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Correlation functions of matrix-valued fields are not generally known for massive renormalized field

theories. We find the large-N limit of form factors of the (1þ 1)-dimensional sigma model with SUðNÞ �
SUðNÞ symmetry. These form factors give a correction to the free-field approximation for the N ¼ 1
Wightman function. The method is a combination of the 1=N expansion of the S matrix and Smirnov’s

form-factor axioms. We expand the renormalized field in terms of a free massive bosonic field as N ! 1.
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I. INTRODUCTION

The planarity of Feynman diagrams in the large-N limit
of matrix theories [1] has convinced many people that
this limit is solvable. Unfortunately, little is known with
precision about the 1=N expansion of (N � N )-matrix-
valued field theories with propagating degrees of freedom
(i.e., particles). Aside from maximally supersymmetric,
conformal-invariant theories, the only exceptions are
(1þ 1)-dimensional quantum chromodynamics [2] and
string models with Chan-Paton factors [3]. Massive
matrix-field theories are not solvable by straightforward
saddle-point approaches. The saddle-point method works
only for field theories whose N ¼ 1 diagrams are not just
planar, but linear. In this paper, we make some progress by
melding the large-N expansion with the form-factor boot-
strap. Perhaps our results will point to the solution of the
planar limit in situations where this bootstrap does not
work.

The S matrix of the (1þ 1)-dimensional nonlinear
sigma model with SUðNÞ � SUðNÞ symmetry is known.
Unfortunately, its form factors are not, with the notable
exception of SUð2Þ � SUð2Þ ’ Oð4Þ [4]. We study here the
leading 1=N expansion of the form factors of this sigma
model, also known as the principal chiral model. The bare
field is a matrix UðxÞ, lying in the fundamental representa-
tion of SUðNÞ, where x0 and x1 are the time and space
coordinates, respectively, of (1þ 1)-dimensional
Minkowski space-time. The action is

S ¼ N

2g20

Z
d2x��� Tr@�UðxÞy@�UðxÞ; (1.1)

where �, � ¼ 0, 1, UðxÞ 2 SUðNÞ [that is, UðxÞ is an
N � N unitary matrix of determinant one], and the metric
is that of flat Minkowski space,�00 ¼ 1,�11 ¼ �1,�01 ¼
�10 ¼ 0. The action does not change under the global
transformation UðxÞ ! VLUðxÞVR, for two constant matri-
ces VL, VR 2 SUðNÞ. We do not consider the addition of a

Wess-Zumino-Witten term to this action. The sigma model
is asymptotically free. All the evidence indicates that the
Hamiltonian spectrum has a mass gap m1, though no
rigorous proof exists.
We study here the one-particle and three-particle form

factors of the renormalized field operator �ðxÞ (there are
no two-particle form factors for N > 3). This field may be
expressed in a theory with ultraviolet cutoff � as

�ðxÞ ¼ Zðg0;�Þ�1=2UðxÞ; (1.2)

where g0 is the coupling. The renormalization factor
Zðg0ð�Þ;�Þ vanishes in the limit � ! 1, where the run-
ning coupling g0ð�Þ is defined so that the mass gap
m1ðg0ð�Þ;�Þ is independent of �.
The S matrix of the principal chiral model has been

found using the integrable bootstrap [5,6] and a subtle
Bethe ansatz argument [7]. The essential ideas of the
former approach begin from a general classification of
UðNÞ-symmetric S matrices for vector particles [8]. One
such S matrix has no backward scattering [9]; hence the
effective symmetry is SUðNÞ. The tensor product of two of
these vector-particle Smatrices yields the general Smatrix
with SUðNÞ � SUðNÞ symmetry, up to a Castillejo, Dalitz,
and Dyson (CDD) factor. The requirement of a sine for-
mula for bound-state masses (which follows from relativ-
istic kinematics [10]) restricts the form of the CDD factor.
In this paper, we combine the 1=N expansion of the S

matrix [6] with Smirnov’s axioms [11], to obtain the
three-particle form factors of the renormalized field opera-
tor �ðxÞ. The Lehmann, Symanzik, and Zimmermann
(LSZ) reduction formula is used to fix the overall normal-
ization [12].
There is an obvious advantage using the 1=N expansion

to study correlation functions. Field theories with unitary
symmetry have both fundamental or elementary particles
and bound states. Particle masses are given by the sine
formula mentioned above:

mr ¼ m1

sin�rN
sin�N

; r ¼ 1; . . . ; N � 1; (1.3)
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where each choice of r > 1 corresponds to a bound state of
r elementary particles. These bound states reveal them-
selves as poles in S-matrix elements. Particles with r > 1
make the determination of form factors difficult, though
progress has been made [13]. The picture simplifies dra-
matically as N ! 1, because the binding energy per par-
ticle number vanishes. The asymptotic states of the S
matrix, with r or N � r finite, consist only of r ¼ 1 parti-
cles and r ¼ N � 1 antiparticles, to any finite order of
1=N. There are, however, bound states of infinite numbers
of elementary particles, which correspond to keeping
r=N ¼ � fixed, as N ! 1 [14]. These bound states of
infinitely many particles have mass � Nm1ðsin�Þ=�,
which becomes infinite in the ’t Hooft limit, with m1 fixed.
There are continuously many such bound states, so their
measure of integration must also be considered. We be-
lieve, however, that such bound states do not contribute to
the N ! 1 Wightman correlation function; they would
produce unphysical cuts in momentum space. In an alter-
native large-N limit (not the ’tHooft limit, which we
examine here), with m1= sin

�
N � Nm1=� fixed, the pa-

rameter r=N becomes continuous, playing the role of a
third space-time dimension [15].

The main drawback of our approach is that bound-state
corrections are not analytic in powers of 1=N. In our view,
this is outweighed by the simplicity of the form-factor
bootstrap in the planar limit.

Our interest in this problem began with applications of
exact S matrices and form factors of the SUðNÞ sigma
model to (2þ 1)-dimensional SUðNÞ gauge theories [16].
The quark-antiquark potential [17] and the gluon mass
spectrum [18] can be found at arbitrarily small but aniso-
tropic gauge coupling. There is, unfortunately, a crossover
from (1þ 1)-dimensional to (2þ 1)-dimensional behav-
ior. A similar crossover is an obstacle to using the form
factors of the two-dimensional Ising spin field to calculate
critical exponents of the three-dimensional Ising model.
Konik and Adamov were able to overcome this dimen-
sional crossover for the Ising case with a density-matrix
real-space renormalization group [19]. The triviality of the
S matrix as N ! 1 may help defeat the crossover for
SUðNÞ gauge theories. The reason is that the energy eigen-
states of the SUð1ÞL � SUð1ÞR sigma model are simply
Fock states of bosons, in the appropriate basis. Our hope is
that this will make a real-space-renormalization-group
approach feasible for the non-Abelian gauge theory.

We assume no previous knowledge of exact form
factors. The reader unfamiliar with integrable-bootstrap

methods could simply take the 1=N-expanded form of
the S matrix [in Eq. (2.6) below] on faith. Otherwise, we
recommend starting with the summary by Zamolodchikov
and Zamolodchikov [20]. The task of working through
Ref. [20] may be simplified by consulting Ref. [21] (espe-
cially for infinite-product formulas for the S matrix) and
the appendix of the first of Ref. [17] (in which some results
are derived from scratch). We also recommend Ref. [10], in
which the sine law is explained. From there, the papers on
UðNÞ- and SUðNÞ-invariant theories of Berg et al. [8] and
Kurak and Swieca [9] should be accessible. With this
preparation, the reader should be ready to follow the
derivation of the S matrix of the principal chiral model
[5,6].
In the next section we discuss integrability and the 1=N

expansion of the principal chiral model. We find the matrix
element of the field operator between the vacuum and
three-particle (more precisely one-antiparticle, two-
antiparticle) state in Sec. III. We write the leading terms
of the two-point Wightman function in Sec. IV. The form
factors may be thought of as an expansion of the field
operator in terms of a free field, which we briefly discuss
in Sec. V. We present some conclusions and open questions
in Sec. VI.

II. THE 1=N EXPANSION OF THE S MATRIX
AND THE FIELD ALGEBRA

The basic Wightman correlation function is

W ðxÞ ¼ 1

N
h0jTr�ð0Þ�ðxÞyj0i; (2.1)

where the scaling field � is defined by (1.2) and the
normalization condition

h0j�ð0Þb0a0 jP; �; a1; b1i ¼ N�1=2�a0a1�b0b1 ; (2.2)

where the ket on the right is a one-particle (r ¼ 1) state,
with rapidity � (that is, with momentum components p0 ¼
m cosh�, p1 ¼ m sinh�) and we implicitly sum over left
and right colors a1 and b1, respectively.
The expression (2.2) is the most elementary form factor.

It is similar to the definition of the scaling field in the Ising
model [12]. We will determine the normalization of the
other form factors using (2.2) and the LSZ reduction
formula. The leading contribution to the Wightman func-
tion comes from the one-particle-intermediate-state ap-
proximation (or free-field approximation)

W ðxÞ � 1

N

Z d�

4�
eimðx0 cosh��x1 sinh�Þh0j�ð0Þb0a0 jP; �; a1; b1iininhP; �; a1; b1j�ð0Þ�b0a0 j0i; (2.3)

where m denotes m1 and the sum over all repeated color indices is implicit. For x0 ¼ 0, x1 ¼ �jxj, this is
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W ðxÞ � 1

4�
K0ðmjxjÞ:

Note that this expression is of order ð1=NÞ0. We are
assuming that there is no contribution from the one-
antiparticle state (with r ¼ N � 1), i.e.,

h0j�ð0Þb0a0 jA; �; b1; a1iin ¼ 0:

The S matrix can be determined, assuming unitarity,
factorization (the Yang-Baxter relation), and maximal an-
alyticity. The basic r ¼ 1 excitations have two color in-
dices from 1 to N. One can view these excitations as a
bound pair of two quarks of different color sectors (or
alternatively as a quark in one color sector and an antiquark
in the other). Such quarks can be regarded as the elemen-
tary physical excitations of the chiral Gross-Neveu model
[8,9,22].

Next we show the S matrix of two elementary particles
of the sigma model, with incoming rapidities �1 and �2 [we
use the definition ðpjÞ0 ¼ m cosh�j, ðpjÞ1 ¼ m sinh�j, re-

lating the momentum vector pj and rapidity �j], outgoing

rapidities �01 and �02, and rapidity difference � ¼ �12 ¼
�1 � �2. This is

SPP ¼ SPPðj�jÞ4��ð�01 � �1Þ4��ð�02 � �2Þ;
where SPPðj�jÞ is a function which acts on the quantum
numbers of the particles [in some papers, �ðpj � p0

jÞ is
written, incorrectly, in place of 4��ð�j � �0jÞ]. The quan-
tity SPPðj�jÞ is nearly always referred to as the S matrix in
the literature. It is explicitly given by

SPPð�Þ ¼ sinð�=2� �i=NÞ
sinð�=2þ �i=NÞSCGNð�ÞL � SCGNð�ÞR; (2.4)

where SCGNð�ÞL;R, for either the subscript L (left) or R
(right), is the Smatrix of two elementary excitations of the
chiral Gross-Neveu model:

SCGNð�Þ ¼ �ði�=2�þ 1Þ�ð�i�=2�� 1=NÞ
�ði�=2�þ 1� 1=NÞ�ð�i�=2�Þ

�
1� 2�i

N�
P

�
;

(2.5)

where P switches the colors of the elementary Gross-
Neveu particles. S-matrix elements for which one or both
particles have r > 1 can be found by fusion.

We shall define the generalized S matrix to be (2.4) with
j�j replaced by � ¼ �12 ¼ �1 � �2. This is consistent with
the definition given in Ref. [23] (where it is called the
auxillary S matrix).
The first few terms of the 1=N expansion of (2.4) are [6]

SPPð�Þ ¼ ½1þOð1=N2Þ�

�
�
1� 2�i

N�
ðP � 1þ 1 � PÞ � 4�2

N2�2
P � P

�
:

(2.6)

We can find the scattering matrix of one-particle and one-
antiparticle SAPð�Þ from (2.6), using crossing.
There is are exceptional values of � where the particle-

particle Smatrix does not become unity as N ! 1. One of
these is at � ¼ 0. For vanishing relative rapidity, Eq. (2.4)
yields SPPð0Þ ¼ �P � P, independently of N; thus the
expansion (2.6) is not valid at � ¼ 0. A similar breakdown
of the 1=N expansion at � ¼ 0 occurs for models with
OðNÞ symmetry [20,24]. This point corresponds to the
threshold s ¼ 4m2, where s is the Mandelstam variable,
related to the relative rapidity by s ¼ 2m2 þ 2m2 cosh�.
At this threshold, both particles have vanishing momenta in
the center-of-mass frame, and exchange their left and right
colors with probability one. In relativistic scattering theory
the S matrix has a cut from the s-channel threshold
s ¼ 4m2 to s ¼ 1, and another cut from the t-channel
threshold s ¼ 4m2 � t ¼ 0 to s ¼ �1. Another excep-
tional value where the S matrix is not unity as N ! 1 is
� ¼ 2�i=N, where the r ¼ 2 bound-state occurs. In the
complex � plane, the first cut is the image of the line
Im� ¼ 0, and the other cut is the image of the line Im� ¼
2� [20]. Between these two lines, in the interior of the so-
called physical strip, excluding bound-state poles, the ex-
pansion (2.6) is valid, which is sufficient for the remaining
discussion in this paper.
The basic properties of particle states are encoded in the

Zamolodchikov algebra. Let us introduce particle-creation

operators Ay
Pð�Þab and antiparticle creation operators

Ay
Að�Þba. This algebra is essentially a non-Abelian

particle-statistics relation:

Ay
Pð�1Þa1b1Ay

Pð�2Þa2b2 ¼ SPPð�12Þc2d2;c1d1a1b1;a2b2
Ay

Pð�2Þc2d2Ay
Pð�1Þc1d1 ;

Ay
Að�1Þb1a1Ay

Að�2Þb2a2 ¼ SAAð�12Þd2c2;d1c1b1a1;b2a2
Ay

Að�2Þd2c2Ay
Að�1Þd1c1 ;

Ay
Pð�1Þa1b1Ay

Að�2Þb2a2 ¼ SAPð�12Þd2c2;c1d1a1b1;b2a2
Ay

Að�2Þd2c2Ay
Pð�1Þc1d2 :

(2.7)

The Yang-Baxter relation is necessary as a consistency condition for (2.7). That is one way to understand why the absence
of particle production implies integrability.

An in-state is defined as a product of creation operators in the order of increasing rapidity, from right to left, acting on the
vacuum, e.g.,
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jP;�1;a1;b1;A;�2;b2;a2;...iin¼Ay
Pð�1Þa1b1Ay

Að�2Þb2a2 ���j0i;
where�1>�2>���: (2.8)

Similarly, an out-state is a product of creation operators in
the order of decreasing rapidity, from right to left, acting on
the vacuum.

The expression (2.6) becomes unity as N ! 1, as we
would expect. The algebra (2.7) thereby trivializes.
Consider the field

MðxÞ ¼
Z d�

4�
½APð�Þeimx0 cosh��imx1 sinh�

þAy
Að�Þe�imx0 cosh�þimx1 sinh��; (2.9)

whereAA is the destruction operator of an antiparticle. It is

simply the adjoint of the operator Ay
A. In the limit N ! 1,

½AA;Pð�Þ;Ay
A;Pð�Þ� ! 4��ð�� �0Þ, with all other commu-

tators approaching zero (the commutators are more com-
plicated for finite N). The N � N-matrix-valued field
operator MðxÞ is a massive free field. The form factors
give the coefficients of an expansion of the renormalized
field �ðxÞ in terms of this field.

The form factors are matrix elements between the vac-
uum and multiparticle in-states of the field operator�. The

action of the global-symmetry transformation on� and the
creation operators is

�ðxÞ ! VL�ðxÞVR; Ay
Pð�Þ ! Vy

RA
y
Pð�ÞVy

L ;

Ay
Að�Þ ! VLA

y
Pð�ÞVR:

(2.10)

Thus we expect that, for large N, the condition

h0j�ð0Þj�i � 0;

on an in-state j�i, which is an eigenstate of particle
number, holds only if j�i contains m particles and
m� 1 antiparticles, for some m ¼ 1; 2; . . . . In the next
section, we will find these matrix elements for m ¼ 2
(the m ¼ 1 case has already been discussed above).

III. MAXIMALLYANALYTIC FORM FACTORS

In this section we will study matrix elements of the form
h0j�ð0Þj�i, where j�i is an in-state with two elementary
particles and one antiparticle, i.e., m ¼ 2. This matrix
element is defined for general choices of rapidity. Here
are the form factors corresponding to different orderings of
rapidities:

h0j�ð0Þb0a0 jA; �1; b1; a1;P; �2; a2; b2;P; �3; a3; b3iin
¼ h0j�ð0Þb0a0Ay

Að�1Þb1a1Ay
Pð�2Þa2b2Ay

Pð�3Þa3b3 j0i
¼ 1

N3=2
F1ð�1; �2; �3Þ�a0a2�b0b3�b1b2�a1a3 þ

1

N3=2
F2ð�1; �2; �3Þ�a0a3�b0b2�a1a2�b1b3

þ 1

N3=2
F3ð�1; �2; �3Þ�a0a2�b0b2�a1a3�b1b3 þ

1

N3=2
F4ð�1; �2; �3Þ�a0a3�b0b3�b1b2�a1a2 ; (3.1)

for �1 > �2 > �3,

h0j�ð0Þb0a0 jP; �1; a1; b1;A; �2; b2; a2;P; �3; a3; b3iin
¼ h0j�ð0Þb0a0Ay

Pð�2Þa2b2Ay
Að�1Þb1a1Ay

Pð�3Þa3b3 j0i
¼ 1

N3=2
~F1ð�1; �2; �3Þ�a0a2�b0b3�b1b2�a1a3 þ

1

N3=2
~F2ð�1; �2; �3Þ�a0a3�b0b2�a1a2�b1b3

þ 1

N3=2
~F3ð�1; �2; �3Þ�a0a2�b0b2�a1a3�b1b3 þ

1

N3=2
~F4ð�1; �2; �3Þ�a0a3�b0b3�b1b2�a2a1 ; (3.2)

for �2 > �1 > �3, and

h0j�ð0Þb0a0 jP; �1; a1; b1;P; �2; a2; b2;A; �3; b3; a3iin
¼ h0j�ð0Þb0a0Ay

Pð�2Þa2b2Ay
Pð�3Þa3b3Ay

Að�1Þb1a1 j0i
¼ 1

N3=2
~~F1ð�1; �2; �3Þ�a0a2�b0b3�b1b2�a1a3 þ

1

N3=2
~~F2ð�1; �2; �3Þ�a0a3�b0b2�a1a2�b1b3

þ 1

N3=2
~~F3ð�1; �2; �3Þ�a0a2�b0b2�a1a3�b1b3 þ

1

N3=2
~~F4ð�1; �2; �3Þ�a0a3�b0b3�b1b2�a2a1 ; (3.3)

for �3 > �1 > �2. We note that (3.1) is equivalent to
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h0j�ð0Þb0a0 jA; �1; b1; a1;P; �3; a3; b3;P; �2; a2; b2iin
¼ h0j�ð0Þb0a0Ay

Að�1Þb1a1Ay
Pð�3Þa3b3Ay

Pð�2Þa2b2 j0i
¼ 1

N3=2
F2ð�1; �3; �2Þ�a0a2�b0b3�b1b2�a1a3 þ

1

N3=2
F1ð�1; �3; �2Þ�a0a3�b0b2�a1a2�b1b3

þ 1

N3=2
F4ð�1; �3; �2Þ�a0a2�b0b2�a1a3�b1b3 þ

1

N3=2
F3ð�1; �3; �2Þ�a0a3�b0b3�b1b2�a1a2 ; (3.4)

for �1 > �3 > �2.
We generalize the form factor [23], so that (3.1), (3.2),

(3.3), and (3.4) are valid without the inequalities on the
arguments �1;2;3.

In each of the expressions (3.1), (3.2), (3.3), and (3.4), we
have written the quantity on the right in a similar way. Each
of the products of Kronecker deltas is a possible covariant
tensor of the global color symmetry. No other combina-
tions are allowed for N > 3, by Eq. (2.10).

Notice that Lorentz invariance implies that the scalar
functions F, G, and H are unchanged under an overall
boost �j ! �j þ��, j ¼ 1, 2, 3. This means that the form

factors depend only on differences of the rapidities.
If we examine the contribution of these form factors to

the Wightman function CðxÞ, defined in (2.1), we see that

F, ~F, and ~~F must be multiplied by N�3=2, as we have in
(3.1), (3.2), (3.3), and (3.4). We will eventually show in this

section that F3;4, ~F3;4, and
~~F3;4 are down by a further power

of N. This means we could have written (3.1), (3.2), (3.3),

and (3.4) with the coefficient 1=N5=2 in front of the last two

entries, instead of 1=N3=2. These are the coefficients of
tensors where the both quantum numbers of the antiparticle
coincide with both of those for the one of the particles. For

the time being, however, we will treat F3;4, ~F3;4, and
~~F3;4

just like the other functions.
First we apply the scattering form-factor axiom, also

called Watson’s theorem. This axiom can be most simply
understood as the application of the Zamolodchikov alge-
bra to the vacuum expectation values in the first lines of
Eqs. (3.1), (3.2), and (3.3) above. It is essentially the
assumption that we can continue the functions F, G, and
H outside the domain �1 < �2 < �3, in such a way that the
Zamolodchikov algebra is satisfied. For example, if we
apply Watson’s theorem on the incoming antiparticle
with rapidity �1 and the incoming particle with rapidity
�2, on the left-hand side of (3.1) we find

h0j�ð0Þb0a0Ay
Pð�1Þa1b1Ay

Að�2Þb2a2Ay
Pð�3Þa3b3 j0i ¼ SAPð�12Þd2c2;c1d1a1b1;b2a2

h0j�ð0Þb0a0Ay
Að�2Þd2c2Ay

Pð�1Þc1d1Ay
Pð�3Þa3b3 j0i: (3.5)

The 1=N expansion of the S-matrix element in (3.5) is

SAPð�12Þd2c2;c1d1a1b1;b2a2
¼ ½1þOð1=N2Þ�

�
�d2
b2
�c2
a2�

c1
a1�

d1
b1
� 2�i

N�̂12
ð�a1a2�

c1c2�d2
b2
�d1
b1
þ �c2

a2�
c1
a1�b1b2�

d1d2Þ

� 4�2

N2�̂212
�a1a2�

c1c2�b1b2�
d1d2

�
; (3.6)

where �̂12 ¼ �i� �12 is the rapidity difference after crossing from the s channel to the t channel. Inserting the explicit
expressions on the right-hand sides of (3.1) and (3.2) into (3.5) and after some work, we find

~Fð�1; �2; �3Þ ¼

1� 2�i
�̂12

0 � 2�i
N�̂12

0

0 1� 2�i
�̂12

� 2�i
N�̂12

0

0 0 1 0

� 2�i
N�̂12

�
1� 2�i

�̂12

�
� 2�i

N�̂12

�
1� 2�i

�̂12

�
0

�
1� 2�i

�̂12

�
2

0
BBBBBBBB@

1
CCCCCCCCA
Fð�1; �2; �3Þ þO

�
1

N2

�
; (3.7)

where we have denoted the four-component vectors in the obvious way, e.g.,

Fð�1; �2; �3Þ ¼

F1ð�1; �2; �3Þ
F2ð�1; �2; �3Þ
F3ð�1; �2; �3Þ
F4ð�1; �2; �3Þ

0
BBBBB@

1
CCCCCA:
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In finding (3.7) some factors ofN appeared as a result of contracting indices. These factors ofN canceled some factors of
1=N in the second and third terms of the S-matrix element in (3.6).

There are two more useful relations following from the scattering axiom. These are

h0j�ð0Þb0a0Ay
Pð�2Þa2b2Ay

Pð�3Þa3b3Ay
Að�1Þb1a1 j0i ¼ SAPð�13Þd1c1;c3d3a3b3;b1a1

h0j�ð0Þb0a0Ay
Pð�2Þa2b2Ay

Að�1Þd1c1Ay
Pð�3Þc3d3 j0i;

which may be reexpressed as

~~Fð�1; �2; �3Þ ¼

1� 2�i
�̂13

0 0 � 2�i
N�̂13

0 1� 2�i
�̂13

0 � 2�i
N�̂13

� 2�i
N�̂13

�
1� 2�i

�̂13

�
� 2�i

N�̂13

�
1� 2�i

�̂13

� �
1� 2�i

�̂13

�
2

0

0 0 0 1

0
BBBBBB@

1
CCCCCCA
~Fð�1; �2; �3Þ þO

�
1

N2

�
; (3.8)

and finally

h0j�ð0Þb0a0Ay
Að�1Þb1a1Ay

Pð�2Þa2b2Ay
Pð�3Þa3b3 j0i ¼ SPPð�23Þc2d2;c3d3a2b2;a3b3

h0j�ð0Þb0a0Ay
Að�1Þb1a1Ay

Pð�3Þc3d3Ay
Pð�2Þc2d2 j0i;

which reduces to

Fð�1; �2; �3Þ ¼
0 1 � 2�i

N�23
� 2�i

N�23

1 0 � 2�i
N�23

� 2�i
N�23

� 2�i
N�23

� 2�i
N�23

0 1

� 2�i
N�23

� 2�i
N�23

1 0

0
BBBBB@

1
CCCCCAFð�1; �3; �2Þ þO

�
1

N2

�
: (3.9)

Now in (3.8), some factors of 1=N in S-matrix elements were canceled after summing over indices, as we noted above
for (3.7). This did not happen in obtaining (3.9). The reason is that the particle-particle S matrix (2.6) does not contract
colors of incoming particles; colors can only be exchanged.

Another of Smirnov’s axioms is the periodicity condition. This axiom is an application of crossing. Explicitly:

h0j�ð0Þb0a0Ay
I1
ð�1ÞC1

Ay
I2
ð�2ÞC2

� � �Ay
IM
ð�MÞCM

j0i ¼ h0j�ð0Þb0a0Ay
IM
ð�M � 2�iÞCM

Ay
I1
ð�1ÞC1

� � �Ay
IM�1

ð�M�1ÞCM�1
j0i;

(3.10)

where Ik, k ¼ 1; . . . ;M is P or A (particle or antiparticle) and Ck denotes a pair of indices (which may be written akbk, for
Ck ¼ P, and bkak, for Ck ¼ A). A brief explanation of (3.10) follows. For more details, see Ref. [23]. Consider what
happens when a creation operator in front of the ket is replaced by an annihilation operator behind the bra by crossing.
Consider the vacuum expectation value of creation operators and �ð0Þb0a0 :

h0jAI1ð�1ÞC1
�ð0Þb0a0Ay

IM
ð�MÞCM

Ay
IM�1

ð�M�1ÞCM�1
� � �Ay

I2
ð�2ÞC2

j0iconnected
¼ h0jAI1ð�1ÞC1

�ð0Þb0a0Ay
IM
ð�MÞCM

Ay
IM�1

ð�M�1ÞCM�1
� � �Ay

I2
ð�2ÞC2

j0i � h0jAI1ð�1ÞC1
�ð0Þb0a0 j0i

� h0jAy
IM
ð�MÞCM

Ay
IM�1

ð�M�1ÞCM�1
� � �Ay

I2
ð�2ÞC2

j0i:

The subscript ‘‘connected’’ is included because the vacuum intermediate channel is subtracted [23]. This expression means
M� 1 incoming particles are absorbed by a ‘‘probe,’’ corresponding to the operator �ð0Þb0a0 . This probe then emits a
single particle. Consider the pair of particles, with labels 1 (the outgoing particle) and M. Under crossing, these both
become incoming particles, but with �1 replaced by �1 � �i. The reason is that �1 ! �1 � �i preserves the relativistic
invariants sjjþ1 ¼ ðpj þ pjþ1Þ2, and tjjþ1 ¼ ðpj � pjþ1Þ2, where j ¼ 2; . . . ;M� 1, while interchanging the two invar-
iants s1M ¼ ðp1 þ pMÞ2 and t1M ¼ ðp1 � pMÞ2. Thus

h0jAI1ð�1ÞC1
�ð0Þb0a0AIM ð�MÞyCM

AIM�1
ð�M�1ÞyCM�1

� � �AI2ð�2ÞyC2
j0iconnected

¼ h0j�ð0Þb0a0Ay
I1
ð�1 � �iÞC1

Ay
I2
ð�2ÞC2

� � �Ay
IM
ð�MÞCM

j0i: (3.11)

Suppose that instead of interchanging the invariants s1M and t1M, we interchange the invariants s12 ¼ ðp1 þ p2Þ2 and
t12 ¼ ðp1 � p2Þ2. Then we find
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h0jAI1ð�1ÞC1
�ð0Þb0a0AIM ð�MÞyCM

AIM�1
ð�M�1ÞyCM�1

� � �AI2ð�2ÞyC2
j0iconnected

¼ h0j�ð0Þb0a0Ay
I2
ð�2ÞC2

Ay
I3
ð�3ÞC3

� � �Ay
IM
ð�MÞCM

Ay
I1
ð�1 þ �iÞC1

j0i: (3.12)

The periodicity axiom (3.10) follows from (3.11) and (3.12).
Notice that integrability was not used to justify (3.10). The periodicity axiom follows from very general considerations

in 1þ 1 dimensions [25].
The periodicity axiom implies the three relations

h0j�ð0Þb0a0Ay
Að�1 � 2�iÞb1a1Ay

Pð�2Þa2b2Ay
Pð�3Þa3b3 j0i ¼ h0j�ð0Þb0a0Ay

Pð�2Þa2b2Ay
Pð�3Þa3b3Ay

Að�1Þb1a1 j0i;
h0j�ð0Þb0a0Ay

Pð�2 � 2�iÞa2b2Ay
Að�1Þb1a1Ay

Pð�3Þa3b3 j0i ¼ h0j�ð0Þb0a0Ay
Að�1Þb1a1Ay

Pð�3Þa3b3Ay
Pð�2Þa2b2 j0i;

h0j�ð0Þb0a0Ay
Pð�2 � 2�iÞa2b2Ay

Pð�3Þa3b3Ay
Að�1Þb1a1 j0i ¼ h0j�ð0Þb0a0Ay

Pð�3Þa3b3Ay
Að�1Þb1a1Ay

Pð�2Þa2b2 j0i;

which may be written as

Fð�1 � 2�i; �2; �3Þ ¼ ~~Fð�1; �2; �3Þ; (3.13)

~Fð�1; �2 � 2�i; �3Þ ¼ Fð�1; �3; �2Þ; (3.14)

~~Fð�1; �2 � 2�i; �3Þ ¼ ~Fð�1; �3; �2Þ; (3.15)

respectively.
Our work is simplified by expanding the form factors in

powers of 1=N,

Fð�1; �2; �3Þ ¼ F0ð�1; �2; �3Þ þ 1

N
F1ð�1; �2; �3Þ þ � � � ;

(3.16)

and similarly for ~Fð�1; �2; �3Þ and ~~Fð�1; �2; �3Þ. We trun-
cate this expansion to leading order, keeping only

F0ð�1; �2; �3Þ, ~F0ð�1; �2; �3Þ, and ~~F
0ð�1; �2; �3Þ.

Combining (3.7) and (3.8) with (3.13), we find

F0
1ð�1 � 2�i; �2; �3Þ ¼ �12 þ �i

�12 � �i

�13 þ �i

�13 � �i
F0
1ð�1; �2; �3Þ;

F0
2ð�1 � 2�i; �2; �3Þ ¼ �12 þ �i

�12 � �i

�13 þ �i

�13 � �i
F0
2ð�1; �2; �3Þ;

F0
3ð�1 � 2�i; �2; �3Þ ¼

�
�13 þ �i

�13 � �i

�
2
F0
3ð�1; �2; �3Þ;

F0
4ð�1 � 2�i; �2; �3Þ ¼

�
�12 þ �i

�12 � �i

�
2
F0
4ð�1; �2; �3Þ: (3.17)

Thus the components of the form factor are periodic,
except for phases. Furthermore, (3.9) implies that

F0
1ð�1; �2; �3Þ ¼ F0

2ð�1; �3; �2Þ;
F0
3ð�1; �2; �3Þ ¼ F0

4ð�1; �3; �2Þ:
(3.18)

The general solution of (3.17) and (3.18) is

F0
1ð�1; �2; �3Þ ¼ ð�12 þ �iÞ�1ð�13 þ �iÞ�1g1ð�1; �2; �3Þ;

F0
2ð�1; �2; �3Þ ¼ ð�12 þ �iÞ�1ð�13 þ �iÞ�1g1ð�1; �3; �2Þ;

F0
3ð�1; �2; �3Þ ¼ ð�13 þ �iÞ�2g3ð�1; �2; �3Þ;

F0
4ð�1; �2; �3Þ ¼ ð�12 þ �iÞ�2g3ð�1; �3; �2Þ; (3.19)

where the functions g1 and g3 are periodic in �1:

g1ð�1 � 2�i; �2; �3Þ ¼ g1ð�1; �2; �3Þ;
g3ð�1 � 2�i; �2; �3Þ ¼ g3ð�1; �2; �3Þ:

We now turn to the remaining periodicity conditions
(3.14) and (3.15). Combining (3.8) with (3.14), we find

�12 þ 3�i

�12 þ �i
F0
1;2ð�1; �2 � 2�i; �3Þ ¼ F0

2;1ð�1; �2; �3Þ;

F0
3ð�1; �2 � 2�i; �3Þ ¼ F0

4ð�1; �2; �3Þ;�
�12 þ 3�i

�12 þ �i

�
2
F0
4ð�1; �2 � 2�i; �3Þ ¼ F0

3ð�1; �2; �3Þ;
(3.20)

and combining (3.7) and (3.8) with (3.15) yields

�12þ3�i

�12þ�i

�13þ�i

�13��i
F0
1;2ð�1;�2�2�i;�3Þ

¼�13þ�i

�13��i
F0
2;1ð�1;�3;�2Þ;

�
�13þ3�i

�13þ�i

�
2
F0
3ð�1;�2�2�i;�3Þ

¼
�
�12þ�i

�12��i

�
2
F0
4ð�1;�2;�3Þ;

�
�12þ3�i

�12þ�i

�
2
F0
4ð�1;�2�2�i;�3Þ

¼F0
3ð�1;�2;�3Þ: (3.21)

The first of (3.20) and the first of (3.21) are the same
equation. The last of (3.20) and the last of (3.21) are the
same equation. The second of (3.20) and the second of
(3.21) are inconsistent unless

F0
3ð�1; �2; �3Þ ¼ F0

4ð�1; �2; �3Þ ¼ 0; (3.22)
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which we claimed at the beginning of this section. Thus the
double poles in (3.19) are absent. The conditions (3.20) and
(3.21) imply

g1ð�1; �2 � 2�i; �3Þ ¼ g1ð�1; �3; �2Þ:
The minimal choice of the form factor, with no unnec-

essary poles or zeros, satisfying bothWatson’s theorem and
the periodicity axiom, is obtained by setting the function
g1ð�1; �3; �2Þ equal to a constant:

F0
1ð�1; �2; �3Þ ¼

g1
ð�12 þ �iÞð�13 þ �iÞ ;

F0
2ð�1; �2; �3Þ ¼

g1
ð�12 þ �iÞð�13 þ �iÞ :

We fix the constant with the annihilation-pole axiom.
The annihilation-pole axiom concerns the residues of

form factors at singularities. This axiom follows from the
LSZ reduction formula. The derivation can be found in
Ref. [23], but some clarification may be helpful to the
reader. We take the field � in the left-hand side of (3.1)
on the mass shell, and compare with the S matrix. We first
cross the antiparticle: �1 ! �1 � �i. So now we are con-
sidering two particles, of rapidities �2 and �3, in the initial
state. These scatter and there is a particle (not antiparticle)
of rapidity �1 in the final state. There must also be a
second particle in the final state, which corresponds to
taking � on shell; we denote its rapidity by �0. The
reduction formula is

outhP;�1;a1;b1;P;�0;a0;b0jP;�2;a2;b2;P;�3;a3;b3iin
¼ outhP;�1;a1;b1jP;�2;a2;b2iinouthP;�0;a0;b0jP;�3;a3;b3iinþ outhP;�1;a1;b1jP;�3;a3;b3iinouthP;�0;a0;b0jP;�2;a2;b2iin
þ i

ffiffiffiffi
N

p Z
d2xeimx0 cosh�0�imx1 sinh�0

outhP;�1;a1;b1jð@20�@21þm2Þ�ðxÞb0a0 jP;�2;a2;b2;P;�3;a3;b3iin; (3.23)

where the factor
ffiffiffiffi
N

p
comes from the normalization of� (2.3). The second term on the right-hand side of (3.23) vanishes if

�1 < �0. The right-hand side is the particle-particle S-matrix element, which can be directly compared with (2.6).
To evaluate the right-hand side of (3.23), we use the formulas for the Klein-Gordon operator [12]

ðp1 � p2 � p3Þ2 �m2 ¼ �8m2 sinh
�12
2

sinh
�13
2

cosh
�23
2

; (3.24)

and for the covariant delta function

�2ðp1 þ p0 � p2 � p3Þ ¼ �½ðp1Þþ þ ðp0Þþ � ðp2Þþ � ðp3Þþ��½ðp1Þ� þ ðp0Þ� � ðp2Þ� � ðp3Þ��
¼ 2

m2
�½ðp1Þþ þ ðp0Þþ � ðp2Þþ � ðp3Þþ��½ðp1Þ�1þ þ ðp0Þ�1þ � ðp2Þ�1þ � ðp3Þ�1þ �

¼ 2

m2

��������
1

ðp3Þ2þ
� 1

ðp2Þ2þ

��������
�1

�½ðp1Þþ � ðp2Þþ��½ðp3Þþ � ðp0Þþ�

þ 2

m2

��������
1

ðp3Þ2þ
� 1

ðp2Þ2þ

��������
�1

�½ðp1Þþ � ðp3Þþ��½ðp2Þþ � ðp0Þþ�

¼ �ð�12Þ�ð�30Þ
m2j sinh�13j

þ �ð�13Þ�ð�20Þ
m2j sinh�12j

; (3.25)

where the components of each of the momenta along the light cone are p� ¼ 2�1=2ðp0 � p1Þ ¼ 2�1=2e��. We hope the
indices cause no confusion; we have written ðpiÞ� for the �th component of the momentum of the ith particle.

Inserting (3.24) and (3.25) into (3.23), finally crossing the out-particle with rapidity �1 back to an in-antiparticle with
�1 ! �1 þ �i, gives the annihilation-pole axiom for the problem in this section. Explicitly:

Res j�12¼��ih0j�ð0Þb0a0 jA; �1; b1; a1;P; �2; a2; b2;P; �3; a3; b3i ¼ 2ih0j�ð0Þb0a0 jP; �3; a3; b3i½�a1a2�b1b2 � Sa1b1a2b2
ð�23Þ�;

Resj�13¼��ih0j�ð0Þb0a0 jA; �1; b1; a1;P; �2; a2; b2;P; �3; a3; b3i ¼ 2ih0j�ð0Þb0a0 jP; �2; a2; b2i½�a1a3�b1b3 � Sa1b1a3b3
ð�23Þ�:

(3.26)

The leading terms of each side of (3.26) are both of order N�3=2. Our final Lorentz-invariant expression for the large-N
limit of the one-antiparticle, two-particle form factor is

F0
1ð�1; �2; �3Þ ¼ F0

2ð�1; �2; �3Þ ¼ � 4�

ð�12 þ �iÞð�13 þ �iÞ ; F0
3ð�1; �2; �3Þ ¼ F0

4ð�1; �2; �3Þ ¼ 0: (3.27)
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The other functions ~F0
j ð�1; �2; �3Þ and ~~F

0
j ð�1; �2; �3Þ are the same as F0

j ð�1; �2; �3Þ, up to irrelevant phases (these phases
disappear upon evaluation of Wightman functions).

IV. THE WIGHTMAN FUNCTION IN THE ’THOOFT LIMIT

We can use the result of the previous section to find an improved expression for the N ¼ 1 two-point Wightman
function (2.1):

W ðxÞ ¼ 1

N

Z d�

4�
eimðx0 cosh��x1 sinh�Þh0j�ð0Þb0a0 jP; �; a1; b1iininhP; �; a1; b1j�ð0Þ�b0a0 j0i

þ 1

N

Z d�1
4�

Z d�2
4�

Z d�3
4�

1

2!
e
im
P

3
j¼1

ðx0 cosh�j�x1 sinh�jÞh0j�ð0Þb0a0 jA; �1; a1; b1;P; �2; a2; b2;P; �3; a3; b3iin
� inhA; �1; a1; b1;P; �2; a2; b2;P; �3; a3; b3j�ð0Þ�b0a0 j0i þ � � � ; (4.1)

where, as in (2.3), we sum over repeated color indices.
All of the one-antiparticle, two-particle form factors are given by (3.27) up to an irrelevant phase. When summing over

color indices, we find that contributions quadratic in either F0
1 or F

0
2 are of order one. The mixed contributions, linear in

both F0
1 and F0

2, are down by a power of 1=N. We therefore drop the latter contributions. Thus the expansion (4.1) is

W ðxÞ ¼ 1

4�

Z
d�eimðx0 cosh��x1 sinh�Þ þ 1

4�

Z
d3�e

im
P

3
j¼1

ðx0 cosh�j�x1 sinh�jÞð�212 þ �2Þ�1ð�213 þ �2Þ�1 þ � � � : (4.2)

The first term on the right-hand side is the free-field approximation, discussed in Sec. II. The result (4.2) should be
extremely good at large distances, as contributions from more intermediate particles fall off more quickly. Unfortunately,
we cannot recover the short-distance behavior predicted by perturbation theory. It is necessary to sum over all intermediate
states to obtain the Wightman function for small x. In other words, all the form factors of� are needed to compare with the
perturbative result.

V. THE CORRESPONDENCE WITH A FREE FIELD

The renormalized field can be written in terms of the Zamolodchikov particle-creation operators, and their adjoints
(together these form the Faddeev-Zamolodchikov algebra, which we do not discuss here). At large N, these are the
standard operators used to build a free complex (1�1)- matrix field MðxÞ in (2.9).

Examining the definitions of the functions F, ~F, and ~~F gives an expansion for �ðxÞ:

�ðxÞb0a0 ¼
1

N1=2
MðxÞb0a0 �

1

N3=2

Z d3�

ð4�Þ3 ½AAð�1Þa1b1eimx0 cosh�1�imx1 sinh�1 þAy
Pð�1Þa1b1e�imx0 cosh�1þimx1 sinh�1�

� 1

2!
½APð�2Þb2a2eimx0 cosh�2�imx1 sinh�2 þAy

Að�2Þb2a2e�imx0 cosh�2þimx1 sinh�2�½APð�3Þb3a3eimx0 cosh�3�imx1 sinh�3

þAy
Að�3Þb3a3e�imx0 cosh�3þimx1 sinh�3� 4�

ð�12 þ �iÞð�13 þ �iÞ
�
�12 þ �i

�12 � �i

�
�ð�12Þ��13 þ �i

�13 � �i

�
�ð�13Þ

� ð�a0a2�b0b3�a1a3�b1b2 þ �a0a3�b0b2�a1a2�b1b3Þ þ � � � ; (5.1)

where � is the step function, �ð�Þ ¼ 0 for � < 0, and �ð�Þ ¼ 1 for � > 0, and the operators A and Ay are expressed in
terms of the free field as

A y
Að�Þba ¼ ð2mi cosh�Þ�1

Z
dx1eimx0 cosh�1�imx1 sinh�1@

$
0MðxÞba;

Ay
Pð�Þab ¼ ð2mi cosh�Þ�1

Z
dx1eimx0 cosh�1�imx1 sinh�1@

$
0½MðxÞy�ab;

(5.2)

and their adjoints. The matrix elements of this expression (5.1) between the vacuum bra and an in-state ket are unchanged if
we suppress the creation operators. The creation operators are needed, however, for matrix elements of (5.1) to satisfy
crossing.
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VI. CONCLUSIONS

To summarize, we found exact form factors for the
(1þ 1)-dimensional principal chiral model at large N.
We expanded the two-point Wightman function in terms
of these form factors. Finally, we identified an underlying
free matrix-field operator MðxÞ, and discussed how the
renormalized field can be obtained from MðxÞ.

The 1=N expansion of the principal chiral model is quite
different from the expansion of vector models, such as the
OðNÞ sigma model. The renormalized field of a vector
model is a free field, as N ! 1.

There is little difference between the free massive field
MðxÞ and the classical master field of the large-N limit. The
response of this field to a source is the same, whether or not
it is quantized.

The ingredients to find higher-order corrections in the
1=N expansion (3.16) are already in Sec. III. This problem
is under investigation.

It would be interesting to understand form factors for in-
states with more particles. The number of functions rapidly

increases with more particles. Nonetheless, two-
antiparticle, three-particle form factors seem possible to
obtain. It may be that all the form factors can be found.
This would yield the complete sum of planar diagrams and
a direct comparison with perturbation theory could be
made.
We have not discussed operators other than the renor-

malized field in this paper. It seems possible to find the
form factors of currents and the energy-momentum tensor
by similar methods.
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