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We present new exact solutionswhich presumably describe black holes in the background of a spatially flat,

pressureless dark-matter– or dark matter plus dark energy (DMþ DE)- or quintom-dominated Universe.

These solutions generalize Lemaı̂tre-Tolman-Bondi metrics. For a dark-matter– or (DMþ DE)-dominated

universe, the area of the black hole apparent horizon (AH) decreases with the expansion of the Universewhile

that of the cosmic AH increases. However, for a quintom-dominated universe, the black hole AH first shrinks

and then expands, while the cosmic AH first expands and then shrinks. A (DMþ DE)-dominated universe

containing a blackholewill evolve to theSchwarzschild-deSitter solutionwithbothAHsapproaching constant

size. In a quintom-dominated universe, the black hole and cosmic AHs will coincide at a certain time, after

which the singularity becomes naked, violating cosmic censorship.
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I. INTRODUCTION

What is the relation between cosmic expansion and local
physics? Do local gravitational system, i.e. stars, galaxies,
galaxy clusters, or even black holes, expandwith the cosmic
expansion? This issue has received much attention over the
years [1–21]. However, these discussions often produced
contradictory results, leaving the issue rather ambiguous
(see Refs. [22–24] for reviews). It is generally believed that
these contradictions are due to the use of different or un-
physical coordinates, or of unphysical solutions [9].

In order to address this issue, McVittie introduced
his renowned solution [25] in 1933; this was intended
as describing a point mass embedded in a Friedmann-
Robertson-Walker (FRW) universe, but modern studies
revealed that the McVittie metric cannot describe a point
mass [2,6,11,26], but is rather interpreted as describing
a black hole in a cosmological background [27,28].
Einstein and Strauss [29] introduced the Swiss-cheese
model which is, however, unable to describe the Solar
System and suffers from other limitations [1,22]. Next,
the Vaidya [30], Thakurta, Sultana-Dyer [15,31], and
Faraoni-Jacques [32] solutions were found, and these so-
lutions also describe black holes embedded in FRW uni-
verses, each with some restrictions. Either the cosmic fluid
is restricted to be a cosmological constant (yielding
the Schwarzschild-de Sitter solution, a very special case,

indeed), or it must be a mixture of two perfect fluids, one of

which is a null dust (for the Sultana-Dyer solution), or it is

an imperfect fluid with heat flow instead of a simple perfect

fluid (for the Faraoni-Jacques solution) [21,26]. It is of

interest to look for simpler exact solutions with a single

perfect fluid as a source to address the issue of cosmic

expansion versus local physics. The purpose of the present

paper is to derive such new solutions representing a black

hole in a FRW universe with a cosmic fluid consisting of

dark matter, or of dark matter plus dark energy (possibly a

cosmological constant), or of quintom matter [33]. These

types of solution are also useful, if for nothing other than

toy models, in the study of dynamical horizons and their

thermodynamics [34–38] and of primordial black holes

[39] as probes of the early Universe [40,41].
Regarding the relation between cosmic expansion and

local physics, Noerdlinger and Petrosian conclude their
work [4] by stating: ‘‘Consider the possible expansion of
clusters or superclusters of galaxies, of mean rest-mass
density �c, immersed in a universe containing a gas of
particles having energy density �. It is shown that when
� > �c, the clusters or superclusters expand with the
Universe, but if �c � �, the expansion is reduced in the
ratio �=�c.’’ Unfortunately, this conclusion is drawn from
the McVittie solution, which cannot describe realistically a
point mass, a star, or a cluster of galaxies in a FRW back-
ground. A similar conclusion was reached by Price [18]
who discovered the ‘‘all or nothing’’ behavior (i.e. weakly
coupled systems are comoving while strongly coupled ones
resist the cosmic expansion). However, Price’s result ap-
plies only to a de Sitter background, not to a general FRW
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universe. As is well-known, de Sitter space is very special:
the de Sittermetric can be put in static form in the spacetime
region between the black hole and the cosmological hori-
zons, which explains why strongly bound systems in this
background do not expand [32].

In this paper, we present new solutions which we pro-
pose to interpret as describing cosmological black holes
embedded in FRW backgrounds, with the advantage over
previous solutions [15,25,30–32] that they are sourced by a
single perfect fluid, without heat flux. These solutions lead
to surprising results: the black hole apparent horizon (AH)
decreases with the expansion of the Universe when the
latter is dark-matter– or dark-matter-plus-dark-energy–
dominated. Since the Misner-Sharp mass is a half of the
radius of the AH, also the black hole mass decreases with
the cosmic expansion. As the most strongly bound gravi-
tational system, it is intuitive that the size of a black
hole should increase with the expansion of the Universe
due to the swallowing of surrounding cosmic matter. How-
ever, this picture is incorrect in general as the cosmic
expansion ‘‘wins’’ over the local gravitational attraction
of the black hole. The Universe is always expanding after
the big bang, and the energy density of the cosmic fluid
decreases with cosmic time. The seemingly bizarre behav-
ior of the Misner-Sharp mass derives from the fact that it is
really a mass sum (i.e. the mass of the background fluid is
included) and coincides with the Hawking-Hayward qua-
silocal mass [21]. We note that this is a purely classical
effect which makes the black hole mass decrease and has
nothing to do with Hawking radiation [42].

In a quintom-dominated universe, during the matter era,
the black hole mass decreases, while during the phantom-
dominated epoch, it increases. The physical reason is that
the cosmic density first decreases and then increases. Since
the Misner-Sharp (MS) mass is the sum of the black hole
mass and of the background mass, the black hole mass first
decreases and then increases. One interesting result is that
the black hole singularity will become naked before the big
rip occurs, which violates the cosmic censorship conjecture
[43]. So if the latter is correct, phantommatter may not exist
in nature.

In this paper, we use units in which the speed of light c
and Newton’s constant G assume the value unity and the
signature þ2 for the metric. The paper is organized as
follows: first, we show that several known solutions cannot
describe a black hole embedded in a matter-dominated
universe. Second, we present new solutions describing a
black hole in a matter-dominated universe, a dark matter
plus cosmological-constant–dominated universe, and a
quintom-dominated universe. The last section contains
the conclusions.

II. THE MCVITTIE SOLUTION

A natural starting point to investigate the relation be-
tween cosmic expansion and local physics is the 1933

McVittie solution [25], which can be written in isotropic
coordinates as

ds2 ¼ �½1� M0

2aðtÞr�2
½1þ M0

2aðtÞr�2
dt2 þ aðtÞ2

�
1þ M0

2aðtÞr
�
4

� ðdr2 þ r2d�2Þ; (1)

where the constant M0 reduces to the physical black hole
mass when aðtÞ ¼ const (this can be seen by rescaling the
radial coordinate r ! ~r � ar), and the scale factor aðtÞ is
an arbitrary function of the cosmic time t. When M0 ¼ 0,
the solution reduces to the spatially flat FRWmetric, and at
a first glance, it can be understood as representing a
Schwarzschild black hole embedded in a spatially flat
FRW universe [4]. However, it is now known that, with
the exception of the Schwarzschild-de Sitter solution, mat-
ters are more complicated because the McVittie metric is
singular on the 2-sphere r ¼ 2M0a (which reduces to
the Schwarzschild horizon if a ¼ const) [6] and this sin-
gularity is spacelike [11]. It was claimed in the past that the
McVittie metric describes a point mass located at r ¼ 0
and embedded in a FRW universe. However, this point
mass is, in general, surrounded by the singularity at
r ¼ M0=ð2aÞ. This singularity was studied in Ref. [6].
Nolan [2] showed that it is a weak singularity in the sense
that an object falling onto the r ¼ M0=ð2aÞ surface is not
shrunk to zero volume, and therefore the energy density of
the surrounding fluid is finite. However, the pressure di-
verges at r ¼ M0=ð2aÞ together with the Ricci scalar R
[6,26]. While there is little doubt that the McVittie metric
represents some kind of strongly gravitating central object,
its physical interpretation is not completely clear and is
still a subject of debate [6,11,27,28].
In view of this situation we show that, with the exception

of the Schwarzschild-de Sitter solution, the McVittie solu-
tion is unable to describe a black hole or a point mass in a
FRW universe when the equation of state of the cosmic
perfect fluid is p ¼ wðtÞ�. The proof of this statement
proceeds as follows. The McVittie solution was obtained
by forbidding explicitly the accretion of cosmic fluid
onto the central object. This requirement corresponds to
G1

0 ¼ 0, which in turn implies that the stress-energy ten-

sor component T1
0 ¼ 0, and there is no radial flow of

energy. Let us assume that the energy-momentum tensor
that sources the McVittie metric is that of a perfect fluid,
T�� ¼ ð�þ pÞU�U� þ pg��, where U� is the 4-velocity

of the comoving observer, and � and p are the density and
pressure of the fluid, respectively.
By substituting the metric and the energy-momentum

tensor into the Einstein equations G�� ¼ 8�T��, the re-

sulting Einstein equations can be arranged as

3H2 ¼ 8��; (2)
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2 €a

a
þH2 ¼ �8�p�M0

ar

�
_H� 3

2
H2 � 4�p

�
; (3)

where H ¼ _a=a is the Hubble parameter and an overdot
denotes differentiation with respect to the cosmic time t.
We recognize Eqs. (2) and (3) as the Friedmann and the
acceleration equations, respectively.

We have p ¼ 0 and p ¼ �=3 for the matter-dominated
and the radiation-dominated eras, respectively, while
p ¼ wðtÞ� with w<�1=3 for a dark energy-dominated
universe. For all these cases, the equation of state assumes
the form p ¼ wðtÞ�. Equation (2) tells us that � depends
only on t and, since p ¼ wðtÞ�, the same is true for p.
In Eq. (3), the expressions 2 €a

a þH2 and�8�p depend only

on t, while �M0

ar ð _H � 3
2H

2 � 4�pÞ depends on both t and

r; therefore Eq. (3) is satisfied if and only if

3H2 ¼ 8��;
2 €a

a
þH2 þ 8�p ¼ 0;

_H � 3

2
H2 � 4�p ¼ 0:

(4)

These admit the unique solution

H ¼ const:; p ¼ �� ¼ const:; aðtÞ ¼ eHt; (5)

which is the Schwarzschild-de Sitter spacetime. Therefore,
the McVittie solution cannot describe a black hole em-
bedded in a matter-dominated, radiation-dominated, or
dark-energy—dominated universe with perfect fluid equa-
tion of state p ¼ wðtÞ�. In one word, given the equation of
state p ¼ wðtÞ�, the McVittie solution is nothing but the
Schwarzschild-de Sitter solution.

Actually, Kaloper et al. [27] have argued that in the
presence of a cosmological constant, McVittie’s solution
does in fact represent a black hole in an expanding
Universe. Here, we provide independent support for this
statement.

Recently, assuming a specific function HðtÞ in the
McVittie solution, Lake and Abdelqader [28] performed
a detailed study of the particular McVittie solution and
corroborated the conclusion of Kaloper et al. Moreover,
using a tetrad-based method for solving Einstein’s field
equations, Nandra et al. [44] obtained solutions describing
objects embedded in FRW universes which provide a new
perspective on the McVittie metric. The study of the global
structure of the McVittie solution in Ref. [28] revealed
unexpected features which make this solution much more
complicated than it would seem at a first sight. Something
similar probably happens for the new solutions presented
here, although we will leave the detailed investigation of
radial null geodesics and of the global structure to future
work.

III. THE FARAONI-JACQUES SOLUTION

Because the McVittie solution cannot describe a black
hole in a FRW universe, we turn our attention to the

Faraoni-Jacques solution [32], which is a generalization
of the McVittie solution

ds2 ¼ �½1� MðtÞ
2aðtÞr�2

½1þ MðtÞ
2aðtÞr�2

dt2 þ aðtÞ2
�
1þ MðtÞ

2aðtÞr
�
4

� ðdr2 þ r2d�2Þ; (6)

in which the function MðtÞ replaces the constant M0 of the
McVittie metric. This corresponds to lifting the McVittie
nonaccretion restriction G1

0 ¼ 0. This solution seems to

describe a cosmological black hole embedded in a FRW
background and presents advantages over the previous
Thakurta and Sultana-Dyer solutions [15,31],

ds2 ¼ �ð1� M0

2r Þ2
ð1þ M0

2r Þ2
dt2 þ aðtÞ2

�
1þM0

2r

�
4

� ðdr2 þ r2d�2Þ; (7)

in the sense that both the energy density and the pressure
are finite near the black hole horizon, and the energy
density is positive-definite [32]. Now, let us examine
whether it can describe a black hole embedded in a FRW
universe sourced by a perfect fluid.
We assume that the cosmological matter is described by

the single perfect fluid energy-momentum tensor

T�� ¼ ð�þ pÞU�U� þ pg��; (8)

where U� is the 4-velocity of the fluid. The only non-
vanishing components of the Einstein tensor are

G0
0 � 0; G1

0 � 0; G1
1 ¼ G2

2 ¼ G3
3 � 0: (9)

If a radial energy flow is allowed, the fluid 4-velocity is

U� ¼ ðU0; U1; 0; 0Þ; (10)

and the normalization U�U
� ¼ �1 gives

U� ¼
" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�g00 � a2v2g00
�
1þ MðtÞ

2aðtÞr
�
4

s
; v; 0; 0

#
; (11)

where v is the proper 3-velocity of the fluid. From G11 ¼
G22, we conclude that

ð�þ pÞa2v2

�
1þ MðtÞ

2aðtÞr
�
4 ¼ 0: (12)

We have two types of solutions characterized by

v ¼ 0; M ¼ M0 (13)

(which is the McVittie solution), or

p ¼ ��; (14)

which gives the Schwarzschild-de Sitter solution.
Therefore, the Faraoni-Jacques solution (and also the
Thakurta and Sultana-Dyer solutions) cannot describe a
black hole embedded in a matter-dominated universe.
In general, they cannot describe a black hole embedded
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in a single perfect-fluid–dominated universe. However, the
Faraoni-Jacques solution can describe a black hole em-
bedded in a FRW universe, provided that the source is
given by an imperfect fluid with a heat flux:

T�� ¼ ðpþ �ÞU�U� þ pg�� þ q�U� þ q�U�; (15)

where U� ¼ ð ffiffiffiffiffiffiffiffiffiffiffi�g00
p

; 0; 0; 0Þ and q� ¼ ð0; q; 0; 0Þ, where
q is the heat flux density. This has been shown by us in
Ref. [21].

IV. THE VAIDYA SOLUTION

The Vaidya metric is obtained by conformally trans-
forming the Minkowski one:

ds2 ¼ a2ð�Þð�d�2 þ dr2 þ r2d�2 þ r2sin2�d�2Þ

þ 2M0

r
ðd�þ drÞ2; (16)

where M0 is the black hole mass and � is the conformal
time. When M0 ¼ 0 and a ¼ �2, this metric reduces to
that for a matter-dominated universe. On the other hand,
when a ¼ const, it reduces to the Schwarzschild metric. At
a first glance, one is tricked again into believing that this
metric may describe a black hole in a matter-dominated
universe, but this is incorrect, as shown below.

The energy-momentum tensor of dust or dark matter is

T�� ¼ �dU�U�: (17)

Because of spherical symmetry, the 4-velocity U� is writ-
ten as Eq. (10). We have two vanishing components of T��,

i.e. T2
2 and T

3
3 , hence G

2
2 ¼ G3

3 ¼ 0. Given the metric (16),

G2
2 ¼ G3

3 is calculated as [26],�
2 €a

a3
� _a2

a4

�
þ
�
2m €a

ra5
� 4m _a2

ra6

�
¼ 0: (18)

The terms in the first bracket depend only on time, while
those in the second bracket are r-dependent, so Eq. (18) is
satisfied if and only if

2 €a

a3
� _a2

a4
¼ 0;

€a

a5
� 2 _a2

a6
¼ 0: (19)

Then we necessarily have the trivial solution a ¼ const,
which is just the Schwarzschild metric. This shows that the
Vaidya solution cannot describe a black hole embedded in
a matter-dominated universe, either.

Thus far, we have shown that several known exact
solutions cannot describe a black hole in a matter-
dominated universe. In the next section, we look for such
a solution.

V. BLACK HOLE IN A MATTER UNIVERSE

A spherically symmetric inhomogeneous gravitational
field produced by dark matter with energy momentum (17)

is described by the Lemaı̂tre-Tolman-Bondi metric [45]
which, in the notation of Ref. [46], is given by

ds2 ¼ �dt2 þ R02

1þ f
dr2 þ R2d�2: (20)

Here, f is an arbitrary function of the comoving coordinate
r satisfying f > 1, Rðt; rÞ is the physical radius at time t
and coordinate radius r, while a prime represents differen-
tiation with respect to r.
With the energy-momentum tensor (17) and the metric

(20), the Einstein equations read

3ð _R2 � fÞ
R2

¼ 8�F

R3
; (21)

F0

R2R0 ¼ 3�d; (22)

where an overdot and a prime represent partial differentia-
tion with respect to t and r, respectively, and FðrÞ is an
arbitrary function of r. If we substitute

f ¼ �f0r
2; F ¼ �0r

3; R ¼ aðtÞr (23)

into Eqs. (21) and (22), the latter become

3ð _a2 þ f0Þ
a2

¼ 8��0

a3
; �d ¼ �0

a3
; (24)

with f0 and �0 constants. We recognize Eq. (24) as the
Friedmann equation with a dust source, hence, f0 repre-
sents the spatial curvature and �0 the density of the
Universe at time a0 ¼ 1. The observed universe is spatially
flat with good accuracy (probably due to inflation), and we
can neglect the curvature term in what follows by setting
f ¼ 0.
For an arbitrary function FðrÞ and f ¼ 0, the solution of

Eq. (21) was given by Tolman [47] and Oppenheimer and
Snyder [48] in their pioneering investigations of the gravi-
tational collapse of dust as

R ¼
"
hðrÞ þ 3

2

ffiffiffiffiffiffiffiffiffiffiffi
8�

3
F

s
t

#
2=3

; (25)

where the integration ‘‘constant’’ h is an arbitrary function
of r. Substitution of Eq. (25) into Eq. (20) yields

ds2 ¼ �dt2 þ 1

R
ðdhþ ffiffiffiffiffiffiffi

6�
p

tdð ffiffiffiffi
F

p ÞÞ2 þ R2d�2: (26)

There is actually less freedom in Eq. (25) than is apparent
from the two arbitrary functions F and h, since F can be
taken as a new radial variable. It is convenient to choose

h ¼ r3=2; (27)

and

R ¼
�
r3=2 þ 3

2

ffiffiffiffiffiffiffiffiffiffiffi
8�

3
F

s
t

�
2=3

: (28)
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Equation (28) is the general solution representing a spheri-
cally symmetric gravitational field with dust as a source.
As shown above, this can describe a dust-dominated uni-
verse. On the other hand, if the dust disappears, it describes
a vacuum, spherically symmetric gravitational field and
reduces to the Schwarzschild metric due to the Jebsen-
Birkhoff theorem. By combining these considerations, one
guesses that Eq. (28) may describe a Schwarzschild black
hole immersed in a dust-dominated universe. In the follow-
ing, this claim is examined.

A. Minkowski space

By solving the Einstein equations with �d ¼ 0, one finds
the vacuum solution

F ¼ F0; (29)

where F0 is an integration constant. If F0 ¼ 0, we obtain
R ¼ r, and we recover the Minkowski solution.

B. The Schwarzschild solution

If F0 � 0, we recover the Schwarzschild solution. It is

convenient to set F ¼ 3F2
0

8� with F0 a positive constant.

Then, the Schwarzschild solution is given by

R ¼
�
r3=2 þ 3

2
F0t

�
2=3

: (30)

F0 is determined by the mass m of the black hole. In order
to show this, let us rewrite the metric in Schwarzschild
coordinates, setting

xðt; rÞ ¼
�
r3=2 þ 3

2
F0t

�
2=3

: (31)

Then, Eq. (20) becomes

ds2 ¼ �
�
1� F2

0

x

�
dt2 þ dx2 � 2F0ffiffiffi

x
p dtdxþ x2d�2: (32)

Using the new time variable

T ¼ t� t0 þ 2F0

ffiffiffi
x

p þ F2
0 ln

� ffiffiffi
x

p � F0ffiffiffi
x

p þ F0

�
; (33)

one obtains

ds2 ¼ �
�
1� F2

0

x

�
dT2 þ

�
1� F2

0

x

��1
dx2 þ x2d�2;

(34)

i.e. the Schwarzschild solution. The physical meaning of

F0 is derived from F0 ¼
ffiffiffiffiffiffiffi
2m

p
, and the Schwarzschild

solution is given by

R ¼
�
r3=2 þ 3

2

ffiffiffiffiffiffiffi
2m

p
t

�
2=3

: (35)

C. Dust-dominated universe

Equations (22) and (28) show that the homogeneous and
isotropic, spatially flat, dust-dominated FRW solution is
recovered if and only if F ¼ �0r

3. The dust universe
solution is then given by

R ¼
�
r3=2 þ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffi
8��0

3

s
r3=2t

�
2=3

: (36)

The scale factor and the density are

a ¼ ½ ffiffiffiffiffiffiffiffiffiffiffiffi
6��0

p
tþ 1�2=3 (37)

and

�d ¼ �0

a3
; (38)

respectively, and it must be t � t0, with t0 ¼ � 1ffiffiffiffiffiffiffiffiffi
6��0

p ,

representing the big bang.

D. Black hole in a dust-dominated universe

By combining the considerations above, one expects the
metric for a black hole immersed in a dust universe to be
given by

R ¼
�
r3=2 þ 3

2

ffiffiffiffiffiffiffi
2m

p
tþ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffi
8��0

3

s
r3=2t

�
2=3

: (39)

Ifm ¼ 0, this line element describes a dust universe, while
if �0 ¼ 0, it reduces to a Schwarzschild solution; Eq. (39)
should describe a black hole immersed in dust universe. It
is clear, by comparison of Eqs. (39) and (25), that this is a
solution of the full Einstein equations. The substitution of
Eq. (39) into Eqs. (21) and (22) gives the energy density

�d ¼
ffiffiffiffiffiffi
�0

p ð3 ffiffiffiffi
m

p þ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
3��0

p
r3=2Þ

2
ffiffiffiffiffiffiffi
3�

p ð ffiffiffiffiffiffiffiffiffiffiffiffi
6��0

p
tþ 1ÞR3=2

: (40)

The physical radius R cannot be negative, hence we require
that r � 0 and t � t0 � � ffiffiffiffiffiffiffiffiffiffiffiffi

6��0

p
. Then, the density is

always positive. If m ¼ 0, we have �d ¼ �0=R
3, i.e. dust

or dark matter. Since R ¼ 0 represents the big bang, the
latter occurs at the time

t ¼ �
�
3

2

ffiffiffiffiffiffiffi
2m

p
r�3=2 þ ffiffiffiffiffiffiffiffiffiffiffiffi

6��0

p ��1
; (41)

and the energy density is positive everywhere on the space-
time manifold.

VI. EVOLUTION OF THE APPARENT HORIZONS

In the Schwarzschild-de Sitter spacetime, there exist a
black hole apparent horizon and a cosmic AH. The metric
(20) describes a spherically symmetric and dynamical
black hole in a FRW background more general than
de Sitter. In this case, the event horizon may not be well-
defined, but the AH always exists. The AH is a marginally
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trapped surface with vanishing expansion and has been
argued to be a causal horizon for a dynamical spacetime.
The AH is associated with the Hawking temperature,
gravitational entropy, and other thermodynamical aspects
[35–38]. The first law of thermodynamics for the AH has
been derived not only in general relativity but also in
several other theories of gravity, including the Lovelock,
nonlinear, scalar-tensor, and braneworld theories [49–55].
In view of this point, in order to investigate the evolution of
the black hole mass, we calculate the energy contained
inside the AH, which has been used in black hole thermo-
dynamics in relation with energy flows through the AH
[49,56]. Let us proceed to calculate the radius of the black
hole AH.

For a spherically symmetric spacetime with line element
ds2 ¼ h��dx

�dx� þ x2d�2, the generalized Misner-

Sharp mass is MMS ¼ xð1� h��x;�x;�Þ=2 [57]. At the

AH, it is h��x;�x;� ¼ 0, and the generalized Misner-

Sharp mass inside the AH is simply

MMS ¼ xAH=2; (42)

where xAH is the radius of the AH. In order to know the
evolution of the black hole MS mass, we need to know the
AH radius.

We rewrite Eq. (20) in Schwarzschild coordinates, using
the new spatial coordinate

x ¼
�
r3=2 þ 3

2

ffiffiffiffiffiffiffi
2m

p
tþ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffi
8��0

3

s
r3=2t

�
2=3

(43)

instead of r, in terms of which Eq. (20) is rewritten as

ds2 ¼ �
�
1� 1

x

� ffiffiffiffiffiffiffi
2m

p þ
ffiffiffiffiffiffiffiffiffiffiffiffi
8�0�

3

s
r3=2

�
2
�
dt2 þ dx2

� 2ffiffiffi
x

p
� ffiffiffiffiffiffiffi

2m
p þ

ffiffiffiffiffiffiffiffiffiffiffiffi
8�0�

3

s
r3=2

�
dtdxþ x2d�2: (44)

The coordinate system ðt; x; �; �Þ is not orthogonal, but the
cross-term dtdx can be eliminated by introducing the new
time T defined by

dT ¼ 1

Jðt; xÞ
�
dtþ 1ffiffiffi

x
p

� ffiffiffiffiffiffiffi
2m

p þ
ffiffiffiffiffiffiffiffiffiffiffiffi
8�0�

3

s
r3=2

�

�
�
1� 1

x

� ffiffiffiffiffiffiffi
2m

p þ
ffiffiffiffiffiffiffiffiffiffiffiffi
8�0�

3

s
r3=2

�
2
��1

dx

�
; (45)

where Jðt; xÞ is an integrating factor which always exists
and solves the partial differential equation

@xJ
�1 ¼ @t

�
�J�1 1ffiffiffi

x
p

� ffiffiffiffiffiffiffi
2m

p þ
ffiffiffiffiffiffiffiffiffiffiffiffi
8�0�

3

s
r3=2

�

�
�
1� 1

x

� ffiffiffiffiffiffiffi
2m

p þ
ffiffiffiffiffiffiffiffiffiffiffiffi
8�0�

3

s
r3=2

�
2
��1

�
; (46)

which guarantees that dT is an exact differential. The
metric (44) is cast in the Schwarzschild form

ds2 ¼ �
�
1� 1

x

� ffiffiffiffiffiffiffi
2m

p þ
ffiffiffiffiffiffiffiffiffiffiffiffi
8�0�

3

s
r3=2

�
2
�
J2dT2

þ
�
1� 1

x

� ffiffiffiffiffiffiffi
2m

p þ
ffiffiffiffiffiffiffiffiffiffiffiffi
8�0�

3

s
r3=2

�
2
��1

dx2 þ x2d�2;

(47)

and the equation of the AHs is

1� 1ffiffiffi
x

p
� ffiffiffiffiffiffiffi

2m
p þ

ffiffiffiffiffiffiffiffiffiffiffiffi
8�0�

3

s
r3=2

�
¼ 0: (48)

Substituting Eq. (43) into Eq. (48), we obtain

2
ffiffiffiffiffiffiffiffiffiffiffiffi
6�0�

p
x3=2 � ffiffiffi

x
p ð3þ 3

ffiffiffiffiffiffiffiffiffiffiffiffi
6��0

p
tÞ þ 3

ffiffiffiffiffiffiffi
2m

p ¼ 0: (49)

This cubic equation for
ffiffiffi
x

p
has, in general, only two

positive roots which represent the black hole AH and the
cosmic AH, respectively. In fact, if �0 ¼ 0, we obtain from
Eq. (49)

x ¼ 2m; (50)

the AH of the Schwarzschild black hole. On the other hand,
if m ¼ 0, it is

x ¼ 3

2

 ffiffiffiffiffiffiffiffiffiffiffiffi
1

6��0

s
þ t

!
; (51)

which is the AH of a dust-dominated universe. The black
hole and the cosmic AHs are plotted in Fig. 1. As is clear
from this figure, the radius of the black hole AH decreases
while that of the cosmic AH increases as the Universe
evolves. There was an early time at which the two horizons
coincided, and before which both horizons were absent and
the singularity was naked. Since the MS mass is propor-
tional to the radius of the black hole AH, the MS mass of a
black hole decreases with the evolution of the Universe.
The reason for this behavior can be understood as follows:
with the expansion of the Universe, the cosmic density is
decreasing, which is equivalent to a decreasing of black
hole AH, so the black hole MS mass decreases.
We note that Fig. 1 is plotted in Planck units G ¼ c ¼

ℏ ¼ 1. Translating into International Units and taking into
account the present cosmic density �0 ¼ 10�123�P (where
�P is the Planck density), we have a very supermassive
black hole m ¼ 1024 M� for Fig. 1. The corresponding
units of x and t are 105 Mpc and the Hubble time H�1

0 ,

respectively. To our knowledge, such supermassive black
holes may not exist in the Universe, so in Fig. 2, we also
plot the evolution of the AH for an astronomical black hole
with massm ¼ 107 M�. We have shifted the big bang time
to t ¼ 0.
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The naked singularity is present before the appearance
of the two apparent horizons and cannot arise from regular
initial data.

VII. BLACK HOLE IN A � COLD DARK-MATTER
(CDM) UNIVERSE

Astronomical observations show that the present-day
Universe is dominated by dark energy [58,59], hence we
seek exact solutions describing a black hole immersed in a
mixture of dark matter and dark energy. The corresponding
stress-energy tensor is

T�� ¼ �dU�U� þ ��g��: (52)

The first term on the right-hand side describes dark matter,
and the second term describes dark energy. �� is a positive
constant.1 We assume the line element to be of the form

ds2 ¼ �dt2 þ e �!dr2 þ e!d�2; (53)

where �! and ! are functions of t and r. In comoving
coordinates, the 4-velocity is U� ¼ ð1; 0; 0; 0Þ, and the
Einstein equations are

G0
0 ¼ 8�ð�d þ ��Þ; G0

1 ¼ 0;

G1
1 ¼ 8���; G2

2 ¼ 8���:
(54)

From G0
1 ¼ 0, one obtains

e �! ¼ e!!02=4: (55)

Note that there is no accretion onto the central object, as in
the McVittie metric. Following Oppenheimer and Snyder,
we have set the integration constant (fðRÞ in Eq. [48]) to
unity. Substituting Eq. (55) into Eq. (54), we obtain

€! 0 þ 3

2
_! _!0 ¼ 0: (56)

Integration with respect to r yields

€!þ 3

4
_!2 ¼ �8�KðtÞ; (57)

where K is an integration constant (an arbitrary function
of t). This equation is consistent with G1

1 ¼ 8��� if and
only if

KðtÞ ¼ ���: (58)

The Einstein equations then reduce to

G1
1 ¼ €!þ 3

4
_!2 ¼ 8���;

G0
0 ¼

_!0 _!
!0 þ 3

4
_!2 ¼ 8�ð�d þ ��Þ:

(59)

Using k � ffiffiffiffiffiffiffiffiffiffiffiffiffi
6���

p
, the Einstein equations have the

solution

e! ¼ ðSekt þ Pe�ktÞ4=3; e �! ¼ e!!02=4; (60)

where S and P are arbitrary functions of r. Substitution of
Eqs. (60) into Eq. (53) and the use of S as a new spatial
coordinate leave only 1 degree of freedom. It is convenient
to choose

S ¼ r3=2; (61)
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FIG. 2. The AH of an astronomical black hole in a dust-
dominated universe decreases with the cosmic expansion. The
plots correspond to the parameter value m ¼ 107 M�. The units
of x and t are 2m (the corresponding Schwarzschild radius) and
H�1

0 , respectively.
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FIG. 1. The size of the black hole AH (lower curve) in a dust-
dominated universe decreases with the cosmic expansion, while
that of the cosmic AH (upper curve) increases. The MS mass of
the black hole tends to zero in the future. There was a time at
which the two horizons coincided and before which they were
absent and the singularity was naked. The plots correspond to
the parameter values m ¼ 1, �0 ¼ 0:05 in Planck units. In the
International Units system, they are m ¼ 1024 M� and �0 ¼
0:05 � 10�123�P (�P is the Planck density).

1There is evidence in Refs. [27,28] that the presence of a
cosmological constant makes a significant difference in the
McVittie solution, and we expect that this is the case also for
our generalized Lemaı̂tre-Tolman-Bondi solutions.
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which has the advantage that if P ¼ 0 and �� ¼ 0, the line
element (53) reduces to the Minkowski one.

A. The Schwarzschild-de Sitter solution

The Einstein equations with �d ¼ 0 yield

P ¼ S0r
�3=2; (62)

where S0 is an integration constant. The Schwarzschild-
de Sitter solution is given by

e!¼ðr3=2ektþS0r
�3=2e�ktÞ4=3; e �!¼e!!02=4: (63)

The physical meaning of S0 can be understood after re-
writing Eq. (63) in Schwarzschild coordinates; setting

x ¼ ðr3=2ekt þ S0r
�3=2e�ktÞ2=3; (64)

the line element (53) becomes

ds2 ¼ �
�
1� 4k2ðx3 � 4S0Þ

9x

�
dt2 þ dx2

� 4k

3
ffiffiffi
x

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3 � 4S0

q
dtdxþ x2d�2: (65)

Introducing the new time

T ¼ tþ
Z �

1� 4k2ðx3 � 4S0Þ
9x

��1 2k

3
ffiffiffi
x

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3 � 4S0

q
dx;

(66)

the metric (65) simplifies to

ds2 ¼ �
�
1þ 16k2S0

9x
� 4k2

9
x2
�
dT2 þ x2d�2

þ
�
1þ 16k2S0

9x
� 4k2

9
x2
��1

dx2: (67)

Comparing Eq. (67) with the well-known form of the
Schwarzschild-de Sitter solution

ds2 ¼ �
�
1� 2m

x
� 8���

3
x2
�
dT2 þ x2d�2

þ
�
1� 2m

x
� 8���

3
x2
��1

dx2; (68)

one deduces the physical meaning of S0:

S0 ¼ � 9m

8k2
: (69)

Then, the Schwarzschild-de Sitter solution in comoving
coordinates is given by

e! ¼
�
r3=2ekt � 9m

8k2
r�3=2e�kt

�
4=3

; e �! ¼ e!!02=4:

(70)

B. �CDM universe

Equations (60) and (61) show that we recover the homo-
genous and isotropic, spatially flat universe with a mixture
of dust matter and dark energy if and only if we set

P ¼ � 3�0

16k2
r3=2. This solution is obtained for

e! ¼
�
r3=2ekt � 3�0

16k2
r3=2e�kt

�
4=3

; e �! ¼ e!!02=4:

(71)

The density of dust/dark matter and the scale factor are
given by

�d ¼ �0

a3
; a ¼

�
ekt � 3�0

16k2
e�kt

�
2=3

; (72)

where t > 1
2k ln

3�0

16k2
, and where t ¼ 1

2k ln
3�0

16k2
represents the

big bang singularity.

C. Black hole in a �CDM universe

The inspection of Eqs. (70) and (71) suggests that the
solution for a black hole in a �CDM universe should be
given by

e! ¼
�
r3=2ekt � 9m

8k2
r�3=2e�kt � 3�0

16k2
r3=2e�kt

�
4=3

;

e �! ¼ e!!02=4:
(73)

It is clear, by comparison of Eqs. (73) and (60), that this is
indeed a solution. The substitution of Eq. (73) into the
Einstein equations gives the density of dust

�d ¼ �0ð32r3ekt þ 6me�kt � �0r
3e�ktÞ2

R3ð32r3ekt � 6me�kt � �0r
3e�ktÞ2 : (74)

This quantity is positive on the entire spacetime manifold.
If m ¼ 0, we have �d ¼ �0=R

3, the usual scaling.

VIII. BLACK HOLE EVOLUTION
IN A �CDM UNIVERSE

Here, we investigate the evolution of a black hole AH in
a �CDM universe. For this purpose, we rewrite the metric
in Schwarzschild coordinates using

x � e�2kt=3r

�
e2kt � 9m

8k2r3
� 3�0

16k2

�
2=3

: (75)

Equation (53) becomes

ds2 ¼ �
�
1� 2m

x
� 4k2

9
x2 � �0

3x
r3
�
dt2

� 2

�
2m

x
þ 4k2

9
x2 þ �0

3x
r3
�
1=2

dtdxþ dx2 þ x2d�2:

(76)

Introducing the new time variable T with
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dT ¼ J�1dtþ J�1

�
1� 2m

x
� 4k2

9
x2 � �0

3x
r3
��1

�
�
2m

x
þ 4k2

9
x2 þ �0

3x
r3
�
1=2

dx; (77)

where Jðt; xÞ is an integrating factor, we obtain a black hole
solution in a �CDM universe.

ds2 ¼ �
�
1� 2m

x
� 4k2

9
x2 � �0

3x
r3
�
J2dT2 þ x2d�2

þ
�
1� 2m

x
� 4k2

9
x2 � �0

3x
r3
��1

dx2: (78)

The equation of the AHs is

g00 ¼ 1� 2m

x
� 4k2

9
x2 � �0

3x
r3 ¼ 0; (79)

so

r ¼
�
3x

�0

� 6m

�0

� 4k2x3

3�0

�
1=3

: (80)

The substitution of Eq. (80) into Eq. (75) yields the equa-
tion of the AHs, using which, the AHs evolution is plotted
in Fig. 3. The black hole AH shrinks while the cosmic AH
expands with the expansion of the Universe. There was a
time in the past at which the two horizons coincided and
before which no horizon existed and the singularity was
naked. Late in the history of the Universe, both black hole
and cosmic AHs approach constant values.

IX. BLACK HOLE IN A QUINTOM UNIVERSE

The first year WMAP data combined with the 2dF
galaxy survey and the supernova Ia data favor the phantom
energy equation of state of the cosmic fluid w<�1 over
the cosmological constant (w ¼ �1) and the quintessence
field (w>�1) [60,61]. The data seem to slightly favor an
evolving dark energy with w<�1 at the present epoch
and w>�1 in the near past [62]. The dark energy candi-
date with evolving w is named quintom [33]. In this
section, we look for the solution for a black hole in a
quintom-dominated universe. We take the energy-
momentum tensor for the quintom fluid to be of the form

T�� ¼ ð�þ pÞU�U� þ pg�� (81)

and the line element in the form of Eq. (53). In comoving
coordinates, the 4-velocity is U� ¼ ð1; 0; 0; 0Þ, and the
Einstein equations are

G0
0 ¼ 8��; G0

1 ¼ 0;

G1
1 ¼ �8�p; G2

2 ¼ �8�p:
(82)

From G0
1 ¼ 0 (again, there is no accretion), we obtain

e �! ¼ e!!02=4: (83)

Again, we set the integration constant to unity and, insert-
ing Eq. (83) into Eqs. (82), we obtain

€! 0 þ 3

2
_! _!0 ¼ 0 (84)

and

€!þ 3

4
_!2 ¼ �8�KðtÞ; (85)

where KðtÞ is an integration constant. This equation is
consistent with G1

1 ¼ �8�p only if the pressure satisfies

p ¼ KðtÞ; (86)

i.e. it is spatially homogenous, which can be seen as the
consequence of three facts. First, we have set fðRÞ ¼ 1 for
a spatially flat background. Second, we use comoving
coordinates and, third and most important, we have taken
the source to be a single perfect fluid. Therefore, the
comoving observer will see a homogenous pressure. The
Einstein equations simplify to

€!þ3

4
_!2¼�8�pðtÞ; _!0 _!

!0 þ3

4
_!2¼8��ðt;rÞ: (87)

Now, we have three functions !, p, and �, but only two
equations, and the system is not closed. For simplicity, we
assign the pressure in the form

p ¼ � p0

ðt0 � tÞ2 ; (88)

where p0 is a positive constant to keep the pressure always
negative, and t0 is a positive constant identifying the big
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FIG. 3. In a �CDM universe, the black hole AH (lower curve)
shrinks while the cosmic AH (upper curve) expands with the
cosmic expansion. There was a time at which the two hori-
zons coincided and before which no horizon existed and the
singularity was naked. Late in the history of the Universe,
both black hole and cosmic AHs approach constant size. The
plots correspond to the parameter values m ¼ 2:2 � 1022 MJ ,

�0 ¼ 0:27�C, �� ¼ 0:73�C. �C is the current cosmic density.
The unit of t is the present Hubble time H�1

0 .
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rip singularity. The general solution of Eqs. (87) is then
given by

e! ¼ ½PðrÞðt0 � tÞð1=2Þð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ24�p0

p
Þ

þ SðrÞðt0 � tÞð1=2Þð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ24�p0

p
Þ�4=3; (89)

where S and P are arbitrary functions of r. It is convenient
to choose

P ¼ r3=2; (90)

then the candidate solution for a black hole in a quintom
universe is

e! ¼ ½r3=2ðt0 � tÞð1=2Þð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ24�p0

p
Þ

� 3

2

ffiffiffiffiffiffiffi
2m

p ðt0 � tÞð1=2Þð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ24�p0

p
Þ

� 3

2

ffiffiffiffiffiffiffiffiffiffiffiffi
8��0

3

s
r3=2ðt0 � tÞð1=2Þð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ24�p0

p
Þ�4=3: (91)

If m ¼ 0, we get a quintom-dominated cosmology, while,
if p0 ¼ 0, we get a candidate solution for a black hole in
a matter-dominated universe. Substituting Eq. (91) into
Eqs. (87), we find that the energy density is positive and
inhomogeneous.

X. EVOLUTION OF A BLACK HOLE
IN A QUINTOM UNIVERSE

To investigate the evolution of the black hole AH, we
rewrite the metric in Schwarzschild coordinates using

x � ½r3=2ðt0 � tÞð1=2Þð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ24�p0

p
Þ

� 3

2

ffiffiffiffiffiffiffi
2m

p ðt0 � tÞð1=2Þð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ24�p0

p
Þ

� 3

2

ffiffiffiffiffiffiffiffiffiffiffiffi
8��0

3

s
r3=2ðt0 � tÞð1=2Þð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ24�p0

p
Þ�2=3; (92)

and define k � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 24�p0

p
. Equation (53) becomes

ds2 ¼ �ð1�L2Þdt2 þ dx2 � 2Ldtdxþ x2d�2;

L � @x

@t
: (93)

Introducing the time coordinate

dT ¼ J�1

�
dtþ L

1�L2
dx

�
; (94)

where J is an integrating factor, the metric becomes

ds2 ¼ �ð1�L2ÞJ2dt2 þ 1

1�L2
dx2 þ x2d�2; (95)

and the AHs are identified by

1�L2 ¼ 0: (96)

Equation (92) then yields

r3=2¼1

2

2x3=2þ3
ffiffiffiffiffiffiffi
2m

p ðt0� tÞð1=2Þð1þkÞ

ðt0� tÞð1=2Þð1�kÞ� ffiffiffiffiffiffiffiffiffiffiffiffi
6��0

p ðt0� tÞð1=2Þð1þkÞ : (97)

Substituting Eq. (97) into Eq. (96), an explicit equation for
the AHs in terms of t and x is obtained. The evolution of
the AHs is reported in Fig. 4. In the quintom-dominated
universe, the size of the black hole AH first decreases in
the matter era and then increases during the phantom-
dominated epoch [63]. The size of the cosmic AH, instead,
first increases and then decreases. There exists an instant of
time in the past at which the two horizons coincided. Both
horizons disappear before the big rip, leaving behind a
naked singularity and violating cosmic censorship [43].
This result is consistent with our previous discussion in
Ref. [21]. The naked singularity does not arise from regular
Cauchy data; in fact, it was already present before the
appearance of the two apparent horizons.
The reason for the increase of the black hole mass in the

phantom-dominated epoch can be understood as follows:
the density of the Universe is increasing, which makes the
black hole AH also increase. Hence, the black hole mass
(one half of the AH radius) increases. On the contrary, in a
matter-dominated universe, the cosmic density is decreas-
ing, so the black hole AH and the black hole mass decrease.
In a cosmological-constant–dominated universe, the cos-
mic density is constant, and the black hole mass also stays
constant.
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FIG. 4. In a quintom-dominated universe, the black hole AH
(lower curve) first shrinks and then expands, while the cosmic
AH (upper curve) first expands and then shrinks. There exist
two instants of time, one in the past and one in the future, at
which the two horizons coincide. Before or after these critical
instants, no AH exists and a naked singularity is present. The
plots correspond to the parameter values m ¼ 1, �0 ¼ 0:0002,
p0 ¼ 0:001, and t0 ¼ 1.

GAO et al. PHYSICAL REVIEW D 84, 104047 (2011)

104047-10



XI. DISCUSSION AND CONCLUSIONS

We have shown that several well-known and less-known
solutions of the Einstein equations cannot describe a black
hole embedded in a matter-dominated universe sourced by
a single perfect fluid. This includes the McVittie, Thakurta,
Sultana-Dyer, Vaidya, and Faraoni-Jacques solutions. Mo-
tivated by this fact, we have constructed exact solutions of
the Einstein equations purporting to represent a black
hole embedded in a background universe which are as
simple as possible, beginning with solutions with a single
perfect fluid. These new solutions generalize the Lemaı̂tre-
Tolman-Bondi metrics (which are restricted to dust uni-
verses) and do not exhibit accretion of the surrounding
cosmic fluid onto the central black hole. We have found
metrics which presumably describe a black hole immersed
in a matter-dominated universe, a matter-plus-dark-
energy–dominated universe, and a quintom-dominated
universe, respectively.

The AH and the Misner-Sharp mass are related to the
thermodynamics of dynamical black holes and FRW uni-
verses [35–38,49–56], and, therefore, we investigate the
evolution of the black hole and cosmic AHs, as well as the
Misner-Sharp mass. We find that the black hole mass
decreases in a matter- or matter-plus-cosmological con-
stant–dominated universe. In a quintom-dominated uni-
verse, the black hole mass decreases in the matter era,
while it increases in the phantom-dominated epoch. The
physical reason is that the cosmic density first decreases
and then increases, which makes the radius of the black
hole AH first decreasing and then increasing. Then, also
the black hole mass (one half of the AH radius) first
decreases and then increases. An interesting result is that
the AHs will disappear and the singularity will become
naked before the big rip is reached, in violation of the
cosmic censorship conjecture [43]. If the latter is correct,
then phantom matter may not be allowed to exist in nature.
This statement, however, must be taken with a grain of salt:
in fact, it is based on a particular solution of the field
equations which may be very special. While the result is
still interesting because very few exact solutions are known
to represent the physical situation under study, the solution
proposed may still be too special, or fine-tuned, to draw
general conclusions. The phenomenology reported here,
however, matches that obtained with very different classes
of solutions (which are indeed accreting cosmic fluid) in
Ref. [21].

Another rather surprising result is that the black hole
mass decreases in a matter-dominated universe. As the
most strongly bound gravitational system, it seems intui-
tive that a black hole will have its mass increasing because

of the swallowing of surrounding cosmic matter. Our so-
lution represents cases in which there is no accretion onto
the central black hole (as described by G0

1 ¼ 0) and in

which the cosmic expansion wins over the local gravita-
tional attraction. The Universe is always expanding, and
the density of the cosmic fluid always decreases with the
cosmic time. The seemingly bizarre behavior of the MS
mass derives from the fact that it is really a mass sum
(i.e. the mass of the background fluid is included), and it
coincides with the Hawking-Hayward quasilocal mass
[21]. In the absence of accretion of cosmic fluid onto the
black hole, this mass sum decreases in any universe in
which the cosmological fluid satisfies the weak energy
condition, and its energy density decreases with the
cosmic expansion. In the presence of phantom matter
(such as in the late epoch of a quintom-dominated uni-
verse), the weak energy condition is violated, the phantom
energy becomes more concentrated, instead of being di-
luted, with the cosmic expansion, and the mass sum
increases.
Future work will concentrate on studying the generality

of the solutions presented here and of previous solutions
interpreted as black holes embedded in a cosmological
space. To fully support the interpretation of these solutions
as black holes in a cosmological background, it is impor-
tant that a detailed investigation on the global structure of
these spacetimes be provided. Until this global analysis is
available, we cannot yet claim that our solutions do repre-
sent black holes embedded in expanding universes,
although there is circumstantial evidence. This analysis
will be carried out in future publications.
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