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The scattering of two Dashen-Hasslacher-Neveu baryons in the large N Gross-Neveu model is solved

exactly using the relativistic, time-dependent Hartree-Fock approach. Unlike the special case of kink-

antikink scattering, the scattering of Dashen-Hasslacher-Neveu baryons is sensitive to the backreaction of

the fermions bound inside the baryons. Correspondingly the solution is much more complicated than the

kink-antikink scattering solutions, which can be expressed in terms of sinh-Gordon solitons. Nevertheless,

we present a simple ansatz form that gives closed analytic expressions for both the space–time-dependent

mean fields and the Dirac spinors for all continuum and bound states. The solution can also be applied to

the scattering of polarons and solitons in conducting polymers.
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I. INTRODUCTION

The simplest version of the Gross-Neveu (GN) model
[1] is a 1þ 1 dimensional model quantum field theory ofN
species of massless, self-interacting Dirac fermions with
Lagrangian

L ¼ XN
k¼1

�c ki@c k þ g2

2

�XN
k¼1

�c kc k

�
2
: (1)

We consider this model in the ’t Hooft limit, N ! 1, with
Ng2 ¼ constant, where semiclassical methods become ex-
act. In spite of its apparent simplicity, the model (1) gives
rise to quite nontrivial physical phenomena of interest for
strong interaction particle physics as well as condensed
matter physics. This has been established in works spread
out over several decades, in an effort which is still ongoing,
as we shall see. The original work from 1974 was moti-
vated in part by the discovery of asymptotic freedom in
quantum chromodynamics (QCD) [2,3], a property which
the GN model shares. The main focus in Ref. [1] was
on spontaneous breaking of the discrete chiral symmetry
c ! �5c , fermion mass generation via dimensional trans-
mutation, and the scalar � meson. Soon afterwards, multi-
fermion bound states (baryons) were found by Dashen,
Hasslacher, and Neveu (DHN) in a study of the associated
gap equation [4]. The gap equation solution for the static
DHN baryon scalar potential is

SDHNðxÞ ¼ 1þ y tanhðyx� 1
2 arctanhðyÞÞ

� y tanhðyxþ 1
2 arctanhðyÞÞ; (2)

where the y parameter satisfies 0 � y � 1. DHN baryons
have a valence bound state which can be filled with up to N

fermions. In the large N limit, the filling fraction � ¼ n=N
becomes a continuous parameter, so that there is in fact
a whole one-parameter family of baryons. For self-
consistency in the gap equation, the filling fraction � is
related to y by y ¼ sinð��=2Þ. The DHN baryons span the
region from a weakly bound, nonrelativistic state at small
filling to the ultrarelativistic limit of a decoupled kink and
antikink at complete filling. At large filling fraction, the
DHN baryon looks like a bound kink-antikink molecule,
and it is stable not because of topology but because of a
balance between the kink-antikink interaction and the ef-
fect of the fermions bound to the kink and antikink. This
leads to a direct relation between the baryon size (the
distance between the kink and antikink) and the fermion
filling fraction, giving a beautiful example of dynamical
stability as well as of the Jackiw-Rebbi mechanism of
fermion modes bound to localized defects such as kinks
[5]. This ‘‘anatomy’’ of the DHN baryon is sketched in
Fig. 1. A particularly interesting special case is the baryon
with nontrivial topology, the kink, which is attributed to
Callan, Coleman, Gross, and Zee (CCGZ) (cited in [6]).
Later, Feinberg established the complete set of static solu-
tions to the large N gap equation [7], combining inverse
scattering theory with resolvent techniques. The general
solution consists of marginally bound multibaryon con-
figurations whose energy does not depend on the distance
between the constituents. A common feature of all static
solutions is the fact that the self-consistent scalar potentials
are reflectionless, generalizing the Kay-Moses potentials
of the Schrödinger equation [8] to the Dirac equation [9].
The baryons of the GN model also play a key role in

the properties of matter at finite density and temperature.
The preferred state of cold matter in the GN model was
shown to be a crystal, consisting of an array of kinks
and antikinks [10]. The fact that the single baryon potential
is reflectionless translates (at finite density) into a
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‘‘finite-gap’’ periodic potential, expressed analytically in
terms of elliptic functions. The phase diagram as a function
of temperature and chemical potential displays a soliton
crystal phase and a massive and a massless Fermi gas
phase, and has turned out to be much richer than originally
thought [11,12].

Semiclassical methods are not restricted to static solu-
tions. Since we are dealing with a relativistic field theory,
we can boost any static solution to an arbitrary Lorentz
frame, turning a static Hartree-Fock (HF) solution into
a solution of the time-dependent Hartree-Fock (TDHF)
approach,

ði�5@xþ�0SÞc � ¼ i@tc �; S¼�g2
Xocc
�

�c �c �: (3)

Indeed, it was anticipated already, in Witten’s seminal
paper on baryons in the 1=N expansion in QCD [13], that
baryon-baryon scattering might be solved with the help of
the TDHF approach at large N. In this paper we realize this
goal explicitly for the GN model. The TDHF approach has
already been exploited to compute structure functions of
DHN baryons and CCGZ kinks, further confirming the
value of the GN model as a toy model for QCD [14]. In
addition to boosted static solutions, some truly dynamical
solutions of Eq. (3) are also known. They are harder to find
than static HF solutions since inverse scattering theory
is not developed enough for TDHF. The efforts to find

nontrivial, time-dependent mean field solutions were also
pioneered by DHN, who already presented a breather
solution, a periodically oscillating (in time) multifermion
bound state [4]. DHN also pointed out the possibility to
relate the breather to the kink-antikink scattering problem
by analytic continuation. This suggestion was taken up and
elaborated in several recent works. Kink-antikink scatter-
ing was addressed in [15]. Apart from a first glimpse of the
scattering problem of composite, relativistic objects, the
solution also gave several new insights into the mathemati-
cal structure of the theory. A special feature of kink dy-
namics is the fact that the (valence) fermions do not react
back on the solitons that are carrying them. This decou-
pling made it possible to formulate kink dynamics in the
language of a well-studied, classical soliton theory, the
sinh-Gordon model [16], and to use the known n-soliton
solution of this model to generalize kink-antikink scatter-
ing to the case of an arbitrary number of kinklike baryons
[17]. From the point of view of TDHF theory, the most
striking feature of all kink-antikink solutions is the fact that
the scalar density of each single-fermion level is propor-
tional to the full self-consistent potential S. This kind of
solution where self-consistency holds mode-by-mode was
called type I in [14]. This feature in turn opens the way to a
geometrical interpretation of HF solutions of the GN
model in terms of embedding two-dimensional (2D)
surfaces into 3D spaces [18]. Self-consistency translates
into the condition of constant mean curvature. One can
then understand the relationship to minimal surfaces in
AdS3 and hence string world sheets in simple terms, a
relation which had been found via the sinh-Gordon equa-
tion [19] but was otherwise completely mysterious in [15].
As nice as kinks are mathematically, they form only one

extreme endpoint of the DHN baryon family. To complete
the picture, we need to understand the scattering of general
DHN baryons, without the restriction to kinks and anti-
kinks. The solution to the scattering problem for two
arbitrary DHN baryons would allow one to probe the
degree to which the internal bound state structure is rela-
tivistic, all the way from the nonrelativistic limit to the
ultrarelativistic one. On the other hand, by choosing the
velocity of the baryons, one can cover the range from
nonrelativistic to relativistic scattering in the external kine-
matics as well. This situation is sketched in Fig. 2. This
general problem is not easy, as evidenced by the fact that it
has never been addressed in the literature so far, to the best
of our knowledge. No established, systematic method for
solving the TDHF equations is available. Since the valence
fermions are now expected to react back, it is also unlikely
that one can map the problem onto some known soliton
theory, like sinh-Gordon theory for the kinks. We propose
to solve this problem here by a method based upon an
ansatz. As a matter of fact, due to the self-consistency
issue, we know neither the equation nor its solution to start
with, so that guessing the right ansatz is quite a challenge.

x

FIG. 1 (color online). A sketch of the anatomy of a DHN
baryon, here shown for parameter y ¼ 0:999 999. The scalar
field SDHNðxÞ is shown as the solid blue line going asymptotically
to 1 (in units of the dynamically generated fermion mass in the
GN model). The fermion density, � ¼ c yc , for the bound
valence mode is shown as a black dotted line; note that the
density is localized at the kink and antikink of the baryon scalar
field. The pseudoscalar condensate, �ðxÞ ¼ �c i�5c , for the
valence state is plotted as a red dashed curve, while the scalar
condensate, �ðxÞ ¼ �c c , for the valence state is plotted as a
purple dash-dotted curve (� has been multiplied by a factor of
100, for visualization purposes). The scalar condensate is non-
zero inside the DHN baryon, while the pseudoscalar condensate
is localized at the edges, on the kink and antikink, like the
density � but with a change of sign.
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We will explain how a simultaneous ansatz for the scalar
TDHF potential and the (bound and continuum) spinors
can nevertheless be found heuristically. The solution of the
Dirac equation and the requirement of self-consistency are
sufficient to determine the unknown parameters of the
ansatz and to establish an exact baryon-baryon scattering
solution in the large N limit of the GN model. The fact that
this procedure is successful is undoubtedly related to the
integrability of the GN model at finite N [20–22], although
we are not aware of any direct path from the integrability of
the finite N GN model to the large N solution which we
find here. Perhaps more important than the specific solu-
tion found here is the fact that the ansatz can be generalized
in a natural way to a whole class of more complicated
scattering problems, also involving multibaryon bound
states and breathers in addition to DHN baryons.

This paper is organized as follows. In Sec. II, we illus-
trate our method of solving the TDHF equations via ansatz
in a simpler context, the single DHN baryon in flight. The
results are needed later on, since they enter the scattering
problem as incoming and outgoing states. We also intro-
duce some technicalities related to light-cone variables.
Section III describes the solution of the scattering problem.
We first exhibit the ansatz for the scalar potential,
Sec. III A, continuum spinors, Sec. III B, and bound state
spinors, Sec. III C, constraining the parameters by asymp-
totic information whenever possible. Section III D presents
the results for the nontrivial parameters determined by
solving the Dirac equation. In Sec. III E, we demonstrate
self-consistency of the solution and compute the fermion
density. Section. III F generalizes the results obtained in
the center-of-velocity frame to an arbitrary Lorentz frame.

In Sec. IV we report on several tests of our results carried
out in limiting cases where some information is already
available from other sources, i.e., the static limit, Sec. IVA,
the nonrelativistic limit, Sec. IVB, and the kink-antikink
limit, Sec. IVC. This is followed by several numerical
examples and the relationship to polarons and excitons in
conducting polymers in Sec. IVD. Section V contains a
brief summary and an outlook. An appendix summarizes
the self-consistent scalar potential in conventional varia-
bles, complementary to the light-cone formulation used in
the main text.

II. SINGLE BARYON IN FLIGHT

The DHN baryon [4] is a well-understood multifermion
bound state of the large N GNmodel. Originally derived in
the rest frame by the inverse scattering method, it can
easily be boosted to any other inertial frame. We refer to
Ref. [14] for a detailed discussion of the baryon in flight
within the Dirac-TDHF approach. In this section, we in-
troduce our ansatz method by pretending that we do not
know the DHN solution. This illustrates how one can find a
self-consistent solution of the Dirac-TDHF equation (3)
with a judiciously chosen ansatz for the scalar potential and
the spinors. Apart from this ansatz, a crucial ingredient of
our approach is the systematic use of light-cone coordi-
nates and variables. These greatly simplify the final results,
due to their simple Lorentz transformation properties. We
introduce all the necessary definitions here in a familiar
context. The results for the single baryon in a general
Lorentz frame and in the most convenient language are
obviously a prerequisite for addressing the two-baryon
scattering problem, where they appear as incoming and
outgoing asymptotic states.

A. Solution of the Dirac-TDHF equation by ansatz

The key quantity for any Dirac-TDHF calculation in the
GN model is the scalar potential S. Guided by the idea that
the baryon potential has a kink-antikink shape as well as by
covariance, we use as ansatz a rational function of an
exponential U,

S ¼ N
D

¼ a0 þ a1Uþ a11U
2

1þ b1Uþ b11U
2
; (4)

with

U ¼ expf2y�ðx� vtÞg; � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p : (5)

y is a parameter governing the size and shape of the poten-
tial; v the baryon velocity. Note that for a static (v¼0)
DHN baryon, the solution in (2) can be rewritten in this
form as

SðxÞ ¼
1þ 2ð1�2y2Þffiffiffiffiffiffiffiffi

1�y2
p UþU2

1þ 2ffiffiffiffiffiffiffiffi
1�y2

p UþU2
; U ¼ e2yx (6)

FIG. 2 (color online). The upper figure shows the scattering of
a CCGZ-kink baryon and a CCGZ-antikink baryon, as was
already discussed in [15,17]. In contrast, the lower figure shows
the problem treated in this current paper: the scattering of two
DHN baryons. The solid (blue) lines show the scalar potential,
while the dotted (black) lines show the density of the bound
valence fermions. Note that each asymptotic DHN baryon can
have different internal structure (i.e., a different y parameter),
which affects the baryon size and shape as well as the internal
fermion densities; this will be important for understanding the
scattering processes. By varying the structural parameters, and
also the relative velocity parameter, we can probe various
interesting physical regimes, spanning continuously from rela-
tivistic to nonrelativistic.
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and it is straightforward to boost this single baryon solution.
Asymptotically, S must reach the value of the dynamical
fermion mass, set to 1 by our choice of units,

lim
U!0

S ¼ 1; lim
U!1S ¼ 1: (7)

This yields the conditions

a0 ¼ 1; a11 ¼ b11: (8)

By shifting the origin of the x or t axis we can rescaleU and
hence impose one further condition which we choose as

a11 ¼ 1; (9)

leaving us with two unknown, real coefficients a1, b1,

S ¼ N
D

¼ 1þ a1UþU2

1þ b1UþU2
: (10)

We now turn to the Dirac-TDHF equation (3). We use a
chiral representation of the Dirac matrices, �0 ¼ �1, �

1 ¼
i�2, �5 ¼ ��3, and introduce light-cone coordinates

z¼x� t; �z¼xþ t; @0¼ �@�@; @1¼ �@þ@: (11)

U then becomes

U ¼ expfyð��1 �zþ �zÞg; (12)

where

� ¼ e	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ v

1� v

s
(13)

turns out to be a more convenient variable than either the
rapidity 	 or the velocity v. The Dirac equation assumes the
simple form

2i �@c 2 ¼ Sc 1; 2i@c 1 ¼ �Sc 2 (14)

in terms of the chiral spinor components c 1 ¼ c L, c 2 ¼
c R.
In the next step, we try to solve Eq. (14) by an ansatz for

the spinors. We assume from the outset that the potential is
reflectionless and that the spinor has the same structure as
S, multiplied by an exponential (plane wave) factor. In
order to have a chance of solving the Dirac equation, the
denominator will be taken to be identical to the one of S,
whereas we admit arbitrary complex coefficients in the
numerator.

Consider the continuum spinors first. They are written as

c k ¼ N 1

N 2

� �
eiðkx�!tÞ

D
; ! ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
; (15)

with

N 1¼c0þc1Uþc11U
2; N 2¼d0þd1Uþd11U

2; (16)

and D from (10). The exponent can be rephrased in light-
cone variables as

kx�!t ¼ 1

2

�

 �z� z




�
(17)

with the spectral parameter 
 ,

k ¼ 1

2

�

 � 1




�
; ! ¼ � 1

2

�

 þ 1




�
(18)

(note the more symmetric definition of 
 as compared to
Ref. [17]). Like z and �z, 
 gets simply rescaled under
Lorentz transformations. The sign of ! is encoded in the
sign of 
 , so that all results for continuum states hold for
both signs of the energy. Notice also that it is not necessary
to introduce two kinematical variables (light-cone momen-
tum and light-cone energy), since only on-shell variables
enter here. The asymptotics again puts constraints on the
parameters of our ansatz for the spinors. Comparison with
the solution of the free, massive (m ¼ 1) Dirac equation,

c ð0Þ

 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi


2 þ 1
p 


�1

� �
eið
 �z�z=
Þ=2; (19)

yields

c0¼ 
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ1

p ; c11¼Tc0; d0¼� 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ1

p ; d11¼Td0:

(20)

Here, c0 and d0 are determined by the incident wave, c11
and d11 by the transmitted wave, T is the unitary trans-
mission amplitude, jTj ¼ 1. The complex parameters c1,
d1, T have to be determined from the Dirac equation,
together with the real parameters a1, b1 in S.
We now insert the ansatz for S and c 
 into the Dirac

equation. Since differentiation and multiplication yield
again rational functions of the exponential U, we can
equate powers of U, reducing the problem to an algebraic
one. Owing to the use of light-cone variables, the calcu-
lation is straightforward, yielding the following results:

a1¼ð1�2y2Þb1; b1¼ 2

w
; w¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�y2

q
;

c1¼ 2ðZ2�1þ2y2Þ
wðZ2�2iyZ�1Þc0; Z¼�
;

d1¼�2ð2Z2y2�Z2þ1Þ
wðZ2�2iyZ�1Þ d0; T¼Z2þ2iyZ�1

Z2�2iyZ�1
:

(21)

Z denotes the spectral parameter 
 , boosted into the rest
frame of the baryon.
Let us consider the bound state spinors next. The trans-

mission amplitude T has 2 poles in the complex Z plane,

Z2�2iyZ�1¼ðZ�Z1ÞðZþZ�
1Þ; Z1¼ iy�w; (22)

corresponding to the positive and negative energy bound
states at E ¼ �w in the rest frame of the baryon. Since the
potential is transparent, the spinor may be regarded as a
continuum spinor, analytically continued to complex 
 . For
positive energy spinors, this suggests the ansatz

c ð1Þ ¼ N ð1Þ
1

N ð1Þ
2

 !
eiF

D
(23)

with the exponent
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F ¼ iy�ðx� vtÞ � w�ðt� vxÞ ¼ 1

2

�

1 �z� z


1

�
;


1 ¼ ��1Z1

(24)

and

N ð1Þ
1 ¼e1Uþe11U

2; N ð1Þ
2 ¼f1Uþf11U

2: (25)

Since

jeiF j2 ¼ U�1; (26)

constant terms with e0, f0 have to be omitted in the
numerators (25) for the sake of normalizability. If one
inserts this ansatz into the Dirac equation, one can deter-
mine the unknown parameters algebraically except for the
overall normalization with the result

e11 ¼ �Z1e1; f1 ¼ �Z1�e1; f11 ¼ �e1: (27)

The parameter e1 then follows from the normalization
condition which we choose in the noncovariant formZ

dxðc yc Þð1Þ ¼ 1; (28)

yielding

e21 ¼
y

�w
: (29)

Before proceeding, we have to introduce one further ele-
ment of light-cone notation. One advantage of using 
 and
� rather than k and v is the fact that all square roots of the

type
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
are eliminated. In order to avoid

also w ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
, it is advantageous to combine y, w into

the complex variable Z1 introduced in (22). Using the fact
that jZ1j ¼ 1, we get

y ¼ Z2
1 � 1

2iZ1

; w ¼ �Z2
1 þ 1

2Z1

: (30)

In this new notation the relevant single baryon quantities
read

a1 ¼ � 2ðZ4
1 þ 1Þ

Z1ðZ2
1 þ 1Þ ; b1 ¼ � 4Z1

Z2
1 þ 1

;

c1 ¼ � 2ð2Z2Z2
1 � Z4

1 � 1Þ
ðZ2

1 þ 1ÞðZ� Z1ÞðZZ1 þ 1Þ c0;

d1 ¼ � 2ðZ2Z4
1 þ Z2 � 2Z2

1Þ
ðZ2

1 þ 1ÞðZ� Z1ÞðZZ1 þ 1Þd0;

T ¼ ðZþ Z1ÞðZZ1 � 1Þ
ðZ� Z1ÞðZZ1 þ 1Þ ; e21 ¼

i

�

�
Z2
1 � 1

Z2
1 þ 1

�
:

(31)

All other coefficients are the same as in Eqs. (20) and (27).
A minor shortcoming of this notation is the fact that the
unitarity of Z1 (jZ1j ¼ 1) is not manifest. Thus for in-
stance, the transmission amplitude T could also be repre-
sented as

T ¼ ðZ� Z�
1ÞðZþ Z1Þ

ðZ� Z1ÞðZþ Z�
1Þ

(32)

since 1=Z1 ¼ Z�
1. This would show at once the poles of the

positive (Z ¼ Z1) and negative (Z ¼ �Z�
1) energy bound

states, as well as the fact that jTj ¼ 1. To ease the notation
of more complicated expressions later on however, we
prefer not to use complex conjugate variables and will
stick to the notation of Eq. (31).
Notice that one could also generate the bound state

spinor by analytic continuation from the continuum spinors
(up to the normalization factor), rather than by ansatz. As
one can easily check, it is sufficient to evaluate the residue
of c 
 at the pole 
 ¼ 
1. Finally, the negative energy

bound state spinor can trivially be obtained from the posi-
tive energy one by the mapping c 1 ! c �

1, c 2 ! �c �
2, so

that there is no need to discuss it separately.

B. Self-consistency and fermion density

Having determined the free parameters in the ansatz for
S and solved the Dirac equation, we proceed to verify self-
consistency and derive the relation between the parameter
y and the fermion number of the DHN baryon. To this end,
we first need the scalar density �c c for all occupied states.
We decompose the scalar density for continuum states
computed from the above spinors as follows,

�c 
c 
 ¼ð �c 
c 
 Þ1þð �c 
c 
 Þ2; ð �c 
c 
 Þ1¼� 2



2þ1
S;

ð �c 
c 
 Þ2¼ 2
Z2ðZ2
1þ1Þ2

ð
2þ1ÞðZ2Z2
1�1ÞðZ2�Z2

1Þ
ð1�SÞ: (33)

Positive and negative energy bound states on the other
hand yield

�c c ¼ � i

2

�
Z2
1 þ 1

Z2
1 � 1

�
ð1� SÞ: (34)

The scalar density of any occupied state can be written as a
linear combination of two independent functions of (x, t),
so that we are dealing with a type II solution of the TDHF
problem. In the case of the kink, y ¼ 1, Z1 ¼ i so that
ð �c 
c 
 Þ2 and the bound state scalar density vanish and the

solution becomes type I.
The self-consistency relation in the massless Gross-

Neveu model is

h �c c i ¼ � 1

Ng2
S: (35)

Renormalization of the coupling constant is performed
with the help of the vacuum gap equation (S ¼ 1), using
a cutoff regularization

Z �=2

��=2

dk

2�
!
Z �

1=�

d


2�


2þ1

2
2
; ð �c c Þð0Þ
 ¼� 2



2þ1
: (36)

We find
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1

Ng2
¼ 1

�
ln� (37)

so that Eq. (35) becomes

h �c c i ¼ � S

�
ln�: (38)

The first contribution to the chiral condensate from the
continuum in Eq. (33) already gives self-consistency,

Z �

1=�

d


2�


2 þ 1

2
2
ð �c 
c 
 Þ1 ¼ � S

�
ln�: (39)

Hence the second contribution,

Z 1

0

d


2�


2 þ 1

2
2
ð �c 
c 
 Þ2 ¼ S� 1

4�

�
Z2
1 þ 1

Z2
1 � 1

�
lnZ4

1; (40)

must cancel the contributions from the discrete states
(occupation fractions ��),

2�ið�þ � ��Þ þ lnZ4
1 ¼ 0: (41)

This determines the parameter y, given the occupation of
the bound states. For the ground state baryons (�� ¼ 1), in
particular, we recover the result of DHN,

y ¼ sin

�
��þ
2

�
: (42)

In order to relate the occupation fractions �� of the bound
states to the fermion number of the baryon, we still have to
compute the fermion density, including the induced con-
tribution from the Dirac sea. The density of the continuum
states can be expressed through S as follows,

c y

 c 
 ¼1� ðZ2þ1Þð
2þZ2ÞZ2

1

ð
2þ1ÞðZ2Z2
1�1ÞðZ2�Z2

1Þ
ð1�S2Þ: (43)

Subtracting the divergent density of the noninteracting
Dirac sea, this yields the following contribution to the
fermion density,

Z 1

0

d


2�


2þ1

2
2
ðc y


 c 
 �1Þ¼�iZ1ð�2þ1Þ
4�ðZ2

1�1Þ ð1�S2Þ: (44)

Positive and negative energy bound states give the density

ðc yc Þð1Þ ¼ iZ1ð�2 þ 1Þ
4�ðZ2

1 þ 1Þ ð1� S2Þ: (45)

The total (subtracted) fermion density of the DHN baryon
can therefore be expressed in terms of the bound state
density as

hc yc i ¼ ð�þ þ �� � 1Þðc yc Þð1Þ; (46)

whereas the fermion number becomes

Nf ¼ Nð�þ þ �� � 1Þ: (47)

If �� ¼ 1 (ground state baryon), the induced fermion
density from the continuum and the fermion density from

the negative energy bound state cancel exactly, so that one
can read off the full fermion density from the positive
valence level alone.
We finish this section with a comment on the massive

GN model, i.e., Lagrangian (1) supplemented by a mass
term�m0

�c c . It is well-known that the functional form of
S of the DHN baryon also solves the massive GN model,
the only difference being the relationship between y and
�� [23,24]. The self-consistency condition (35) has to be
replaced by

h �c c i ¼ � 1

Ng2
ðS�m0Þ ¼ � 1

Ng2
Sþ �c

�
(48)

with the ‘‘confinement parameter’’

�c ¼ �m0

Ng2
: (49)

The vacuum gap equation (37) now reads

1

Ng2
¼ 1

�
ð�c þ ln�Þ (50)

so that (48) becomes

h �c c i ¼ � S

�
ln�þ �c

�
ð1� SÞ: (51)

It can be satisfied in the case of the DHN baryon because
h �c c i þ ðS=�Þ ln� (which receives contributions from the
continuum and the bound states) is proportional to (1� S).

III. BARYON-BARYON SCATTERING

We now apply the ansatz method to a more difficult
problem where the solution is not known—scattering of
two DHN baryons with different baryon numbers (parame-
ters y1, y2). To keep the number of parameters as small as
possible, we shall work in the center-of-velocity frame
where the baryon velocities are �v. Since the calculation
is fully covariant, we can transform the results into any
other Lorentz frame afterwards. In analogy to the one-
baryon problem, we parametrize the scalar potential as a
rational function of exponentials. The spinors are again
taken to be exponentials times functions similar to S, where
we always insist on keeping the same denominators. In the
single baryon case, the asymptotic information which we
used to reduce the number of parameters came from the
vacuum. Now we will similarly exploit the asymptotic
information from the incoming and outgoing baryons.
This recursive way of proceeding greatly reduces the num-
ber of parameters which then have to be determined alge-
braically via the Dirac equation.

A. Ansatz for scalar potential

Our ansatz for the scalar potential is

S ¼ N
D

(52)
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with

N ¼ 1þ a1U1 þ a2U2 þ a11U
2
1 þ a12U1U2 þ a22U

2
2

þ a112U
2
1U2 þ a122U1U

2
2 þ a1122U

2
1U

2
2; (53)

D ¼ 1þ b1U1 þ b2U2 þ b11U
2
1 þ b12U1U2 þ b22U

2
2

þ b112U
2
1U2 þ b122U1U

2
2 þ b1122U

2
1U

2
2 (54)

and

U1¼ expf2y1�ðx�vtÞg; U2¼ expf2y2�ðxþvtÞg: (55)

The U1, U2 dependence is motivated by the product of
the two-baryon potentials, which we must recover when
the scatterers are well separated. In this sense, the ansatz
is the minimal one having a chance of describing baryon-
baryon scattering. Almost all of the 16 real parameters in S
are determined by the asymptotic in- and out-states as
follows. For t ! �1, S reduces to

lim
U2!0

S ¼ 1þ a1U1 þ a11U
2
1

1þ b1U1 þ b11U
2
1

(56)

near incoming baryon 1 and to

lim
U1!1S ¼ a11 þ a112U2 þ a1122U

2
2

b11 þ b112U2 þ b1122U
2
2

(57)

near incoming baryon 2. For t ! 1, we get the limit

lim
U2!1S ¼ a22 þ a122U1 þ a1122U

2
1

b22 þ b122U1 þ b1122U
2
1

(58)

near outgoing baryon 1 and

lim
U1!0

S ¼ 1þ a2U2 þ a22U
2
2

1þ b2U2 þ b22U
2
2

(59)

near outgoing baryon 2. These expressions should be
matched to the single baryon scalar potential (10). In this
step, we have to account for the time delay occurring during
the collision. To this end, we replace U1 ! U1=�12, U2 !
U2=�21 (with real �12, �21) in the single baryon scalar
potentials of the outgoing baryons. We only get a consistent
parametrization for �12 ¼ 1=�21 :¼ � and can now fix all
coefficients in S except for a12, b12 and � as follows,

a1¼aI1; a2¼aII1 �; a112¼aII1 ; a122¼aI1�;

b1¼bI1; b2¼bII1 �; b112¼bII1 ; b122¼bI1�;

a11¼a1122¼b11¼b1122¼1; a22¼b22¼�2:

(60)

The superscripts I, II on the one-baryon coefficients a1, b1
on the right side of these equations refer to baryons I
(parameters y1, v) and II (parameters y2,�v), respectively.
As in the one-baryon case, it is advisable to use light-cone
variables to keep the results for the spinors in a manageable
form. We therefore write U1;2 as

U1¼ expfy1ð��1 �zþ�zÞg; U2¼ expfy2ð��zþ��1zÞg;
(61)

with � as defined in (13), and use the parametrization
(i ¼ 1, 2)

Zi¼ iyi�wi; jZij¼1; yi¼Z2
i �1

2iZi

; wi¼�Z2
i þ1

2Zi

:

(62)

The single baryon coefficients entering Eq. (60) then go
over into

aI1 ¼ � 2ðZ4
1 þ 1Þ

Z1ðZ2
1 þ 1Þ ; bI1 ¼ � 4Z1

Z2
1 þ 1

;

aII1 ¼ � 2ðZ4
2 þ 1Þ

Z2ðZ2
2 þ 1Þ ; bII1 ¼ � 4Z2

Z2
2 þ 1

:

(63)

We will see later that � can actually be predicted on the
basis of the single baryon input. This leaves us with only
two unknown, real parameters a12, b12, to be determined
from the Dirac-TDHF equation.

B. Ansatz for continuum spinors

Anticipating that the mean field is reflectionless, we
propose the following ansatz for the continuum spinor in
TDHF,

c 
 ¼ N 1

N 2

� �
eið
 �z�z=
Þ=2

D
: (64)


 is the spectral parameter introduced in (18), D is the
denominator of S, and the numerators are polynomials in
U1, U2 of the same degree as D,

N 1 ¼ c0 þ c1U1 þ c2U2 þ c11U
2
1 þ c12U1U2 þ c22U

2
2

þ c112U
2
1U2 þ c122U1U

2
2 þ c1122U

2
1U

2
2; (65)

N 2 ¼ d0 þ d1U1 þ d2U2 þ d11U
2
1 þ d12U1U2 þ d22U

2
2

þ d112U
2
1U2 þ d122U1U

2
2 þ d1122U

2
1U

2
2: (66)

Most of the parameters are again determined by asymp-
totics. For the incoming baryon I and the outgoing baryon
II, we can literally follow the treatment of S by letting
U1;2 ! 0, respectively, with the result

c0 ¼ cI0; c1 ¼ cI1; c11 ¼ cI11; d0 ¼ dI0; d1 ¼ dI1;

d11 ¼ dI11; c0 ¼ cII0 ; c2 ¼ �cII1 ; c22 ¼ �2cII11;

d0 ¼ dII0 ; d2 ¼ �dII1 ; d22 ¼ �2dII11: (67)

We have taken into account the time delay for baryon II
through the substitution U2 ! U2=�. For incoming
baryon II and outgoing baryon I, we must account for the
time delay of baryon I (U1 ! �U1). In addition, here
the incident continuum states have already been scattered
by the other baryon. We therefore insert single baryon
transmission amplitudes TI;II into the results analogous
to S (for U1;2 ! 1),
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c11 ¼ TIcII0 ; c112 ¼ TIcII1 ; c1122 ¼ TIcII11;

d11 ¼ TIdII0 ; d112 ¼ TIdII1 ; d1122 ¼ TIdII11;

c22 ¼ TII�2cI0; c122 ¼ TII�cI1; c1122 ¼ TIIcI11;

d22 ¼ TII�2dI0; d122 ¼ TII�dI1; d1122 ¼ TIIdI11:

(68)

For conveniencewe list all single baryon parameters entering
Eqs. (67) and (68). For baryon I, take over the results from
Sec. IIA, with the notation

Z ! ZI ¼ �
; Z1 ¼ iy1 � w1; (69)

i.e.,

cI0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi


2 þ 1
p ; cI11 ¼ TIcI0;

cI1 ¼ � 2ð2Z2
IZ

2
1 � Z4

1 � 1Þ
ðZ2

1 þ 1ÞðZI � Z1ÞðZIZ1 þ 1Þ c
I
0;

dI0 ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 þ 1

p ; dI11 ¼ TIdI0;

dI1 ¼ � 2ðZ2
IZ

4
1 þ Z2

I � 2Z2
1Þ

ðZ2
1 þ 1ÞðZI � Z1ÞðZIZ1 þ 1Þd

I
0:

(70)

The analogous expressions for baryon II are

Z ! ZII ¼ ��1
; Z2 ¼ iy2 � w2 (71)

and

cII0 ¼ 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 þ 1

p ; cII11 ¼ TIIcII0 ;

cII1 ¼ � 2ð2Z2
IIZ

2
2 � Z4

2 � 1Þ
ðZ2

2 þ 1ÞðZII � Z2ÞðZIIZ2 þ 1Þ c
II
0 ;

dII0 ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 þ 1

p ; dII11 ¼ TIIdII0 ;

dII1 ¼ � 2ðZ2
IIZ

4
2 þ Z2

II � 2Z2
2Þ

ðZ2
2 þ 1ÞðZII � Z2ÞðZIIZ2 þ 1Þd

II
0 :

(72)

The transmission amplitudes can be inferred from Eq. (31),

TI ¼ðZIþZ1ÞðZIZ1�1Þ
ðZI�Z1ÞðZIZ1þ1Þ ; TII¼ðZIIþZ2ÞðZIIZ2�1Þ

ðZII�Z2ÞðZIIZ2þ1Þ :
(73)

Some coefficients appear repeatedly in Eqs. (67) and (68).
Because of the single baryon identities

cI0 ¼ cII0 ; cI11 ¼ TIcI0; cII11 ¼ TIIcII0 (74)

and similar relations for d’s, there is no conflict though.
Eventually, only two complex parameters in the continuum
spinor remain to be determined, c12 and d12. Finally, we note
that the transmission amplitude of the full continuum spinor
factorizes,

T ¼ TITII: (75)

This simply follows from the fact that wemay evaluate it at a
time where the baryons are well separated.

C. Ansatz for bound state spinors

It is sufficient to consider the two positive energy bound
states. Along the lines discussed above, we set

c ðiÞ ¼ N ðiÞ
1

N ðiÞ
2

 !
eiF

ðiÞ

D
; ði ¼ 1; 2Þ; (76)

where D is the denominator of S. Let us focus on the first
bound state (asymptotically belonging to baryon I), since
the second one can simply be obtained by a relabeling of
baryons I and II. As ansatz for the numerators, we choose

N ð1Þ
1 ¼ e1U1 þ e11U

2
1 þ e12U1U2 þ e112U

2
1U2

þ e122U1U
2
2 þ e1122U

2
1U

2
2;

N ð1Þ
2 ¼ f1U1 þ f11U

2
1 þ f12U1U2 þ f112U

2
1U2

þ f122U1U
2
2 þ f1122U

2
1U

2
2: (77)

The exponent is determined by the known bound state
energy and kinematics,

F ð1Þ ¼ 1

2

�

1 �z� z


1

�
; 
1 ¼ ��1Z1 (78)

with Z1 from Eq. (69). Note that

jeiF ð1Þ j2 ¼ U�1
1 : (79)

Normalizability then forces us to leave out all terms not
containing U1 in (77).
We now turn to the constraints from the asymptotic be-

havior of c ð1Þ. Since bound state 1 is attached to baryon I
asymptotically, the only issues are the incoming and out-
going baryon I. For incoming baryon I, letU2 ! 0 and find

e1¼eI1; e11¼eI11; f1¼fI1; f11¼fI11: (80)

In the outgoing channel, let U2 ! 1. Here the bound state
spinor 1 acquires a transmission amplitude from baryon II
denoted as TII

1 . The asymptotic conditions therefore read

e122 ¼ TII
1 �e

I
1; e1122 ¼ TII

1 e
I
11;

f122 ¼ TII
1 �f

I
1; f1122 ¼ TII

1 f
I
11:

(81)

Let us collect the required one-baryon coefficients,

eI11 ¼ �Z1e
I
1; fI1 ¼ �Z1�e

I
1;

fI11 ¼ �eI1; ðeI1Þ2 ¼
i

�

�
Z2
1 � 1

Z2
1 þ 1

�
:

(82)

How does one compute a transmission amplitude for a
bound state? Since the bound state spinor can be thought
of as a continuum spinor with complex spectral parameter,
we can find TII

1 by analytic continuation. Take TII from
Eq. (73) and replace the argument ZII by e�2	Z1 ¼
��2Z1. e�2	 appears because we have to boost from
the rest frame of baryon I (velocity v) to the rest frame of
baryon II (velocity�v). In this way we arrive at
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TII
1 ¼ ð��2Z1 þ Z2Þð��2Z1Z2 � 1Þ

ð��2Z1 � Z2Þð��2Z1Z2 þ 1Þ : (83)

Since the spectral parameter is now complex, TII
1 is not

unitary. Its phase produces a phase shift of the bound state
spinor, whereas its modulus gives rise to a time delay. This
last observation gives us a clue for computing the time delay
factor � introduced in the ansatz for S. Since the bound state
spinor is moving along with the baryon asymptotically and
the potential is quadratic in the spinor, � must satisfy the
relation

� ¼ jTII
1 j2: (84)

Otherwise, there would be a spatial shift between the scalar
potential and the bound state spinor of the scattered baryon.
It is surprising that one can predict the time delay, a two-
baryon scattering observable, on the basis of single baryon
results alone. Evaluating (84) yields

�¼ n̂

d̂
¼ð�2Z2þZ1Þð�2Z1þZ2Þð�2Z1Z2�1Þð�2�Z1Z2Þ
ð�2Z2�Z1Þð�2Z1�Z2Þð�2Z1Z2þ1Þð�2þZ1Z2Þ

:

(85)

Equations (80)–(85) determine the parameters of the bound
state spinor except for the 4 complex coefficients e12, e112,
f12, f112.

D. Nontrivial coefficients from the solution
of the Dirac equation

The ansatz for S and the spinors has been constrained
as much as possible by single baryon results and asymp-
totics. This reduces the number of parameters from 16 to
2 real parameters in S, from 18 to 2 complex parameters
in the continuum spinor, and from 12 to 4 complex
parameters in the bound state spinor. The remaining
coefficients have to be determined by inserting everything
into the Dirac equation (14) and equating coefficients
of monomials Un

1U
m
2 . The system is strongly overdeter-

mined, so that the existence of a solution is nontrivial.
We have indeed found a unique solution, confirming
the correctness of our ansatz, with the following
parameters.

1. Scalar potential

The nontrivial parameters a12, b12 are given by

a12¼4Z2
1Z

2
2ðZ4

2þ1ÞðZ4
1þ1Þð�8þ1Þ�8ðZ4

1Z
4
2þ1ÞðZ4

1þZ4
2Þ�4

Z1Z2ðZ2
1þ1ÞðZ2

2þ1Þd̂ ;

b12¼8Z1Z2½2Z2
1Z

2
2ð�8þ1Þ�ðZ4

1þ1ÞðZ4
2þ1Þ�4�

ðZ2
1þ1ÞðZ2

2þ1Þd̂ ;

(86)

with d̂ from Eq. (85).
2. Continuum spinor

The parameters c12, d12 are found to be

c12 ¼ 4
ĉ12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 
2

p
D12

; d12 ¼ d̂12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 
2

p
D12

; (87)

with the common denominator

D12 ¼ ðZ2
1 þ 1ÞðZ2

2 þ 1Þð�2Z1Z2 þ 1ÞðZ1�
2 � Z2Þð�2 þ Z1Z2ÞðZ1 � �2Z2Þð
 � �Z2Þð
Z2 þ �Þð�
 � Z1Þð�
Z1 þ 1Þ

(88)

and the numerators

ĉ12¼2
2Z2
1Z

2
2½Z2

2ðZ4
1þ1ÞþZ2

1ðZ4
2þ1Þ�12���2ð1þ�8ÞZ2

1Z
2
2½ð1þZ4

1Þð1þZ4
2Þþ4Z2

1Z
2
2


4��
2�4½Z2
2ðZ4

2þ1ÞðZ8
1þ1Þ

þ�4Z2
1ðZ4

1þ1ÞðZ8
2þ1Þ�þ2�6½ðZ4

1þZ4
2ÞðZ4

1Z
4
2þ1Þþ
4Z2

1Z
2
2ðZ4

1þ1ÞðZ4
2þ1Þ�;

d̂12¼�8
2Z2
1Z

2
2½Z2

1ðZ4
2þ1Þþ�12Z2

2ðZ4
1þ1Þ�þ4Z2

1Z
2
2�

2ð1þ�8Þ½
4ðZ4
1þ1ÞðZ4

2þ1Þþ4Z2
1Z

2
2�þ4
2�4½Z2

1ðZ4
1þ1ÞðZ8

2þ1Þ
þ�4Z2

2ðZ8
1þ1ÞðZ4

2þ1Þ��8�6½Z2
1Z

2
2ðZ4

1þ1ÞðZ4
2þ1Þþ
4ðZ4

1þZ4
2ÞðZ4

1Z
4
2þ1Þ�: (89)
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3. Bound state spinor

The 4 relevant parameters are

e12¼2ðZ1Z2��2Þð�2Z2þZ1Þð�4Z2
1Z

4
2þ�4Z2

1�2Z2
2Þ

ðZ2
2þ1Þd̂ eI1;

e112¼ 2Z1ð2Z2
1Z

2
2��4��4Z4

2Þ
ðZ2

2þ1ÞðZ1��2Z2Þð�2þZ1Z2Þ
eI1;

f12¼�2�Z1ðZ1Z2��2Þð�2Z2þZ1Þð2�4Z2
1Z

2
2�1�Z4

2Þ
ðZ2

2þ1Þd̂ eI1;

f112¼� 2�ðZ2
1Z

4
2þZ2

1�2�4Z2
2Þ

ðZ2
2þ1ÞðZ1��2Z2Þð�2þZ1Z2Þ

eI1: (90)

We reiterate that most of these expressions would look
much more complicated if expressed in terms of conven-
tional variables (k, y1, y2, v). Only the potential S and the
time delay factor � are fairly simple in either representa-
tion. Since these are also the most interesting quantities, we
have collected the results for S and � using conventional
variables in the Appendix for the convenience of the reader.

E. Self-consistency and fermion density

A crucial step in the TDHF approach still missing so far
is the proof of self-consistency. We have to verify that the
scalar condensate computed from our spinors reproduces
the mean field S. We first evaluate the scalar density from
the above spinors. The result for positive energy discrete
states is

ð �c c Þð1Þ ¼ Z2
1 � 1

iZ1

U1ð1þ �1U2 þ �U2
2Þ

D
;

ð �c c Þð2Þ ¼ Z2
2 � 1

iZ2

U2ð�þ �2U1 þU2
1Þ

D
;

(91)

with

�1 ¼ 2Z2½2�4Z2
2ðZ4

1 þ 1Þ � ð�8 þ 1ÞZ2
1ðZ4

2 þ 1Þ�
ðZ2

2 þ 1Þd̂ ;

�2 ¼ 2Z1½2�4Z2
1ðZ4

2 þ 1Þ � ð�8 þ 1ÞZ2
2ðZ4

1 þ 1Þ�
ðZ2

1 þ 1Þd̂ :

(92)

The negative energy states yield the opposite sign. In the
case of the continuum states, we decompose the scalar
density into 2 terms, following the same strategy as in
the single baryon case,

�c 
c 
 ¼ð �c 
c 
 Þ1þð �c 
c 
 Þ2; ð �c 
c 
 Þ1¼� 2



2þ1
S;

ð �c 
c 
 Þ2¼F ð1Þ

 ð �c c Þð1Þ þF ð2Þ


 ð �c c Þð2Þ: (93)

The coefficients F ð1;2Þ

 are (x, t)-independent. Since 3

independent functions of (x, t) are needed in order to
represent the scalar condensate of an arbitrary single par-
ticle state, we are dealing here with a type III solution of
the TDHF problem. Using the boosted spectral parameters

ZI, ZII introduced in (69) and (71), the F ð1;2Þ

 can be

represented as

F ð1Þ

 ¼ 4i
Z2

I ðZ4
1 � 1Þ

ð
2 þ 1ÞðZ2
I � Z2

1ÞðZ2
IZ

2
1 � 1Þ ;

F ð2Þ

 ¼ 4i
Z2

IIðZ4
2 � 1Þ

ð
2 þ 1ÞðZ2
II � Z2

2ÞðZ2
IIZ

2
2 � 1Þ :

(94)

Integrating the first term in (93) over d
 gives self-
consistency, just like in the case of the single baryon.
The integration over the second term yields

Z 1

0

d


2�


2 þ 1

2
2
ð �c 
c 
 Þ2

¼ � i

2�
½ð �c c Þð1Þ lnZ4

1 þ ð �c c Þð2Þ lnZ4
2�: (95)

It cancels the contribution from the discrete states provided
that the conditions

2�ið�i;þ � �i;�Þ þ lnZ4
i ¼ 0; ði ¼ 1; 2Þ (96)

hold. These conditions are identical to the result for the
single baryon, Eq. (41), confirming the self-consistency of
the scattering solution.
So far we have only dealt with the massless GN model.

As discussed at the end of Sec. II B, the single baryon
solution also solves the massive GN model, with a modi-
fied relationship between the parameter y and the occupa-
tion fractions ��. As we have seen, a prerequisite for this to
happen is the proportionality

h �c c i þ S

�
ln�� ð1� SÞ: (97)

In the baryon-baryon scattering case, this proportionality
does not hold (no matter how one chooses the parameters),
so that our ansatz does not lead to a solution of the massive
GN model. Presumably, this reflects the fact that the mas-
sive GN model is not integrable, so that inelastic processes
will contribute to baryon-baryon scattering if one switches
on the bare mass (for a recent discussion of this issue, see
Ref. [25]).
The fermion density for the bound states can be com-

puted from the spinors,

�ðiÞ ¼ ðc yc ÞðiÞ: (98)

The analytical result is not very instructive and will not be
given here (unlike in the single baryon case, it is not
proportional to S2 � 1). For the negative energy continuum
states we find the subtracted density

c y

 c 
 � 1 ¼ �Gð1Þ


 �ð1Þ � Gð2Þ

 �ð2Þ; (99)

where the �ðiÞ are the densities of the discrete states. The

GðiÞ

 are (x, t)-independent coefficients satisfying
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Z 1

0

d


2�


2 þ 1

2
2
GðiÞ


 ¼ 1; ði ¼ 1; 2Þ: (100)

Hence the situation is again similar to the single baryon
case. The total (subtracted) density can be computed from
the bound state densities alone,

� ¼ X2
i¼1

ð�i;þ þ �i;� � 1Þ�ðiÞ; (101)

and the total fermion number is just the sum of the
fermion numbers of both baryons. For ground state baryons
(�i;� ¼ 1), the induced fermion density in the Dirac sea is

canceled exactly against the negative energy bound state
contributions. Since the spinors have been given above and
the analytical result for the density apparently cannot be
simplified verymuch (unlike the scalar densities), we refrain
from writing it down.

F. General Lorentz frame

We have been working in the Lorentz frame where the
baryons move with velocities �v. Suppose we are inter-
ested in a general frame where the velocities are v1, v2.
Since the Dirac-TDHF approach is covariant, we can trans-
form the scalar potential and the spinors by a Lorentz
boost. Consider the scalar potential S first. The velocity
dependence enters in the exponentials U1, U2, Eq. (61), in
the time delay parameter �, Eq. (85), and in the coefficients
a12, b12, Eq. (86). We evidently have to replace U1;2 by

Ui¼ expfyið��1
i �zþ�izÞg; �i¼e	i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þvi

1�vi

s
: (102)

All coefficients entering S must be Lorentz scalars.
Denoting the baryon 2-velocities by

ui ¼ �i
1
vi

� �
; (103)

the only nontrivial Lorentz scalar available is

u1u2 ¼ �1�2ð1� v1v2Þ: (104)

In the frame where v1 ¼ �v2 ¼ v, it reduces to

u1u2 ¼ 1þ v2

1� v2
: (105)

We can then ‘‘covariantize’’ S by replacing

v2 ! u1u2 � 1

u1u2 þ 1
¼ �1�2ð1� v1v2Þ � 1

�1�2ð1� v1v2Þ þ 1
¼ v2

12; (106)

where v12 is the (relativistic) relative velocity

v12 ¼
1� v1v2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� v2

1Þð1� v2
2Þ

q
v1 � v2

: (107)

This rule is applicable to S or � written in conventional
variables, as given in the Appendix. As expected, the
transformation to another Lorentz frame is more elegant in
light-cone variables, where it reduces to the simple substi-
tution rule

� !
ffiffiffiffiffiffi
�1

�2

s
: (108)

This transforms the time delay factor � into the symmetric
expression

� ¼ ð�2Z1 þ �1Z2Þð�1Z1 þ �2Z2Þð�1Z1Z2 � �2Þð�2Z1Z2 � �1Þ
ð�2Z1 � �1Z2Þð�1Z1 � �2Z2Þð�1Z1Z2 þ �2Þð�2Z1Z2 þ �1Þ : (109)

Likewise, the complexity of a12, b12, Eq. (86), does not
increase if one replaces � by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=�2

p
.

Finally, we remark that an even simpler form for � can
be obtained by going back to Eq. (83) for the bound state
transmission amplitude. Let us transform TII

1 into an arbi-
trary frame, using the substitution (108),

TII
1 ¼ ð
�1 þ 
�2 Þð
�1 � 
2Þ

ð
�1 � 
�2 Þð
�1 þ 
2Þ (110)

with 
1 ¼ �1Z1, 
2 ¼ �2Z2. This leads to the most com-
pact expression for � in an arbitrary Lorentz frame which
we could find,

� ¼
��������ð
1 þ 
2Þð
1 � 
�2 Þ
ð
1 � 
2Þð
1 þ 
�2 Þ

��������2

: (111)

The standard observable in 1D scattering of solitons is
the time delay, closely related to �. Baryons I and II can

be characterized by the following exponentials in the
incoming and outgoing channels,

Uin
1 ¼ expf2y1�1ðx� v1tÞg; Uout

1 ¼ ��1Uin
1 ;

Uin
2 ¼ expf2y2�2ðx� v2tÞg; Uout

2 ¼ �Uin
1 :

(112)

The time delays �t1, �t2 are introduced via

Uout
i ðx; tÞ ¼ Uin

i ðx; t� �tiÞ; ði ¼ 1; 2Þ (113)

and given by

�t1 ¼ � ln�

2y1�1v1

; �t2 ¼ ln�

2y2�2v2

: (114)

So far, we have only discussed the transformation of S
and � into a general Lorentz frame. The spinors can also
easily be boosted in the light-cone approach, since the
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boost matrix e	�5=2 is diagonal. By contrast, the corre-
sponding formulas in normal coordinates become exceed-
ingly complicated.

IV. LIMITING CASES AND
ILLUSTRATIVE EXAMPLES

We have presented above the general solution of baryon-
baryon scattering in the large N limit of the GN model. In
certain regions of parameter space, our solution can be
compared to previous works. This gives us the opportunity
to cross-check our results against the existing literature.
The special cases we are aware of are the static limit (v1¼
v2¼0), the nonrelativistic limit (v1,v2, y1, y2�1), and the
kink limit (y1, y2 ! 1), i.e., the ultrarelativistic limit for the
internal motion. We will also illustrate the full results with
the help of some examples and make contact with the
scattering of polarons and solitons in trans-polyacetylene
in the present section.

A. Static limit

All static, transparent potentials of the 1D Schrödinger
equation were constructed long ago by Kay and Moses [8].
These Schrödinger potentials also enter in the construction
of a complete set of static, transparent potentials of the
Dirac equation, which are at the same time self-consistent
potentials of the GN model [7,9]. Physically, they corre-
spond to marginally bound n-baryon states whose mass is
the sum of the constituent masses, independent of their
separation. The n ¼ 2 case can be related to the static limit
(v1 ¼ v2 ¼ 0) of baryon-baryon scattering. In the static
case, one starts from the linear system of equations

Xn
j¼1

Aijc j ¼ i; ði ¼ 1; . . . ; nÞ; (115)

where

Aij ¼ �ij þ
ij

�i þ �j

; i ¼ cie
��ix: (116)

The Dirac-HF potential is then given by [7]

S ¼ 1� @x ln

�
1�Xn

i¼1

ic i

1þ �i

�
: (117)

Comparing our results for v ¼ 0 with the static n ¼ 2
solution, we get perfect agreement if we employ the
following dictionary,

y1¼�1; y2¼�2; U1¼A1e
2y1x; U2¼A2e

2y2x;

A1¼2y1ð1þy1Þ
c21w1

�; �¼
�
y1þy2
y1�y2

�
2
; A2¼ 2y2w2

c22ð1�y2Þ
:

(118)

B. Nonrelativistic limit

Nogami and Warke [26] have constructed transparent
potentials of the time-dependent, 1D Schrödinger equa-
tion, thereby solving the nonrelativistic TDHF problem for
particles with � interactions. Equivalently, this amounts to
finding solutions of the multicomponent nonlinear
Schrödinger equation. We should be able to recover their
results in the limit where both the internal motion of the
fermions in the DHN baryons and their external motion as
a whole are nonrelativistic, i.e., for y1, y2, v1, v2 � 1. The
nonrelativistic, time-dependent construction of Ref. [26]
generalizes the static one as follows: One starts from the
linear system of equations

Xn
�¼1

u�u
�
�g�

�� þ ��
�

þ g� þ u� ¼ 0 (119)

with

u� ¼ ffiffiffiffiffiffi
A�

p
expf��xþ i�2

�tg: (120)

The A� are real; the �� complex parameters. The self-
consistent potential can be written as

V ¼ 2@x
X
�

u��g�: (121)

We have evaluated V for n ¼ 2 and compared it with the
nonrelativistic limit of our S in a frame where the baryon
velocities are v1, v2. We treat y1, y2, v1, v2 as small
quantities of order � and keep only the leading order
term in (S� 1), which is of order �2. Because of the fact
that Nogami and Warke use units where m ¼ 1=2 (to
simplify the Schrödinger equation) whereas we use units
wherem ¼ 1, we also have to rescale time t by a factor of 2
and compare their V with our 2ðS� 1Þ. The two potentials
then agree for the following choice of parameters,

�1¼y1þ iv1; �2¼y2þ iv2; A1¼2y1;

A2¼2y2�; �¼ðy1þy2Þ2þðv1�v2Þ2
ðy1�y2Þ2þðv1�v2Þ2

:
(122)

C. Kink limit

In the limit y1 ! 1, y2 ! 1, the internal structure of the
DHN baryon becomes ultrarelativistic. The baryons de-
couple into well separated kink and antikink. We should
like to compare our result for S in this limit to the result for
kink-antikink scattering [15,16],

S ¼ v cosh2�x� cosh2�vt

v cosh2�xþ cosh2�vt
: (123)

Since the DHN baryon becomes infinitely extended in the
kink limit, we have to shift our exponentialsU1, U2 in such
a way that only the scattering of the right edge of baryon I
(an antikink) and the left edge of baryon II (a kink) survives
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in the limit y1, y2 ! 1. Working in the center-of-velocity
frame, we first set

y1 ¼ y2 ¼ 1� �: (124)

The exponentials U1, U2 are replaced by

U1¼Aexpf2�ðx�vtÞg; U2¼A�1 expf2�ðxþvtÞg:
(125)

For the choice

A ¼
ffiffiffi
�

p
v3

ffiffiffi
2

p (126)

one can then perform the limit � ! 0 without encountering
any singularity and S goes over into the negative of (123).
The change of sign occurs because we get antikink-kink
scattering, whereas (123) holds for kink-antikink scattering.

D. Examples

In our first example, we consider scattering of a ‘‘small’’
baryon (y1 ¼ 0:8) and a ‘‘large’’ baryon (1� y2 ¼ 10�7),
with velocities�0:4. Figure 3 shows the scalar potential as
a function of x, for different time slices. The baryons cross
each other with some (negative) time delay, as can also be
seen from Fig. 4 where the fermion densities are shown for
the same scattering process. This should be contrasted to
kink-antikink scattering where the scalar potentials first
approach and then repel each other, the fermions being
exchanged during the collision [15]. It is also interesting to
watch the small baryon while it is crossing the large one in
Fig. 3. In the initial and final state, the small baryon shows
the usual attractive potential well in the vacuum value S ¼
1; the large baryon exhibits well separated kink and anti-
kinks with S ¼ �1, i.e., the other degenerate vacuum, in
between. During the collision, the small baryon moves as a
seemingly repulsive potential bump on the S ¼ �1

‘‘floor.’’ This is just the chirally reflected DHN baryon in
the other vacuum. To emphasize this aspect, we consider in
our second example scattering of a small DHN baryon
(y1 ¼ 0:8) on a CCGZ kink (y2 ¼ 1), with velocities
�0:2. In this case of baryon-kink scattering, the formula
for S simplifies to the following expression (in conven-
tional coordinates),

S¼1þ 2ð1�2y2
1
Þ

w1
U1��U2þU2

1� 2ð1�2y2
1
Þ

w1

ffiffiffiffi
�

p
U1U2�U2

1U2

1þ 2
w1
U1þ�U2þU2

1þ 2
w1

ffiffiffiffi
�

p
U1U2þU2

1U2

;

(127)

with y2 ¼ 1 and

� ¼
�
1þ v2 þ y1ð1� v2Þ
1þ v2 � y1ð1� v2Þ

�
2
: (128)

Comparing the small baryons in the first and last time slice
of Fig. 5, one sees clearly the sign flip of the potential
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FIG. 3. Scattering of a small (y1 ¼ 0:8) and a large (1� y2 ¼
10�7) DHN baryon with velocities �0:4. The self-consistent
scalar potential S is shown for a range of (x, t) values in the
vicinity of the collision.
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FIG. 4. Same as Fig. 3, but total fermion density � is shown. In
the large baryon, the density has two peaks near the kink and
antikink boundaries of the baryon. A negative time delay occurs
during the collision.
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FIG. 5. Scattering of a small DHN baryon (y ¼ 0:8) on a
CCGZ kink (y ¼ 1), at velocities �0:2. Notice the chiral reflec-
tion which the small baryon undergoes during the collision.
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characteristic for the discrete �5 transformation during the
collision.

The last few examples are applications of the GN model
to condensed matter physics. As is well-known, the Su-
Schrieffer-Heeger theory [27] of trans-polyacetylene admits
a continuum approximation [28] closely related to the mass-
less GN model. At the mean field level, the correspondence
with the large N GN model is perfect, although N
in the condensed matter case is only 2, the number of

electron spin components. DHN baryons become polarons;

CCGZ kinks become solitons in conducting polymer

language [29]. The polaron has one electron in the upper

bound state, corresponding to the DHN parameter y ¼
sin�=4. For polaron-polaron scattering with relative

velocity v, we thus have to choose y1 ¼ y2 ¼ 1=
ffiffiffi
2

p
and

find � ¼ 1=v2,

S ¼
1þU2

1 þ 2ð1�v2Þ2
v2ð1þv2ÞU1U2 þ 1

v4 U
2
2 þU2

1U
2
2

1þ 2
ffiffiffi
2

p
U1 þ 2

ffiffi
2

p
v2 U2 þU2

1 þ 2ð1þ6v2þv4Þ
v2ð1þv2Þ U1U2 þ 1

v4 U
2
2 þ 2

ffiffiffi
2

p
U2

1U2 þ 2
ffiffi
2

p
v2 U1U

2
2 þU2

1U
2
2

: (129)

Polaron-soliton scattering on the other hand corresponds
to the parameters �v and y1 ¼ 1=

ffiffiffi
2

p
, y2 ¼ 1, where S

simplifies to

S ¼ 1� �U2 þU2
1 �U2

1U2

1þ 2
ffiffiffi
2

p
U1 þ �U2 þU2

1 þ 2
ffiffiffi
2

p ffiffiffiffi
�

p
U1U2 þU2

1U2

(130)

with

� ¼
�ð1þ v2Þ ffiffiffi

2
p þ ð1� v2Þ

ð1þ v2Þ ffiffiffi
2

p � ð1� v2Þ
�
2
: (131)

Finally, soliton-soliton scattering can be inferred from
Eq. (123) in Sec. III C.

V. SUMMARYAND OUTLOOK

In this paper we have presented a complete description
of the scattering of two DHN baryons, each with its own
internal structure of localized mean fields and bound fer-
mions, in the large N limit of the GN model. We have used
the time-dependent TDHF method, thereby realizing an
explicit example of the picture envisioned by Witten in his
seminal paper on baryons in the 1=N expansion [13]. Static
baryons of this model have been known since the early
work of DHN, but progress on time-dependent, self-
consistent solutions has been slow until very recently.
The only cases which had been understood so far are the
nonrelativistic limit, where the model reduces to the mul-
ticomponent nonlinear Schrödinger equation, and the ul-
trarelativistic limit of kinks and antikinks. Here we have
presented the most general solution, valid for 2 DHN
baryons with arbitrary fermion numbers and velocities.
This contains, in particular, scattering of polarons and
solitons in the continuum limit of conducting polymers
like trans-polyacetylene. The solution displays character-
istic features expected from an integrable model: purely
elastic scattering, vanishing reflection coefficients, baryons
crossing each other with a time delay. The complete time
evolution, including the nonasymptotic region, is available
in closed analytical form through the TDHF spinors. The

calculation is significantly more involved than in the
kink-antikink case, but remains manageable owing to the
systematic use of light-cone coordinates and variables with
their simple transformation properties under Lorentz
boosts.
More interesting than the specific results for baryon-

baryon scattering is perhaps the method used to solve
this problem. Since the scattering solution is of type III,
the TDHF problem is mathematically equivalent to solving
3 coupled, nonlinear partial differential equations. It does
not seem very likely that one can guess the analytical
solution of such a complicated problem. Nevertheless,
the method of ansatz has proven very effective. The basic
idea was to use a simultaneous ansatz for the TDHF
potential and the single particle spinors. This ansatz is
based on very few heuristic rules: The scalar potential is
assumed to be a rational function of 2 exponentials, one for
each baryon. The degree of the polynomials in the numera-
tor and denominator is taken from the product of two
independent single baryon potentials. The coefficients are
determined to a large extent by the known baryons in the
incoming and outgoing states. The spinors are also as-
sumed to be rational functions of exponentials times a
plane wave factor (for continuum states) or its analytic
continuation to complex spectral parameter (for bound
states). The denominators are taken to be the same in S
and all the spinors; the numerators have different coeffi-
cients fixed largely by asymptotics. When the dust has
settled down, only a handful of coefficients remain to be
determined by solving the Dirac equation, which is now
turned into a simple algebraic problem. Having found a
solution of the Dirac equation, we still have to check self-
consistency of the whole approach. This was successful for
the massless GN model but not for the massive one,
although single DHN baryons solve both of these
models.
Our method can be generalized in a natural way to other,

even more complicated, baryon scattering problems. We
have already used it to reproduce the DHN breather and to
solve a dynamical three-baryon problem. This will be
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reported elsewhere. One could also consider the scattering
of a DHN baryon from a lump of finite-density matter,
represented as an array of kinks and antikinks, or even the
scattering of two such lumps. The question then arises
whether one can find the general multibaryon solution of
the TDHF equation in closed form, similar to what has
already been achieved in the static limit, in the nonrelativ-
istic limit, or in the kink limit of the GN model. The two-
baryon solution discussed here has many encouraging
features which suggest that such a generalization might
actually exist. If one can find it, it will be interesting to see
whether it coincides with some other solved problem in
nonlinear mathematical physics, like in the case of the
sinh-Gordon theory, or whether it leads to a new class of
exactly solvable problems. We hope that having worked
out the two-baryon problem in full detail, and having cast
the solution into the simplest form, will help to answer this
question in the future.
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APPENDIX: SCALAR POTENTIAL IN
CONVENTIONALVARIABLES

The self-consistent scalar potential for baryon-baryon
scattering has the general form introduced in Eqs. (52)–
(55). Here we list all the parameters in conventional varia-
bles, complementing the light-cone variables used in
the main text. Parameters determined asymptotically by
one-baryon data,

a1 ¼ 2ð1� 2y21Þ
w1

; a2 ¼ 2ð1� 2y22Þ
w2

�; a112 ¼ 2ð1� 2y22Þ
w2

; a122 ¼ 2ð1� 2y21Þ
w1

�; b1 ¼ 2

w1

;

b2 ¼ 2

w2

�; b112 ¼ 2

w2

; b122 ¼ 2

w1

�; a11 ¼ a1122 ¼ b11 ¼ b1122 ¼ 1; a22 ¼ b22 ¼ �2;

(A1)

with wi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2i

q
and

� ¼ n

d
¼ 4v2 þ ð1� v2Þ2ðy21 þ y22Þ þ 2ð1� v4Þy1y2

4v2 þ ð1� v2Þ2ðy21 þ y22Þ � 2ð1� v4Þy1y2
: (A2)

Parameters determined via the Dirac equation,

a12 ¼ 4½4v2 þ ð1� 10v2 þ v4Þðy21 þ y22Þ � 2ð1� v2Þ2ðy41 þ y42Þ þ 2ð1þ 6v2 þ v4Þy21y22�
w1w2d

;

b12 ¼ 4½4v2 þ ð1� v2Þ2ðy21 þ y22 � 2y21y
2
2Þ�

w1w2d
;

(A3)

with d from Eq. (A2).
In a Lorentz frame where the baryons move with velocities v1, v2, replace U1, U2 in Eq. (55) by

Ui ¼ expf2yi�iðx� vitÞg; �i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

i

q ði ¼ 1; 2Þ; (A4)

and replace v by the relative velocity v12, Eq. (107), in �, a12, b12.
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