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Our recent method to calculate renormalized functional determinants, the partial-wave cutoff method, is

extended for the evaluation of 4-D fermion one-loop effective action with arbitrary mass in certain types

of radially symmetric, non-Abelian, background gauge fields (including instantonlike and instanton-

antiinstanton-like configurations). A detailed study on functional determinants for matrix-valued radial

differential operators is presented, explicating both our analytic treatment on the high partial-wave

contribution and the application of the generalized Gel’fand-Yaglom formula to determine the low partial-

wave contribution. In general, some numerical work is needed for the low partial-wave part. In the

massless limit, however, the factorizable nature of our partial-wave radial differential operators can be

exploited to evaluate semianalytically even the low partial-wave part, and we thus have the full fermion

effective action calculated explicitly in a class of non-Abelian background gauge fields. With nonzero

mass, we also perform necessary numerical analysis as regards the low partial-wave contribution to

produce numerically exact results for the massive effective action. Comparing these against the results of

the large mass expansion, the validity range of the large mass expansion is addressed. Also studied are

possible quantum deformation of instanton into a non-self-dual configuration and the fermion mass

dependence of the effective instanton-antiinstanton interaction, based on the fermion effective action we

evaluated.
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I. INTRODUCTION

While in field theoretic studies we are often led to
consider the one-loop effective action in some nontrivial
backgrounds, it is quite difficult to have it explicitly eval-
uated. Also lacking are well-controlled approximation
schemes for the quantity, which can cover broad types of
backgrounds. This is true in four spacetime dimensions
especially. Recently, for the case involving radially sym-
metric backgrounds, we (with G. Dunne) [1,2] developed a
new partial-wave-based calculational scheme, the partial-
wave cutoff method, by which the exact computation of
fully renormalized one-loop effective actions can be per-
formed explicitly. This method is a unique package of
analytical and numerical procedures (to treat high and
low partial-wave contributions, respectively). So far it
has been applied to the accurate determination of QCD
single-instanton determinants for arbitrary quark mass val-
ues [3], to the prefactor calculation in the false vacuum
decay [4], and to the evaluation of the scalar one-loop

effective actions (for any given mass values) in a class of
Abelian or non-Abelian radially symmetric background
gauge fields [2]. Also, very recently, the fermion one-
loop effective action in Abelian radial background gauge
fields has been studied by this method [5], an important
byproduct of this work being that there exist marked
differences between the small mass limits of the derivative
expansion for spinor and scalar theories.
In this paper the partial-wave cutoff method will be used

to study 4-D fermion one-loop effective actions in a class
of genuinely non-Abelian, radially symmetric, background
gauge fields. This case differs from those of our earlier
studies in that, as the differential operators pertaining to
partial-wave sectors are not completely separate, we here
have to deal with an infinite number of functional deter-
minants for matrix-valued radial differential operators.
One might then suspect that, because of technical difficul-
ties in renormalizing the infinite product of such functional
determinants and also in performing the needed numerical
calculations, our whole approach becomes impractical in
this case. Despite this complication, it will be demon-
strated here that our method can suitably be extended
such that the exact computation of the effective action
becomes possible for this case as well. There are also
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issues specifically involving fermion effective action (e.g.,
the massless limit behavior), and we intend to provide
clarification on such aspect.

Specifically, in a 4-D Euclidean SU(2) gauge theory, we
will consider in this work the one-loop effective action of a
Dirac field (with mass m and in the fundamental represen-
tation) when the background gauge fields are given as

A�ðxÞ ¼ �ð�Þ
��ax�fðrÞ�a; (1.1)

where�, � ¼ 1, 2, 3, 4, r � ffiffiffiffiffiffiffiffiffiffiffi
x�x�

p
, and �ð�Þ

��a are ’t Hooft

symbols [6]. Writing fðrÞ ¼ 1
r2
HðrÞ, the radial function

HðrÞ is then assumed to have the form

ðCase IÞ: HIðr;�Þ ¼ ðr=�Þ2�
1þ ðr=�Þ2� ; ðj�j � 1Þ; (1.2)

ðCase IIÞ: HIIðr;R;�Þ ¼ ðr=�Þ2
1þ ðr=�Þ2

1þ tanhðr�R
�� Þ

2
;

ð� can take either signÞ (1.3)

with constant background parameters �, �, R and �. This
genuinely non-Abelian background field has been chosen
so that one can learn something about the behavior of the
corresponding fermion effective action as one changes the
background parameters (and fermion mass m). Note that,

in Case I (and Case II with �> 0), our background gauge
fields have the Pontryagin index equal to �1; on the other
hand, Case II with �< 0 (and the ratio R=� significantly
larger than 1) corresponds to a well-separated instanton-
antiinstanton configuration with zero Pontryagin index.
[The Pontryagin index of the fields (1.1) is determined
by the two numbers (see (2.13)), Hð0Þ and Hð1Þ]. In
Fig. 1 we have given the plots of the function HðrÞ for
some representative choices of our free parameters. (In
Case I backgrounds the scalar effective action was studied
already in Ref. [2]). Needless to say, with these back-
grounds, the small mass limit of the fermion one-loop
effective action becomes particularly interesting physically
(because of the issue concerning fermion zero modes). In a
well-separated instanton-antiinstanton configuration, the
related effect is also believed to generate long-range inter-
action between instanton and antiinstanton [7,8]. Our study
should illuminate such aspect, too. Also, for Case I back-
ground, studying the �-dependence of the fermion effec-
tive action can give a useful information as regards the
quantum stability of instanton under deformation.
For the choice � ¼ þ1 or�1 in Case I above, our fields

(1.1) represent single instanton or antiinstanton solutions
[9], in the regular (for � ¼ þ1) or singular (for � ¼ �1)
gauge. These are (anti-)self-dual backgrounds, and here
we have a simple relationship [10] between the fermion
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FIG. 1 (color online). Plots of the radial profile function HðrÞ. For Case I, we have drawn the profile for � ¼ 1, 3, 5 in (a) and
� ¼ �1, �3, �5 in (b). Note that HðrÞ behaves like a step function if j�j becomes very large. The plot in (c)—a spherical-wall-like
(anti-)instanton configuration—is appropriate to Case II with �> 0, and the plot in (d)—an instanton-antiinstanton configuration—
corresponds to case II with �< 0.
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one-loop effective action and that for a scalar field, which
can be exploited for the effective action calculation. This
was crucial in the calculation of [3]. But, for Case I with
� � 1 (which represents deformed instanton or antiinstan-
ton) and for Case II, we need to perform an entirely
separate calculation for fermions; in this direct fermion
analysis, additional complication due to the magnetic mo-
ment coupling term arises. Here we have found that the
recently established chiral separation of the fermion effec-
tive action [11] can be utilized to the full advantage—
thanks to the latter, our technique to evaluate functional
determinants of radially separable differential operators
can be extended to our problem involving Dirac fields.

Even in dealing with an infinite number of determinants
for matrix valued radial differential operators, the partial-
wave cutoff method is highly effective. Especially, for the
analytic calculation of the high partial-wave contribution
to the effective action, a simple extension of theWKB-type
series is made available with matrix-valued differential
operators. As for the low partial-wave contribution, we
can evaluate individual partial-wave determinants numeri-
cally with the help of an appropriate generalization of the
Gel’fand-Yaglom method [12]. This calculation will be
more involved than the case with ordinary (i.e., non-
matrix-valued) differential operators, but still manageable.
The most delicate part of computation is at the stage of
performing the sum over (numerically evaluated) low
partial-wave contributions, to be combined with the
analytically-found net sum of high partial-wave contribu-
tions. This sum should be performed under a suitable
grouping of various individual partial-wave contributions;
otherwise, every time a new partial-wave contribution is
included, one finds a certain fluctuation in the net sum.
This kind of grouping, its necessity first noticed in Ref. [3]
in the case with much simpler example, should be made so
that both the small-r and large-r behaviors of the effective
potential get matched if the partial-wave terms in each
group are taken together. This problem related to partial-
wave grouping turns out to be particularly acute when the
effective action for small mass is sought after.

A certain special feature regarding the small-mass-
limit behavior of the fermion effective action should be
mentioned. Actually, in the limit the fermion mass ap-
proaches zero, we can give a semianalytic treatment for
partial-wave functional determinants. This is possible
because, in finding the Gel’fand-Yaglom wave functions,
we can exploit the factorization property of the massless,
second-order, spinor Gel’fand-Yaglom equations. Based
on such development, we have obtained for instance our
formula (4.58), which accounts for the exact small-mass-
limit form of the fermion one-loop effective action in
general Case I backgrounds. In this paper we only began
to exploit this factorization property for the effective
action study, and clearly more systematic investigation
should be desirable.

This paper is organized as follows. In Sec. II we describe
a general outline for the calculational scheme we shall use,
and also collect, for later use in the paper, various useful
formulas. This is followed in Sec. III by our analysis for the
high partial-wave contribution to the fermion effective
action; this part is calculated analytically using a WKB-
type asymptotic series, for matrix-valued radial differential
operators. In Sec. IV, we use the generalized Gel’fand-
Yaglom method to compute low partial-wave contributions
in our Case I and Case II backgrounds, and then combine
them with the high partial-wave contribution found in
Sec. III to obtain the explicit results for the renormalized
fermion effective action in the given backgrounds. In
Sec. IVA, we particularly study the fermion effective
action in the massless limit, using some exact information
on the solutions of massless Gel’fand-Yaglom equations.
Section IVB has the results for the fermion effective action
with nonzero mass in the above backgrounds, obtained
through extensive numerical works. Based on the fermion
effective action we evaluated, we discuss the validity range
of large mass expansion, possible quantum deformation of
instanton (into a non-self-dual configuration), and the ef-
fective instanton-antiinstanton interaction generated by
fermions of relatively small mass. Section V contains
concluding remarks and discussions.
Some supplementary results, related to the high partial-

wave contribution of Sec. III, can be found in Appendix A.
In Appendix B we clarify some subtle aspect arising when
one uses the Gel’fand-Yaglom approach in computing
partial-wave functional determinants in the massless limit.

II. PREPARATORY SETUP FOR OUR
COMPUTATION

A. Fermion effective action in radial backgrounds

The bare fermion effective action is

�ðA;mÞ � � lndet½�i� �Dþm� þ const

�� 1

2
lndet½ð� �DÞ2 þm2� þ const; (2.1)

where � �D � ��D�, D� ¼ @� � iA�, and f��; ��g ¼
�2	��. Its Pauli-Villars regularized form, using the

Schwinger proper-time representation [13], is given by

��ðA;mÞ ¼ 1

2

Z 1

0

ds

s
ðe�m2s � e��2sÞFðsÞ; (2.2)

FðsÞ ¼
Z

d4xTrhxj½e�sð��DÞ2 � e�sð�@2Þ�jxi; (2.3)

where ‘‘Tr’’ denotes the trace over Dirac spinor and inter-
nal isospin indices. Then the renormalized fermion effec-
tive action in the ‘‘minimal’’ subtraction scheme can be
identified with the expression
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�renðA;mÞ ¼ lim
�!1

�
��ðA;mÞ � 1

3

1

ð4
Þ2 ln
�2

�2

�
Z

d4x trðF��F��Þ
�
; (2.4)

where � is the renormalization scale, ‘‘tr’’ denotes the
trace over isospin indices only, and F�� � i½D�;D�� ¼
@�A� � @�A� � i½A�; A��. For large mass m the DeWitt

WKB expansion (or heat kernel expansion) can be used to
generate the large-mass approximate form for the effective
action. But, in this paper, we are more interested in the
exact evaluation of the effective action in given back-
grounds of the form (1.1) (but mass kept to arbitrary value).

To compute the effective action with the ‘‘radial’’ back-
ground (1.1), it is convenient to use the chiral representa-
tion for �-matrices

�� ¼ 0 ��

� ��� 0

 !
; ðwith�� ¼ ð ~�; iÞ and

��� ¼ ð ~�;�iÞ ¼ ð�y
�ÞÞ: (2.5)

We then have

ð� �DÞ2 ¼ �D2� 1
2�

ð�Þ
��a�aF�� 0

0 �D2� 1
2�

ðþÞ
��a�aF��

0
@

1
A

(2.6)

(here D2 � D�D�), and as a result the fermion effective

action can be expressed by the sum of chirally projected
ones [11], viz.,

�renðA;mÞ ¼ �ðþÞ
ren ðA;mÞ þ �ð�Þ

ren ðA;mÞ (2.7)

with

�ð�Þ
ren ðA;mÞ ¼ lim

�!1
1

2

�Z 1

0

ds

s
ðe�m2s � e��2sÞFð�ÞðsÞ

� 1

3

1

ð4
Þ2 ln
�2

�2

Z
d4x ðtrðF��F��Þ

	 3

2
trðF��


F��Þ
�
; (2.8)

Fð�ÞðsÞ¼
Z
d4xTrhxj½e�sð�D2�ð1=2Þ�ð	Þ

��a�aF��Þ�e�sð�@2Þ�jxi;
(2.9)

where 
F�� � 1
2 ���
	F
	 and ‘‘Tr’’ denotes the trace over

2-component (i.e., in the given chiral sector) spinor indices

and isospin indices. Note that, to renormalize �ð�Þ
ren , we need

to include the term proportional to the Pontryagin index in
addition to the term involving the classical Yang-Mills
action. To obtain the full effective action, there is no

need to compute �ðþÞ
ren and �ð�Þ

ren separately, the two being
related by [11]

�ðþÞ
ren ðA;mÞ � �ð�Þ

ren ðA;mÞ

¼ 1

2

1

ð4
Þ2 ln
m2

�2

Z
d4x trðF��


F��Þ: (2.10)

Explicit evaluation for one, the simpler from the two quan-

tities �ðþÞ
ren and �ð�Þ

ren for a given background field, thus

suffices. For our background fields (1.1), i.e., for A�ðxÞ ¼
�ð�Þ
��ax�fðrÞ�a, a simple calculation shows that�ð�Þ

��a�aF��

(but not �ð	Þ
��a�aF��) takes a purely radial form

�ð�Þ
��a�aF�� ¼ �2½4fðrÞ þ rf0ðrÞ � 2r2fðrÞ2��a�a

� �2gFðrÞ�a�a; (2.11)

i.e., a radially separable differential operator is obtained
only for a particular chiral component of the fermion qua-
dratic operator ð� �DÞ2. Hence, for our field A�ðxÞwith the
�ðþÞ-symbol chosen, it is the quantity �ð�Þ

ren that we may try
to evaluate directly by applying our partial-wave cutoff

method; for �ðþÞ
ren , on the other hand, we can use (2.10). So

the full effective action �ren follows from the result for �ð�Þ
ren

alone. The situation is just the opposite if our field A�ðxÞ
happens to involve the �ð�Þ-symbol. [This choice of �ð�Þ

ren

depending on our background field form is appropriatewith
an arbitrary radial function fðrÞ; for a particular form of
fðrÞ which gives rise to (anti-)self-dual field strengths; the

other choicewould bemore suitable (with�ð	Þ
��a�aF�� � 0

for the corresponding backgrounds)].
When the background field is given by the form (1.1),

we have the classical action expressed using the function
HðrÞ ¼ r2fðrÞ as
1

2

Z
d4xtrF2

��¼12
2
Z 1

0

dr

r
fr2H0ðrÞ2þ4HðrÞ2½HðrÞ�1�2g;

(2.12)

and the Pontryagin index as

w ¼ 1

16
2

Z
d4x trF��


F�� ¼ 	½2HðrÞ3 � 3HðrÞ2�jr¼1
r¼0 :

(2.13)

Hence, if the �ðþÞ-symbol is chosen in our expression for
A�ðxÞ, we find for the two Cases in (1.2) and (1.3) the

Pontryagin index

ðCase IÞ: w ¼
�
1; � > 1

�1; � <�1
; (2.14)

ðCase IIÞ: w ¼
�
1; � > 0

0; � < 0
: (2.15)

Also, for the background field form (1.1), the differential

operator we must deal with, �D2 � 1
2�

ð�Þ
��a�aF��, can be

expressed in the form
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�D2 � 1

2
�ð�Þ
��a�aF��

¼ � @2

@r2
� 3

r

@

@r
þ 4

r2
~L2 þ 8fðrÞ ~T � ~Lð�Þ

þ 3r2fðrÞ2 þ 4gFðrÞ ~S � ~T; (2.16)

where Ta � 1
2 �a, S

a � 1
2�a, and Lð�Þ

a and ~L2 are specified

as [6]

Lð�Þ
a ¼ � i

2
�ð�Þ
��ax�@�; ½Lð�Þ

a ; Lð�Þ
b � ¼ i�abcL

ð�Þ
c ;

Lð�Þ
a Lð�Þ

a ¼ ~L2: (2.17)

For the evaluation of �ð�Þ
ren ðA;mÞ, we may then resort to a

kind of block diagonalization for the differential operator
(2.16) in the form of partial waves. See Part B of this
section.

Another useful information as regards our background

field form (1.1) is that the appearance of the �ðþÞ- or

�ð�Þ-symbol in the expression is actually tied up with the
gauge choice. Explicitly, using the relation

�ð�Þ
��a

x�
r2

�a ¼ i��1
ð�ÞðxÞ@��ð�ÞðxÞ;�

�ð�ÞðxÞ ¼ x4 	 i ~x � ~�
r

2 SUð2Þ
�

(2.18)

it is not difficult to show that

�ð�ÞðxÞ
�
�ð�Þ
��a

x�
r2

HðrÞ�a
�
��1

ð�ÞðxÞ þ i�ð�ÞðxÞ@���1
ð�ÞðxÞ

¼ �ð	Þ
��a

x�
r2

½1�HðrÞ��a; (2.19)

i.e., under the (singular) gauge transformation involving

the SU(2) matrix �ð�ÞðxÞ, our �ð�Þ-symbol form with the

radial function HðrÞ goes over to the �ð	Þ-symbol form
with the radial function 1�HðrÞ. This has the conse-
quence that an identical fermion effective action

�renðA;mÞ would result either with the form A�ðxÞ ¼
�ð�Þ
��a

x�
r2
HðrÞ�a or with the form �A�ðxÞ ¼ �ð	Þ

��a
x�
r2

�HðrÞ�a
where �HðrÞ � 1�HðrÞ. Then notice that, for HðrÞ given
by the form in (1.2), we find

�H IðrÞ ¼ 1� ðr=�Þ2�
1þ ðr=�Þ2� ¼ ðr=�Þ�2�

1þ ðr=�Þ�2�
: (2.20)

Therefore, in our Case I we may just evaluate the effective
action with the radial function of the background field
chosen as

HIðr;�Þ ¼ ðr=�Þ2�
1þ ðr=�Þ2� ; ð� � 1Þ; (2.21)

then the gauge invariance of the effective action tells us the
result appropriate to the same function form for HðrÞ
but with � � �1. Also, applying the above gauge

transformation to our Case II, we may replace our radial
profile function in (1.3) by the form

�HIIðr;R;�Þ ¼ 1� ðr=�Þ2
1þ ðr=�Þ2 þ

ðr=�Þ2
1þ ðr=�Þ2

1� tanhðr�R
�� Þ

2

¼ ðr=�Þ�2

1þ ðr=�Þ�2
þHIIðr;R;��Þ; (2.22)

as this form should lead to the same set of effective actions.
Note that for �< 0 and R large, what we have in (2.22) is
the sum of a singular-gauge instanton (antiinstanton)
located near the origin and a spherical-wall-like antiinstan-
ton (instanton) configuration at large radius R. See Fig. 2
for the illustration of the radial profile function correspond-
ing to our form (2.22).

B. Partial-wave decomposed form

The differential operator in (2.16) can be decomposed
into an infinite number of partial-wave radial differential
operators (with matrix coefficients). For our partial waves,
let us consider the basis jj; j3; q; l; �l3i where various quan-
tum numbers introduced are specified by

ð ~L2Þ0 ¼ lðlþ1Þ; l¼0;
1

2
;1;

3

2
;���;

ð ~Q2Þ0 ¼qðqþ1Þ; ðwithQa�Lð�Þ
a þTaÞ;

q¼
��������l�1

2

��������; ð ~J2Þ0 ¼ jðjþ1Þ; ðwithJa�QaþSaÞ;

j¼
��������q�1

2

��������; ðJ3Þ0 ¼ j3¼�j;�jþ1;��� ;j;

ðLð�Þ
3 Þ0 ¼ �l3¼�l;�lþ1;��� ; l: (2.23)

In this basis, the operator in (2.16) is not completely
diagonal, but we may still write it (for given values of l
and j) as

�D2�1

2
�ð�Þ
��a�aF��!H l;j

¼� @2

@r2
�3

r

@

@r
þ4lðlþ1Þ

r2
þ4fðrÞ

�
qðqþ1Þ� lðlþ1Þ�3

4

�
þ3r2fðrÞ2þ4gFðrÞ ~S � ~T

��@2ðlÞþV l;jðrÞ (2.24)

with suitable matrix ~S � ~T in the space of allowed q-states

(for given l, j). [In (2.24), @2ðlÞ ¼ @2

@r2
þ 3

r
@
@r � 4lðlþ1Þ

r2
repre-

sents the 4-D Laplacian @�@� for given angular momen-

tum]. As for the matrix ~S � ~T, we here note that, for given l,
the quantum number q should be equal to lþ 1

2 when j ¼
lþ 1 and equal to l� 1

2 when j ¼ l� 1, while q can take

either value of l� 1
2 when j ¼ l � 0. When j ¼ l ¼ 0,

only the value q ¼ 1
2 is available. Then, after somewhat

lengthy but straightforward calculations, we obtain follow-

ing representations for ~S � ~T:
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~S � ~T! 1

4
; if j¼ l�1 ðandq¼ l�1

2
Þ;

~S � ~T! 1

4ð2lþ1Þ
�2l�3 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þp

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þp �2lþ1

0
@

1
A; if j¼ l� 0;

~S � ~T!�3

4
; if j¼ l¼ 0 ðandq¼ 1

2
Þ; (2.25)

where our 2� 2 matrix form for j ¼ l � 0 is written
relative to the basis ðjq ¼ lþ 1

2i; jq ¼ l� 1
2iÞ. Using the

expression in (2.25), we thus find, for the ‘‘potential’’
V l;jðrÞ defined in (2.24),

V l;lþ1ðrÞ ¼ 3r2fðrÞ2 þ 4lfðrÞ þ gFðrÞ; (2.26)

V l;l�1ðrÞ ¼ 3r2fðrÞ2 � 4ðlþ 1ÞfðrÞ þ gFðrÞ; (2.27)

V l;lðrÞ ¼ 3r2fðrÞ2 þ 4fðrÞ l 0

0 �l� 1

 !

þ gFðrÞ
2lþ 1

�2l� 3 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp �2lþ 1

0
@

1
A; ðl� 0Þ

(2.28)

with gFðrÞ � 4fðrÞ þ rf0ðrÞ � 2r2fðrÞ2 (see (2.11)), and
V 0;0 ¼ 3r2fðrÞ2 � 3gFðrÞ: (2.29)

[The bold-faced letter for V l;lðrÞ is to indicate that it is

matrix-valued]. To each partial wave labeled by quantum
numbers J � ðl; j; j3; �l3Þ corresponds the (matrix) radial
differential operator H l;j specified by (2.24), (2.26),

(2.27), (2.28), and (2.29).

Our formula (2.8) for the effective action �ð�Þ
ren ðA;mÞ can

then be reexpressed using the quantity involving the radial
differential operator H l;j appropriate to partial waves.

Here note that, as should be evident from the discussion

above, �ðþÞ
ren ðA;mÞ in the background (1.1) with the

�ð�Þ-symbol picked has the same value as �ð�Þ
ren ðA;mÞ in

the very background but with the �ðþÞ-symbol taken. Then,

thanks to (2.10) and (2.13), we are led to conclude that the
full effective action �renðA;mÞ in the background (1.1) is
represented by the same function of fðrÞ irrespectively of
which �-symbol is picked. Knowing this, we may well
consider only the background field form

A�ðxÞ ¼ �ðþÞ
��ax�fðrÞ�a;

�
fðrÞ � 1

r2
HðrÞ

�
(2.30)

from now on and go on to evaluate the quantity �ð�Þ
ren ðA;mÞ,

a particular chiral projection of �renðA;mÞ, in this back-
ground. The radial function HðrÞ is that of the form (2.21)
or of (1.3). Note that, because of (2.10), the full renormal-
ized effective action can then be found simply by using the
formula

�renðA;mÞ¼2�ð�Þ
ren ðA;mÞþ1

2

1

ð4
Þ2 ln
m2

�2

Z
d4x trðF


��F��Þ:

(2.31)

Now, for the partial-wave-decomposed form of �ð�Þ
ren ðA;mÞ,

we may express the function Fð�ÞðsÞ (see (2.9)) by the form
Fð�ÞðsÞ ¼ X

J

Fð�Þ
l;j ðsÞ;

Fð�Þ
l;j ðsÞ ¼

Z 1

0
dr trfGl;jðr; r; sÞ �Gfree

l ðr; r; sÞg (2.32)

where we introduced the radial proper-time Green’s
functions

Gl;jðr; r0; sÞ � hrje�s ~H l;j jr0i;
Gfree

l ðr; r0; sÞ � hrje�sð�~@2ðlÞÞjr0i (2.33)

of the operators ~H l;j and ~@2ðlÞ defined through [1]

~H l;j� 1

r3=2
H l;jr

3=2

¼� d2

dr2
þ4lðlþ1Þþ 3

4

r2
þV l;jðrÞð��~@2ðlÞþV l;jðrÞÞ:

(2.34)

R
r

1
H r

(a)
1 R

r

1
H r

(b)

FIG. 2 (color online). Plots of the radial profile function �HIIðrÞ given in (2.22): (a) for �> 0 and (b) for �< 0.
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When l is large, we can employ the WKB method to

calculate Fð�Þ
l;j ðsÞ systematically; this, we do in Sec. III.

(Using the result, the renormalization problem is also
solved in an expedient way). But we need a different
strategy for small l, and to determine the related contribu-

tion to �ð�Þ
ren ðA;mÞ it is more convenient to consider the

quantity resulting after s-integration,

Z 1

0

ds

s
e�m2sFð�Þ

l;j ðsÞ ¼ ln

�
detð ~H l;j þm2Þ
detð�~@2ðlÞ þm2Þ

�

¼ ln

�
detðH l;j þm2Þ
detð�@2ðlÞ þm2Þ

�
: (2.35)

Then, given a specific background, we may evaluate the
latter quantity with the help of the Gel’fand-Yaglom
method. We do this for our (matrix) differential operators
H l;j in Sec. IV. In performing these calculations, some

care must be exercised if the effective radial potential

Vl;jðrÞ ¼
4lðlþ 1Þ þ 3

4

r2
þV l;jðrÞ (2.36)

does not have the same small-r and large-r behavior as

Vfree
l ðrÞ ¼ 4lðlþ1Þþ3=4

r2
. In the latter case, to avoid the ap-

pearance of largely oscillating terms in the process of
summing partial-wave contributions, a certain grouping
of terms might be contemplated [3]; this is relevant also
with our background fields since, or our Case I for instance,

we have fðrÞ � 1
r2
and so Vl;jðrÞ � 4qðqþ1Þþ3=4

r2
as r ! 1.

To facilitate our discussions, we will now write out the
mathematical expressions we must evaluate to determine

�ð�Þ
ren ðA;mÞ for our background fields. Following Refs. [3],

we introduce the (floating) parameter L as the partial-wave
cutoff and write

�ð�Þ
ren ðA;mÞ ¼ lim

L!1½�
ð�Þ
l�LðA;mÞ þ �ð�Þ

l>LðA;mÞ�; (2.37)

here, �ð�Þ
l�LðA;mÞ represents the ‘‘low’’ partial-wave con-

tribution given as

�ð�Þ
l�LðA;mÞ ¼ � 1

2

��
ln

�
detðH 0;0 þm2Þ
detð�@2ðl¼0Þ þm2Þ

�
� ln

�
detðH 0;1 þm2Þ
detð�@2ðl¼0Þ þm2Þ

��
þ XL

l¼ð1=2Þ;1;���

�
ð2lþ 1Þ2

�
ln

�
detðH l;l þm2Þ

fdetð�@2ðlÞ þm2Þg2
�

þ ln

�
detðH l�ð1=2Þ;lþð1=2Þ þm2Þ
detð�@2ðl�ð1=2ÞÞ þm2Þ

�
þ ln

�
detðH lþð1=2Þ;l�ð1=2Þ þm2Þ
detð�@2ðlþð1=2ÞÞ þm2Þ

��

�
�
ln

�
detðH l;lþ1 þm2Þ
detð�@2ðlÞ þm2Þ

�
þ ln

�
detðH lþð1=2Þ;l�ð1=2Þ þm2Þ
detð�@2ðlþð1=2ÞÞ þm2Þ

����
; (2.38)

while �ð�Þ
l>LðA;mÞ, the ‘‘high’’ partial-wave contribution, can be expressed by the form

�ð�Þ
l>LðA;mÞ¼ lim

�!1
1

2

�Z 1

0

ds

s
ðe�m2s�e��2sÞ

Z 1

0
dr

X1
l¼Lþð1=2Þ

Glðr;r;sÞ�1

3

1

ð4
Þ2 ln
�2

�2

Z
d4x

�
trðF��F��Þþ3

2
trðF��


F��Þ
��
;

(2.39)

where we defined

Glðr; r; sÞ ¼ ð2lþ 1Þ2ftrGl;lðr; r; sÞ þGl�ð1=2Þ;lþð1=2Þðr; r; sÞ þGlþð1=2Þ;l�ð1=2Þðr; r; sÞ � 2Gfree
l ðr; r; sÞ

�Gfree
lþð1=2Þðr; r; sÞ �Gfree

l�ð1=2Þðr; r; sÞg � fGl;lþ1ðr; r; sÞ þGlþð1=2Þ;l�ð1=2Þðr; r; sÞ

�Gfree
l ðr; r; sÞ �Gfree

lþð1=2Þðr; r; sÞg;
�
l ¼ Lþ 1

2
; Lþ 1; � � �

�
: (2.40)

In (2.38) and (2.39), various partial-wave contributions
have been grouped (with correct degeneracy factors) in
such a way that we may have both the small-r and large-r
behaviors of the effective potential matched when the
radial differential operators figuring in within each group
are taken together. (This grouping is especially important
when we discuss the massless limit of the effective action
(see Sec. IV)). In Case II background with �< 0 (and
finite R), the above partial-wave grouping is not really

required; but it is desirable to have a procedure applicable
to all cases we will consider.
We remark that (2.37), even without taking the limit

L ! 1, corresponds to an exact relation. But, only by
taking L to be relatively large, this relation can be put to
use as a powerful calculational tool for the effective ac-
tion—this is because, for large L, two independent means
to determine separately the high and low partial-wave
contributions become available. This is the key element
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of the partial-wave cutoff method. In subsequent sections,

we shall obtain the expression for �ð�Þ
l>LðA;mÞ as a 1

L -series

form analytically while the other piece, �ð�Þ
l�LðA;mÞ, in our

chosen background fields will be found numerically (and
semianalytically in the small mass limit). If the sum of the
two contributions yields an L-independent result, it is of
course the sign that we have secured an exact result for

�ð�Þ
ren ðA;mÞ.

III. HIGH PARTIAL-WAVE CONTRIBUTION
TO THE EFFECTIVE ACTION

In this section we shall calculate the large-L form of the
expression (2.39) to desired accuracy. To that end we need
a systematic large-l approximation to the function
Glðr; r; sÞ, which is valid uniformly for s in the range 0<
sl2 <Oð1Þ [1]. For this one might consider using the WKB
approximation [3,14]; but, with a matrix-valued potential,
it is not trivial to apply the WKB method directly.
Alternative methods, yet serving our purpose in a satisfac-
tory way, were found in [1,15]. These latter approaches are
not only simpler but also easily extendable to the case
involving matrix-valued potentials. In this paper we will
specifically use the method of [15] to generate the desired
1
l -expansion of Gl;jðr; r; sÞ, because of its convenience in

dealing with a matrix-valued potential.
The idea of [15] is to rewrite the proper-time Green

function, introducing the momentumlike variable p, in
the form

Gl;jðr; r0; sÞ ¼
Z 1

�1
dp

2

hrje�s ~H l;j jpihpjr0i

¼
Z 1

�1
dp

2

e�s½�@2rþVl;jðrÞ�e�ipðr�r0Þ; (3.1)

and to find a convenient way to study directly the r0 ¼ r
limit of this function. Then, after moving the last Fourier

factor e�ipðr�r0Þ in (3.1) to the left of the differential
operator @rð� @

@rÞ, we may take the coincidence limit

r0 ¼ r to obtain the following representation:

Gl;jðr; r; sÞ ¼
Z 1

�1
dp

2

e�s½�ð@r�ipÞ2þVl;jðrÞ� � 1

�
Z 1

�1
dp

2

Kðr; p; sÞ: (3.2)

The function Kðr; p; sÞ introduced here can be identified
with the solution of the differential equation�

@

@s
� ð@r � ipÞ2 þ Vl;jðrÞ

�
Kðr; p; sÞ ¼ 0 (3.3)

under the boundary condition

Kðr; p; s ¼ 0Þ ¼ 1: (3.4)

Because of the connection (3.2), the desired large-l
series for Gl;jðr; r; sÞ will follow immediately if we have

an appropriate development for the function Kðr; p; sÞ. For
our investigation, it is convenient to regard rescaled vari-
ables t ¼ sl2 and q ¼ p

l (rather than s and p) as indepen-

dent variables of the function of K. Also we express the
potential Vl;jðrÞ (see (2.36)) as a series in 1

l , i.e.,

Vl;jðrÞ ¼ l2
4

r2
þ l �V1ðrÞþ �V2ðrÞþ 1

l
�V3ðrÞþ 1

l2
�V4ðrÞþ �� � ;

(3.5)

where �VkðrÞ are some l-independent (matrix) functions.
Then (3.3) can be written in the form�
@

@t
�
�
1

l

@

@r
�iq

�
2þ 4

r2
þ �V1ðrÞ

l
þ �V2ðrÞ

l2
þ���

�
K

�
r;ql;

t

l2

�
¼0:

(3.6)

This equation may be solved by positing the ansatz

K

�
r;ql;

t

l2

�
¼K0ðr;q; tÞ

�
1þa1ðr;q; tÞ

l
þa2ðr;q; tÞ

l2
þ���

�
;

(3.7)

where the function K0ðr; q; tÞ, the l ! 1 form of
Kðr; ql; t

l2
Þ, is chosen to satisfy�

@

@t
þ q2 þ 4

r2

�
K0ðr; q; tÞ ¼ 0: (3.8)

The solution to (3.8), subject to the boundary condition
(3.4), is

K0ðr; q; tÞ ¼ e�tðq2þð4=r2ÞÞ: (3.9)

To determine akðr; q; tÞ (k ¼ 1; 2; � � � ), we may plug in
(3.7) and (3.9) into (3.6) to obtain following recurrence
relations for them:

@ak
@t

¼ �2iq

�
@

@r
þ 8t

r3

�
ak�1 þ

�
@

@r
þ 8t

r3

�
2
ak�2

� Xk
n¼1

�Vnak�n; ðk ¼ 1; 2; � � �Þ (3.10)

with a0 ¼ 1 and a�1 ¼ 0. Then we can find ak’s succes-
sively (with akðr; q; t ¼ 0Þ ¼ 0 for all k ¼ 1; 2; � � � ): here,
the first few terms which are indispensable for our calcu-
lation using (2.37) are

a1 ¼ �t �V1 � 8iqt2

r3
; (3.11)

a2 ¼ 8iqt3

r3
�V1 þ iqt2 �V 0

1 þ
t2

2
�V2
1 � t �V2

� 32q2t4

r6
þ 16q2t3

r4
þ 64t3

3r6
� 12t2

r4
; (3.12)
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a3 ¼
�
8q2t4

r3
� 16t3

3r3

�
�V 0
1 þ

�
32q2t5

r6
� 16q2t4

r4
� 64t4

3r6
þ 12t3

r4

�
�V1 þ

�
2q2t3

3
� t2

2

�
�V00
1 �

4iqt4

r3
�V2
1 þ

8iqt3

r3
�V2

� iqt3

3
ð2 �V1

�V 0
1 þ �V0

1
�V1Þ þ iqt2 �V0

2 �
t3

6
�V3
1 þ

t2

2
ð �V1

�V2 þ �V2
�V1Þ � t �V3 þ 256iq3t6

3r9
� 128iq3t5

r7

þ 32iq3t4

r5
� 512iqt5

3r9
þ 256iqt4

r7
� 64iqt3

r5
; (3.13)

a4¼512q4t8

3r12
�512q4t7

r10
�2048q2t7

3r12
þ384q4t6

r8
þ6016q2t6

3r10
þ2048t6

9r12
þ4iqt5

3r3
�V3
1þ

�
8q2t5

r4
þ32t5

3r6
�6t4

r4
�16q2t6

r6

�
�V2
1

�8q2t5

3r3
ð2 �V1

�V0
1þ �V 0

1
�V1Þ�64q4t5

r6
�1472q2t5

r8
�3328t5

5r10
þ
�
t3

3
�q2t4

2

�
ð �V 0

1Þ2�
4iqt4

r3
ð �V1

�V2þ �V2
�V1Þ

þ t4

r3

�
10

3
�V1

�V0
1þ2 �V 0

1
�V1

�
�q2t4

� �V1
�V 00
1

2
þ �V 00

1
�V1

6

�
þ iqt4

� �V2
1
�V 0
1

4
þ �V 0

1
�V2
1

12
þ �V1

�V0
1
�V1

6

�
þ t4

24
�V4
1þ

240q2t4

r6
þ488t4

r8

� iqt3

3
ð2 �V1

�V0
2þ2 �V2

�V 0
1þ �V0

1
�V2þ �V 0

2
�V1Þþ t3

� �V1
�V 00
1

3
þ �V 00

1
�V1

6

�
þ8iqt3

r3
�V3�80t3

r6
� t3

6
ð �V2

1
�V2þ �V2

�V2
1þ �V1

�V2
�V1Þ

þ t2

2
ð �V2

2þ �V1
�V3þ �V3

�V1Þ� t �V4þ
�
2q2t3

3
� t2

2

�
�V 00
2 þ

�
64iqt4

r5
�256iq3t7

3r9
þ128iq3t6

r7
þ512iqt6

3r9
�32iq3t5

r5
�256iqt5

r7

�
�V1

þ iqt2 �V0
3þ

�
32q2t5

r6
�16q2t4

r4
�64t4

3r6
þ12t3

r4

�
�V2þ

�
16iq3t5

r4
�32iq3t6

r6
þ64iqt5

r6
�32iqt4

r4

�
�V 0
1

þ
�
8q2t4

r3
�16t3

3r3

�
�V0
2þ

�
32iqt4

3r3
�16iq3t5

3r3

�
�V 00
1 þ

�
2iqt3

3
� iq3t4

3

�
�Vð3Þ
1 ; (3.14)

where �V 0
k,

�V00
k and �VðnÞ

k denote the first, second and n-th derivatives of �VkðrÞ, respectively.
We may use the expansion (3.7) for the function K in (3.2) and carry out the p-integration. SinceZ 1

�1
dp

2

K0

�
r; q ¼ p

l
; t ¼ sl2

�
¼ 1ffiffiffiffiffiffiffiffiffi

4
s
p e�sl2ð4=r2Þ; (3.15)

the result is the following 1
l -expansion of the quantity Gl;jðr; r; sÞ (which can be used even when sl2 �Oð1Þ):

Gl;jðr;r;sÞ¼e�sl2ð4=r2Þffiffiffiffiffiffiffiffiffi
4
s

p
�
1þ1

l
½�sl2 �V1�þ 1

l2

�ðsl2Þ2
2

�V2
1�sl2 �V2þ16ðsl2Þ3

3r6
�4ðsl2Þ2

r4

�
þ 1

l3

�
�4ðsl2Þ3

3r3
�V0
1þ

�
4ðsl2Þ3
r4

�16ðsl2Þ4
3r6

�
�V1

�ðsl2Þ3
6

�V3
1þ

ðsl2Þ2
2

ð �V1
�V2þ �V2

�V1Þ�ðsl2Þ2
6

�V00
1�sl2 �V3

�
þ 1

l4

�
2ðsl2Þ4
3r3

ð �V1
�V0
1þ �V 0

1
�V1Þþ

�
8ðsl2Þ5
3r6

�2ðsl2Þ4
r4

�
�V2
1

�4ðsl2Þ3
3r3

�V 0
2þ

ðsl2Þ3
6

�ð �V 0
1Þ2
2

þ �V1
�V 00
1

2
þ �V 00

1
�V1

2
� �V2

1
�V2� �V2

�V2
1� �V1

�V2
�V1

�
þðsl2Þ4

24
�V4
1þ

�
4ðsl2Þ3
r4

�16ðsl2Þ4
3r6

�
�V2

þðsl2Þ2
2

�
�V2
2þ �V1

�V3þ �V3
�V1�

�V 00
2

3

�
�sl2 �V4þ128ðsl2Þ6

9r12
�704ðsl2Þ5

15r10
þ40ðsl2Þ4

r8
�8ðsl2Þ3

r6

�
þO

�
1

l5

��
:

(3.16)

The (matrix) functions �V1ðrÞ; �V2ðrÞ; � � � here should be
found through (3.5), for the potential V l;j given by
(2.26), (2.27), (2.28), and (2.29); hence, �V1ðrÞ; �V2ðrÞ; � � �
can be expressed in terms of our profile function fðrÞ
(see (1.1)).

Using the form (3.16) with (2.40), the systematic
large-l approximation of the quantity Glðr; r; sÞ can
also be obtained. We may then use the result together

with (2.39) to evaluate �ð�Þ
l>LðA;mÞ, according to the

general procedure we detailed already in [1,2,15]. That

is, the l-sum appearing can be performed with the help
of the Euler-Maclaurin summation formula and this is
followed by the integration over the proper-time variable
s. One can then verify that the � ! 1 limit is indeed
well-defined, for the potentially-divergent proper-time
integral gets canceled by the renormalization counter-
term contribution. After these, somewhat lengthy but
straightforward, calculations, we have found that the

quantity �ð�Þ
l>LðA;mÞ in the gauge background (1.1) can

be expressed as a 1
L -series of the form

CALCULATION OF RENORMALIZED FERMION EFFECTIVE . . . PHYSICAL REVIEW D 84, 105010 (2011)

105010-9



�ð�Þ
l>LðA;mÞ ¼

Z 1

0
dr

�
Q2ðrÞL2 þQ1ðrÞLþQlogðrÞ ln

�
2Lðuþ 1Þ

�r

�
þQ0ðrÞ þO

�
1

L

��
; (3.17)

where u �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðmr

2LÞ2
q

Q2ðrÞ ¼ 4r

u
fðrÞðr2fðrÞ � 1Þ; Q1ðrÞ ¼ 3r

u3
ð3u2 � 1ÞfðrÞðr2fðrÞ � 1Þ;

QlogðrÞ ¼ r3

2
ffðrÞ2ð6r3f0ðrÞ � 20Þ � r2f0ðrÞ2 � 10rfðrÞf0ðrÞ � 4r4fðrÞ4 þ 20r2fðrÞ3g;

Q0ðrÞ ¼ r

24u7
½3r2fðrÞ2ð�24r3u6f0ðrÞ þ 128u6 � 55u4 þ 30u2 þ 5Þ þ 2ru2f�ru2f00ðrÞ þ r3u2ð6u2 þ 1Þf0ðrÞ2

� 3ð2u4 þ u2 þ 1Þf0ðrÞg þ fðrÞf4r4u4f00ðrÞ þ 4r3ð30u4 þ 5u2 þ 3Þu2f0ðrÞ � 3ð56u6 � 57u4 þ 24u2 þ 5Þg
þ 2r6u2ð24u4 � 13u2 þ 3ÞfðrÞ4 � 4r4u2ð60u4 � 7u2 þ 3ÞfðrÞ3�: (3.18)

If the formula (3.17) is used to our Case I where fðrÞ ¼
1
r2

ðr=�Þ2�
ðr=�Þ2�þ1

ð� � 1Þ, one obtains, after the r-integration, the
following result:

�ð�Þ
l>LðA;m ¼ 0Þ

¼ � 2L2

�
� 3L

�
� ln

�
4L

��

��
�

6
þ 1

6�
þ 1

2

�

þ 5�

36
� 47

72�
þO

�
1

L

�
: (3.19)

For the mathematical validity of our formula (2.37), we
do not need to know, in the right-hand side of (3.17), the
explicit form of the Oð1LÞ term or beyond, i.e., Q�1ðrÞ�
1
L þQ�2ðrÞ 1

L2 þ � � � . But, as noted in [1,2,15], these
1
L -suppressed terms can be important to accelerate the

convergence of our calculational scheme if the low
partial-wave contribution has to be evaluated by numerical
methods. They can of course be found by keeping further
higher-order terms in (3.7) and (3.16) above. The end
results turned out to be quite lengthy: see Appendix A
for the explicit expressions of Q�1ðrÞ and Q�2ðrÞ. (These
results are utilized in Sec. IV).

IV. LOW PARTIAL-WAVE CONTRIBUTION
AND THE FULL EFFECTIVE ACTION

Our next task is to evaluate the low partial-wave con-

tribution �ð�Þ
l�LðA;mÞ, given in (2.38), for the background

field of the form (2.30) with certain specific fðrÞ. By
combining this with the high partial-wave contribution
(calculated already in Sec. III) a la (2.37), we can deter-

mine �ð�Þ
ren ðA;mÞ; then, by (2.31), the full fermion effective

action �renðA;mÞ follows at once. We use the Gel’fand-
Yaglom (GY) method [12] to determine the ratio of two
functional determinants in (2.38). Applying this method to
functional determinants involving ordinary, non-matrix-
type, differential operators is well known, and we can
thus write [2]

detðH l;jþm2Þ
detð�@2ðlÞþm2Þ¼ lim

Re!1
c l;jðReÞ
c free

l ðReÞ
; ðif j� l; or l¼ j¼0Þ;

(4.1)

where c l;jðrÞ and c free
l ðrÞ denote the solutions to the radial

differential equations

ðH l;jþm2Þc l;jðrÞ¼0; ð�@2ðlÞþm2Þc free
l ðrÞ¼0 (4.2)

with following small-r limit behaviors

r ! 0: c l;jðrÞ � 1 � r2l; c free
l ðrÞ � 1 � r2l: (4.3)

But, in (2.38), there are also functional determinants in-
volving 2� 2 matrix differential operators, i.e., H l;l þ
m2. For these functional determinants, we have to use the
generalized GY formula [16]

detðH l;l þm2Þ
fdetð�@2ðlÞ þm2Þg2 ¼ lim

Re!1
detðc l;��ðReÞÞ
c free

l ðReÞ2
; (4.4)

where c l;��ðrÞ (�, � ¼ 1, 2) denote the solutions to the

differential equations

ðH l;l þm2Þ��c l;�1ðrÞ ¼ 0;

ðH l;l þm2Þ��c l;�2ðrÞ ¼ 0
(4.5)

with the following small-r limit behaviors

r ! 0:
c l;11ðrÞ c l;12ðrÞ
c l;21ðrÞ c l;22ðrÞ

 !
� 1 0

0 1

 !
r2l: (4.6)

Note that the two equations in (4.5) may be written as a
single matrix differential equation

ðH l;l þm2Þ�lðrÞ ¼ 0;2
4�lðrÞ �

c l;11ðrÞ c l;12ðrÞ
c l;21ðrÞ c l;22ðrÞ

 !35: (4.7)

With nonzero massm and a generic radial function fðrÞ,
exact forms of the GYwave functions c l;jðrÞ and�lðrÞ are
usually not available. But, in the massless limit, a certain
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analytic procedure can be developed to find these wave
functions. In fact, with the background field of our Case I,
complete GY wave functions may be obtained by this
procedure. So, below, we shall show how our general
procedure can be applied to calculate the effective action
in our chosen backgrounds in the massless limit first
(IVA). This will then be followed by the corresponding
discussion with m � 0 (IVB), which requires extensive
numerical analysis.

We note that, in performing this effective action calcu-
lation, it is convenient to set the length parameter � (enter-
ing our background fields), and sometimes the
normalization scale � also, to be equal to 1. This does
not amount to a loss of generality. It is related to the fact
that, from simple dimensional argument and the way the
normalization scale � enters �renðA;mÞ (see (2.4)), the

modified effective action ~�ðA;mÞ in our backgrounds,
defined by the relation

�renðA;mÞ¼2

3
lnð��Þ

Z d4x

ð4
Þ2 trðF��F��Þþ ~�ðA;mÞ; (4.8)

should be a function of dimensionless parameters not in-
volving �, i.e., a function of m� and � for Case I, and a
function ofm�, R=� and � for Case II. According to (4.8),
we now have that

�renðA;mÞj�¼�¼1 ¼ ~�ðA;mÞj�¼1; (4.9)

viz. by calculating the effective action with � ¼ � ¼ 1,

we have calculated ~�ðA;mÞj�¼1. But the modified effective

action ~�ðA;mÞ for arbitrary �-value follows from
~�ðA;mÞj�¼1 by dimensional considerations—just regard

the numbers assumed for m and R in ~�ðA;mÞj�¼1 as

denoting the values of m� and R=�, respectively. With

the quantity ~�ðA;mÞ thus found, the corresponding effec-
tive action �renðA;mÞ for arbitrary values of � and � is
provided through (4.8).

A. Fermion effective action in the massless limit

For m ¼ 0 the above GY equations exhibit a special
feature of factorizability. To show this, we note that the

differential operator representing �D2 � 1
2�

ðþÞ
��a�aF�� in

the radially symmetric background (2.30) (see (2.16)) can
in fact be decomposed as the product of two linear differ-
ential operators, according to following, directly verifiable,
relation

� @2

@r2
� 3

r

@

@r
þ 4

r2
~L2 þ 3r2fðrÞ2 þ 8fðrÞ ~T � ~LðþÞ

þ 4½4fðrÞ þ rf0ðrÞ � 2r2fðrÞ2� ~S � ~T

¼ �
�
@

@r
þ 3

r
þ 4

r
~LðþÞ � ~Sþ 4rfðrÞ ~S � ~T

�

�
�
@

@r
� 4

r
~LðþÞ � ~S� 4rfðrÞ ~S � ~T

�
: (4.10)

Our operator H l;j is nothing but the restriction of this

operator to the partial waves with quantum numbers l and

j. For given values of l and j, ~S � ~T is represented by the

form in (2.25); similarly, for ~LðþÞ � ~S (¼ 1
2 ð ~J2 � ~Q2 �

~S2 � 2 ~S � ~TÞ), we have the representation
~LðþÞ � ~S ! l

2
; if j ¼ lþ 1;

~LðþÞ � ~S ! � lþ 1

2
; if j ¼ l� 1;

~LðþÞ � ~S ! � 1

2ð2lþ 1Þ
lð2lþ 3Þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ðlþ 1Þð�2lþ 1Þ

0
@

1
A;

if j ¼ l � 0;

~LðþÞ � ~S ! 0; if j ¼ l ¼ 0: (4.11)

Also a remark as regards the j ¼ l ¼ 0 partial wave: for
our backgrounds having a nonzero Pontryagin index, there
will be a normalizable zero mode of the operator (4.10).
Based on the above observation, we can recast

the massless GY equation H l;jc ðrÞ ¼ 0 appropriate to

j ¼ lþ 1 (and hence ~S � ~T ! 1
4 and

~LðþÞ � ~S ! l
2 ) as�

@

@r
þ3

r
þ2l

r
þrfðrÞ

��
@

@r
�2l

r
�rfðrÞ

�
c ðrÞ¼0: (4.12)

Therefore, for the GY wave function, we may well look for
the solution to the first-order equation�

@

@r
� 2l

r
� rfðrÞ

�
c ðrÞ ¼ 0: (4.13)

This way, the GY wave function with the correct small-r
behavior is obtained:

c l;j¼lþ1ðrÞ ¼ r2le
R

r

0
r1fðr1Þdr1 : (4.14)

As for the GY equation with j ¼ l� 1 (and so ~S � ~T ! 1
4 ,

~LðþÞ � ~S ! � lþ1
2 ), i.e., for the equation�

@

@r
þ3

r
�2ðlþ1Þ

r
þrfðrÞ

��
@

@r
þ2ðlþ1Þ

r
�rfðrÞ

�
c ðrÞ¼0;

(4.15)

the situation is not quite the same. In the latter case, solving
the first-order equation�

@

@r
þ 2ðlþ 1Þ

r
� rfðrÞ

�
c 1ðrÞ ¼ 0 (4.16)

results in a solution of the form

c 1ðrÞ ¼ r�2ðlþ1Þe
R

r

0
r1fðr1Þdr1 ; (4.17)

which is singular as r ! 0. For GY wave function we
thus have to look for another kind of solution to the
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second-order equation (4.15). For such solution c 2ðrÞ, we
here put c 2ðrÞ ¼ c 1ðrÞaðrÞ and then use Eq. (4.15)
(together with (4.16) for c 1ðrÞ) to obtain�

@

@r
þ 3

r
� 2ðlþ 1Þ

r
þ rfðrÞ

�
c 1ðrÞa0ðrÞ ¼ 0: (4.18)

By solving this equation we are led to the expression

a0ðrÞ ¼ r4lþ1e�2
R

r

0
r1fðr1Þdr1 ; (4.19)

and this in turn lead to the following form for the second
solution c 2ðrÞ ¼ c 1ðrÞaðrÞ:

c 2ðrÞ ¼ r�2ðlþ1Þe
R

r

0
r1fðr1Þdr1

Z r

0
r4lþ1
2 e�2

R
r2
0
r1fðr1Þdr1dr2:

(4.20)

For small r, this function behaves as c 2ðrÞ � r2l

2ð2lþ1Þ .
Hence we can identify the appropriate GY wave function
with 2ð2lþ 1Þ times this function, i.e.,

c l;j¼l�1ðrÞ ¼ 2ð2lþ 1Þr�2ðlþ1Þe
R

r

0
r1fðr1Þdr1

�
Z r

0
r4lþ1
2 e�2

R
r2
0
r1fðr1Þdr1dr2: (4.21)

Massless functional determinants for partial waves cor-
responding to j ¼ l� 1 can be evaluated using the GY
wave functions in (4.14) and (4.21). Especially, for our
Case I, i.e., fðrÞ ¼ 1

r2
HðrÞ with the function HðrÞ as given

in (2.21) (while taking � ¼ 1), the exact wave functions
are given in terms of hypergeometric functions:

c l;j¼lþ1ðrÞ ¼ r2lðr2� þ 1Þ1=2�; (4.22)

c l;j¼l�1ðrÞ¼r2lðr2�þ1Þ1=2�2 F1

�
1

�
;
2lþ1

�
;
2lþ1

�
þ1;�r2�

�
:

(4.23)

Since we have c free
l ðrÞ ¼ r2l with m ¼ 0, we may now

readily calculate the asymptotic wave function ratios in
(4.1) to conclude that

ln

�
detH l;j¼lþ1

detð�@2ðlÞÞ
�
� ln

�
c l;j¼lþ1ðReÞ
c free

l ðReÞ
�
� lnRe; (4.24)

ln

�
detH l;j¼l�1

detð�@2ðlÞÞ
�
� ln

�
c l;j¼l�1ðReÞ
c free

l ðReÞ
�

�� lnRe þ ln

�
2lþ 1

2l

�
; (4.25)

viz., the corresponding functional determinants individu-
ally are not well-defined. This problem, noticed in a similar
context also in Ref. [3], occurred because of our setting m
to be exactly zero. As a matter of fact, the asymptotic ratios
found with m set to zero are in general not the same as the

massless limits of the asymptotic ratios calculated assum-
ing nonzero mass. (We elaborate on this aspect in
Appendix B). But, if one makes a ‘‘good’’ grouping of
different partial-wave contributions, the two results for the
group coincide [3]. In our case, such good grouping is
provided by the way we combined various partial-wave
contributions in (2.38). (This is justified in Appendix B).
With this understanding we may apply our results (4.24)
and (4.25) to the particular combinations entering (2.38),
to write

ln

�
detH l�ð1=2Þ;j¼lþð1=2Þ

detð�@2ðl�ð1=2ÞÞÞ
�
þ ln

�
detH lþð1=2Þ;j¼l�ð1=2Þ

detð�@2ðlþð1=2ÞÞÞ
�

¼ ln

�
2lþ 2

2lþ 1

�
;

�
l ¼ 1

2
; 1; � � �

�
(4.26)

and

ln

�
detH l;j¼lþ1

detð�@2ðlÞÞ
�
þ ln

�
detH lþð1=2Þ;j¼l�ð1=2Þ

detð�@2ðlþð1=2ÞÞÞ
�

¼ ln

�
2lþ 2

2lþ 1

�
;

�
l ¼ 1

2
; 1; � � �

�
: (4.27)

[We here remark that, although (4.27) follows also from
considering the small mass limit, (4.26) does not; but, if the
formula (4.26) is used together with (4.50) below, the value
obtained for the total sum becomes also consistent with the
massless limit of the corresponding massive expression].
Analogous considerations may be given to our Case II as
well. But, to obtain the corresponding values for the quan-
tity in the right-hand side of (4.26) or (4.27), numerical
integration will be required.
Our next task is to study the functional determinant from

the j ¼ l ¼ 0 partial wave. In this case, ~S � ~T ! � 3
4 and

~LðþÞ � ~S ! 0 and so we have the GY equation�
@

@r
þ 3

r
� 3rfðrÞ

��
@

@r
þ 3rfðrÞ

�
c ðrÞ ¼ 0: (4.28)

The GY wave function may then be identified with the
solution to the first-order equation, i.e.,

c 1ðrÞjj¼l¼0 ¼ e�3
R

r

0
r1fðr1Þdr1 : (4.29)

But, if the function HðrÞ ¼ r2fðrÞ approaches 1 as r ! 1
(i.e., for Case I and also for Case II with �> 0), we find
that c 1ðrÞjj¼l¼0 � 1

r3
as r ! 1. This corresponds to a

normalizable zero mode mentioned earlier, and the related
functional determinant vanishes. In this case our interest
will naturally be in the expression when a small mass m is
included; in the GY approach, this requires the knowledge
on the asymptotic behavior of the GY wave function
satisfying the equation ðH 0;0 þm2Þc ¼ 0 with small

but nonzero m. The latter GY wave function, which we
denote as c j¼l¼0ðrÞ, can also be constructed using the

method of Ref. [4]. Based on such analysis (see
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Appendix B, especially (B13)–(B20)), we then obtain, say,
for our Case I, the following result

ln

�
detðH 0;0 þm2Þ
detð�@2ðl¼0Þ þm2Þ

�
� ln

�
c j¼l¼0ðReÞ
c free

l¼0ðReÞ
�

¼ lnmþ ln

�
�ð1þ 1

�Þ�ð2�Þ
2�ð3�Þ

�
; (4.30)

when m is small. As this corresponds to the very first
term of the first group in (2.38), we may combine this
result with the small-mass-limit form of the second term
in the same group. The relevant result, for Case I, is (this
follows from (B11))

� ln

�
c l¼0;j¼1ðReÞ
c free

l¼0ðReÞ
�
¼ lnm� ln4: (4.31)

Hence, in the small-m limit, we have

ln

�
detðH 0;0 þm2Þ
detð�@2ðl¼0Þ þm2Þ

�
� ln

�
detðH 0;1 þm2Þ
detð�@2ðl¼0Þ þm2Þ

�

¼ 2 lnmþ ln

�
�ð1þ 1

�Þ�ð2�Þ
8�ð3�Þ

�
; ðCase IÞ: (4.32)

[For our Case II with �< 0, the GY wave function (4.29)
has a nonzero asymptotic value (i.e., limR!1c 1ðRÞ � 0)
and this limit value determines the j ¼ l ¼ 0 massless
functional determinant].

Let us now turn to the case j ¼ l � 0, i.e., the case
where 2� 2 matrix differential Eq. (4.7) is relevant.
Here, in dealing with the boundary condition (4.6), the

nondiagonal matrix form given for ~LðþÞ � ~S in (4.11) is
not very convenient. Therefore, we perform a unitary trans-

formation, ~LðþÞ � ~S ! Uð ~LðþÞ � ~SÞUy, with

U ¼ 1

2lþ 1

�1 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

1

0
@

1
A; ðUUy ¼ IÞ

(4.33)

to find the following diagonal form for ~LðþÞ � ~S:

~LðþÞ � ~S ! 1

2

l 0

0 �l� 1

 !
: (4.34)

Under this unitary transformation, ~S � ~T (originally given
by the form in (2.25)) remains unchanged, i.e.,

~S � ~T ! 1

4ð2lþ 1Þ
�2l� 3 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp �2lþ 1

0
@

1
A: (4.35)

Then, based on the factorized form (4.10), we may first
consider the first-order matrix equation

�
@

@r
�2

r

l 0

0 �l�1

 !

� rfðrÞ
2lþ1

�2l�3 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þp

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þp �2lþ1

0
@

1
A��ðrÞ¼0; (4.36)

where �ðrÞ is a 2� 2 matrix (see (4.7)). For a general
radial function fðrÞ (assumed to be finite for r ! 0), it will
be unwieldy to exhibit the solution to this matrix equation
in an explicit manner. So just let a 2� 2 matrix function
�1ðrÞ denote the solution to (4.36) which has the following
small-r behavior

r ! 0: �ðrÞ � 1 � r2l 0 � r�2l�2

0 � r2l 1 � r�2l�2

 !
: (4.37)

A comment as regards (4.37) might be appropriate here.
Note that, if (4.36) were regarded as an equation for a
‘‘column vector,’’ our ‘‘2� 2 matrix’’ � would comprise
two column vector solutions to (4.36). Then (4.37) is
equivalent to the statement that we require two indepen-

dent solutions to the column vector Eq. (4.36), say �ð1Þ
1 ðrÞ

and �ð2Þ
1 ðrÞ, having the small-r behaviors

r!0:�ð1Þ
1 ðrÞ� 1

0

 !
r2l; �ð2Þ

1 ðrÞ� 0

1

 !
r�2l�2: (4.38)

Notice that the solution to the first-order Eq. (4.36) is not
the one satisfying our boundary condition (4.6) (with the
above unitary transformation taken into account). Then the
full second-order GY equation for j ¼ l � 0 should admit
a different kind of solution. To find such a solution �2ðrÞ,
we put �2ðrÞ ¼ �1ðrÞAðrÞ (AðrÞ is a 2� 2 matrix func-
tion to be determined) and use the form with the second-
order equation�
@

@r
þ3

r
þ4

r
~LðþÞ � ~Sþ4rfðrÞ ~S � ~T

�

�
�
@

@r
�4

r
~LðþÞ � ~S�4rfðrÞ ~S � ~T

�
�1ðrÞAðrÞ¼0 (4.39)

for ~LðþÞ � ~S and ~S � ~T given by the matrices in (4.34) and
(4.35). This then reduces to the first-order equation for
�ðrÞ � �1ðrÞA0ðrÞ:�
@

@r
þ3

r
þ2

r

l 0

0 �l�1

 !

þ rfðrÞ
2lþ1

�2l�3 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þp

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þp �2lþ1

0
@

1
A��ðrÞ¼0: (4.40)

If �3ðrÞ denotes the solution to this equation with the
small-r behavior

r ! 0: �3ðrÞ �
1 � r�2l�3 0 � r2l�1

0 � r�2l�3 1 � r2l�1

 !
; (4.41)
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the desired second solution �2ðrÞ can be identified with

� 2ðrÞ ¼ �1ðrÞ
Z r½�1ðr1Þ��1�3ðr1Þdr1: (4.42)

Thanks to (4.37) and (4.41), this second solution has the
small-r behavior

r!0:�2ðrÞ� 1

2ð2lþ1Þ
�1 �r�2l�2 0 �r2l
0 �r�2l�2 1 �r2l

 !
: (4.43)

Now, for the solution satisfying the GY boundary condition
(4.6), we consider a linear superposition, i.e., �lðrÞ ¼
�1ðrÞC1 þ�2ðrÞC2 where C1 and C2 are suitable con-
stant 2� 2matrices. By this consideration, we can identify
the GY wave function for j ¼ l � 0 with the expression

�1ðrÞ ¼ �1

1 0

0 0

 !
þ 2ð2lþ 1Þ�2ðrÞ

0 0

0 1

 !
(4.44)

(in the basis where ~LðþÞ � ~S and ~S � ~T are given as in (4.34)

and (4.35)). Note that, if two column vectors �ð1Þ
1 ðrÞ and

�ð2Þ
1 ðrÞ (�ð1Þ

2 ðrÞ and �ð2Þ
2 ðrÞ) are used to represent our

solution �1ðrÞ (�2ðrÞ), (4.44) identifies the desired GY
solution �1ðrÞ with the matrix formed by two column

vectors �ð1Þ
1 ðrÞ and 2ð2lþ 1Þ�ð2Þ

2 ðrÞ.
For our Case I the above matrix functions �1ðrÞ and

�3ðrÞ can be found explicitly: if�1ðrÞnmð�3ðrÞnmÞ denotes
the nth column and mth row of �1ðrÞð�3ðrÞÞ, we have

�1ðrÞ11 ¼ r2lðr2�þ 1Þ�ð3=2�Þ
2F1

�
� 1

�
;
2l

�
;
2lþ 1

�
;�r2�

�
;

�1ðrÞ12 ¼�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ðr2�þ 1Þ�ð3=2�Þr2��2l�2

ð2lþ 1Þð��þ 2lþ 1Þ 2F1

�
�� 1

�
;1� 2lþ 2

�
;2� 2lþ 1

�
;�r2�

�
;

�1ðrÞ21 ¼ lr2lðr2�þ 1Þ�ð3=2�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp �

ðr2�þ 1Þ2F1

�
2l

�
þ 1;1� 1

�
;
2lþ 1

�
þ 1;�r2�

�
� 2F1

�
� 1

�
;
2l

�
;
2lþ 1

�
;�r2�

��
;

�1ðrÞ22 ¼ r�2ðlþ1Þðr2�þ 1Þ�ð3=2�Þ

2ð2lþ 1Þð��þ 2lþ 1Þ
�
2ð�� 1Þð2lþ 1Þð��þ 2lþ 2Þðr2�þ 1Þr2�

�2�þ 2lþ 1 2F1

�
2� 1

�
;2� 2lþ 2

�
;3� 2lþ 1

�
;�r2�

�

þð2ð2lþ 1Þð��þ 2lþ 1Þ� 2½�þ 2lð�� 2l� 3Þ� 1�r2�Þ2F1

�
1� 1

�
;1� 2lþ 2

�
;2� 2lþ 1

�
;�r2�

��
;

(4.45)

and

�3ðrÞ11 ¼ r�2l�3ðr2� þ 1Þ3=2�2F1

�
1

�
;� 2l

�
;� 2lþ 1

�
;�r2�

�
;

�3ðrÞ12 ¼ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ðr2� þ 1Þ3=2�r2�þ2l�1

ð2lþ 1Þð�þ 2lþ 1Þ 2F1

�
1þ 1

�
; 1þ 2lþ 2

�
; 2þ 2lþ 1

�
;�r2�

�
;

�3ðrÞ21 ¼ lr�2l�3ðr2� þ 1Þ3=2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp �

ðr2� þ 1Þ2F1

�
1þ 1

�
; 1� 2l

�
; 1� 2lþ 1

�
;�r2�

�
� 2F1

�
1

�
;� 2l

�
;� 2lþ 1

�
;�r2�

��
;

�3ðrÞ22 ¼ r2l�1ðr2� þ 1Þ3=2�
2ð2lþ 1Þð�þ 2lþ 1Þ

�
ð2ð2lþ 1Þð�þ 2lþ 1Þ

þ 2½�þ 2lð�þ 2lþ 3Þ þ 1�r2�Þ2F1

�
1þ 1

�
; 1þ 2lþ 2

�
; 2þ 2lþ 1

�
;�r2�

�

� 2ð�þ 1Þð2lþ 1Þð�þ 2lþ 2Þr2�ðr2� þ 1Þ
2�þ 2lþ 1 2F1

�
2þ 1

�
; 2þ 2lþ 2

�
; 3þ 2lþ 1

�
;�r2�

��
: (4.46)

The second matrix solution �2ðrÞ, and also the GY wave function �lðrÞ, will be given using these results. But, for the
determinant ratio (4.4), all we need to know is the form of det�lðrÞ for large r ¼ Re, and, because of (4.42) and (4.44), it
can be recast as

det�1ðReÞ ¼ 2ð2lþ 1Þðdet�1ðReÞÞ
Z Reð½�1ðr1Þ��1�3ðr1ÞÞ22dr1: (4.47)

Here, det�lðRÞ is easily calculated (without using the explicit forms in (4.45)) if one notes that, for �1ðrÞ satisfying the
first-order Eq. (4.36),
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ln½detðr�1ðrÞÞ� ¼ tr lnðr�1ðrÞÞ ¼
Z r

0
tr

�
1

r
þ�0

1ðrÞ�1ðrÞ�1

�
dr

¼
Z r

0
tr

�
1

r
þ 2

r

l 0
0 �l� 1

� �
þ rfðrÞ

2lþ 1
�2l� 3 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp �2lþ 1

 !�
dr ¼ �2

Z r

0
rfðrÞdr: (4.48)

Hence, for fðrÞ ¼ r2�

r2ð1þr2�Þ ,

ln½detðr�1ðrÞÞ� ¼ � 1

�
lnð1þ r2�Þ; (4.49)

and accordingly

det�1ðReÞ � 1 � 1

R4
e

: (4.50)

On the other hand, from (4.45) and (4.46), we find

r!1: ð�1ðrÞ�1�3ðrÞÞ22!
ð2lþ1Þ2r4lþ3�ð2lþ1

� Þ4
4lðlþ1Þ�ð2l�Þ2�ð2lþ2

� Þ2 : (4.51)

Using these results in (4.47) gives rise to

det�lðReÞ �
ð2lþ 1Þ3R4l

e �ð2lþ1
� Þ4

8lðlþ 1Þ2�ð2l�Þ2�ð2lþ2
� Þ2 : (4.52)

Based on this, we have

ln

�
detH l;l

fdetð�@2ðlÞÞg2
�
� ln

det�lðReÞ
c free

l ðReÞ2

¼ ln

� ð2lþ 1Þ3�ð2lþ1
� Þ4

8lðlþ 1Þ2�ð2l�Þ2�ð2lþ2
� Þ2

�
: (4.53)

In (2.38), this result may be used in conjunction with that
in (4.26).

To obtain the quantity �ð�Þ
l�LðA;mÞ in the small-mass

limit, all that is needed now is to consider the sum of
various partial-wave functional determinants discussed
above. For the backgrounds corresponding to our Case I,
we find from (4.32), (4.50), (4.26), and (4.27) the following
result for the sum:

�ð�Þ
l�LðA;mÞ ¼ � lnm� 1

2
ln

�
�ð1þ 1

�Þ�ð2�Þ
8�ð3�Þ

�

� 1

2

XL
l¼ð1=2Þ;1;���

�
ð2lþ 1Þ2 ln

� ð2lþ 1Þ2�ð2lþ1
� Þ4

4lðlþ 1Þ�ð2l�Þ2�ð2lþ2
� Þ2

�

þ ln

�
2lþ 1

2lþ 2

��
: (4.54)

For large enough L this quantity can be computed as
follows. Here notice that the quantity inside the curly
brackets, waiting for the l-sum in (4.54), can be

approximated for large l by � 4l
� � 2

� � �2þ3�þ1
6l� þOð1

l2
Þ.

Therefore, if L is large enough, we obtain from (4.54)

�ð�Þ
l�L ¼ 2L2

�
þ 3L

�
þ ½lnð2LÞ þ ��

�
�

6
þ 1

6�
þ 1

2

�
� lnm

� 1

2
ln

�
�ð1þ 1

�Þ�ð2�Þ
8�ð3�Þ

�
þ Cð�Þ þO

�
1

L

�
; (4.55)

Cð�Þ being given by

Cð�Þ¼�1

2

X1
l¼ð1=2Þ;1;���

�
ð2lþ1Þ2 ln

� ð2lþ1Þ2�ð2lþ1
� Þ4

4lðlþ1Þ�ð2l�Þ2�ð2lþ2
� Þ2

�

þ ln

�
2lþ1

2lþ2

�
þ4l

�
þ 2

�
þ�2þ3�þ1

6l�

�
: (4.56)

The constant Cð�Þ may be evaluated numerically. Observe
that OðL2Þ, OðLÞ and OðlnLÞ terms in (4.55) match pre-
cisely those of the high partial-wave contribution given in
(3.19). We thus obtain the unambiguous result for their

sum, i.e., for the quantity �ð�Þ
ren ðA;mÞ according to (2.37):

�ð�Þ
ren ðA;mÞ ¼

�
ln

�
�

2

�
þ �

��
�

6
þ 1

6�
þ 1

2

�
� lnm

� 1

2
ln

�
�ð1þ 1

�Þ�ð2�Þ
8�ð3�Þ

�
þ 5�

36
� 47

72�
þ Cð�Þ:

(4.57)

Using the result (4.57) with (2.31) then provides us with
the exact expression for the small-mass-limit form of the
renormalized fermion effective action: i.e., for our Case I
backgrounds,

�ren ¼ 2�ð�Þ
ren þ ln

�
m

�

�

¼ � lnðm�Þ þ �2 þ 1

3�
lnð��Þ þ ~Cð�Þ; (4.58)

where we reinstated the �-dependences, and ~Cð�Þ is given
by

~Cð�Þ ¼ ð�� ln2Þ
�
�

3
þ 1

3�
þ 1

�
� ln

�
�ð1þ 1

�Þ�ð2�Þ
8�ð3�Þ

�

þ 5�

18
� 47

36�
þ 2Cð�Þ: (4.59)

Note that the numerical factor �2þ1
3� multiplying lnðm�Þ in

(4.58) reflects the value of the classical Yang-Mills action,

i.e.,
R

d4x
ð4
Þ2 trðF��F��Þ ¼ �2þ1

2� for our backgrounds. For

� ¼ 1, i.e., when the background field corresponds to a

single-instanton solution, we have ~Cð1Þ ¼ 4� 0ð�1Þ þ
ln2
3 þ 5

36 ¼ �0:291747; then, from our expression (4.58),

CALCULATION OF RENORMALIZED FERMION EFFECTIVE . . . PHYSICAL REVIEW D 84, 105010 (2011)

105010-15



the previous calculation of ’t Hooft [6] is recovered. Values

of ~Cð�Þ for different choices of � are given in Table I.
Especially, for large enough � (so that HðrÞ may resemble
a step function �ðr� �Þ), one can derive from (4.56) an
appropriate asymptotic formula for Cð�Þ; based on this,
one gets the expression

�ren ¼ � lnðm�Þ þ �2 þ 1

3�
lnð��Þ � � ln�

3

þ
�
1

9
� 4� 0ð�1Þ � ln2

3

�
�þ ln

�
4

3


�
þO

�
ln�

�

�
;

(4.60)

which proves to be quite accurate, say, if �> 8. Note that,
for very large � (i.e., when HðrÞ is almost steplike), �ren

acquires a large negative contribution from the term� � ln�
3

(which may exceed the classical action value). Therefore,
as far as the light fermion effect is concerned, it appears to
favor stiff or steplike instanton configurations than the
classical instanton solutions with � ¼ 1.

In our Case II backgrounds the functional form of
HIIðr;R;�Þ is such that no simple result can be obtained
easily (even with the simplification introduced above) for
the small-mass-limit form of the effective action. Hence we
shall be content here with exhibiting certain feature con-
cerning themassless fermion effective action in our Case II
backgrounds with �< 0, i.e., for the case of instanton-
antiinstanton-type configurations shown in Fig. 1(d).
Actually, for the present discussion, we may take the
function HðrÞ � r2fðrÞ, entering the background field
(2.30), to have the general form

HðrÞ ¼ HaðrÞf1þHbðr� RÞg; (4.61)

with the functions HaðrÞ and Hbðr� RÞ broadly observing
the patterns shown in Fig. 3. Then it will be of interest to
know the behavior of the fermion one-loop effective action
as R, the instanton-antiinstanton separation, becomes
large. With finite fermion mass, one expects that it should
be approximately equal to the sum of the individual con-
tributions from the instanton and the antiinstanton. (This is
also borne out in our numerical study, presented in Part B).
But, with negligible fermion mass, this is known to be
generally not true [7,8]—there exists long-range interac-
tion between the instanton and the antiinstanton. We would
like to identify such long-distance interaction term in the
massless effective action when the background field has
the above form.
Since the Pontryagin index is zero for the above back-

ground, we have �renðA;mÞ ¼ 2�ð�Þ
ren ðA;mÞ. Then note

that, among various partial-wave contributions to

�ð�Þ
ren ðA;m ¼ 0Þ, the l ¼ j ¼ 0 partial-wave term is rather

special. If the background field have had only the instanton
part (i.e., without the Hb part in (4.61)), a normalizable
zero mode would have been present in this partial wave,
and hence a divergent contribution to the effective action.
But with the Hb part included (i.e., if an antiinstanton is
also present at some distance r ¼ R), there is no normal-
izable zero mode in any partial-wave term, i.e., delocaliza-
tion occurs. For the l ¼ j ¼ 0 partial-wave contribution,
this amounts to a big change, from a divergent result to a
finite one. If the instanton-antiinstanton separation R be-
comes quite large, we must then be able to see some,
strongly R-dependent, term (representing instanton-
antiinstanton interaction at large distance) from this
partial-wave contribution. Further, when the mass value
is sufficiently small, our numerical study (presented in Part

TABLE I. Values of ~Cð�Þ for various �.
� 1 2 3 4 5 10 20

~Cð�Þ �0:291747 �0:269189 �0:378112 �0:590437 �0:883495 �3:16105 �10:0277

R
r

1

Ha r

(a)

R
r

1

Hb r R

(b)

FIG. 3 (color online). Schematic forms of the functions HaðrÞ and Hbðr� RÞ.
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B of this section) shows very clearly that the contributions
from other parts do not generate significant long-range
interaction term. Therefore, to extract the very long-
distance interaction term, we may concentrate our study
to a specific group containing the l ¼ j ¼ 0 partial-wave

contribution of �ð�Þ
ren ðA;mÞ, i.e., according to our grouping

made in (2.38), to that consisting of the l ¼ j ¼ 0 and
(l ¼ 0, j ¼ 1) partial-wave contributions.

With m ¼ 0 the l ¼ j ¼ 0 and (l ¼ 0, j ¼ 1) partial-
wave GY wave functions, c 0;0ðrÞ and c 0;1ðrÞ, are given by
(4.29) and (4.14):

c 0;0ðrÞ ¼ e�3
R

r

0
r1fðr1Þdr1 ¼ e�3

R
r

0
ðHðr1Þ=r1Þdr1 ; (4.62)

c 0;1ðrÞ ¼ e
R

r

0
r1fðr1Þdr1 ¼ e

R
r

0
ðHðr1Þ=r1Þdr1 : (4.63)

Therefore the lowest angular momentum part of our effec-
tive action expression (2.38) becomes

� 1

2

�
ln

�
detH 0;0

detð�@2ðl¼0ÞÞ
�
� ln

�
detH 0;1

detð�@2ðl¼0ÞÞ
��

¼ � 1

2
ln

�
detH 0;0

detH 0;1

�
¼ � 1

2
lim
r!1 ln

�
c 0;0ðrÞ
c 0;1ðrÞ

�

¼ 2
Z 1

0

HðrÞ
r

dr: (4.64)

Now, with the form (4.61) for HðrÞ, we may rewrite this
quantity as

2
Z 1

0

HðrÞ
r

dr¼2
Z 1

0

HaðrÞ
r

drþ2
Z 1

1

HaðrÞ�1

r
dr

þ2
Z R

0

HaðrÞHbðr�RÞ
r

dr

þ2
Z 1

R

HaðrÞHbðr�RÞþ1

r
drþ2

Z R

1

1

r
dr:

(4.65)

We will take R to be large. Then the first two terms in the
right-hand side of (4.65) are finite and R-independent. The
third and fourth terms are R-dependent but remains finite
for large R. But we have also the last term, 2

R
R
1
1
r dr ¼

2 lnR, i.e., a term growing logarithmically with R. Based

on this, we can now conclude that the massless effective
action �renðA;mÞ in the above well-separated instanton-
antiinstanton background should contain a long-range
logarithmic interaction term (of attractive nature), i.e.,

�ren � 4 lnRþOð1Þ: (4.66)

This is consistent with the observation of Refs. [7,8].

B. Fermion effective action with m� 0

Withm � 0, numerical integration should be considered
to solve the GY equations. But, for a relatively large value
of mass m, we have a totally different approximation
scheme for the total effective action in the form of the
large mass expansion. To acquire a measure on the validity
of the latter scheme, we shall below summarize the appro-
priate formula of the large-mass expansion first. Note that
we here assume � ¼ � ¼ 1; so without this assumption,m
and R below become m� and R

� , respectively.

1. Large mass expansion

One can obtain the large mass expansion of the one-loop
effective action with the help of the Schwinger-DeWitt
proper-time expansion. Since the related procedure is de-
scribed in detail in [1,2] for the case of scalar effective
action, we will present only the final results that apply to
our discussion with fermions. The large mass expansion for

�ð�Þ
ren ðA;mÞ, in the background of the form (2.30), can be

written as

�ð�Þ
ren ðA;mÞ ¼ Að0Þ

LM lnmþ Að2Þ
LM

1

m2
þ Að4Þ

LM

1

m4
þ � � � :

(4.67)

All of the coefficients in (4.67) involve radial integrals of
certain polynomials of the function fðrÞ in (2.30) and its
derivatives. Explicitly, they are of the following forms:

Að0Þ
LM ¼ � 1

2

Z 1

0
drr3ðf2½20� 6r3f0� þ r2f02

þ 10rff0 þ 4r4f4 � 20r2f3Þ; (4.68)

Að2Þ
LM ¼

Z 1

0
dr

�
� 1

40
r4fð3Þ½�3rf0 þ 10r2f2 � 16f� � 1

120
r2½�80r5f3f00 � 3r3f002 þ 510r3f2f00

� 432rff00 � 600r6f4f0 þ 60r5f2f02 þ 30r4f03 þ 1120r4f3f0 þ 540r3ff02 þ 930r2f2f0

� 302rf02 � 720ff0 þ 120r4ff0f00 � 139r2f0f00 þ 400r7f6 � 2160r5f5 þ 3120r3f4 � 960rf3�
�
; (4.69)
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Að4Þ
LM ¼

Z 1

0
dr

�
� 3

5
r5f2fð4Þ � 113

40
r4f2fð3Þ þ 11

20
r3ffð4Þ þ 99

56
r2ffð3Þ þ 2

15
r7f2f002 � 2r5ff002

þ 123

40
r3f2f00 þ 49

10
r8f2f03 � 7

30
r7f04 � 124

15
r6ff03 � 61r5f2f02 � 173

60
r4f03 � 2

5
r7f6½35r3f0 � 254�

þ 1

1680
r3½13r2ðfð3ÞÞ2 þ 1675ðf00Þ2 þ 16r2fð4Þf00 þ 488rfð3Þf00� þ 157

840
r4fð4Þf0 þ 299

210
r3fð3Þf0

� 1

280
r4fð5Þ½�2rf0 þ 7r2f2 � 11f� � 13

40
r6f0f002 þ 41

12
r2f0f00 � 1

60
r3ff02½36r4f00 � 43�

� 2

15
r5f5½25r4f00 � 207r3f0 þ 450� � 1

240
rf02½54r5fð3Þ þ 742r4f00 � 175�

� 1

840
ff0½126r6fð4Þ þ 2226r5fð3Þ þ 9170r4f00 þ 495� � 1

120
r2f2f0½8r5fð3Þ þ 1376r4f00 � 1935�

þ 1

15
r4f3½r3fð4Þ � 20r2fð3Þ � 453rf00 þ 696r3f02 � 1371f0 þ 99r4f0f00� � 1

30
r3f4½�25r5fð3Þ � 671r4f00

þ 58r6f02 � 1741r3f0 � 168� þ 8r11f8 � 52r9f7 � 1

56
rff00½14r5fð3Þ � 33�

�
: (4.70)

When the radial function has the form fðrÞ ¼
r2��2=ð1þ r2�Þ (our Case I), it is possible to perform the
radial integrals explicitly to get the result:

�ð�Þ
ren ðmÞ¼�

�
1

2
þ1þ�2

6j�j
�
lnm

�
ð24�8�60�6þ11�4þ50�2�25Þ
1800�6 sinð
=j�jÞ

1

m2

þ
ð�2�4Þð�2�1Þ

�90�8�152�6þ553�4�126�2�280

11025�8 sinð2
=j�jÞ
� 1

m4
þ���: (4.71)

Note that, for j�j ¼ 1 or 2, taking the limit j�j ! 1 or
j�j ! 2 in the right-hand side of (4.71) should be under-
stood. (One may compare (4.71) with the corresponding
form for the scalar effective action given in (3.8) of
Ref. [2].) This large mass expansion result will be com-
pared with the numerically determined effective action
later. In Case II, it is not possible to obtain the associated
radial integrals in a closed form, but we can evaluate them
numerically.

2. Numerically exact computation and interpretation

We now turn to our numerical evaluation method.
First consider partial-wave contributions with l � j (or l ¼
j ¼ 0). By solving the differential Eqs. (4.2) numerically,
we can determine the value for the ratio of two functional
determinants according to the GY formula (4.1). One may
easily solve the equation corresponding to the free equa-
tion. This free radial wave function is given in terms of the
modified Bessel function, i.e., c free

l ðrÞ ¼ I2lþ1ðmrÞ=r. As
noted in Ref. [3], it is convenient to consider the ratio of
two functions

R l;jðrÞ ¼
c l;jðrÞ
c free

l ðrÞ ; (4.72)

which has a finite value even though each of the numerator
and the denominator diverges in the r ! 1 limit. This ratio
function Rl;jðrÞ satisfies the differential equation
d2Rl;j

dr2
þ
�
1

r
þ 2m

I02lþ1ðmrÞ
I2lþ1ðmrÞ

�
dRl;j

dr
�V l;jRl;j ¼ 0;

(4.73)

under the initial value boundary conditions

R l;jjr¼0 ¼ 1; R0
l;jjr¼0 ¼ 0: (4.74)

These differential equations share the same character as the
ones one encounters in the evaluation of the scalar effective
action studied extensively in Ref. [2].
In the present problem it is also necessary to evaluate

functional determinants involving 2� 2matrix differential
operators, and for this we must solve the matrix differential
Eqs. (4.7) with the boundary condition (4.6). Here again,
instead of directly solving them numerically, we will con-
sider a new matrix function

RlðrÞ ¼ �lðrÞ
c free

l ðrÞ : (4.75)

It satisfies the matrix differential equation of the form

d2Rl

dr2
þ
�
1

r
þ 2m

I02lþ1ðmrÞ
I2lþ1ðmrÞ

�
dRl

dr
�V l;lRl ¼ 0; (4.76)

with the initial boundary conditions

Rljr¼0 ¼
1 0

0 1

 !
; R0

ljr¼0 ¼
0 0

0 0

 !
: (4.77)
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Then the functional determinant of matrix differential
operator in (4.4) can be determined in terms of the ordinary
determinant of the 2� 2 matrix Rlðr ¼ 1Þ.

Using the values Rl;jðr ¼ 1Þ and Rlðr ¼ 1Þ found by

the above method, each group of the functional determi-
nants in the right-hand side of (2.38) can be numerically

evaluated to find the value of �ð�Þ
l�LðA;mÞ:

�ð�Þ
l�LðA;mÞ ¼ � 1

2

�
ðlnR0;0 � lnR0;1Þ

þ XL
l¼ð1=2Þ;1;���

fð2lþ 1Þ2ðlndetRl þ lnRl�ð1=2Þ;lþð1=2Þ

þ lnRlþð1=2Þ;l�ð1=2ÞÞ � lnRl;lþ1

� lnRlþð1=2Þ;l�ð1=2Þg
���������r¼1

: (4.78)

Combining this with the contribution from the high partial-
wave part (keeping up to the terms of Oð 1

L2Þ)

�ð�Þ
l>LðA;mÞjtruncated
¼
Z 1

0
dr

�
Q2L

2 þQ1LþQlog ln

�
2Lðuþ 1Þ

�r

�

þQ0 þQ�1

L
þQ�2

L2

�
; (4.79)

we can evaluate the effective action to very high accuracy.
In (4.79), explicit forms of Q2; . . . and Q0 can be found
from (3.18) and those of Q�1 and Q�2 from Appendix A.
As explained at the end of Sec. II, including the
1
L -suppressed terms Q�1=L and Q�2=L

2 (of �ð�Þ
l>LðA;mÞ)

in our effective action formula (2.37) makes it possible to
evaluate the effective action accurately with a relatively
small value of L. In practice, with a choice of 20<L< 50,
we could obtain the value for the effective action with the
accuracy of 10�6.

In Case I, the radial function is fðrÞ ¼ r2��2=ð1þ r2�Þ.
In this case we have the expression (3.17) for the high

partial-wave part �ð�Þ
l>LðA;mÞ and the Q�1 and Q�2 terms

can also be evaluated. This high partial-wave part must be

combined with the low partial-wave part �ð�Þ
l�LðA;mÞ which

requires extensive numerical work. We have evaluated the
fermion effective action as a function ofm for the values of
� ¼ 1, 2, 3, 4, 5, 10 for concreteness. In Fig. 4, we plot
these results for the full effective action �renðA;mÞ (given
by (2.31)), together with the corresponding results based on
the large mass expansion in (4.67). From this plot we see
that the validity range of the large mass expansion varies
with the ‘‘stiffness’’ � [see Fig. 1(a)]—it is valid if the
mass m is such that m� * 1:2 for � ¼ 1 (not stiff) and
m� * 4 for � ¼ 5 (stiff). Comparing the present finding
against that for the corresponding scalar effective action
given in Ref. [2], the departure from the large mass ex-
pansion result as the mass value is lowered is more

conspicuous in the fermion case. Also our numerical result
shows consistently lower values for the one-loop effective
action as the value of � is increased from 1 (i.e., further
away from the self-dual case); this indicates that one-loop
fermion effects tend to favor non-self-dual deformation of
instantons, towards a more wall-like form in our study. (To
a lesser degree, this phenomenon was also seen for the
scalar one-loop effective action [2]).
Our numerically determined curves for �renðA;mÞ in

Fig. 4 are essentially exact ones for all nonzero values of
m, and one might even try to read the values of the quantity
limm!0½�ren þ lnðm�Þ� from the extrapolation of our nu-
merical data. (It is quite difficult to evaluate numerically
the effective action withm ¼ 0 since some of the solutions
to the GY equations diverge in the r ! 1 limit). See

Table II for the values of ~Cð�Þ determined numerically
for m ¼ 1

100 (assuming the ‘‘form’’ (4.58) against their

exact values based on (4.59). The accuracy of the numeri-
cal method used by us is beyond question.
We now turn to Case II, where fðrÞ ¼ 1

2ð1þr2Þ �
½1þ tanhðr�R

� Þ�. There are two free parameters � and R,

with an instantonlike background [see Fig. 1(c)] if �> 0
and an instanton-antiinstanton configuration [see Fig. 1(d)]

1 2 3 4

5

4

3

2

1

1 2 3 4

10

5

4

3

2

1

FIG. 4 (color online). Plots of the effective action in our Case I
backgrounds, numerically evaluated as a function of m for
various values of �ð¼ 1; 2; 3; 4; 5; 10Þ. The solid lines (with
the same color as that used for numerical values) are the
corresponding results of large mass expansion.

TABLE II. Exact values (with m ¼ 0) versus numerical values
(with m ¼ 1=100) of ~Cð�Þ for � ¼ 1, 2, 3, 4, 5, 10.

� ~Cð�Þ
exact (m ¼ 0) numerical (m ¼ 1

100 )

1 �0:291747 �0:2916
2 �0:269189 �0:2690
3 �0:378112 �0:3782
4 �0:590437 �0:5905
5 �0:883495 �0:8835
10 �3:16105 �3:1609
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if �< 0. For various choices of � and R, we have deter-
mined numerically �renðA;mÞ, as a function of mass m.
First, for a fixed value of R ¼ 5 and � ¼ 2, 1, 12 and

1
4 , the

resulting functions are plotted in Fig. 5, Here notice that
the instanton configuration becomes more stiff-wall-like if
the value of � is reduced, and for the validity range of large
mass expansion we find m� * 1 for � ¼ 1 and m� * 4
for � ¼ 1

4 . Also the effective action value is generally less

for smaller �; this behavior is consistent with our obser-
vation with Case I backgrounds that one-loop fermion
effects tend to favor deformation of instanton into a stiff-
wall-like form. For the same R-value the fermion effective
action �ren with negative values of �ð¼ �2;�1;� 1

2 ;� 1
4Þ

are evaluated also, and they are plotted in Fig. 6. Clearly, as
m approaches zero, the effective action becomes singular if
�> 0, but remains finite for �< 0; this is a phenomenon
directly connected with the existence or nonexistence of a
fermion zero mode in the m ¼ 0 system.

We also studied how the fermion effective action
changes as the parameter R is varied (taking here m ¼ 1

10

and � ¼ �1): these results are in Fig. 7. From the plots
shown in Fig. 7, one will notice that the fermion effective
actions for both values of � ¼ �1 grow linearly with R if
R becomes large. This should not be anything surprising—
for the gauge background field involved here, the classical
Yang-Mills action, which enters the effective action
through renormalization counterterms, also grows linearly
with R. (That the two curves in Fig. 7, one for � ¼ 1 and
the other appropriate to the case � ¼ �1, have even the
same large-R slope is related to the point discussed below).

Here recall that, according to the relation (2.22) and the
remarks that follow immediately, our Case II background
with a negative value of� ¼ ��0 (�0 > 0) can actually be
viewed as a composite configuration involving an instanton
located near the origin (which is gauge-equivalent to our
Case I background with � ¼ 1) and an antiinstantonlike

configuration associated to our Case II background with
positive � ¼ þ�0. Then, we may define the fermion-
induced ‘‘interaction energy’’ between the instanton and
the (spherical-wall-like) antiinstanton, separated by dis-
tance R, as

�intðR;mÞ ¼ �ðIIÞ
renðR;mÞj�¼��0

� ½�ðIÞ
renðmÞj�¼1

þ �ðIIÞ
renðR;mÞj�¼�0

�; (4.80)

where the designation (I) or (II) refer to our Case I or Case
II background, respectively. Choosing �0 ¼ 1 for definite-
ness, we used our numerical results obtained for �renðA;mÞ
in Case II background to study how this interaction energy
depends on R, at some chosen values of fermion mass m.
See our plots shown in Fig. 8. Clearly, with a finite value
for m, this interaction energy vanishes as R becomes
sufficiently large. But this interaction dies away at far
slower rate as the mass value becomes very small—i.e.,
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FIG. 5 (color online). Plots of �renðmÞ in our Case II back-
grounds (with R ¼ 5) for � ¼ 2, 1, 12 and

1
4 . Near m ¼ 0, all of

blow up, exhibiting the lnð1=mÞ divergence. The solid lines (with
the same color) correspond to the results of large mass expan-
sion.
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FIG. 6 (color online). Plots of �renðmÞ for negative values of
�ð¼ �2;�1;�1=2;�1=4Þ when R ¼ 5, together with the re-
sults of large mass expansion (represented by the solid lines). All
of our numerical plots approach finite values as m ! 0.
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FIG. 7 (color online). Plots of �ren for the mass value m ¼ 1
10

as a function of R for two cases with � ¼ 1 (blue dots) and � ¼
�1 (red squares).
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smaller the fermion mass, more long-ranged interaction
seen between the instanton and antiinstanton. [As we re-
marked already, with strictly zero mass, it is very difficult
to perform numerical study].

To see the origin of the above long-range interaction at
small mass, it is useful to separate the contribution to the

effective action �ðIIÞ
renðR;mÞ (with �< 0) coming from the

first brackets in the right-hand side of (2.38)—the part
containing the l ¼ 0 partial waves—from the rest. It is
in this l ¼ 0 partial-wave term, which we denote as

�ðl¼0ÞðR;mÞ below, where the effects related to the disap-
pearance (or delocalization) of normalizable fermion zero
modes (at m ¼ 0) in the instanton-antiinstanton composite
configuration are relevant. Now see our numerical results

for �ðl¼0ÞðR;mÞ (with � ¼ �1) given in Fig. 9, and see
also Fig. 10 where we present the plots for the effective
action with the very l ¼ 0 contribution removed, i.e., for

�� intðR;mÞ ¼ �intðR;mÞ � �ðl¼0ÞðR;mÞ: (4.81)

The fact that the latter quantity ��intðR;mÞ as a function of R
becomes flat rapidly is an unambiguous sign that the l ¼ 0

partial-wave term is mainly responsible for the above long-
range interaction between the instanton and the antiinstan-
ton at small fermion mass. [The data for m ¼ 0 included
here is the result of our direct calculation (using the exact
massless GY wave functions) for the l ¼ 0 partial-wave
contribution, and at large R this curve is clearly consistent
with the behavior found in (4.66)].
We found that the numerical data for the function

�ðl¼0ÞðR;mÞ presented in Fig. 9 are well approximated by
the simple function

�ðl¼0Þ
approxðR;mÞ ¼ � ln

�
m2

A
þ 1

R4

�
; ðA � 5:55Þ: (4.82)

Certainly, it is valid when m is small and R is large. As
m ! 0 it becomes the function 4 lnR in (4.66), derived in
Sec. IVA. In the R ! 1 limit, whenm � 0 it approaches a
constant, � lnm2=A. The values of � lnm2=A for m ¼
1=400, 1=200, 1=100, 1=50, and 1=10 are 13.69, 12.31,
10.92, 9.53, and 6.31, respectively. These values, if the
opposite sign is taken, are very close to the values denoted
by flat lines in Fig. 10 (which correspond to the sum of all
l � 0 contributions to the interaction energy and the l ¼ 0
contributions to the effective actions for the separated
instanton and antiinstanton configurations).

Adding the constant value �ðl¼0Þ
approxðR ¼ 1;mÞ ¼ lnm

2

A to

the function in (4.82), we may thus get an approximate
formula for the interaction energy in the form

�ðapproxÞ
int ðR;mÞ ¼ � ln

�
1þ A

m2R4

�
: (4.83)

In Fig. 11, plots for this function for the mass values chosen
for our numerical works are given together with the related
numerical data for comparison. Note that the numerical
data and those our approximate formula coincide very well
for R=� * 3, as long asm� & 1=10. (We have restored the
size parameter � here).
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FIG. 8 (color online). The interaction energy �int as a function
the distance R, for m ¼ 1=10, 1=50, 1=100, 1=200, 1=400.
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FIG. 9 (color online). Contribution from the l ¼ 0 partial-
wave term, �ðl¼0ÞðR;mÞ, as a function of R for various small
values of mð¼ 0; 1

400 ;
1
200 ;

1
100 ;

1
50 ;

1
10Þ. The solid lines (with the

appropriate color) represent our approximate formula in (4.82)
for the given mass values.
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FIG. 10 (color online). The interaction energy with the very
l ¼ 0 contribution removed, ��intðR;mÞ.
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V. DISCUSSIONS

The partial-wave cutoff method has been extended to
evaluate the 4-D spinor effective action in radially sym-
metric, non-Abelian, gauge backgrounds. With a suitable
extension of our previous scheme, it is shown that this
method retains its full power even when an infinite number
of functional determinants of matrix-valued radial differ-
ential operators have to be evaluated. By this method we
have determined the fermion effective action numerically
(for generic mass value) in various instantonlike and
instanton-antiinstanton-like backgrounds. The validity
range of large mass expansion has been checked using
these numerically exact calculations. While, in a smooth
background, large mass expansion for the fermion effective
action proves to be a good approximation up to moderate
value of mass, its failure at relatively small mass or for a
background with a rapid change is more conspicuous than
the case of scalar. Other technical aspects, elaborated in the
present paper, should find useful application in various
effective-action-related studies. One might also make use
of our study as a basis to test how good non-Abelian
derivative expansions [17] are. (Such study in the
Abelian case was made in Ref. [5]).

Considering the possible role of instantons for chiral
symmetry breaking in QCD-like theories, the implication
of our small-mass-limit formula (4.58) for the fermion
effective action in general Case I backgrounds deserves
attention. In this formula we see not only the large
positive factor � lnðm�Þ (which accounts for the well-
known suppression of instanton effects by light fermi-
ons), but also a strong negative contribution � � ln�

3 (see

(4.60)) in a background with � 
 1 (or for more wall-
like instanton). The parameter � here measures the de-
parture from the self-dual case (� ¼ 1) as well. That this
non-self-dual deformation of instanton tends to cause the
reduction in the one-loop effective action can also be

seen from our numerical plot with nonzero mass, given
in Fig. 4. Under this kind of deformation of instanton
from the self-dual situation, the behavior of the fermion
one-loop effective action is thus opposite to that of the
classical Yang-Mills action. Moreover, magnitudewise,
the former can exceed the latter. (The classical Yang-
Mills action, with the minimum at � ¼ 1 within the
Pontryagin index 1 sector, grows at most linearly with

� since, in our Case I background,
R

d4x
ð4
Þ2 trðF��F��Þ ¼

�2þ1
2� ). This suggests that fermion quantum effects can

push the instanton away from the self-dual situation (if
the effective gauge coupling constant is not too small)
and at the same time soften the instanton suppression
effect by light fermions significantly. But this cannot be
applied to QCD yet, because we have not taken into
account the gluonic quantum effects under the non-self-
dual deformation of instanton. But, in theories with a
relatively large number of light fermions, this possibility
will have to be taken seriously.
We also have studied the fermion determinant in an

intanton-antiinstanton configuration (within a spherical
symmetry). The complexity of the system drives us to
consider this system only numerically. Our numerical
data shows that the l ¼ 0 sector of the partial waves
essentially determines the interaction energy between in-
stanton and antiinstanton, which is induced by fermion.
This supports the would-be zero mode approximation for
interaction energy as widely used in the liquid instanton
picture of QCD [18]. The fermionic interaction energy,
which plays an important role in studying chiral symmetry
breaking in QCD, is described by an expression ([18,19])
with which the approximate formula (4.83) (extracted from
our numerical data) has the same form. From our numeri-
cal data, we have determined a bound for the validity of
this formula: it may be used for R * 3� andm & 1

10� . This

bound can be converted into R * 1 fermi and m &
60 MeV, accepting the average value of the instanton
size �� 0:33 fermi from Refs. [18,19].
Another point we may note is: in the massless limit,

evaluating the fermion effective action is in some sense
simpler than evaluating the scalar effective action in the
same background. This is due to the unique feature of
factorizability that the massless fermion Gel’fand-
Yaglom equations for partial waves have. By utilizing
this factorization fully, we have in fact found analytically
the small-mass-limit form of the full fermion effective
action in our general Case I backgrounds. As one can
always use the systematic large-mass expansion result for
the effective action if mass is not so small, the additional
knowledge on its small-mass-limit behavior is often suffi-
cient to obtain a global fit to the full mass-dependence of
the effective action [20]. In this regard, some further effort
might be desirable in trying to solve the massless fermion
Gel’fand-Yaglom equations, with more general back-
ground functions than the forms considered here.
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FIG. 11 (color online). Plot of the same data in Fig. 8 together
with our approximation function � lnð1þ A=ðm2R4ÞÞ.
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APPENDIX A: SUBLEADING TERMS FOR THE
HIGH PARTIAL-WAVE CONTRIBUTION

�ð�Þ
l>LðA;mÞ

For the background field of the form (1.1), (3.17), and
(3.18) contain our calculated result for the high partial-

wave contribution �ð�Þ
l>LðA;mÞ. But only the minimal terms

were included in these formulas. In case we want to imple-
ment our effective action calculation scheme numerically,
it will then be necessary to evaluate a very large number of
partial-wave functional determinants from the low partial-
wave side. But, if we include some 1

L -suppressed terms in

our expression for the high partial-wave contribution, it
becomes possible to take our partial-wave cutoff L at
relatively small value; that is, based on fewer calculations
of functional determinants from the low partial-wave side,
we can reach numerically convergent results for the full

quantity �ð�Þ
l>LðA;mÞ. As we utilized this idea in our nu-

merical analysis given in Sec. IV, we will here present the
explicit forms of the Oð1LÞ and Oð 1

L2Þ terms which may be

kept inside the integrand of our high partial-wave contri-
bution formula (3.17). These terms, which we denote as

Q�1ðrÞ 1L þQ�2ðrÞ 1
L2 , are given by (here, u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðmr

2LÞ2
q

)

Q�1ðrÞ ¼ r

32u9
½�6r6u2ð21u4 � 18u2 þ 5Þf4 þ 12r4u4ðu2 � 1Þff00 � 6r2u4ðu2 � 1Þf00 þ 12r4u2ð27u4 � 12u2 þ 5Þf3

þ r2ð32u8 � 389u6 þ 297u4 � 75u2 � 105Þf2 � 6r4u4ðu2 þ 1Þðf0Þ2 � 60r3u2ðu4 þ 1Þff0
� 2ru2ð8u6 þ 3u4 þ 6u2 � 15Þf0 þ 72r5u6f2f0 þ ð�64u8 þ 191u6 � 225u4 � 15u2 þ 105Þf�; (A1)

Q�2ðrÞ ¼ r

7680u13ðuþ 1Þ ½�80u4f80u6v�ðuþ 1Þð103u4� 38u2þ 7Þgr10f6þ 4800u8ð2vu2�u� 1Þr9f4f0

� 240u6f4vu4þðuþ 1Þð11u2� 5Þgr8f2ðf0Þ2þ 240u4f144u6v�ðuþ 1Þð99u4� 18u2þ 7Þgr8f5
þ 160u6f8u4v�ðuþ 1Þð13u2� 5Þgr8f3f00 � 480u10vr7fðf0Þ3þf2fð3Þg� 160u4f112u6v
� 5ðu� 1Þðuþ 1Þ2ðu2� 7Þgr7f3f0 � 1920u10vr7ff0f00 � 240u6f36vu4þðuþ 1Þð7u2þ 5Þgr6fðf0Þ2
þ 24u8f2vu2þ 3ðuþ 1Þgr6ðf00Þ2� 20u2f2496u10þðuþ 1Þð3576u8� 4377u6þ 3135u4� 595u2� 315Þgr6f4
� 240u6f34u4v�ðuþ 1Þðu2� 5Þgr6f2f00 þ 48u8f3vu2þ 2ðuþ 1Þgr6f0fð3Þ þ 48u8ðuþ 1Þr6ffð4Þ
� 240u4f62u8þðuþ 1Þð8u6þ 144u4� 5u2þ 35Þgr5f2f0 � 24u8ðuþ 1Þr4fð4Þ
þ 48u6f16vu4þðuþ 1Þð9u2þ 10Þgr5ffð3Þ þ 4u4f1208u8þðuþ 1Þð968u6þ 707u4

þ 1190u2þ 525Þgr4ðf0Þ2þ 40u2f384u10þðuþ 1Þð1800u8� 3561u6þ 1935u4� 595u2� 315Þgr4f3
þ 8u4f864u8þðuþ 1Þð1104u6� 489u4þ 900u2þ 385Þgr4ff00 þ 16u6f139vu4þðuþ 1Þð76u2þ 55Þgr5f0f00
� 40u6ðuþ 1Þð2u4þ 3u2þ 6Þr3fð3Þ þ 40u2f288u10þðuþ 1Þð24u8þ 657u6� 597u4þ 973u2þ 315Þgr3ff0
� 15ðuþ 1Þð3072u10� 7779u8þ 3820u6þ 4270u4� 4788u2� 1155Þr2f2� 20u4ðuþ 1Þð64u6� 159u4

þ 126u2þ 77Þr2f00 þ 60u2ðuþ 1Þð14u8� 41u6þ 327u4� 231u2� 105Þrf0
þ 15ðuþ 1Þð1040u10� 2823u8� 400u6þ 6930u4� 3528u2� 1155Þf�; (A2)

where v � u2 þ uþ 1 and f0, f00 and fðnÞ denote the first,
second and n-th derivatives of fðrÞ.

APPENDIX B: SMALL MASS LIMITS OF
GEL’FAND-YAGLOM WAVE FUNCTIONS

In this appendix we will describe the method that allows
to determine the asymptotics of massive GY solutions
when the mass is sufficiently small. We will here assume

that the exact massless GY solution is known. Then, de-

pending on whether the massless GY solution is normal-

izable or not, we have two different ways to obtain the

desired GY solution for small nonzero mass with global

validity (i.e., the asymptotic region included).
First, suppose the exact m ¼ 0 solution does not corre-

spond to a normalizable zero mode (like the GY solutions
given in (4.22), (4.23), and (4.44)). Then we can follow the
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idea of Ref. [20] and write the perturbative GY solution of
(4.2) for small nonzero mass as

c ðr;mÞ ¼ c 0ðrÞ þm2c 1ðrÞ þm4c 2ðrÞ � � � ; (B1)

where c 0ðrÞ is the known massless solution, and
c 1ðrÞ; c 2ðrÞ; � � � denote appropriate mass-independent
functions. We will refer to this solution as the small-r
solution. Being concerned with the leading small mass
behavior, we will here keep the leading-order solution in
(B1) only. This naive solution works fine when the mass m
is very small and at the same time mr can be taken to be
finite. But, in our case, we are interested in the large-r
asymptotic behavior of c ðr;mÞ, i.e., at r 
 1

m . Therefore

we need to consider another perturbative solution which
we call as the the large-r solution. For this large-r solution
we change the variable r to x ¼ mr (see Ref. [20] for more
detailed discussions) and write the corresponding solution
as ’ðxÞ (instead of c ðrÞ). We can then recast the GY
Eq. (4.2) as�
� @2

@x2
� 3

x

@

@x
þ 4lðlþ 1Þ

x2
þ 1

m2
V l;j

�
x

m

�
þ 1

�
’ðxÞ ¼ 0:

(B2)

From (2.26), (2.27), (2.28), and (2.29) and assuming that
the function HðrÞ ¼ r2fðrÞ approaches 1 as r ! 1 (i.e.,
for Case I and also for Case II with �> 0), we can
approximate the potential in (B2) such that

4lðlþ 1Þ
x2

þ 1

m2
V l;j

�
x

m

�
! 4qðqþ 1Þ

x2
þOðm2Þ; (B3)

(q denotes the quantum number defined in (2.23)). Note
that this approximation is good as long as x

m is not so small

(say, compared to 1). With only the first term in (B3) kept,
we have the leading-order solution of (B2) in the form

’0ðxÞ ¼ ðconst:Þ2ð2qþ 1Þ!
�
2

m

�
2q I2qþ1ðxÞ

x
; (B4)

which is proportional to the free solution of (B2) with l
replaced by q. The proportionality constant will be deter-
mined at some intermediate point r ¼ R (or, equivalently,
at x ¼ mR), for R satisfying the condition 1 � R � 1

m .

The small-r solution should be valid for 0 � r & R, while
the large-r solution is valid for r * R (i.e., x * mR);
hence, both solutions are valid near the point r� R, so
that we can demand

c ðRÞ ¼ ’ðmRÞ: (B5)

If c 0ðRÞ has an asymptotic behavior c 0ðRÞ � c0R
2q (with

an appropriate constant c0), we can now fix the overall
constant in (B4) (i.e., demand ’0ðmRÞ � c0R

2q) to obtain
the complete, zeroth order, solution

’0ðxÞ ¼ 2c0ð2qþ 1Þ!
�
2

m

�
2q I2qþ1ðxÞ

x
: (B6)

Based on the form (B6), we can obtain the correct
asymptotic behavior of the GY wave function:

lim
r!1c ðr;mÞ � lim

x!1’0ðxÞ � c0

ffiffiffiffi
2




s �
2

m

�
2qð2qþ 1Þ! ex

x3=2
:

(B7)

Consequently, for the ratio of GY solutions, we find

lim
r!1

c ðr;mÞ
c freeðr;mÞ � c0

ð2qþ 1Þ!
ð2lþ 1Þ!

�
2

m

�
2q�2l

: (B8)

Note that, asm goes to zero, the above ratio goes to infinity
or zero or remain finite depending on the value of q. Let us
apply this to our Case I. The functional determinants for
partial waves corresponding to j ¼ l� 1 at small mass
limit can be found immediately. From (4.22) and (4.23), the
large-R behaviors of the massless solutions are

c l;lþ1ðr;m ¼ 0Þ � R2lþ1; (B9)

c l;l�1ðr;m ¼ 0Þ � 2lþ 1

2l
R2l�1: (B10)

Thus, by identifying c0 from these behaviors and plugging
them to (B8) (with q ¼ l� 1

2 for j ¼ l� 1), we find that

detðH l;lþ1 þm2Þ
detðH free

l þm2Þ ¼ lim
r!1

c l;lþ1ðr;mÞ
c free

l ðr;mÞ � 4ðlþ 1Þ
m

; (B11)

detðH l;l�1 þm2Þ
detðH free

l þm2Þ ¼ lim
r!1

c l;l�1ðr;mÞ
c free

l ðr;mÞ � m

4l
: (B12)

Now one can verify explicitly that these small mass limits
yield, if used for a certain specific group (indicated in the
main text), the same results as those based on the exact zero
mass results such as (4.27) with the same ðl; jÞ
combination.
For j ¼ l ¼ 0 (and when the function HðrÞ ¼ r2fðrÞ

approaches 1 as r ! 1), it is rather difficult to follow
the method of Ref. [20]. In this case, the massless GY
solution (4.29) corresponds to the normalizable zero mode.
As a result, the small-r solution cannot be matched with the
large-r solution of the form (B4). Here we need to consider
the Macdonald function for the large-r solution; but, the
Macdonald function vanishes exponentially as r ! 1, and
therefore we need to take into account the next order term
which is mathematically very complicated. In this situation
the method of Ref. [4], which utilizes the normalizable
character of the massless solution in a crucial way, can be
simpler. Note that from the massive and massless GY
equations�
� @2

@r2
� 3

r

@

@r
þ 4lðlþ 1Þ

r2
þV l;jðrÞ þm2

�
c ðr;mÞ ¼ 0;

(B13)
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�
� @2

@r2
� 3

r

@

@r
þ 4lðlþ 1Þ

r2
þV l;jðrÞ

�
c 0ðrÞ ¼ 0; (B14)

we can deduce the relation

@

@r
fr3c 0ðr;mÞc 0ðrÞ � r3c ðr;mÞc 0

0ðrÞg
¼ m2r3c ðr;mÞc 0ðrÞ: (B15)

Integrating this equation from r ¼ 0 to r ¼ Re and then
dividing by R4

ec
0
0ðReÞ, we get

c ðRe;mÞ
�
c 0ðRe;mÞ
c ðRe;mÞ

c 0ðReÞ
Rec

0
0ðReÞ �

1

Re

�

¼ m2

RRe

0 r3c ðr;mÞc 0ðrÞdr
R4
ec

0
0ðReÞ

: (B16)

For large Re, we can write c 0ðReÞ � A
R3
e
(as HðrÞ ap-

proaches 1 as r ! 1) and c ðR;mÞ � BemRe , where
A and B are some constants. Hence, by considering the
Re ! 1 limit with (B16), we are led to conclude that

lim
Re!1c ðRe;mÞ ¼ �3m lim

Re!1

RRe

0 r3c ðr;mÞc 0ðrÞdr
R4
ec

0
0ðReÞ

:

(B17)

When mass m is small, this equation simplifies to

lim
Re!1c ðRe;mÞ � �3m

R1
0 r3c 0ðrÞ2dr

lim
Re!1½R

4
ec

0
0ðReÞ�

: (B18)

For our Case I the explicit massless solution is available
from (4.29):

c 0;0ðr;m ¼ 0Þ ¼ c 0ðrÞ ¼ 1

ðr2� þ 1Þ3=2� : (B19)

Using this solution, we can evaluate the expression appear-
ing in the right-hand side of (B18) explicitly. The result is
finite, and in this way we can secure the following result for
the related functional determinant:

detðH 0;0 þm2Þ
detð�@2ð0Þ þm2Þ ¼ lim

Re!1
c ðRe;mÞ

c free
0 ðRe;mÞ �m

�ð1þ 1
�Þ�ð2�Þ

2�ð3�Þ
:

(B20)

We now turn to the case with j ¼ l � 0, where the GY
solutions are given by 2� 2 matrices. First, note that we
can approximate the potential in (B2) for small mass m as

4lðlþ 1Þ
x2

þ 1

m2
V l;l

�
x

m

�

! 1

x2
ð2lþ 1Þð2lþ 3Þ 0

0 ð2l� 1Þð2lþ 1Þ

 !
þOðm2Þ:

(B21)

Thus the leading-order solution of (B2) using the matrix
potential given above is

’0ðxÞ¼
2ð2lþ2Þ!

�
2
m

�
2lþ1

I2lþ2ðxÞ
x 0

0 2ð2lÞ!
�
2
m

�
2l�1

I2lðxÞ
x

0
BBB@

1
CCCAc0;
(B22)

where c0 is a constant 2� 2 matrix which can be deter-
mined using the condition (B5) at r ¼ R. To find c0, we
need to know an asymptotic behavior of the massless GY
solution. For this j ¼ l � 0 themassless solution is given in
(4.44), with relevant expressions also in (4.45) and (4.46).
Since this solution was found after a suitable unitary trans-
formation was performed (with the help of the unitary
matrix U in (4.33)), our condition (B5) translates to

Uy�lðRÞU� ’0ðmRÞ � R2lþ1 0

0 R2l�1

 !
c0: (B23)

As the asymptotic behavior of the determinant of �lðRÞ is
given in (4.52), we find that

detc0 ¼ det�lðRÞ
R4l

¼ ð2lþ 1Þ3�ð2lþ1
� Þ4

8lðlþ 1Þ2�ð2l�Þ2�ð2lþ2
� Þ2 : (B24)

The true asymptotic behavior of the determinant of the GY
wave function can then be found as

lim
r!1detc l;lðr;mÞ� lim

x!1det’0ðxÞ

� 2




e2x

x3

�
2

m

�
4lð2lþ2Þ!ð2lÞ!detc0 (B25)

with detc0 given by (B24). Based on this, we obtain the
following result:

detðH l;l þm2Þ
fdetð�@2ðlÞ þm2Þg2 ¼ lim

r!1
detc l;lðr;mÞ
c free

l ðr;mÞ2 � 2lþ 2

2lþ 1
detc0:

(B26)

Here note that detc0 corresponds to the result of the related
massless functional determinant. Therefore (B26) appar-
ently shows that the small mass limit of the functional
determinant is different from the massless functional deter-
minant. Onlywith the combination in (2.38), the small mass
limit and exact zero mass analysis yield the same results.
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