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We consider a four-dimensional field-theory model with two massless fermions, coupled to an Abelian

vector field without flavor mixing, and to another Abelian vector field with flavor mixing. Both Abelian

vectors have a Lorentz-violating kinetic term, introducing a Lorentz-violation mass scale M, from which

fermions and the flavor-mixing vector get their dynamical masses, whereas the vector coupled without

flavor mixing remains massless. When the two coupling constants have similar values in order of

magnitude, a mass hierarchy pattern emerges, in which one fermion is very light compared to the other,

while the vector mass is of the order of the heavy fermion mass. The work presented here may be

considered as a Lorentz-symmetry-violating alternative to the Higgs mechanism, in the sense that no

scalar particle (fundamental or composite) is necessary for the generation of the vector-meson mass.

However, the model is not realistic given that, as a result of Lorentz violation, the maximal (light-cone)

speed seen by the fermions is smaller than that of the massless gauge boson (which equals the speed of

light in vacuo) by an amount which is unacceptably large to be compatible with the current tests of

Lorentz invariance, unless the gauge couplings assume unnaturally small values. Possible ways out of this

phenomenological drawback are briefly discussed, postponing a detailed construction of more realistic

models for future work.
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I. INTRODUCTION

We are living in the dawn of an exciting era for high
energy physics, that of LHC, where the understanding of
the mechanism [1–3] underlying the symmetry breaking
sector of the standard model (SM) constitutes one of the
leading objectives of the pertinent experiments. For a
fundamental Higgs particle in the Lagrangian, the exclu-
sion regions provided by the Tevatron [4] improved sig-
nificantly the LEP bounds on the standard model Higgs
mass [5], excluding at present a fundamental Higgs
scalar mass mH below 115 GeV and in the region
158<mH < 175 GeV.1 The LHC will soon complete the
Higgs searches and hopefully provide a definitive(?) an-
swer on the question regarding the existence of the elusive
Higgs boson, thereby shedding light to the symmetry
breaking sector of the SM. The current exclusion limits
from the LHC experiments are (for three generation mod-
els): mH 2 ð155; 190Þ GeV and (295, 450) GeV from the
ATLAS Collaboration [7], and mH 2 ð149; 206Þ GeV and
(300, 440) GeV from the CMS Collaboration [8].

Although the standard model works very well, and the
precision electroweak data of LEP experiments provide a
very strong indication on its correctness as a low-energy
physical theory describing electroweak and strong inter-
actions, nevertheless its symmetry breaking sector still
remains an area which may be full of surprises. Some of
the relevant questions one may still ask is whether the

Higgs bosons is a fundamental excitation or a composite
particle, if it exists at all. If fundamental, what is the precise
form of the Higgs potential? If composite, then what is the
corresponding coset group structure? In this latter respect,
there is a recent revival of the old technicolor idea, which
may be subjected to interesting phenomenological tests at
LHC [9] in the following sense: in composite Higgs mod-
els, where the Higgs boson emerges as a pseudo-Goldstone
boson from a strongly interacting sector, there are addi-
tional parameters that control the Higgs properties, which
then deviate from the ones expected within the standard
model. Such deviations modify the LEP and Tevatron
exclusion bounds and thus may significantly affect the
searches for the Higgs boson at the LHC.2

The assumption on the existence of a fundamental scalar
particle in the SM Lagrangian, responsible for mass gen-
eration of the matter excitations, including the weak bo-
sons, is one of the two major approaches to the issue. It is
this approach that was put forward by Higgs [1], and by
Guralnik-Hagen and Kibble [3]. The other major approach
to symmetry breaking, adopted by Brout and Englert [2], is
the dynamical one, realized either by means of conden-
sates, formed as a result of certain interactions, as is the
case of superconductivity in condensed matter systems or
the chiral symmetry breaking in the four-fermion Nambu-
Jona-Lasinio model [11], or as a result of a selection of a
symmetry breaking solution of a dynamical set of coupled

1Under the assumption of a fourth generation of leptons, the
exclusion region can be extended to 130<mH < 204 GeV [6].

2Needless to say, of course, that the current exclusion bounds
can be questioned already within the standard model, as a result
of signal as well as theoretical uncertainties, as discussed in [10].
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field-theoretic equations [Schwinger-Dyson (SD) equa-
tions], which describe the underlying dynamics. In this
approach, canonical scalar fields (fundamental or compos-
ite of any sort) are not present in the Lagrangian, and the
gauge symmetry breaking is achieved by the dynamical
appearance of a pole at zero momentum transfer q2 ¼ 0 in
the vacuum polarization �ðq2Þ of the gauge field, as a
result of a massless fermion acquiring a mass through
spontaneous symmetry breaking (SSB). This is the
so-called Schwinger mechanism. In the dynamical gauge
symmetry breaking approach, in contrast to the Higgs
model [1], there is no canonically normalized scalar field
with an underlying microscopic potential that is minimized
when the field gets its vacuum expectation value (vev) that
spontaneously breaks the symmetry. It goes without saying
that the Higgs model may itself be viewed as a special case
of the Schwinger mechanism in the sense that the vev of the
Higgs scalar leads to tadpole contributions to the vector-
meson vacuum polarization that produce a pole. However,
in the dynamical symmetry breaking scenarios, such a pole
is produced by purely dynamical reasons, even in the
absence of canonical scalar fields. The Brout and Englert
approach [2] belongs to this second class of SSBmodels, in
the sense that, although they used in their analysis explicit
complex scalar fields coupled to the vector meson, never-
theless they did not specify the underlying microscopic
mechanism that yields nontrivial vacuum expectation
values to the gauge fields, but instead used the existence
of such vev to argue that they provide zero-momentum-
transfer poles in the vector-meson polarization�ðq2 ¼ 0Þ,
and thus a mass to the gauge boson.

In the same class of dynamical symmetry-breaking mod-
els there belongs the scalar-field-free (Higgs-less) gauge
models considered in [12,13], which elaborated further on
the ideas put forward by Brout and Englert, by avoiding
any explicit use of fundamental scalar fields in their
Lagrangians. In fact, the pertinent models contain only
fermions and gauge fields, the latter assumed initially
massless. Then the fermions acquire mass contributions
dynamically, by means of the assumption that Nature
selects the appropriate symmetry breaking solution to the
SD gap equations (without, however, specification of the
precise underlying physical mechanism for such a selec-
tion, in particular, there is no proof that this choice is
energetically preferred in the sense of lowering the physi-
cal vacuum energy [12]). This choice of solutions to the SD
equations results in a pole in the gauge field polarization at
zero momentum transfer, and hence a mass of the vector
meson associated with the broken symmetry [12,13]. The
absence of Goldstone massless excitations from the physi-
cal spectrum can be demonstrated diagrammatically within
the SD framework, as a result of the would-be massless
poles in internal vector-meson lines of graphs in the mod-
els of [12,13] being ‘‘eaten’’ by the longitudinal compo-
nents of the meson fields associated with the broken

symmetry group. In this way, the latter become massive
by acquiring the appropriate degrees of freedom.
In the original models of [12,13], the absence of an

explicit mass scale in the Lagrangian implied that the
dynamically generated mass depended on an arbitrary
mass scale, essentially put in by hand. In subsequent works
[14], a mass scale M that triggered dynamical mass gen-
eration, with a phenomenologically acceptable hierarchy
between leptons and quarks, as well as weak vector gauge
bosons, was provided by extra massive gauge fields, as-
sumed to acquire a mass of order M.
An alternative way of generating masses for leptons and

quarks has been suggested in [15], based on a minimal
Lorentz-violating (LV) extension of quantum electrody-
namics (QED). The model involves an explicit breaking
of Lorentz symmetry, by means of higher-spatial derivative
operators acting on the square of the Maxwell field
strength, but maintains three-space rotational invariance.
The higher-derivative terms are suppressed by a mass scale
M, which provides the scale for dynamical mass generation
for the fermions. A one-loop analysis of the model has
been performed, with the conclusion that the dynamically
generated mass for the fermions was not analytic in the
coupling constant, but instead exhibited the following
dependence:

mdyn ’ M exp

�
� 2�

ð4þ �Þ�
�
; (1)

where � is the fine structure constant, and � is a gauge-
fixing parameter. The apparent gauge fixing of (1) is an
artifact of the truncation used for the solution of the SD gap
equation pertaining to the fermion dynamical mass. It has
been argued in [16], based on an extension of the so-called
pinch technique argumentation [17] to the present LV
model, that the true physical mass is associated with the
Feynman gauge parameter �F ¼ 0. This argument is based
on the cancellation of longitudinal contributions of the
vector propagator, such that a physical quantity can be
obtained with the Feynman gauge, used from the beginning
for the calculation of the fermion self-energy.
This presents an immediate problem: even for scales as

high as the Planck mass, M� 1019 GeV, the dynamically
generated mass (1) is unrealistically small. To obtain
masses of the order of the electron mass (0.5 MeV), one
needs unnaturally high trans-Planckian mass scales M.
This problem may be resolved by embedding the model
[16] in microscopic brane theories, and applying an inverse
Randall-Sundrum hierarchy. In such constructions, the
seeds for Lorentz violation (LV) may be associated with
pointlike brane defects puncturing the bulk space time in
which three-dimensional brane universes, one of which
represents our world, propagate. The interaction of string
matter with these defects induces local Lorentz violations,
as a consequence of the recoil of the defect. The resulting
low-energy effective action describing the interaction of
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photons with these defects contain higher spatial derivative
terms of the LV form considered in [15]. The electron
sector in such brane inspired models has been argued to
remain unmodified, as a result of the fact that only electri-
cally neutral excitations can interact nontrivially with the
space-time brane defects [16]. The advantage of embed-
ding these models into such microscopic framework, apart
from the possibility of enhancing the generated fermion
masses to realistic values by virtue of the aforementioned
Randall-Sundrum enhancement, also lies in the fact that
one can obtain a physical scaleM which also plays the role
of the UV cutoff of the low-energy theory, which is pro-
portional to

M�Ms=ðgs
ffiffiffiffiffiffi
�2

p
Þ; (2)

where Ms is the string scale, gs is the string coupling
assumed weak, and �2 denotes the foam stochastic fluctu-
ations, which is a free parameter in the model of [16].

In the string-embedded QED models [16], the fine struc-
ture constant (and the foam fluctuations �2) is also pro-
portional to the g2s , and thus in the absence of string
interactions gs ! 0, the dynamical mass (1) is vanishingly
small. For nontrivial string interactions, the dynamical
mass remains finite, proportional to the string mass scale
(2). In this sense, the LV scenario of [15] acquires a micro-
scopic physics meaning. In a subsequent work [18] to
[15,16], the issue of generating dynamically fermion
mass hierarchies has also been addressed.

However, in all the above scenarios, the vector boson
mass was assumed not to be generated dynamically and,
hence, the above mechanisms fell short in providing an
alternative to the Higgs mechanism, not requiring extra
fundamental scalars for gauge symmetry breaking. It is the
point of this article to address such a question.

The structure of the article is as follows: in Sec. II, we
review the one-loop properties of the LV model of [15],
and concentrate on the structure of the fermion kinetic
terms, including one-loop wave-function renormalization.
We demonstrate the approximate equality of the temporal
and spatial components of the Dirac fermion wave-
function renormalization, which implies a covariant ex-
pression for the one-loop-dressed effective kinetic fermion
terms. This property supports the extension of the pinch
technique [17] arguments onto this case, in order to deter-
mine the physical dynamically generated masses [16].
Moreover, in this section we also obtain a maximum speed
for the fermions, which is less than that of photons, that
remain massless in the model and, hence, they propagate
with the speed of light in vacuo. This is the only remnant to
one-loop order of the LV nature of the model. In Sec. III we
proceed to discuss an extension of the models [15] to
incorporate the possibility of dynamical mass generation
of vector bosons, thereby providing us with alternative
ways to break a gauge symmetry and give mass to gauge
bosons without the requirement of the existence of funda-

mental scalars. The model consists of two massless fermi-
ons, coupled to an Abelian vector field without flavor
mixing, and to another Abelian vector field with flavor
mixing. Both Abelian vectors have a Lorentz-violating
kinetic term, introducing a Lorentz-violation mass scale
M, from which fermions and the flavor-mixing vector get
dynamical masses, whereas the vector coupled without
flavor mixing remains massless. When the two coupling
constants have a similar value, we find a fermion mass
hierarchy, where one fermion is very light compared to the
other. We also demonstrate dynamical mass generation for
one of the vector bosons, whose mass is of the order of the
heavy fermion mass. The other vector boson remains
massless. The model may thus constitute a prototypewhere
a mechanism for symmetry breaking and generation of
vector-meson masses, without fundamental scalars, is em-
ployed. We also discuss the role of massless Goldstone
poles in the model, associated with the dynamical breaking
of the symmetry, and how they are absent from the physical
spectrum, being ‘‘eaten’’ (as in the conventional Lorentz-
invariant models) by the vector meson to become massive.
A discussion on energetics of the massive ground state, as
compared to the massless one, is also discussed from the
point of view of both the LV effective field theory and the
embedding string theory model. Finally, conclusions and
outlook are discussed in Sec. IV.

II. FEATURES OFA LORENTZ-VIOLATING
ABELIAN GAUGE THEORY

We review in this section the main results of [15],
showing the consistency of a Lorentz-violating (LV) field
theory. The Lorentz-violating Lagrangian considered is

L ¼ � 1

4
F��

�
1� �

M2

�
F�� þ i �c 6Dc ; (3)

where D� ¼ @� þ ieA�, and � ¼ �@i@
i ¼ ~@ � ~@ (the

metric used is (1, �1, �1, �1)), which recovers QED in
a covariant gauge if M ! 1. The Lorentz-violating terms
have two roles: introduce a mass scale, necessary to gen-
erate a fermion mass, and lead to finite gap equation, as
will be seen further. We stress here thatM regularizes only
loops with an internal photon line, and that another regu-
larization is necessary to deal with fermion loops. Also,
the Lorentz-violating modifications proposed in the
Lagrangian (3) do not alter the photon dispersion relation,
which remains relativistic. Note that the model (3) chooses
a preferred frame, and therefore a Lorentz boost has no real
meaning in this context. Nevertheless, the resulting dy-
namical mass leads to the usual pole structure in the
fermion propagator, which is invariant under a Lorentz
transformation in the IR regime of the model (up to terms
of order p2=M2). The situation is similar to the magnetic
catalysis phenomenon [19], in which fermion masses in
QED are generated dynamically in the presence of an
external magnetic field background, which breaks
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Lorentz invariance and chooses a specific frame. We also
note that more general higher-order derivative extensions
of QED have been presented in [20] and references therein.
In these works, the authors consider Lorentz-violating
vacuum expectation values for tensor fields, which allow
the introduction of higher-order derivatives for the photon
field. They explain that the Lorentz-violating Lagrangians
can be written as the Lagrangian for QED in a medium, and
they study, for example, the corresponding birefringence
effects of the vacuum. Our study in this section corre-
sponds to a specific case of the latter models, and we
review quantum properties of a given Lorentz-violating
extension of QED. However, the reader should also recall
that, in view of the analysis of [16], such models are
embedded to more microscopic quantum (string) gravity
constructions. The features reviewed here do not include
the current mixing coupling of fermions which is studied in
the next section, but these features would not essentially
change, since, as wewill show, the current mixing coupling
involves a massive vector with mass mB very large com-
pared to fermion masses. As a consequence, the corre-
sponding excitations would imply small effects compared
to those discussed here.

A. Fermion dynamical mass

Using the nonperturbative Schwinger-Dyson approach,
in the ladder approximation, we find that the fermion
dynamical mass is given by [15]

mdyn ’ M exp

�
� 2�

ð4þ �Þ�
�
: (4)

Note that the expression (4) for mdyn is not analytic in �,

such that a perturbative expansion cannot lead to such a
result, which justifies the use of a nonperturbative ap-
proach. There is an obvious dependence on the gauge
parameter � , which has a consequence on the value of
mdyn, but the important point is the nonanalytic � depen-

dence of the dynamical mass, which is not affected by the
choice of gauge: the resulting dynamical mass is of the
form M expð�c=�Þ, where c is a constant of order 1. This
feature is known in the studies of dynamical mass genera-
tion in QED in the presence of an external magnetic field
[19]. Finally, as explained in the Introduction, the Feynman
gauge � ¼ 0 should be taken for the calculation of physical
processes.

B. Fermion kinetic terms

The one-loop quantum corrections for the fermion ki-
netic term, which are different for time and space deriva-
tives, are

i �c ðð1þ Z0Þ@0�0 � ð1þ Z1Þ ~@ � ~�Þc ; (5)

with

Z0 ¼ � �

2�

�
ln

�
1

�

�
þ 4 ln2� 2

�
þOð�2 lnð1=�ÞÞ

Z1 ¼ � �

2�

�
ln

�
1

�

�
þ 50

9
� 20

3
ln2

�
þOð�2 lnð1=�ÞÞ;

(6)

with � ¼ mdyn=M. Note that the dominant term, propor-

tional to lnð1=�Þ, is the same for Z0 and Z1, since in the
Lorentz-symmetric situation (M ! 1 for fixed fermion
mass), we have Z0 ¼ Z1. Also, the coefficient ��=ð2�Þ
in front of the dominant term lnð1=�Þ is the coefficient
found in QED in 4� � dimensions,

ZQED
0 ¼ ZQED

1 ¼ � �

2��
þ finite: (7)

An important remark should be made here: because of the
result (4), the ratio � is actually finite in the limit where
M ! 1, and one could think that no counterterm is neces-
sary to absorb terms proportional to lnð1=�Þ. But then a
one-loop corresponding term would be of the form � ln�,
of order �0 ¼ 1, which would be like a bare term. As a
consequence, the loop structure would be invalidated. For
this reason, apart from the dynamical mass (4), the terms
containing M have to be considered a regulator and must
be absorbed by counterterms.

C. Maximum speed for fermions

After redefinition of the bare parameters in the minimal
subtraction scheme, where only the term proportional to
lnð1=�Þ is absorbed, we find from the fermion dispersion
relation that the product of the fermion phase velocity v	

and group velocity vg is then

v2 � v	vg ¼ !

p

d!

dp

¼ 1� 2�

�

�
34

9
� 16

3
ln2

�
þOð�2Þ< 1; (8)

which shows that the effective light cone seen by fermions
is consistent with causality. If we take � ’ 1=137, as
expected in the case of ordinary QED, we obtain for the
fermion maximum speed

v ’ 1� 1:9� 10�4: (9)

Unfortunately, from a phenomenological point of view, the
order of magnitude of the difference (9) with the speed of
light is unacceptably large. Indeed, our model constitutes
an explicit realization of the ideas of [21], where the (light-
cone) maximum speed for fermions (electrons for
concreteness in our model), v ¼ ce, is different, and in
particular smaller than the speed of photons c�, ce < c�,

which in our case, as we shall discuss below, is not modi-
fied compared to the conventional speed of light in vacuo, c
[15]. Because of this, decays of ultrahigh energy photons to
electron-positron pairs,
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� ! eþ þ e�; (10)

will be kinematically allowed for photon energies E higher
than

E>
2mec

3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2� � c2e

q ; c� ¼ c: (11)

If me is replaced in the above formula by the dynamically
generated physical mass (1), in the Feynman gauge � ¼ 0
[16,17], then upon setting c ¼ c� and using (9), i.e. c2� �
c2e � 3:8� 10�4c2, we obtain

E> 103Mc2e��=ð2�Þ: (12)

If one takes for face value the dynamical mass (1), then one
may obtain lower bounds for the cutoff M, by the fact that
one observes ultrahigh energy cosmic photons with ener-
gies of up to 20 TeV [21,22]. However, if we embed the
models of [15] into microscopic brane models, as in [16],
in which the Randall-Sundrum (inverse) hierarchy allows
for the enhancement of the dynamical mass (1) to realistic
values for the electron mass me on our brane world, then
the threshold (11) and the above-mentioned fact on the
observations of ultrahigh energy photons with energies of
up to 20 TeV imply stringent constraints on the magnitude
of the modification jce � c�j< 10�15 [21] (the absence of

vacuum Cherenkov radiation for electrons would imply a
weaker limit ce � c� < 5:10�13).

Thus, phenomenologically the model, although consis-
tent with causality, would be ruled out on the basis of the
unacceptably large deviations (9) of the maximal speed for
electrons from the speed of light in vacuo, c, incompatible
with cosmic photon (and other) observations [21].
However, there may be ways out which we would like to
briefly comment upon at this stage.

One possibility would be that the gauge groups, whose
dynamics is characterized by LV higher-derivative terms,
are beyond the standard model structure, as is common
in string theory, for instance. In such a case their couplings
would be free, to be fixed by phenomenology.
Compatibility with the above-mentioned tests of Lorentz
invariance could then be achieved, but unfortunately for
unnaturally weak couplings. Another resolution, that
avoids such weak couplings, is the extension of the model
to include additional �5 axial-vector interactions among
fermions and gauge fields, as in [18]. The presence of �5

chirality matrix induces repulsive gauge forces among the
fermions, in contrast to the attractive vector interactions
(of QED type). Let �A be the fine structure constant of the
axial interactions, and �V the corresponding one for the
vector interactions. The one-loop corrections, then, that
give rise to the (subdominant) finite parts of the spatial
and temporal wave-function renormalization for the fer-
mion (6), responsible for the maximal speed of fermions
(9), may be found proportional to the combination �V �
�A [18], and thus could be made vanishingly small, or at

least compatible with the experimental situation, upon
imposing appropriate constraints between the axial and
vector couplings. If such expectations are confirmed, they
would imply that by enhancing appropriately the gauge
structure, including axial-vector interactions among fermi-
ons, as is the case of the standard model, one may obtain a
strong suppression of the Lorentz-violating effects in such
Lorentz-violating extensions of the standard model [20]
(it would be amusing to find situations implying the can-
cellation or strong suppression of the Lorentz-violating
terms, in a way resembling the gauge anomaly cancellation
of the ordinary Lorentz-invariant standard model). A de-
tailed analysis along these lines is reserved for a future
publication.
We next proceed to discuss the speed of photons in our

model and demonstrate that it equals the speed of light in
vacuo, as already mentioned and used.

D. Speed of light

Because Z0 � Z1 and therefore the effective light cone
seen by fermions involves the speed v < 1, one might see a
problem with the definition of the speed of light. We argue
here that it is not the case, because of dynamical mass
generation for the fermion. Indeed, the speed of light c is
defined by

c ¼ lim
m!0

!

j ~pj ; (13)

for finite momentum ~p and frequency !. But because the
fermion is always massive, m ¼ mdyn � 0, the limit (13)

cannot be taken, and the result (9) is not in contradiction
with the speed of light. Such a conclusion was already
obtained in [23] for a Lifshitz-type Yukawa interaction,
and a review is given in [24]. The speed of light is given by
the gauge field dispersion relation, which is not modified,
as we now explain.
The one-loop polarization tensor does not contain an

internal photon line, such that the one-loop running cou-
pling constant is the same as in QED. However, if one
considers two-loop properties of the model or higher or-
ders, the polarization tensor is affected by Lorentz viola-
tion, and it is necessary to make sure that the model
remains consistent, especially as far as gauge invariance
and speed of light are concerned. From two loops and
above, the field strength gets different corrections for
time and space derivatives, and we obtain

2ð1þ Y0ÞF0iF
0i þ ð1þ Y1ÞFijF

ij; (14)

where Y0 and Y1 represent the finite quantum corrections to
the operators F2

0i and F2
ij, respectively, after absorbing the

regularization terms proportional to 1=� or lnð1=�Þ. In
order to obtain corrections proportional to the Lorentz
scalar F��F

��, which is necessary to recover gauge in-

variance and the speed of light c ¼ 1, we rescale the time
coordinate and the component A0 as
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t ! t



and A0 ! 
A0 where 
 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Y1

1þ Y0

s
: (15)

One can easily see then that this rescaling is consistent with
gauge invariance of the fermion sector:

�c ði@0 � eA0Þ�0c ! 
 �c ði@0 � eA0Þ�0c : (16)

The factor 
, which does not appear in the space compo-
nents of the covariant derivatives, will then contribute to
the maximum speed for fermions, together with the cor-
rections to the fermion kinetic terms, as explained for the
one-loop case. A final identical rescaling for all the gauge
field components, by the factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Y1

p
, will lead to the

redefinition of the coupling constant.

III. VECTOR MASS GENERATION

We consider now two vectors A� and B�, with respec-

tive strengths F�� and G��. Following the original model

of [12], and introducing Lorentz violation in the vector
sector in a way similar to [15], we consider the Lagrangian

L ¼ � 1

4
F��

�
1� �

M2

�
F�� � 1

4
G��

�
1� �

M2

�
G��

þ ��ði6@þ gA 6Aþ gB 6B�2Þ�; (17)

where � ¼ ~@ � ~@ is the spatial Laplacian and the fermions
are flavor doublets,

� ¼ c
�

� �
; �2 ¼ 0 �i

i 0

� �
: (18)

This theory is invariant under the gauge transformation

A� ! A� þ g�1
A @� B� ! B� þ g�1

B @�

c ! expði�2Þc :
(19)

We consider the same Lorentz-violating regularization for
the gauge-fixing terms, so that the bare propagators are

ðDA
��Þbare ¼ ðDB

��Þbare ¼ i

1þ ð ~kÞ2=M2

�
���

k2
þ �

k�k�

k4

�
;

(20)

where k� ¼ ðk0; ~kÞ and k2 ¼ k20 � ð ~kÞ2. We shall proceed

now to discuss dynamical vector boson mass generation in
the model (17) and the associated patterns of the breaking
of the gauge symmetry (19).

A. Dressed fermion sector

In this subsection we shall demonstrate that the fermions
in the model (17) acquire a dynamical mass, with the
mechanism already described in [15] for the case of a
single fermion interacting with a single gauge field through
a vector coupling. Neglecting the wave-function renormal-
ization of the form (6), which is possible after absorbing

the ln� terms by counterterms, we look for a fermion self-
energy of the form

� ¼ m1 þm2�3 with �3 ¼ 1 0
0 �1

� �
; (21)

where m1 and m2 are generated dynamically and are re-
lated to the fermion dynamical masses mc and m� by

mc ¼ m1 þm2 and m� ¼ m1 �m2: (22)

The dressed fermion propagator is therefore

G ¼ i

6pþm1 þm2�3
¼ i

6pþm1 �m2�3
ð6pþm1Þ2 �m2

2

¼ i
ðm1 �m2�3Þð�p2 �m2

1 þm2
2Þ þ 2m1p

2

4m2
1p

2 � ðp2 þm2
1 �m2

2Þ2

þ i 6p�p2 þm2
1 þm2

2 � 2m1m2�3
4m2

1p
2 � ðp2 þm2

1 �m2
2Þ2

; (23)

where p� ¼ ðp0; ~pÞ and p2 ¼ p2
0 � ð ~pÞ2. We next proceed

to discuss the dynamical generation of mass for the vector
boson B� in the model, which constitutes the main topic of

our discussion in this work.

B. Dressed B-vector sector

As explained in [12], the vector B� will dynamically

acquire the mass mB, and we review here the nonperturba-
tive mechanism, in the Lorentz-symmetric case. The Ward
identity corresponding to the interaction with the vector B�

is

g�1
B k��B

�ðp� k; pÞ ¼ �2G
�1ðpÞ �G�1ðp� kÞ�2; (24)

where k� is the momentum of the vector meson.3 As a

consequence, if the dynamical mass m2 is indeed gener-
ated, we obtain

½�2; G�1ðpÞ� � 0; (25)

and the limit k� ! 0 gives a nonvanishing right-hand side

of the Ward identity (24), which is possible only if the
dressed vertex has a pole at k� ¼ 0. One can then decom-

pose the vertex into a regular part �reg
� and a singular part

�sing to write

�B
�ðp; kÞ ¼ �

reg
� ðp; kÞ þ �1

k�

k2
�singðp; kÞ;

where �1 ¼
0 1

1 0

 !
:

(26)

3Note that this Ward identity is the same for the LV model (17)
, since its derivation is independent of the form of the bare vector
propagator. The difference with the Lorentz-symmetric case is
that the dressed n-point functions depend on p0 and ~p indepen-
dently, and not only through the combination p2

0 � ð ~pÞ2.
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The reader should notice here that Lorentz invariance has
been assumed for this decomposition, since the singular
part is assumed proportional to k�. We shall come back to
this important point in the next subsection, when we dis-
cuss the cancellation of massless poles from scattering
amplitude, as required by the Goldstone theorem.

For the moment, based on the above considerations, we
consider the Schwinger-Dyson equation for the vector
propagator

��� ¼ g2BTr
Z
p
�B
�ðp� k; pÞGðpÞ���2Gðp� kÞ; (27)

from which one finds the transversality of the polarization
tensor k���� ¼ 0. As a consequence, the B�-vector

propagator is of the form

DB
��ðkÞ ¼ 1

1þ ð ~kÞ2=M2

�
1

k2 � k2�BðkÞ
�
��� �

k�k�

k2

�

þ ð� þ 1Þ k�k�
k4

�
: (28)

From this last expression, we see that a vector massmB can
be generated if�BðkÞ has a pole for k� ¼ 0. The next step
is to differentiate the Ward identity (24) with respect to k�,

and plug the decomposition (26) into the Schwinger-Dyson
equation (27) to obtain

lim
k!0

fk2�BðkÞg

¼g2B
4
Tr
Z
p
��

�
@

@p�GðpÞþGðpÞ�reg
� ðp;pÞGðpÞ�2

�
¼m2

B;

(29)

where one notices that the singular part �sing does not
appear. We note that the pole structure retains its
Lorentz-invariant form in our minimal LV theory, since
the Lorentz violation in the vector-meson propagator en-

ters only via nonsingular factors 1=ð1þ ð ~kÞ2=M2Þ. As we
shall discuss in the next section, the 1=k2 pole is due to the
exchange of a massless spin-zero Goldstone particle, asso-
ciated with the breaking of the B-vector local rotation
(gauge) symmetry generated by �2 (19).

We next remark that the integral (29) is regularized in
[12] with an additional power of the momentum in the
fermion propagator:

G�1ðpÞ ¼ 6pþm1 þm2�3

�
m2

p2

�
�
; (30)

where the limit � ! 0 will be taken after integration over
momentum. This limit is taken in such a way that the ratio

�

gA � gB
! finite; (31)

and the resulting mass for the vector B� is

m2
B ¼ 2

3

g2B
g2A � g2B

ð�mÞ2 ¼ 8

3

g2B
g2A � g2B

m2
2; (32)

where �m ¼ 2m2 is the fermion mass splitting.
Although we have a Lorentz-violating theory, we will

assume that the vector mass mB is well approximated by
the expression (32). As we shall see later on [cf. Eq. (49)
below], the limit (31) is satisfied, in order of magnitude, by
the couplings in our model. Also, we will neglect correc-
tions to the Lorentz-violating factor, so that the dressed
propagator we will use for the vector B� has the form

DB
�� ¼ 1

1þ ð ~kÞ2=M2

�
��� � k�k�=k

2

k2 �m2
B

þ ð� þ 1Þ k�k�
k4

�
:

(33)

We shall use this propagator to discuss fermion mass
generation as a consistent solution to the pertinent
Schwinger-Dyson equations and then demonstrate the as-
sociated mass hierarchy. Before doing so, though, we con-
sider it as essential to discuss the cancellation of massless
Goldstone poles from physical scattering amplitudes of
this model, which is an essential feature of all such
dynamical gauge symmetry breaking models [12,13].

C. Absence of Goldstone poles from the
physical spectrum

The dynamical breaking of the symmetry associated
with the masslessness of the vector boson, B�, would

imply, according to Goldstone’s theorem, a massless
pole. However, such a massless pole is not present in the
physical spectrum as it is eaten by the corresponding vector
boson to become massive. This is demonstrated explicitly
in the Higgless models dynamically in [12,13] and the
proof can be extended in our minimal LV models, by
making use of the form of the decomposition (26) of the
vertex function into a regular and a pole part. The Lorentz-
invariant form of the dressed vertex, assumed in our mini-
mal LV model, is crucial for the demonstration of the
absence of massless Goldstone poles from the physical
scattering amplitudes.
We follow here the argument given in [13] for the graph

representing fermion scattering, and we concentrate for
simplicity on the graphs involving the B� vector meson

only, which are relevant for the symmetry breaking pat-
terns. The presence of the (massless) vector meson A� does

not affect our arguments. The graph representing the vertex
decomposition (26) is given in Fig. 1. The singular parts of
the vertex function are due to the exchange of the massless
spin-zero scalar Goldstone modes, which exist only in
internal lines and they do not couple directly to the
B-vector mesons.
The total scattering amplitude T contains a one-vector-

meson-irreducible part (T0) and a one-vector-meson ex-
change part, and is depicted in Fig. 2. The external fermion
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lines are on shell. Notice that in our minimal LV scenario

the LV terms appear as nonsingular factors 1=ð1þ
ð ~kÞ2=M2Þ in the vector-meson propagators (28), but
Lorentz-invariant structure is assumed for the vertex func-
tions, as a consequence of the form of the Ward identity
(24), as discussed above and in [16]. In fact it is this
assumption that allows us to extend the pinch technique
arguments of ordinary Lorentz-invariant theories [17] to
our minimal LV scenario, in order to argue that physical
gauge invariant results are obtained by ignoring the longi-
tudinal parts of the vector-meson propagators.

The T0 part contains a pole due to the Goldstone mass-
less scalar exchange (denoted by a dash line in the graphs).
Such exchanges are responsible for the 1=k2 poles

structure, where k is the intermediate momentum transfer.
These diagrammatic structures follow directly from the
pertinent Schwinger-Dyson equations, upon using the de-
composition (26).
The complete physical scattering amplitude T is repre-

sented in the upper graph (a) of Fig. 3, and its pole structure
is detailed in the lower figure (b). In the last graph of
figure (b) we may use again the decomposition of the
vertex function (26) in order to express the regular part
of the vertex that appears on the left-hand side of the vector
meson in terms of the full vertex and the singular part:

�
reg
� ¼ �B

� � �1
k�
k2
�sing. Since the external fermions are on

shell, the full vertex is transverse, k��B
� ¼ 0, such that

only the contribution proportional to ��� of the vector

propagator plays a role in the total amplitude T, and not
the contribution proportional to k�k�. We write this con-
tribution ���DB. The B-vector exchange is proportional to

��
B���DB�

�
B, with the following pole structure:

� k�

k2
�singðp0; kÞ 1

1þ ð ~kÞ2=M2

i���

k2 � k2�BðkÞ

� k�

k2
�singðp; kÞ !k!0 � i

m2
B

�singðp; 0Þ 1
k2

�singðp; 0Þ:
(34)

The latter pole structure is canceled by the pole corre-
sponding to the exchange of the scalar excitation, with
propagator i=k2 and which has an effective derivative
coupling �k� to the fermions [13], with

�2 ¼ lim
k!0

�
1

k2�BðkÞ
�
¼ 1

m2
B

: (35)

Indeed, this graph leads to the following pole structure:

1/k

+ T’

P PRT’

g
2

BT’T

complete
scattering ampl.

one−vector−meson
irreducible scattering ampl.

2

FIG. 2. The upper figure shows the quantum corrections to the
B-meson fermion vertex function, including the one-vector-
meson-irreducible parts T0. The middle figure shows the decom-
position of T0 into a regular (R) and a pole (P) part, due to the
Goldstone scalar exchange (denoted by a dashed line, corre-
sponding to the 1=k2 pole structure). The lower figure gives the
total scattering amplitude T of two fermions in terms of the T0
part and the one B-vector-meson exchange.

P

+

P

R

FIG. 1. The decomposition (26) of the B-meson-fermion ver-
tex function into a regular and a pole (singular) part; the pole is
attributed to the exchange of a massless Goldstone spin-zero
excitation which though is absent from the physical spectrum
(scattering amplitude) due to delicate cancellations between
singular vertex and propagation poles. The notation ‘‘R’’ stands
for regular (nonsingular) parts and ‘‘P’’ for pole (singular)
graphs.

B

P
(a)

P

g
B

2

(b) Tpole = g2
B

R R P P

R P P+ g2

FIG. 3. The upper figure (a) shows the complete scattering
amplitude for two fermion scattering T, while the lower figure
(b) details its pole structure, using the vertex decomposition (26),
cf. Fig. 1.
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� �2k�k�
k�

k2
�singðp0; kÞ i

k2

� k�

k2
�singðp; kÞ !k!0 1

m2
B

�singðp; 0Þ i

k2
�singðp; 0Þ; (36)

which is the opposite of the contribution (34). As a con-
sequence, the effective scalar excitation does not appear in
the spectrum, and decouples from the system. This can-
cellation is depicted in Fig. 3. The same proof can be
extended to all physical processes. The extension of the
pinch technique arguments of the Lorentz-invariant case to
this minimal LV model [16,17] ensures the contribution
only of the transverse part of the propagator, as used above.
Hence, the spin-zero Goldstone massless excitations dis-
appear from the physical spectrum of the model, in agree-
ment with the general arguments on dynamical breaking of
the symmetry.

Finally, we remark that here the would-be Goldstone
mode refers to the spontaneous breaking of the gauge sym-
metry (19). The Lorentz invariance is broken explicitly in
the model, due to the presence of the higher-derivative terms
[in terms of the microscopic models of Ref. [16], the explicit
breaking of Lorentz symmetry is provided by the recoiling
pointlike D0-brane (D-particle) defects in space time].

D. Fermion gap equations

The Schwinger-Dyson equation for the fermion propa-
gator is

� ¼ igA
Z

��G��
AD

A
�� þ igB

Z
���2G�

�
BD

B
��; (37)

whereDA
�� andD

B
�� are the dressed vector propagators, �

�
A

and ��
B are the corresponding dressed vertices, andG is the

dressed fermion propagator. We will consider the so-called
ladder approximation, where the dressed vertices are as-
sumed to be the same as the bare ones:

��
A ’ igA�

� and ��
B ’ igB�

��2: (38)

The vector A� remains massless, and its dressed propaga-

tor will be approximated by its bare form (20). The propa-
gator for the vector B� will be approximated by (33),

where we consider the Feynman gauge � ¼ 0, according
to the discussion given in the Introduction. With these
approximations, and taking into account the identities
�2�3�2 ¼ ��3 and �22 ¼ 1, the Schwinger-Dyson (37)
leads to

m1 þm2�3 ¼ �im1

Z
p

p2 �m2
1 þm2

2

4m2
1p

2 � ðp2 þm2
1 �m2

2Þ2
� ��ðg2ADA

�� þ g2BD
B
��Þ��

þ im2�3
Z
p

�p2 �m2
1 þm2

2

4m2
1p

2 � ðp2 þm2
1 �m2

2Þ2
� ��ðg2ADA

�� � g2BD
B
��Þ��: (39)

Identifying terms independent of �3 and those proportional
to �3, and assuming that m1 � 0, m2 � 0, one obtains the
following gap equations after a Wick rotation:

1 ¼
Z
q

q2 þm2
1 �m2

2

4m2
1q

2 þ ðq2 �m2
1 þm2

2Þ2

� 4g2Aðq2 þm2
BÞ þ g2Bð4q2 þm2

BÞ
q2ðq2 þm2

BÞð1þ ð ~qÞ2=M2Þ

1 ¼
Z
q

q2 �m2
1 þm2

2

4m2
1q

2 þ ðq2 �m2
1 þm2

2Þ2

� 4g2Aðq2 þm2
BÞ � g2Bð4q2 þm2

BÞ
q2ðq2 þm2

BÞð1þ ð ~qÞ2=M2Þ ;

(40)

where q2 ¼ p2
0 þ ð ~pÞ2. In terms of the unknown quantities

u ¼ m1

m2

and � ¼ m2

M
; (41)

the gap equations to solve are then of the form

16�3 ¼ Izð�; uÞ; z ¼ �1; (42)

where

Izð�; uÞ ¼
Z 2�

0
dsin2

Z 1

0

dt

1þ�2tsin2

� tþ zðu2 � 1Þ
4u2tþ ðt� u2 þ 1Þ2

� 4ðg2A þ zg2BÞtþ a2ð4g2A þ zg2BÞ
tþ a2

: (43)

In the previous integral, t ¼ q2=m2
2, and the parameter a2

is given by Eq. (32):

a2 ¼ m2
B

m2
2

¼ 8

3

g2B
g2A � g2B

¼ 8

3

�B

�A � �B

; �i � g2i =4�:

(44)

In what follows, we will assume that �A > �B, in order to
be consistent with the calculation of the vector mass (32).

E. Mass hierarchy

We expect the dimensionless ratio � to satisfy � � 1,
and we therefore expand the integral equations (42) for
small �. Also, since we are looking for a solution with
mass hierarchy, we will investigate if it is possible to have
u ’ 1, such that the fermion masses (22) satisfy m� �
mc ’ 2m2. To see if this is possible, we set u ¼ 1 in the

integral equations (42), and we keep the dominant contri-
bution only. We will then check the consistency of this
regime, as far as the coupling constants are concerned. We
have the two gap equations (42):

16�3 ’
Z 2�

0
dsin2

Z 1=�2

0
dt

4�

ðtþ 4Þðtþ a2Þ
� ð4ð�A þ z�BÞtþ a2ð4�A þ z�BÞÞ; (45)
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from which we obtain (z ¼ �1)

4�ð4� a2Þ ¼ ð4ð4� a2Þ�A þ zð16� a2Þ�BÞ
� ln

�
1þ 1

4�2

�
� 3za2�B ln

�
1þ 1

a2�2

�
;

(46)

with solutions

ln

�
1þ 1

4�2

�
’ �

�A

ln

�
1þ 1

a2�2

�
’ �ð16� a2Þ

3a2�A

:

(47)

One can see from this result that the dimensionless dy-
namical mass � depends only on the coupling �A,

� ’ exp

���

2�A

�
: (48)

The regime u2 ’ 1 is consistent provided the coupling
constants satisfy the second equation (47). One can easily
notice that, in order of magnitude, a2 ’ 4 is a consistent
approximation, since in that case the second of the equa-
tions (47) reduces to the first. On taking into account the
expression (44), we observe that the condition a2 ’ 4
translates to the following relation among the couplings:

3�A ’ 5�B: (49)

This is consistent with the condition a2 < 16, required by
the positivity of the logarithm in the second equation (47),
since this latter condition gives 6�A > 7�B. In practice, the
above equation should only be understood as an order of
magnitude approximation. This is consistent with the order
of magnitude of the limit (31) and the resulting expression
for the boson mass (32). We note at this point that any
renormalization group running of the couplings should
respect this condition in the infrared regime, where dy-
namical mass generation takes place.

As a consequence, one can find a consistent regime
u2 ’ 1, for which m� � mc ’ 2m2. From Eq. (44), we

also observe that the vector mass is mB ’ 2m2 ’ mc .

At this point, we can give an estimate of the ratio
m�=mc , by noting the following. For the calculation of

the integrals (43), we have assumed that u2 ¼ 1, and
concluded that the coupling constants must satisfy the
relation (49). If we relax slightly this constraint, we can
find a nonvanishing value for % � u2 � 1 ’ 4m�=mc by

approximating

Iþð�;uÞ�Iþð�;1Þ’16�2%

�
Z 1

%
dt
ð4�tÞ½ð�Aþ�BÞtþ4�Bþ�B�

tðtþ4Þ3
I�ð�;uÞ�I�ð�;1Þ’16�2%

�
Z 1

%
dt
ð4þ3tÞ½ð�A��BÞtþ4�B��B�

tðtþ4Þ3 ; (50)

where we took into account that a2 ’ 4. Since Iþð�; uÞ ¼
I�ð�; uÞ, and we calculated � above according to the
identity Iþð�; 1Þ ¼ I�ð�; 1Þ, we conclude that the inte-
grals appearing on the right-hand side of the equations (50)
must be equal. Evaluating these integrals analytically and
identifying them leads to the following expression:

ð4�A þ �BÞ
�
ln

�
1

%

�
þ 2 ln2

�
� 8�A þ �B

¼ ð4�A � �BÞ
�
ln

�
1

%

�
þ 2 ln2

�
þ 8�A � 5�B; (51)

from which we finally obtain

% ¼ 4 exp

�
6� 8

�A

�B

�
’ 2:6� 10�3 � 1; (52)

using the order of magnitude (49). Thus, we consistently
obtain the following mass hierarchy:

m� ’ 1:3� 10�3Me�ð�=2�AÞ � mc ’ 2Me�ð�=2�AÞ <mB

’ mc ¼ 4Me�ð�=2�AÞ: (53)

We stress once more that this hierarchy should be consid-
ered together with the condition (49) between the (weak)
couplings for consistency.
The hierarchy we just found is thus in the right direction

for more realistic models involving the entire standard
model non-Abelian gauge group, which we hope to discuss
in a forthcoming publication. It is important to stress,
though, once again that the hierarchies derived here and
in [18] are relative hierarchies between the various masses.
The absolute mass scale of the lightest excitations is very
suppressed if we consider the LV models by themselves. It
is only after embedding them to multiple brane models
[16], with a reverse Randall-Sundrum hierarchy, that phe-
nomenologically realistic values for the masses are ob-
tained. At present we cannot avoid the use of such exotic
enhancement mechanisms, and indeed this may be the only
possibility for such LV models. In the subsection that
follows, such an embedding mechanism plays an important
role in understanding better the energetics of the mass-
generated ground state of the models.

F. Energetics

The dynamical mass generation models of [12,13] are
not characterized by minimization of the effective poten-
tial, unlike the Higgs-type models [1]. In fact, in [12] a
generic argument was given that the energy of the massive
ground state is the same to that of the massless one. The
argument is based on the fact that in those field theories,
which do not involve any mass scale initially, the generated
fermion mass depends on a continuous arbitrary mass
parameterM. A detailed argumentation using the quantum
structure of the models has been provided in [12], where
we refer the interested reader for details. For our purposes
here we invoke a simpler, but equally powerful proof,
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based on a theorem independently proposed by several
authors but known mostly by the name Feynman-
Hellmann theorem [25]. The theorem states that if there
is a ground state j��i of a system with Hamiltonian that
depends on a parameter �, then for the energy E of this
ground state we have

@E

@�
¼
�
��

��������@Ĥ@�
����������

�
; (54)

where Ĥ is the Hamiltonian operator of the system. It is
important that the parameter � is continuous. The theorem
uses, of course, in its original formulation the Schrödinger
equation, but it suffices to demonstrate the main features of
the models of interest to us here. Nevertheless, as already
mentioned, the pertinent argumentation has been extended
in [12] to incorporate field-theoretic systems. In the dy-
namical models of [12], the role of the continuous parame-
ter is played by the mass scale M appearing in the
dynamically generated masses, which is arbitrary. The
Hamiltonian is independent of M, as there is no explicit
mass scale in the Lagrangian, and hence, as a result of (54),
the ground state energy E is independent of M. This
implies that, in contrast to the Higgs case, where the
mass generation implies a minimization of the Higgs po-
tential, the ground state energy in the dynamical symmetry
breaking Higgless models is independent ofM and hence it
vanishes along with the massless case.

Now we come to our models (3) or (17). In contrast to
the case of [12], there is explicit dependence on the scaleM
in the Hamiltonian of these models, due to the LV higher-
derivative terms. The result is

@E

@�
¼ þ 1

4Mh0j
Z

d4xEðF���F
�� þG���G

��ÞEj0iM;
� ¼ M�2; (55)

where the index E denotes Euclidean formalism, as a result
of the fact that the Hamiltonian of the system is identified
with minus the effective Euclidean action.

One should expect that the Lorentz-violating nature of
the vacuum j0iM implies in general the nonvanishing of the
right-hand side, implying a dependence of the vacuum
energy on the dynamically generated mass. Using the
cyclic Bianchi identity for the gauge bosons field strengths,

@½�F��� ¼ 0; @½�G��� ¼ 0; (56)

with the symbol ½� � �� denoting symmetrization of the
appropriate indices, we obtain

@E

@�
¼ � 1

4Mh0j
Z

d4xEðF��@i½@�F�i þ @�Fi��
þG��@i½@�G�i þ @�Gi��ÞEj0iM: (57)

Integrating by part and assuming that the fields decay away
at space-time infinity, one may write Eq. (55) in the form

@E

@�
¼ þ 1

2Mh0j
Z

d4xEð@�F��@iF
�i

þ @�G��@iG
�iÞEj0iM: (58)

We write then the equations of motion for the vector fields,
from the Lagrangian (17) where we neglect the operator
�=M2, and we obtain

@E

@�
¼ þ 1

2Mh0j
Z

d4xððJ0AÞ2 þ ðJ0BÞ2 þ ~JA � ~JA þ ~JB � ~JB
� JA;k@0F

k0 � JB;k@0G
k0ÞEj0iM; (59)

where the currents are J
�
A ¼ �c��c and J

�
B ¼ �c���2c

and the reader is reminded of the Euclidean formalism used
in (59). The issue is whether the LV vacuum admits non-
trivial components of the vacuum currents for the fermions.
If such fluctuations are absent in the theory, then the
situation resembles that of [12], in which the vacuum
energy is independent of the scale M and thus the vacuum
energy for the case of nontrivial mass generation is degen-
erate with the massless case.
From the point of view of embedding such LV field

theories into a microscopic string/brane theory framework,
as in [16], such an energy degeneracy is consistent with the
landscape nature of string theory vacua. In fact, as we have
discussed in some detail in [16], to obtain the effective low-
energy LV field theory of the generic type (3) a particular
quantum ordering of the higher-derivative operators is
required. For one particular ordering the LV terms are
absent. Various orderings correspond to different vacua,
which conserve or violate Lorentz symmetry. In the con-
text of string landscape, such vacua are all degenerate in
energy and it is only the requirement of a well-defined low
energy (i.e. infrared) effective field-theory limit that seems
to be the selection criterion for the massive phase, where
infrared infinities are absent.
Nevertheless, in the framework of the LV model studied

here, one might face a situation where nontrivial conden-
sates of squares of stationary four-currents J�A;B are ob-

served in the (rotationally invariant) vacuum. For such
stationary currents, where @0F

k0 ¼ @0G
k0 ¼ 0, we have

then from Eq. (59)

@E

@�
¼ 1

2Mh0j
Z

d4xðJ�A JA� þ J
�
B JB�ÞEj0iM 	 0: (60)

This implies that the vacuum energy E in this case is a
monotonically decreasing function of M2, so that the vac-
uum energy of the massive phase would be smaller than
that of the massless case, and thus mass generation would
be energetically preferable. Turning the logic around, we
may also say that in the presence of higher-derivative
Lorentz-violating terms in the action of the model, it is
energetically preferable to have nontrivial vacuum con-
densates of the sum of squares of the currents in the
massive phase of the model.
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IV. CONCLUSIONS

The model (17) we considered here contains Lorentz-
violating terms which are not measurable at the classical
level, if the mass scaleM is of the order of the Plank mass.
Nevertheless, quantum corrections generate finite effects
from these Lorentz-violating terms, which lead to the
dynamical generation of masses for elementary particles
(fermions and vectors). The mechanism of vector mass
generation is based on the exchange of a massless
fermion-antifermion bound state, which represents a scalar
excitation. This scalar decouples from the spectrum, due to
a cancellation of the corresponding propagator pole with a
singular effective vertex, resulting from a nontrivial fer-
mion self-energy structure, generated dynamically. Finally,
the resulting masses exhibit a natural hierarchy.

However, as already emphasized in the text above, the
toy models discussed here, involving only vector interac-
tions among the fermions, suffer from a serious phenome-
nological drawback: the deviation of the value of the
maximal (light-cone) speed seen by the fermions (9)
from that of the speed of light in vacuo c, as a result of
Lorentz violation, is unacceptably large to be compatible
with the current phenomenology [21,22], unless unnatu-
rally small couplings for the LV gauge groups are invoked.
A possible way out would be to enhance the gauge group
by including also axial-vector interactions [18], which, in
view of their repulsive nature, may suppress the above
deviation by terms proportional to the difference of the
fine structure constants between the vector and axial-vector
interactions. In general, such gauge groups are needed to
describe the standard model physics in this context, and
one might be hopeful that the above described toy Lorentz-
violating models may have a chance of providing phenom-
enologically realistic theories, upon being extended to
include axial-vector interactions of standard model type.

The extension of this work to a non-Abelian gauge
theory needs to be looked at carefully, though. Indeed, in
order not to break gauge invariance, higher-order space
derivatives should naively be covariant, therefore introduc-
ing new interactions which are not renormalizable. To
avoid this, one needs to define a new field strength, where
the higher-order space derivatives act on the Abelian sector
only. A further issue in the non-Abelian case is the poten-
tial loss of unitarity due to tree-level divergences in the
scattering of longitudinally polarized massive gauge bo-
sons. In the standard model, such divergences are canceled
by the corresponding graphs with a Higgs exchange. A
detailed analysis of such issues is postponed to a future
publication, where more realistic phenomenological mod-
els will be studied.

Before closing we would like to make a final remark
concerning the limit where the LV mass scale M ! 1,
which some readers might wish to take, especially if they
attempt to view the current models as LV regulators.4 First
of all, we should note that the above-mentioned finite
maximal speed for fermions (9), which is independent of
the cutoff M, would persist in the M ! 1 case and in this
sense one cannot simply view the LV model as a mere
regulator. There are physical effects that cannot removed in
the limit M ! 1. More generally, the quantum theory has
a meaning only when regularized, which is achieved with a
finite value for M. Once quantum corrections are calcu-
lated, and terms depending on M absorbed by counter-
terms, there are still finite effects, as can be seen with
Eqs. (6) for Z0 and Z1, for example. However, one may
envisage a Randall-Sundrum (RS) normal hierarchy situ-
ation in which a shadow world is placed at distance ‘ from
our brane world. According to this picture, one assumes
that on the shadow world the masses are generated by our
LV Higgs-less mechanism, and are all proportional to M.
Because of the warped bulk space time of the RS model,
the corresponding masses in our world are all scaled by the
factor [26]: m / Me�
‘, where 
 is proportional to the
bulk gravitational constant of the higher-dimensional bulk
space time. A limit M ! 1 can then lead to finite results
for the masses by letting ‘ ! 1 such thatMe�
‘ ¼ finite,
of a value that sets a realistic mass scale on our world. This
preserves the resulting hierarchy. Notice that it is only in
the limiting case where the LV scaleM ! 1 that we apply
the normal RS hierarchy. In this sense, the latter is viewed
simply as an extra regularization. On the other hand, in the
microscopic stringy models of [16], with a finite density of
bulk space-time defects, where M is kept finite, one needs
an inverted RS hierarchy to obtain realistic masses, as
explained in that work.
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4Moreover, as we have already mentioned, when we embed
the model in more microscopic brane world models with higher-
dimensional bulk spaces punctured by LV pointlike brane struc-
tures, acting as defects, the scale M is effectively inversely
proportional to the density of these defects through their fluc-
tuation �2 [cf. (2)]. Hence, in the limit of vanishing defects
density we have an explicit realization of the limit M ! 1.
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