22) implies that

� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

l2

q
r

) r2 ¼ 1

ðl�Þ2 � 1
; � < 0: (25)

In particular at spatial infinity we have

r ! þ1 , l� ! �1�:

Therefore, in the AdS case the Gribov pendulum Eq. (23)
can be rewritten as

@2�

@�2
¼ VAdSð�Þ sin�; (26)

VAdSð�Þ :¼ 2ð1� 2’Þ
ðl�Þ2 � 1

: (27)

On the other hand, on flat space-time fðrÞ ¼ 1 so that
� ¼ � 1

r and

r ! þ1 , � ! 0�: (28)

Equation (14), then reduces to the flat Gribov pendulum
equation which reads

@2�

@�2
¼ Vflatð�Þ sin�; (29)

Vflatð�Þ :¼ 2ð1� 2’Þ
�2

: (30)

It is worth emphasizing here that, when one writes the
curved Gribov pendulum equation in terms of the coordi-
nate �, the main difference between the AdS and the flat
cases occurs close to the singularities of the effective
potentials6 VAdSð�Þ and Vflatð�Þ appearing in Eqs. (27) and
(30). Close to the singularity (when l� ! �1�), the effec-
tive AdS potential VAdSð�Þ diverges as 1=� while the
effective potential Vflatð�Þ corresponding to the flat metric
diverges when � ! 0 as 1=�2. On the other hand, as soon
as one moves away from the corresponding singularities
(namely, when j�j> 1), the Gribov pendulum equations in
the AdS and flat cases look the same.

6The reason to call VAdSð�Þ and Vflatð�Þ effective potentials
will be manifest in the next sections.
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The curved Gribov pendulum equation corresponding to
the Coulomb gauge on the spherically symmetric back-
ground in Eq. (5) can be derived as the Euler-Lagrange
equation of the following functional:

N½�� ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffi

detg�
p

d3xTr½ðU�1A�
i UþU�1@iUÞ2�: (31)

When one inserts into the above expression Eqs. (9) and
(11) one gets the following useful expression (which re-
duces to the known flat case [5] when f ¼ 1):

N½�� ¼
Z 1

a

dr

f

�
ðr�0Þ2 þ 8f2ð1� 2’Þ

�
1� cos2

�
�

2

���
:

(32)

The main goal of this paper is to show that the solutions
of the curved Gribov pendulum equation on curved space-
time can behave in a totally different manner with respect
to the flat case. In particular, we will show that there are
many physically interesting curved backgrounds that may
admit copies of the vacuum satisfying the strong boundary
condition (to be defined in the next section). If one accepts
the interpretation of [5,7–10,15,16], our results would
imply that the infrared structure of QCD on curved
space-times could be quite different from the infrared
structure on flat space-times.

III. ON THE EXISTENCE AND UNIQUENESS
OF SOLUTIONS ON ADS

In this section we will describe the mathematical tech-
nique, based on the contraction theorem, which allows to
prove existence and uniqueness of nonlinear Gribov pen-
dulum equations for r larger than a suitable critical radius
(defined below). When r is small, provided

f2ðrÞ ¼ 1þOðr2Þ; (33)

the metric approaches to flat metric and, for globally flat
background metrics, the issue of existence and uniqueness
of solutions of the Gribov pendulum equation is well
understood. Moreover, the most interesting technical dif-
ferences in the procedure with respect to the flat case when
AdS or asymptotically AdS space-time are considered as
backgrounds appear for r larger than a critical radius (see
also the comments after Eq. (30)). Thus, we will focus on
the analysis of the problem for r larger than a critical radius
defined below. The goal of this section is to provide one
with a rigorous justification of the effective Schrödinger
approach to the analysis of the weak and strong boundary
conditions, which is useful on curved backgrounds ap-
proaching AdS in the asymptotic region.

The statement of the theorem ([24,25]) is the following:
Let S a complete metric (Banach) space. A metric space

is a space in which a distance dðX; YÞ between any pair of
elements of the space is defined

dðX; YÞ 2 R; X; Y 2 S: (34)

Complete metric space means that, with respect to the
metric, from every Cauchy sequence one can extract a
convergent subsequence (see, for instance, [24]). Let T
be a map from the metric space S into itself:

T½:�: S ! S: (35)

If the map T½:� is a contraction, namely, for all X 2 S and
Y 2 S

dðT½X�; T½Y�Þ � MdðX; YÞ; with M< 1; (36)

then the map T½:� has only one fixed point. In other words,
if the map T½:� is a contraction of a complete metric space
then there exist a unique solution to the equation

T½X� ¼ X: (37)

Hereafter we will focus on the asymptotic region, defined
by r ! 1 (in a precise sense as it will be explained in a
moment).
The idea is to write the nonlinear equation one is inter-

ested in (Eq. (14) in our case) in the form of a fixed point
equation for a suitable map and then, try to prove that the
map is a contraction for some complete metric space. Let
us define the following operator T’:

T’½��ðrÞ � Aþ B
Z r

r�

ds

s2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p þ
Z r

r�

1

s2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p

�
�Z s

r�

2ð1� 2’ð�ÞÞ sin�ð�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p d�

�
ds; (38)

where A and B are arbitrary constants, and r� defines a
critical radius. It is easy to see that the Gribov pendulum
equation in Eq. (14) in the AdS case can be written as a
fixed point equation for the operator defined in Eq. (38);
i.e., if ~� is a fixed point of T’

T’½~��ðrÞ � ~�ðrÞ (39)

then the same ~� is a solution of Eq. (14) with AdS as a
background geometry. This can be seen directly by apply-
ing consecutively two derivatives at the right-hand side of
Eq. (38). Note that we have fixed the AdS radius l to 1.
Thus, we will prove that the above operator has a fixed
point by using the above-mentioned theorem. Let us define
S as the space of functions which are continuous and
bounded on ½r�;1½, i.e.
S � f�j� 2 C½r�;1½; j�ðrÞj<M� 8 r 2 ½r�;1½g:

(40)

The radius r� will be determined in a moment and the
constants A and B correspond to the value of ~� and its
derivative at r�, respectively:

~�ðr�Þ ¼ A; ~�0ðr�Þ ¼ B

ðr�Þ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðr�Þ2p : (41)

This functional space is a Banach space (see, for instance,
[24]) with respect to the following distance dð�;�Þ:
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dð�;�Þ ¼ sup
r2½r�;1½

j�ðrÞ � �ðrÞj: (42)

It is easy to see that the operator T’ defined on (38), maps

SA;B into itself since

j�ðrÞj<M� ) jT’½��ðrÞj< ~M�; (43)

where ~M� may be different from M�. Indeed, let us con-
sider the following function I1ðrÞ:

I1ðrÞ ¼
Z r

r�

ds

s2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p ; (44)

jI1ðrÞj � 1

r�
8 r: (45)

Hence one has

jT’½��ðrÞj � jAj þ jBj
r�

þ
Z r

r�

ds

s2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
�Z s

r�

2jð1� 2’ð�ÞÞjj sin�ð�Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p d�

�
� (46)

� jAj þ jBj
r�

þ j1þ 2M’j
Z r

r�

ds

s2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
�Z s

r�

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p d�

�
< (47)

< jAj þ jBj
r�

þ j1þ 2M’j
Z r

r�

2ðs� r�Þds
s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p < (48)

< jAj þ jBj
r�

þ 2j1þ 2M’j
Z r

r�

ds

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p <þ1; (49)

where we used the fact that ’ in Eq. (11) is bounded and
smooth everywhere so that

jð1� 2’ðrÞÞj< j1þ 2M’j 8 r; (50)

M’ ¼ sup
r2½0;1½

j’ðrÞj<1: (51)

We will show that it is possible to choose the radius r� such
that the operator T’ is a contraction of the Banach space in
Eq. (40) with the distance in Eq. (42). To see this, one has
to compute jT’½�� � T’½��j where �, � 2 S:

jT’½�� � T’½��j �
Z r

r�

ds

s2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
�Z s

r�

2jð1� 2’ð�ÞÞjj sin�ð�Þ � sin�ðrÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p d�

�
� (52)

� cðsupj�ðrÞ � �ðrÞjÞj1þ 2M’j
Z r

r�

ds

s2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
�Z s

r�

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p d�

�
< (53)

< cðj1þ 2M’jÞdð�;�Þ
Z r

r�

2ðs� r�Þds
s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p < (54)

< 2cðj1þ 2M’jÞdð�;�Þ
Z r

r�

ds

s2
<

2cðj1þ 2M’jÞ
r�

dð�;�Þ ) (55)

supjT’½�� � T’½��j ¼ dðT’½��; T’½��Þ<
2cðj1þ 2M’jÞ

r�
dð�;�Þ (56)

where we have used the trigonometric identity

sin�� sin� ¼ 2 cos

�
�þ �

2

�
sin

�
�� �

2

�
; (57)

as well as the inequalities

j sinxj � jxj; :j cosxj � 1; 8 x: (58)

Equations (55) and (56) show that a sufficient condition in
order for T’ to be a contraction is to choose r� such that:

2j1þ 2M’j
r�

< 1: (59)

Thus, if one chooses r� satisfying the inequality in Eq. (59)
then Eq. (14) has a unique solution in the AdS case. It is

FABRIZIO CANFORA, ALEX GIACOMINI, AND JULIO OLIVA PHYSICAL REVIEW D 84, 105019 (2011)

105019-6



worth noting that in all the previous steps the presence of
the curved metric (through the AdS factor 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
)

helped in obtaining the required bounds. Of course, if the
constant A is chosen to be a multiple of � and B vanishes
then, because of the above result, the unique solution is the
constant, i.e.

A ¼ n� _ B ¼ 0 ) �ðrÞ ¼ n� 8 r � r�: (60)

One can observe that the solution is at least C2½r�;1½
since, as the integral form of the equation shows, one can
take at least two derivatives. Furthermore, not only the
solution but also the first and the second derivative of
the solution are bounded as one can deduce from the
equation in the ‘‘fixed point’’ form in Eqs. (38) and (39).
This implies that, necessarily, one has

�ðrÞ !
r!1n�;

otherwise the second derivative would not be bounded.

Schrödinger equation approach

In order to analyze the issue of existence of copies
satisfying strong boundary conditions, one can use an
effective one-dimensional Schrödinger equation. In the
AdS case, it is useful to consider the equation with the
change of coordinate in Eqs. (22) and (25), and the corre-
sponding Gribov pendulum equation in Eqs. (26) and (27).
Because of the theorem discussed in the previous section,
we know that bounded smooth solutions exist when r !
1ðl� ! �1�Þ. Therefore, when

Vð�Þ !
l�!�1�

1; (61)

in order for the solution to be bounded (taking into account
that both the first and the second derivatives of the solution
must be bounded as well as):

� !
r!1n�þOð1=rÞ , (62)

� !
l�þ1!0�

n�þOðl�þ 1Þ: (63)

Consequently the following, leading order approximation
is justified

sin� �
l�þ1!0�

ð�1Þn�; (64)

where n odd (even) corresponds to the weak (strong)
boundary conditions. For these reasons, one is allowed to
approximate for r 	 r� Eq. (26) as follows

@2�

@�2
¼ ð�1ÞnVð�Þ� ¼ Wð�Þ� (65)

which can be analyzed as a Schrödinger-like equation:

� u00 þWð�Þu ¼ Eu; � 2
�
�1;� 1

l

�
(66)

Wð�Þ ¼ ð�ÞnVð�Þ; E ¼ 0: (67)

Thus, the question of existence of normalizable copies
reduces to the question of existence of nontrivial
normalizable eigenvectors (bound states) of the above
Schrödinger-like problem with zero eigenvalue such that

u !
l�þ1!0�

0: (68)

As far as the vacuum copies in AdS are concerned, Vð�Þ
in Eqs. (65) and (27) is always a positive and mono-
tone function in � � 1;�1=l½ and diverges to þ1 when
l�þ 1 ! 0� so that, in order for the effective potential W
in Eq. (67) to have bound states, the only possibility is that
n in Eq. (62) is an odd number. Namely, on AdS, there
are no vacuum copies satisfying the strong boundary
conditions.7

On the other hand, in order to have a copy satisfying the
strong boundary condition, it is enough as it happens on flat
space-times, to consider ’ in Eq. (65) which makes Vð�Þ
negative enough in order to produce a ‘‘valley’’ in the ef-
fective potential which supports a bound state, even when n
in Eq. (62) is an even number.
It is worth emphasizing that this effective Schrödinger

approach when applied to the flat case, in which the
effective potential is (see Eqs. (29) and (30))

Wð�Þ ¼ ð�1Þn 2ð1� 2’Þ
�2

; (69)

reproduces the well-known results such as the absence of
vacuum copies satisfying the strong boundary conditions
and also the need to have a factor 1� 2’ ‘‘negative
enough’’ as to produce a valley supporting a nontrivial
bound state in a very intuitive manner. Furthermore, in
this framework it is quite apparent the difference between
the asymptotic behaviors in the flat and the AdS cases. The
absolute value of the effective potential in the asymptotic
region in the AdS case8 diverges as 1=� while in the flat
case it diverges as 1=�2.

7Note that it is always possible to choose the integration
constant such that the bound state vanishes in l�þ 1 as required
by the physics of the problem.

8As mentioned before, in the AdS case the asymptotic region
r ! 1 in the � coordinate is defined as l�þ 1 ! 0� while in the
flat case the asymptotic region r ! 1 in the � coordinate is
defined as � ! 0�.
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IV. METRICS WITH COPIES OF
THE VACUUM SATISFYING THE STRONG

BOUNDARY CONDITION

In this section, we will describe sufficient conditions in
order for the spherically symmetric background metric in
Eq. (5) to support copies of the vacuum. A background of
this type would be quite pathological and one may wonder
whether if, at least in a semiclassical approach to quantum
gravity, backgrounds admitting copies of the vacuum
should be discarded. This is a reasonable consistency
criterion since one would like QCD perturbation theory
to be well defined. Indeed, according to the point of view in
[5,7–10,15,16], on such background space-times allowing
copies of the vacuum satisfying the strong boundary con-
ditions not even perturbation theory around a vanishing
gauge field would be well defined.

A simple method inspired by the well-known work of
Henyey [26] to deduce necessary conditions for the appear-
ance of copies of the vacuum, is to interpret Eq. (14) in the
case in which the background gauge field in Eq. (11)
vanishes, as an equation for the metric function f appear-
ing in (5), assuming that � is everywhere regular and
satisfies the strong boundary conditions when r ! 1. In
the case in which the space-time is everywhere regular (the
case of black hole and stars will be considered in the next
subsections) one can express f in terms of the copy � as
follows:

fðrÞ2 ¼ ðr2@r�Þ2
Cþ 4

R
r
0 x

2ð@x�Þðsin�ðxÞÞdx
(70)

where C is an integration constant.9 As mentioned before,
in order for the metric to be regular close to the origin one
has to require that

fðrÞ2 �
r!0

1þ kr2 þOðr4Þ; (71)

where k is a real constant. By a direct expansion, one can
see that this implies that C ¼ 0 in Eq. (70). To fix the ideas,
one can take a function � increasing monotonically from 0
to 2� at infinity:

�ð0Þ ¼ 0; �ðrÞ !
r!12�; (72)

@r� > 0 8 r > 0; @r� !
r!10: (73)

With this choice the integrand in the denominator in
Eq. (70) does not change sign for small r but one would
have fðrÞ2 < 0 for r large enough. To see this it is conve-
nient to consider the following change of variable in the
integral in the denominator in Eq. (70)

@x�dx ¼ d� ) (74)

Z r

0
x2ð@x�Þðsin�ðxÞÞdx ¼

Z �ðrÞ

�ð0Þ
ðxð�ÞÞ2 sin�d�; (75)

where xð�Þ is the inverse function of �ðxÞ (which exist
because of our hypothesis). The integral in the denomina-
tor in Eq. (70) up to infinity reads

Z 1

0
x2ð@x�Þðsin�ðxÞÞdx ¼

Z 2�

0
ðxð�ÞÞ2 sin�d� (76)

¼
Z �

0
ðxð�ÞÞ2 sin�d�þ

Z 2�

�
ðxð�ÞÞ2 sin�d�; (77)

where

Z �

0
ðxð�ÞÞ2 sin�d�> 0;

Z 2�

�
ðxð�ÞÞ2 sin�d� < 0:

Since @r� > 0 then xð�Þ is an increasing function of �,
therefore the absolute value of the second integral on the
right-hand side of Eq. (77) is larger than the first10 and
consequently the integral in Eq. (76) is negative. Thus,
with the choice in Eqs. (72) and (73) for r large enough f2

is negative and solutions � satisfying the strong boundary
conditions cannot appear. By repeating basically the same

argument, one can see that the same conclusion would hold
for any choice in which � is monotone8r > 0. It is worth
pointing out that the situation does not change qualitatively
if one chooses � as a monotone decreasing function with
�ð0Þ ¼ 2� and �ðrÞ!r!10.
If one chooses a function � which is not monotone, then

@r� vanishes at least once for r� > 0. Let us assume first
that @r� vanishes just once at r�, and that this is a simple
zero

�ð0Þ¼ 0; �ðrÞ !
r!10; @r�jr¼r� ¼ 0; �<�ðr�Þ<2�;

(78)

@r�> 0 8 r< r�; @r�< 0 8 r> r�; @r� !
r!10:

(79)

9Replacing f2 ! f�1 this expression reduced to Eq. (22) of
[18] for sinð�Þ � �.
10Note that the two integrals in Eq. (77) would be equal and
opposite without the factor ðxð�ÞÞ2.
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The condition that �ðr�Þ>� is necessary in order for f2

to be regular at r�, as also the denominator in Eq. (70)
has to vanish in order to compensate for the zero in the
numerator: Z r�

0
x2ð@x�Þðsin�ðxÞÞdx ¼ 0:

In this case, it can be shown that for r large enough fðrÞ2
becomes negative as well. Indeed, using the change of
variable in Eqs. (74) and (75), one can evaluate the integral
in the denominator in Eq. (70) from r� up to infinity:

Z 1

r�
x2ð@x�Þðsin�ðxÞÞdx ¼

Z 0

�ðr�Þ
ðxð�ÞÞ2 sin�d� (80)

¼
Z �

�ðr�Þ
ðxð�ÞÞ2 sin�d�þ

Z 0

�
ðxð�ÞÞ2 sin�d� ¼ I1 þ I2; (81)

where

I1 ¼
Z �

�ðr�Þ
ðxð�ÞÞ2 sin�d�

¼ �
Z �ðr�Þ

�
ðxð�ÞÞ2 sin�d�> 0; (82)

I2 ¼
Z 0

�
ðxð�ÞÞ2 sin�d� ¼ �

Z �

0
ðxð�ÞÞ2 sin�d� < 0:

(83)

Because of our hypothesis (see Eq. (79)) in the interval
�r�;1½ the function �ðrÞ is a decreasing function of r and,
consequently, in the same interval the inverse function xð�Þ
is a decreasing function of �, so that the absolute value of
the second integral on the right-hand side of Eq. (81)

(which is negative, see Eq. (83)), is larger than the absolute
value of the first integral on the right-hand side of Eq. (81)
(which is positive, see Eq. (82)). Therefore, the integral on
the left-hand side of Eq. (80) is negative and this implies
that also under the hypothesis in Eqs. (78) and (79) f2

becomes negative for r large enough and so solutions of the
Gribov pendulum equations satisfying the strong boundary
conditions cannot be constructed. Following the same
reasoning, it is easy to show that also if one admits that
� has more than one point where the first derivative
vanishes it is impossible to have f2 everywhere positive
from 0 to 1, smooth and well defined with, at the same
time, � fulfilling the strong boundary conditions. Indeed,
nothing would change by replacing the hypothesis in
Eqs. (78) and (79) with

�ð0Þ ¼ 2m�; �ðrÞ !
r!12n�; @r�jr¼ri ¼ 0; i ¼ 1; . . . ; p;

@r� > 0 8 0< r < r1; @r� < 0 8 r1 < r < r2; . . . ; @r� !
r!10:

it is enough to repeat the previous argument starting with
the last point in which @r� vanishes.

A. Space-time outside a black hole

Let us now consider the cases of spherically symmetric
space-times which describe the exterior of a black hole.
Since when one considers the Euclidean version of a black
hole space-time, if there is a curvature singularity the
origin r ¼ 0 does not belong anymore to the space-time
itself, and the condition in Eq. (17) (which ensures regu-
larity at the origin in the standard case) does not apply
anymore.

In the case of black hole space-times Eq. (70) which
expresses the metric function f in terms of the copy �
changes as follows

fðrÞ2 ¼ ðr2@r�Þ2
Cþ 4

R
r
rH
x2ð@x�Þðsin�ðxÞÞdx

(84)

where rH is the radius of the event horizon. In the coor-
dinate system given in Eq. (5), the event horizon can be
characterized as a pole of fðrÞ2. Since we are considering
regular copies, we have to require that the derivative of � is
bounded. Thus, one has to take C ¼ 0 in Eq. (84) and, at
the same time, the derivative of � at rH does not vanish in
such a way to get the desired pole. In this case, it is easy to
convince oneself that there is no choice of� such that fðrÞ2
is positive definite for r > rH. To fix the ideas, one can take
a function� increasing monotonically from the value at the
horizon to 2� at infinity:

�<�ðrHÞ< 2�; (85)

�ðrÞ !
r!12�; @r� > 0 8 r > rH; @r� !

r!10:

(86)

With this choice the integrand in the denominator in
Eq. (84) does not change sign but one would have
fðrÞ2 < 0. If, instead, one assumes that
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0 � �ðrHÞ<�; (87)

�ðrÞ !
r!12�; @r�> 0 8 r>rH; @r� !

r!10; (88)

it can be shown that for r large enough fðrÞ2 becomes
negative anyway. Using the change of variable in
Eqs. (74) and (75), the integral in the denominator in
Eq. (84) up to infinity reads

Z 1

rH

x2ð@x�Þðsin�ðxÞÞdx ¼
Z 2�

�ðrHÞ
ðxð�ÞÞ2 sin�d� (89)

¼
Z �

�ðrHÞ
ðxð�ÞÞ2 sin�d�þ

Z 2�

�
ðxð�ÞÞ2 sin�d�; (90)

Z �

�ðrHÞ
ðxð�ÞÞ2 sin�d�> 0;

Z 2�

�
ðxð�ÞÞ2 sin�d�< 0:

Since @r� > 0, xð�Þ is an increasing function of � so that
the absolute value of the second integral on the right-hand
side of Eq. (90) (which is negative) is larger than the first
and consequently the integral in Eq. (89) is negative. This
implies that for r large enough fðrÞ2 becomes negative. It is
easy to see that the same would happen with any choice in
which � is a monotone function 8r > rH satisfying the
strong boundary conditions. If one chooses a function �
which is not monotone, then @r� would vanish at least
once for r� > rH. Thus, let us assume that @r� vanishes
just once at r�. Then, one has to require that correspond-
ingly also the denominator in Eq. (84) should vanish at r�
in such a way to have a finite and positive f2. One can
assume that �ðrHÞ<� in such a way to ensure, at least

close to rH, the positiveness of the integral:

0<�ðrHÞ<�; � < �ðr�Þ< 2�; (91)

@r� > 0 8 rH < r < r�; (92)

@r� < 0 8 r > r�; �ðrÞ !
r!10; @r� !

r!10: (93)

The above choice in Eqs. (91) and (93) for �ðr�Þ ensures
that at least close to r� (the denominator of) f2 is positive.
However, if one considers the integral from r� to infinity in
the denominator in Eq. (84) using the change of variable in
Eqs. (74) and (75):

Z 1

r�
x2ð@x�Þðsin�ðxÞÞdx ¼

Z 0

�ðr�Þ
ðxð�ÞÞ2 sin�d� (94)

¼
Z �

�ðr�Þ
ðxð�ÞÞ2 sin�d�þ

Z 0

�
ðxð�ÞÞ2 sin�d�; (95)

where

Z �

�ðr�Þ
ðxð�ÞÞ2 sin�d� ¼ �

Z �ðr�Þ

�
ðxð�ÞÞ2 sin�d�> 0;

Z 0

�
ðxð�ÞÞ2 sin�d� ¼ �

Z �

0
ðxð�ÞÞ2 sin�d� < 0;

once again one reaches the conclusion that the integral in
Eq. (94) (and, consequently f2) is negative because, for
r > r�, xð�Þ is a decreasing function of � so that the
absolute value of the second integral on the right-hand
side of Eq. (95) is larger than the absolute value of the first
integral. It is easy to see that the same conclusion would
hold in the case in which the derivative of � would vanish
at more than one point. Hence, also if one assumes that � is
not monotone, for r large enough f2 becomes negative.
Hence, on spherically symmetric black hole space-times
as in Eq. (5) solutions of the Gribov pendulum equation

representing copies of the vacuum satisfying the strong
boundary conditions cannot appear.

B. The space-time outside a star

In the previous subsections it has been shown that both,
on spherically symmetric regular space-times and on
spherically symmetric black hole space-times one cannot
construct solutions satisfying the strong boundary condi-
tions. The main technical reason is that both in Eq. (70) and
in Eq. (84) one has to take C ¼ 0. In the first case, this is
necessary in order to achieve a space-time which is regular
at the origin, while in the second case C ¼ 0 ensures the
appearance of the black hole horizon at rH. Indeed, when
C ¼ 0 all the previous arguments on the change of sign of
the integral in the denominator of the expression for f2

work. However, the situation is radically different in the
cases in which the background metric in Eq. (5) represents,
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for instance, the exterior of a spherically symmetric star. In
the case of a space-time representing the exterior of a star
Eq. (70) which expresses the metric function f in terms of
the copy � changes as follows

fðrÞ2 ¼ ðr2@r�Þ2
Cþ 4

R
r
rS
x2ð@x�Þðsin�ðxÞÞdx

; (96)

where rS is the coordinate radius of the star. Unlike the
black hole case in which one has to require that f2 in
Eq. (5) has a pole at rH, in the case of a space-time re-
presenting the exterior of a star one has to require that f2

evaluated at rS should be finite and nonvanishing. This fact
has the highly nontrivial consequence that, in this case, C
can be chosen to be nonvanishing and this allows one to
construct infinite examples of curved backgrounds sup-
porting copies of the vacuum satisfying the strong bound-
ary conditions. To see this, one can consider, for instance, a
monotone function � varying from the value at the horizon
to 2� at infinity:

�<�ðrSÞ< 2�; (97)

�ðrÞ !
r!12�; @r�> 0 8 r> rS; @r� !

r!10: (98)

Since in the denominator of Eq. (96) C can be chosen at
will, one can take a positive value of C large enough to
prevent any change of sign in the denominator:

C> 4
Z 1

rS

jx2ð@x�Þðsin�ðxÞÞdxj;

the above condition also implies that the integral in the
denominator of Eq. (96) has to converge. If the above
constraint is satisfied, then f2 is everywhere positive and
the corresponding background metric supports, by con-
struction, a copy of the vacuum satisfying the strong
boundary conditions. This argument shows that there is a
huge freedom in constructing background supporting such
copies of the vacuum since the function �, besides the
conditions in Eqs. (97) and (98), can be chosen arbitrarily.

A consequence of the present analysis is that a space-
time supporting copies of the vacuum of the form in Eq. (9)
with strong boundary condition cannot be asymptotically
Minkowski (as it can be verified directly by expanding, for
large r, Eq. (96)) whereas it can be asymptotically AdS
provided

�ðrÞ !
r!12�þ k

r2
þOð1=r3Þ;

@r� !
r!1 � 2k

r3
þOð1=r4Þ;

k being a real constant.
It is worth pointing out that in this construction the value

of � at rS must be different from its value at infinity,
otherwise its derivative would be somewhere zero and
the metric would be singular there. This implies that these
vacuum Gribov copies cannot have trivial winding [12].

Of course, as it has been already emphasized, even when
the copy has a nontrivial winding the corresponding gauge
transformation represents a proper gauge transformation
which cannot be discarded provided the strong boundary
conditions are satisfied as it does not change the value of
the observables.
Moreover, in the cases in which it is possible to find a

copy also for 0 � r < rS (the region which may represent
the interior of the star), then one could match in a smooth
(C1) way the interior and the exterior copies to get a globally
defined copy without any winding.11 The C1 matching of
the copy appears to be possible due to the freedom given by
the integration constants A and B appearing in (38).

V. CONCLUSIONS AND FURTHER COMMENTS

In this paper we analyzed the curved generalization of
the Gribov pendulum in the Coulomb gauge on static
spherically symmetric space-times. Using tools of non-
linear functional analysis, we explored the issue of exis-
tence and uniqueness of solution of the Gribov pendulum
on asymptotically AdS space-times in terms of an effective
Schrödinger equation. Furthermore, we constructed neces-
sary conditions in order for a curved static spherically
symmetric background to admit copies of the vacuum
satisfying the strong boundary conditions. An interesting
consequence of the present analysis is that asymptotically
Minkowski space-times do not admit vacuum copies of the
Gribov form in Eq. (9) fulfilling the strong boundary con-
ditions. This strongly suggests that as it happens in flat
space-time, QCD at perturbative level is not affected by
Gribov ambiguities in such cases.
The situation changes dramatically when one considers

asymptotically AdS space-times. In these cases vacuum
copies can appear depending on the structure of the interior
bulk space-time. In particular black holes do not admit
vacuum copies of the Gribov form (9) whereas an asymp-
totically AdS space-time containing, for instance, a star
does admit vacuum copies satisfying the strong boundary
conditions. An interesting issue arises if one considers the
gravitational collapse of a star to a black hole with AdS
asymptotics. This would imply a sudden change in the size
of the Gribov horizon. According to the Gribov-Zwanziger
approach this would imply a sudden change in the infrared
behavior of QCD in these space-times.
Assuming the validity of the Gribov-Zwanziger proce-

dure (which is supported by lattice data), the strong de-
pendence of QCD on the structure of the interior bulk
space-time may have also interesting consequences for
the AdS/CFT correspondence. Indeed, the Gribov problem
affects directly the gluon propagator and the AdS/CFT

11It is worth remembering that in the expression for the winding
number of a gauge transformation U only first derivatives of U
appear so that the winding number is well defined whenever U is
C1ðMÞ (M being the space-time of interest).
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correspondence is a statement about gauge-invariant op-
erators. Notwithstanding, in the present framework the
presence of Gribov copies is also relevant as far as con-
finement is concerned, which implies that one should also
expect that gauge-invariant operators will be modified.

Our results suggest that the Gribov-Zwanziger confine-
ment picture is stable under perturbations of the flat back-
ground metric that do not change the asymptotic structure.
The reason is that for the family of copies considered here,
the asymptotically flat case behaves in a very similar man-
ner as the flat case. Our results also suggest that the pattern
of appearance of Gribov copies inside a star (as well as
outside a star withAdS asymptotic) should be very different
from the flat case due to the presence of an intrinsic length
scale of the problem (the radius of the star). In particular, in
a curved background in which also the vacuum possesses
copies satisfying the strong boundary conditions the very
notion of asymptotic freedom could change dramatically.
In fact, the usual scenario on flat spaces is that the deep
ultraviolet region corresponds to the trivial vacuumA�¼0,

which is free of Gribov copies satisfying the strong bound-
ary conditions. Thus, the absence of a region of the func-
tional space of the gauge potential A� free of strong copies

could be interpreted as the absence of a perturbative-
deconfined region. This problem could be of great interest
also because of its astrophysical implications and it is
currently under investigation.

It is also worth pointing out a further interesting possi-
bility related with the present scenario. Our results suggest
that when a star living in a asymptotically AdS space-time
undergoes a gravitational collapse to a black hole, the
strong Gribov copies of the vacuum may disappear in
very much the same way as it happens in the flat case.
This suggests that a gravitational collapse in an asymptoti-
cally AdS space-time could induce a sort of phase transi-
tion for the QCD degrees of freedom outside the star
collapsing to the black hole corresponding to the appear-
ance, in the black hole phase, of a Gribov horizon around
the trivial vacuum A� ¼ 0. This issue and also how such a

phase transition may be visible in the dual boundary theory
is not at all clear up to now and will be an issue of further
investigation.
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