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The anti–de Sitter/conformal field theory (AdS/CFT) correspondence is a powerful tool that promises to

provide new insights toward a full understanding of field theories under extreme conditions, including but

not limited to quark-gluon plasma, Fermi liquid, and superconductor. In many such applications, one

typically models the field theory with asymptotically AdS black holes. These black holes are subjected to

stringy effects that might render them unstable. Hořava-Lifshitz gravity, in which space and time undergo

different transformations, has attracted attention due to its power-counting renormalizability. In terms of

AdS/CFT correspondence, Hořava-Lifshitz black holes might be useful to model holographic super-

conductors with Lifshitz scaling symmetry. It is thus interesting to study the stringy stability of Hořava-

Lifshitz black holes in the context of AdS/CFT. We find that uncharged topological black holes in � ¼ 1

Hořava-Lifshitz theory are nonperturbatively stable, unlike their counterparts in Einstein gravity, with the

possible exceptions of negatively curved black holes with detailed balance parameter � close to unity.

Sufficiently charged flat black holes for � close to unity, and sufficiently charged positively curved black

holes with � close to zero, are also unstable. The implication to the Hořava-Lifshitz holographic

superconductor is discussed.
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I. INTRODUCTION

Anti–de Sitter/conformal field theory (AdS/CFT) corre-
spondence [1–3] has been employed to study various
strongly coupled field theories, the idea being that such
field theory on (d� 1)-dimensional boundary corresponds
dually to black hole physics in d-dimensional bulk in
which the strings are weakly coupled, and so calculations
in the bulk can be done semiclassically. The various appli-
cations of AdS/CFT correspondence include: quark-gluon
plasma [4–6], holographic superconductor [7,8] (for intro-
ductory reviews, see [9,10] as well as the references
therein), and holographic metals [11–13]. See also [14]
for a useful review.

In the case of quark-gluon plasma, the plasma phase has
nonzero minimum temperature, which means that the
black hole dual to the theory should also have minimal
allowed temperature bounded away from zero due to a
form of instability called the Seiberg-Witten instability
[15], which is closely related to the electrical charge car-
ried by the black holes and the existence of branes in the
AdS bulk. In the case of modeling superconductors with
black holes, it is typical to consider not just electrical
charge, but also scalar fields in the black hole spacetime.
This means that the issue of stability becomes much more
complicated and intricate. In view of recent applications of

AdS/CFT to holographic superconductors using a Hořava-
Lifshitz black hole by [16–18], we feel that the stability of
Hořava-Lifshitz black holes in the context of AdS/CFT
needs to be studied.
We should comment at this point that Hořava-Lifshitz

gravity is not a string theory; it is not even a relativistic
theory. Therefore one might wonder whether one can apply
AdS/CFT, which is a string-inspired technique, to Hořava-
Lifshitz gravity. This is especially a concern in our work
since the Seiberg-Witten instability requires the existence
of branes. We nevertheless feel that it is worth studying the
consequences of applying Seiberg-Witten instability to
Hořava-Lifshitz black holes, for several reasons. First, as
mentioned above, AdS/CFT has already been applied to
the study of holographic superconductors in various works
[16–18], and seems to have yielded reasonable results.
Closely related are the recent efforts to build the holo-
graphic superconductors in the bulk backgrounds with
Lifshitz/Schrödinger scaling symmetry, according to the
AdS/NCFT (nonrelativistic conformal field theory) corre-
spondence [19–21]. Therefore it is not too far-fetched to
consider Hořava-Lifshitz theory as a gravitational dual to
some field theories [22]. Second, it is possible that Hořava-
Lifshitz gravity can be formulated in a string-theoretic
way, or string theory may be modified to include Lorentz
breaking [23,24]. Furthermore, as commented by Andrew
Strominger et al. in [25], any consistent theory of gravity
should behave a lot like string theory. In other words,
extended objects like branes probably arise in any
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consistent theory of quantum gravity, including nonrela-
tivistic theories [26–29]. In addition, AdS/CFT correspon-
dence is also likely to occur in any quantum theory of
gravity, as the existence of holographic dualities is not
contingent on the validity of string theory [25,30]. See
also [31] for a related discussion. To push Strominger’s
ideology further, we should expect that something similar
(if not identical) to Seiberg-Witten instability is very likely
to arise in any theory that involves extended objects (e.g.
branes) propagating in asymptotically AdS spacetimes.
Therefore Seiberg-Witten instability or another qualita-
tively similar instability is likely to be a feature of the
Hořava-Lifshitz version of AdS/CFT, assuming that this
indeed exists, as suggested by the sensible results obtained
from applying AdS/CFT techniques to studying holo-
graphic superconductor in Hořava-Lifshitz gravity.

Therefore, assuming that Hořava-Lifshitz gravity is cor-
rect and that gravity/gauge correspondence not too differ-
ent from AdS/CFT indeed exists in this theory, we hope
that our work of applying Seiberg-Witten instability to a
Hořava-Lifshitz black hole should be qualitatively, if not
quantitatively, correct. In other words, while it is far from
clear that Hořava-Lifshitz theory is compatible with string
theory and therefore with AdS/CFT, we feel that the idea is
worth pursuing, at least by exploring the consequences of
such a premise.

In Sec. II, we will review Seiberg-Witten stability (or the
lack thereof) and its application to asymptotically AdS
black holes, which can have nontrivial topology (see e.g.
[32,33]). In Sec. III, we will give a quick review of Hořava-
Lifshitz topological black holes and some of their proper-
ties. In Sec. IV, we shall turn our attention to our original
goal, namely, the study of Seiberg-Witten stability of to-
pological black holes in Hořava-Lifshitz gravity. We then
conclude with some discussions in Sec. V.

II. INSTABILITIES IN ASYMPTOTICALLY
ANTI–DE SITTER SPACE

In general relativity, (nþ 1)-dimensional Reissner-
Nordström-AdS black holes take the form

ds2 ¼ �fdt2 þ f�1dr2 þ r2d�2
k; (1)

where

f ¼ k� 16�M

ðn� 1Þ�kr
n�2

þ 8�Q2

ðn� 1Þðn� 2Þ�2
kr

2n�4
þ r2

L2
;

(2)

in which f ¼ fðM;Q; k; rÞ and �k denotes the area of
compact space with r ¼ 1. Throughout this paper we will
assume the charge Q> 0 for simplicity. In the (3þ 1)
dimension, we thus have, for a flat black hole,

f ¼ r2

L2
� 2M

�K2r
þ Q2

4�3K4r2
; (3)

where K is a continuous parameter defined by �0ðT2Þ ¼
4�2K2, �1<K <1. This also defines K so that for
arbitrary compact flat 2-manifolds, K becomes a measure
of the overall relative size of the space.
In the study of quark-gluon plasma in flat spacetime

[5,6], the black holes considered are those of the (4þ 1)
dimension. It was shown that stringy effects can and do
render charged black holes unstable as more and more
electrical charges are deposited into the horizon.
Furthermore, this instability occurs before the extremal
limit is reached [5]. This type of nonperturbative instability
is known as Seiberg-Witten instability, which was first
pointed out in [15]. For an illuminating introductory
account and examples of the Seiberg-Witten instability,
see [34]. Here we only briefly explain the idea.
LetM be a smooth Riemannian manifold equipped with

a metric g and dimensionality n > 2. Suppose the scalar
curvature of M is R. Under the conformal transformation

g ! fn�2=4g for some positive function f defined on M,
the Ricci scalar transforms as (corollary 1.161 of [35],
p. 59)

R ! g�ðnþ2Þ=ðn�2Þ
�
Rfþ 4ðn� 1Þ

ðn� 2Þ �ðfÞ
�
; (4)

where �ðfÞ is the usual Laplacian, which in local coordi-
nates is defined by

�ðfÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgklÞ

p @

@xj

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgklÞ

q
gij

@f

@xi

�
: (5)

We define

Y½f� ¼
R
M dxn

ffiffiffi
g

p ðRf2 þ 4ðn�1Þ
n�2 ð@fÞ2Þ

ðRM dxn
ffiffiffi
g

p
f2n=n�2Þðn�2Þ=n : (6)

This quantity is defined for the conformal class of metric
½g�. We then define the Yamabe invariant as the infimum of
all the Y½f�’s. Note that for n ¼ 4 and f ¼ 1, this is just a
renormalized Einstein-Hilbert action.
Recall that for pure anti–de Sitter space, a bulk scalar

field can have negative squared mass, as long as it is not too
negative. To be precise, bulk scalar in (nþ 1)-dimensional
AdS with mass satisfying m2 � �n2=4 is allowed.
Equivalently the spectrum of the Laplacian is continuous
on ½n2=4;1Þ, having no other eigenvalue below n2=4. This
is the famous Breitenlohner-Freedman bound [36].
If we have normalizable modes � such that ð��þ

m2Þ� ¼ ��, where � < 0 and m is the mass of the scalar,
then we have so-called perturbative instability [34]. This
does not happen if the Breitenlohner-Freedman bound
holds, e.g. in pureAdS space.However some asymptotically
AdS spaces or quotients of AdS can have discrete eigenval-
ues below n2=4. This is only possible if the Yamabe
invariant of the conformal boundary is negative [37].
On the other hand, Seiberg-Witten instability is a

nonperturbative instability. The Seiberg-Witten action is
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defined on the Euclidean spacetime obtained after Wick
rotation by

S ¼ �ðbrane areaÞ ��ðvolume enclosed by braneÞ;
(7)

where� is related to the tension of the brane and� relates
to the charge enclosed by the brane due to the background
antisymmetric tensor field. This brane is essentially a probe
that allows us to study the background fields and geometry
of the bulk. Like test particles, a probe brane is assumed
not to disturb the bulk geometry and background fields.
Seiberg and Witten have shown very generically that non-
perturbative instability occurs when the action becomes
negative due to uncontrolled brane productions. Brane-
antibrane pairs are always spontaneously created from
the AdS vacuum. In analogy to the Schwinger effect in
QED [38], the rate of brane-antibrane pair production is
proportional to expð�SÞ, where S is the Seiberg-Witten
action. Thus, if S is negative, the AdS vacuum nucleates
brane-antibrane pairs at an exponentially large rate instead
of being exponentially suppressed. This disturbs the back-
ground geometry so much that the spacetime is no longer
described by the metric that we started with, i.e. the
original spacetime is not stable if such brane-antibrane
production is exponentially enhanced due to the reservoir
of negative action. Seiberg-Witten instability occurs pre-
cisely if the Seiberg-Witten action becomes negative at
large r ‘‘close’’ to the boundary, which is equivalent to
the boundary having negative scalar curvature [15]. To
understand this picture in terms of brane and antibrane
dynamics in a Lorentzian picture in more detail, see [39].
We also remark that in analogy with the Schwinger effect,
there will be a large backreaction once the brane-antibrane
pairs are copiously produced, in such a way that the
background geometry will evolve in response to the branes,
and the Seiberg-Witten instability condition might cease to
hold (i.e. the action might eventually become positive). In
other words, one might argue that such instability is self-
limiting. However this is not always the case. To see why
this is so, we need to understand the Seiberg-Witten insta-
bility from the dual field picture, i.e. the conformal
boundary.

The conformal Laplacian of a compact manifold with
metric g with conformal structure is defined by

Lg � ��g þ n� 2

4ðn� 1ÞRðgÞ; (8)

where �g is the usual Laplacian where we have empha-

sized its dependence on the metric g. The conformal
Laplacian is an elliptic operator with a discrete real spec-
trum bounded from below. Suppose �1 is its first eigen-
value, then the field theory defined on the boundary is stable
if �1 > 0 and unstable if �1 < 0. The case for �1 ¼ 0 is
more delicate and requires more analysis. Note that the
eigenvalues �i ¼ �iðgÞ are also dependent on the metric.

A classical problem in differential geometry called
Yamabe problem is the following:

Given a smooth, compact manifoldM of dimension

n > 2 with a Riemannian metric g, does there exist
a metric ~g conformal to g such that the scalar

curvature of ~g is constant?

The answer is affirmative as shown by Schoen [40].
Therefore, there indeed exists such ~g so that the scalar
curvature Rð~gÞ is constant. It is in fact equal to

Rð~gÞ ¼ 4ðn� 1Þ
n� 2

�1ð~gÞ; (9)

so that

L~g ¼ ��~g þ �1ð~gÞ: (10)

Therefore stability depends on the sign of the scalar cur-
vature at the boundary. Indeed, in the case where Seiberg-
Witten instability occurs, the boundary has negative scalar
curvature, and thus correspondingly the field theory is
unstable due to a negative squared mass scalar field in
the dual field description. Note that pure anti–de Sitter
space has positively curved conformal infinity and so is
stable in the Seiberg-Witten sense. We note from Eq. (7)
that area contributes positively to the action, but the vol-
ume contributes negatively. This means that the volume
enclosed by the brane must not grow too rapidly relative to
the area, otherwise instability will eventually occur.
Assuming supersymmetry in the bulk (this is not entirely
impossible even for Hořava-Lifshitz gravity [41]), the
amount of charge is bounded above. Clearly the most
dangerous case is when � is maximum; this is the
Bogomol’nyi-Prasad-Sommerfeld (BPS) case in which in
(nþ 1) dimension is given by �BPS ¼ n�=L. Indeed this
analysis is not strictly restricted to the AdS bulk, but also
holds for an arbitrary Einstein manifold of negative curva-
ture and conformal boundary [15].
We remark that both perturbative and nonperturbative

(Seiberg-Witten) instabilities do not occur if the Yamabe
invariant is positive, or equivalently, if the conformal
boundary has positive scalar curvature. However, see the
subsequent discussion for the case where the Seiberg-
Witten action is negative for some finite range yet still
asymptotically divergent.
Now coming back to a previous remark that Seiberg-

Witten instability is not always self-limiting. This is the
consequence of the fact that there exist compact manifolds
on which it is impossible to define a Riemannian metric of
positive or zero scalar curvature [42]. For such cases, the
AdS bulk is unstable due to emission of brane-antibrane
pairs and will remain unstable no matter how the metric is
distorted due to backreaction. This is the case for black
holes with negatively curved horizon in general relativity:
once brane-antibrane pairs are produced, nothing can stop
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the instability; no matter how the branes deform the space-
time, the scalar curvature at infinity can never become
everywhere positive or zero [43]. This is also clear from
the fact that the Seiberg-Witten action is unbounded below
in this case, as we will discuss in more detail in Sec. IV.
Therefore, whether instability is self-limiting or not de-
pends on the topology of the underlying manifold.

We should at this point stress that the stability issue
discussed depends on whether the theory is classical or
semiclassical. For example classically Reissner-
Nordström-AdS black holes are gravitationally stable
[44] despite the existence of a thermodynamically unstable
parameter range; but Gubser-Mitra instability [45] occurs
for Reissner-Nordström-AdS black holes in N ¼ 8
gauged supergravity, due to tachyon mode of the scalar
field which coupled to the system which causes thermody-
namically unstable black holes to be also dynamically
unstable. The Seiberg-Witten instability is likewise not a
classical effect.

In the case of k ¼ þ1 and k ¼ �1 black holes, the
Seiberg-Witten stability issue is straightforward: positively
curved black holes are stable while negatively curved black
holes are always unstable in the Seiberg-Witten sense [46].
Flat black holes, however, are marginally stable: the
Seiberg-Witten action asymptotes to a value linearly pro-
portional to its mass, and adding charge lowers the action
such that it eventually becomes negative at large r, render-
ing the black hole unstable. To be precise, the instability
occurs as the amount of charge reaches about 95.8% of the
extremal charge for charged (4þ 1)-dimensional black
holes in anti–de Sitter space [5]. Therefore, the Seiberg-
Witten instability provides an explanation of why quark-
gluon plasma cannot be arbitrarily cold—namely the dual
black hole cannot be too cold if it is to be stable.

However, as we have pointed out, applications of AdS/
CFT correspondence are becoming wider by the day, and in
some of these cases, the field theory is not bounded away
from zero. One such example is the Fermi liquid. The black
hole dual to the Fermi liquid might be a black hole with
dilaton charge or a relative to it [47]. Indeed dilaton black
holes have been extensively studied for their holography
and applications in AdS/CFT correspondence [48–51]. In
the case where the dual field theory can be arbitrarily cold
or even reach zero temperature, one wishes that the corre-
sponding black holes were stable in the Seiberg-Witten
sense. The dilaton hair is not a fundamental ‘‘hair’’ since it
couples to the Maxwell field. For a flat dilaton black hole,
at least for those with coupling strength � ¼ 1, the
Seiberg-Witten action remains positive as the electrical
charge increases [52]. Indeed, for typical fixed charge
Q1, increasing the charge to Q2 >Q1 makes the action
start out with SðQ2Þ< SðQ1Þ initially, but subsequently
takes over at some finite value of r ¼ R so that SðQ2Þ>
SðQ1Þ for all r � R. The value of r in which this takeover
occurs decreases with increasing charge.

On a similar note, some types of Hořava-Lifshitz black
holes have been studied as being dual to superconductors
with Lifshitz scaling symmetry [16–18], and we would like
to explore the stability of these black holes when we take
into account the influence of branes to the AdS bulk
geometry semiclassically. However before we discuss
this issue, let us first review the properties of topological
black holes in Hořava-Lifshitz gravity.

III. TOPOLOGICAL BLACK HOLES IN
HORı́AVA-LIFSHITZ GRAVITY

The idea of Hořava-Lifshitz gravity originated from the
study of the longstanding problem regarding nonrenorm-
alization of general relativity. It is suggested that nonre-
normalizability implies that general relativity is only an
effective theory which will break down in the high-energy
regime. As an effective theory then, the curvature scalar in
the Einstein-Hilbert action is probably only the first of
many higher order curvature terms. An attempt to renor-
malize gravity by naively introducing higher order terms
however is problematic because these terms have deriva-
tives of both spatial and temporal kinds, and we know that
from a field theoretical point of view, higher order time
derivatives lead to problems like ghost degrees of freedom
which render the theory nonunitary. Therefore, the idea of
Hořava-Lifshitz gravity [53] is to break Lorentz invariance
so that we can have higher spatial derivative terms yet no
higher time derivative terms. In other words, time and
space are not to be treated on equal footing. This makes
the theory power-counting renormalizable if space and
time transform as x ! bx, t ! b3t for some constant b.
Note that in this construction, Lorentz invariance can be
recovered in the infrared limit where � ! 1, so that the
theory will reduce to well-tested general relativity. For a
timely review, see [54].
In the well-known (3þ 1)-dimensional Arnowitt-Deser-

Misner (ADM) formalism [55], the spacetime metric can
be written as

ds2 ¼ �N2dt2 þ gijðdxi þ NidtÞðdxj þ NjdtÞ; (11)

where N is the lapse function and Ni is the shift vector.
The Einstein-Hilbert (EH) action is

SEH ¼ 1

16�G

Z
d4x

ffiffiffi
g

p
N½KijK

ij � K2 þ R� 2��; (12)

where Kij is the extrinsic curvature

Kij ¼ 1

2N
ð _gij �riNj �rjNiÞ; (13)

with the dot denoting derivative with respect to time. Note
that the covariant derivative is a spatial one.
The action of the Hořava-Lifshitz gravity is, with g

denoting the determinant of the spatial metric gij,
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I ¼
Z

dtd3x
ffiffiffi
g

p ½LK þLV�; (14)

where

L K ¼ 2

�2
ðKijK

ij � �K2Þ (15)

is the kinetic term and

L V ¼ �2�2ð�R� 3�2Þ
8ð1� 3�Þ þ �2�2ð1� 4�Þ

32ð1� 3�Þ R2

� �2�2

8
RijR

ij þ �2�

2!2
�ijkRilrjR

l
k �

�2

2!4
CijC

ij

(16)

is the potential term determined by what is known as a
detailed balance condition, which is inspired from con-
densed matter physics.

Here �2, �,!,�, and� are all parameters of the theory,
while

Cij ¼ �iklrk

�
Rj
l �

1

4
R�j

l

�
(17)

is the Cotton tensor. Of particular importance is the run-
ning coupling � > 1=3, which at IR limit is expected to
flow to � ¼ 1 where general relativity is recovered.

We remark that the detailed balance condition is not an
essential feature of the theory, but it drastically reduces the
number of terms one needs to consider. The Lagrangian
in the theory without detailed balance condition, with
0< � � 1, takes the following form:

L ¼ L0 þ ð1� �2ÞL1; (18)

where

L 0 ¼ ffiffiffi
g

p
N

�
2

�2
ðKijK

ij � �K2Þ þ �2�2ð�R� 3�2Þ
8ð1� 3�Þ

�
(19)

and

L 1 ¼ ffiffiffi
g

p
N

�
�2�2ð1� 4�Þ
32ð1� 3�Þ R2 � �2�2

8
RijR

ij

þ �2�

2!2
�ijkRilrjR

l
k �

�2

2!4
CijC

ij

�
: (20)

We call � the detailed balance parameter. Detailed
balance condition is obtained when � ¼ 0, while general
relativity is recovered when � ¼ 1. One should note that
however in application to our physical Universe, the de-
tailed balance condition is tightly constrained from obser-
vations and is actually disfavored, although not completely
ruled out [56,57].

The speed of light in Hořava-Lifshitz theory is not
fundamental but is given by

c ¼ �2�

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

1� 3�

s
; (21)

while Newton’s constant is given by

G ¼ �2c2

16�ð3�� 1Þ : (22)

Here � is related to the cosmological constant (CC) �CC

by � ¼ 2�CC=3. We note from the square root in the
expression for c that the cosmological constant must thus
be negative, although it is argued that it can be made
positive via analytic continuation [58].
Spherically symmetric black hole solutions in Hořava-

Lifshitz theory have been found [58], followed shortly by
solutions of topological black holes [59]. See also [60,61].
We shall see that, as has been pointed out in these works,
even in the limit � ¼ 1, these black holes have very differ-
ent behaviors than their counterparts in Einstein’s theory of
general relativity (see also [62]). We will focus on the case
� ¼ 1 in the following discussion. However before pro-
ceeding, we would like to remark that there is much we do
not yet understand about black hole solutions in Hořava-
Lifshitz theory. For example, the horizon radii generically
depend on the energies of test particles [63], that is, it
is not clear ‘‘when and for whom they are black’’ [64].
Furthermore, many black-hole-like solutions might not be
black holes in the usual sense due to different dispersion
relations in the Hořava-Lifshitz theory [63]. Nevertheless,
since naive application to holographic superconductors
seems to yield reasonable results, we shall assume the
validity of this approach and proceed to study its
consequences.
For comparison, let us first look at charged topological

AdS black holes in Einstein’s general relativity (GR): with
metric ds2 ¼ �fdt2 þ f�1dr2 þ r2d�2 where in (3þ 1)
dimension

fðM;Q; rÞ ¼ k� 8�M

r�k

þ 4�Q2

�2
kr

2
þ r2

L2
: (23)

The cosmological constant is �CC ¼ �3=L2, where
L is the length scale of the anti–de Sitter space. Thus
� ¼ �2=L2.
In the absence of charge,

fðQ ¼ 0;M; rÞ ¼ k� 8�M

r�k

þ r2

L2
; (24)

and so the temperature

T ¼ f0ðrþÞ
4�

; (25)

where rþ denotes the horizon, is given by
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TGR ¼
ffiffiffiffiffiffiffiffiffi��

p
8�xþ

ð3x2þ þ 2kÞ; (26)

where we have defined x � r
ffiffiffiffiffiffiffiffiffi��

p
.

For Hořava-Lifshitz topological black holes with � ¼ 1,
we have [59]

fðxÞ ¼ kþ x2

1� �2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2x4 þ ð1� �2Þc0x

p
1� �2

; (27)

where

c0 ¼ x4þ þ 2kx2þ þ ð1� �2Þk2
xþ

: (28)

Expanding the square root terms as a power series, we can
see that

fðxÞ ¼ kþ x2

1þ �
� c0

2�x
þO

�
1� �2

x4

�
: (29)

Thus, we see that for � ! 1 the higher order terms vanish
and we end up with

fðxÞ ¼ kþ x2

2
� c0

2x
; (30)

which recovers the topological uncharged black hole
solutions in AdS. Furthermore even for � � 1, for large
x (i.e. large r), the solution is again asymptotically AdS.

In the presence of electrical charge, we have [59]

fðxÞ ¼ kþ x2

1� �2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2x4 þ ð1� �2Þðc0x� q2

2 Þ
q

1� �2
; (31)

where the charge parameter q is related to the previous
charge Q by

Q ¼ �2�2�k

ffiffiffiffiffiffiffiffiffi��
p

16
q (32)

and

M ¼ �2�2�k

ffiffiffiffiffiffiffiffiffi��
p

16
c0: (33)

Here

c0 ¼
x4þ þ 2kx2þ þ ð1� �2Þk2 þ q2

2

xþ
: (34)

In the � ! 1 limit, we recover the usual AdS charged
topological black hole solutions,

fðxÞ ¼ kþ x2

2
� c0

2x
þ q2

4x2
: (35)

The Hawking temperature is [17]

T ¼
ffiffiffiffiffiffiffiffiffi��

p ½3x4þ þ 2kx2þ � ð1� �2Þk2 � q2

2 �
8�xþ½x2þ þ ð1� �2Þk� : (36)

For convenience of discussion, we give explicit forms of
the relevant equations for the detailed balance case:
As � ¼ 0, chargeless black holes in Hořava-Lifshitz

gravity are given by [59]

fðrÞ ¼ kþ x2 � ffiffiffiffiffiffiffi
c0x

p
; (37)

where

c0 ¼ k2 þ x4þ þ 2kx2þ
xþ

> 0: (38)

The horizon has constant curvature 2k, where k ¼
þ1; 0;�1. In this case, it was shown that the temperature
and entropy take the form [59]

T ¼
ffiffiffiffiffiffiffiffiffi��

p
8�xþ

ð3x2þ � kÞ; (39)

and

S ¼ c3

4G

�
A� k�k

�
ln
A

A0

�
; (40)

respectively, where A0 is a constant of dimension length
squared, which cannot be determined without knowing
some details of quantum gravity. Thus we notice that the
thermodynamics of black holes in Hořava-Lifshitz theory
is very different from that in general relativity: the entropy
is no longer a quarter of the horizon area, but contains a
correction term which scales as a logarithm of the area.
This is not very surprising since in modified gravity, in
general, the entropy is not exactly equal to a quarter of
horizon area (see e.g. lesson 6 of [65]).
An interesting feature to note, as pointed out in [59,66],

is that the behavior of the temperature of black holes in
Hořava-Lifshitz theory is opposite to that of the black holes
in general relativity, i.e. that k ¼ þ1 black holes in one
theory behave like k ¼ �1 black holes in the other theory
and vice versa. This can be seen from the opposite sign in
front of the k term in the temperature expressions of the
two theories [Eqs. (26) and (39)]. The ‘‘duality’’ is not
exact. For example, we know that there exists minimum
allowed temperature for k ¼ 1 black holes in general
relativity. This is given by the turning point of Eq. (26)

with k ¼ 1, which occurs at xþ ¼ ffiffiffiffiffiffiffiffi
2=3

p
, or equivalently at

r ¼ L=
ffiffiffi
3

p
. Thus black holes under a certain critical tem-

perature are unstable. Indeed, there exists a Hawking-Page
transition for k ¼ 1 black holes [67]. This is however not
the case for k ¼ �1Hořava-Lifshitz black holes [59]. This
is because with k ¼ �1, Eq. (37) evaluated on the horizon
gives

x2þ � ffiffiffiffiffiffiffiffiffiffiffi
c0xþ

p ¼ 1; (41)

which enforces xþ � 1. But the turning point of Eq. (39)

occurs at xþ ¼ ffiffiffiffiffiffiffiffi
1=3

p
. Since xþjmin >

ffiffiffiffiffiffiffiffi
1=3

p
, the unstable

phase for k ¼ �1 Hořava-Lifshitz black holes does not
arise and so these black holes are thermodynamically
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stable. In fact, all uncharged topological black holes are
thermodynamically stable in Hořava-Lifshitz theory. (This
result is for � ¼ 1. Things are somewhat different for
general � [68].) We remind the reader that for k ¼ 0 black
holes in general relativity, there is no Hawking-Page phase
transition into an AdS background, although there can be
transition into a Horowitz-Myers soliton [69,70], which we
will not discuss here.

In the presence of electrical charge, we have, by setting
� ¼ 0 to in Eq. (31),

fðrÞ ¼ kþ x2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0x� q2

2

s
; (42)

where

c0 ¼ 2k2 þ q2 þ 4kx2þ þ 2x4þ
2xþ

> 0: (43)

The temperature is

T ¼ 6x4þ þ 4kx2þ � 2k2 � q2

16L2�xþðkþ x2þÞ
: (44)

Thus we see that the extremal limit T ¼ 0 is achieved at

xE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� k

3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8k2 þ 3q2

p
3

ffiffiffi
2

p
vuut

: (45)

The charge parameter thus satisfies

q2 � 2ð�k2 þ 2kx2þ þ 3x4þÞ (46)

with the bound saturated for extremal black hole.
The temperature for k ¼ �1 charged black holes then

exhibits different behaviors from the uncharged case: there
is now minimum temperature for small black holes, i.e.
black holes with 0< xþ < 1. This minimum point occurs

at x ¼ 1=
ffiffiffi
3

p
of the value of the charge, as long as it is

nonzero. Thus charged black holes are thermodynamically
stable for the k ¼ 0 and k ¼ 1 cases, and also stable for the
k ¼ �1 case if the black hole is sufficiently large. See [66]
for detailed discussions.

Therefore even if the Hořava-Lifshitz theory can recover
Einstein’s theory in the IR, the solutions might not. This
is of course not the only problem with Hořava-Lifshitz
gravity [71]. Regardless of the validity of Hořava-
Lifshitz theory as renormalizable theory of quantum grav-
ity to describe our physical world, it is hoped that the black
hole solutions in Hořava-Lifshitz theory might neverthe-
less be useful in application to understand superconductor-
type phenomena via AdS/CFT, which wewill discuss in the
following sections.

IV. HOLOGRAPHY OF HORı́AVA-LIFSHITZ
BLACK HOLES

Hořava-Lifshitz black holes have been studied for their
possible applications in AdS/CFT; see e.g. [16–18]. In

[16], the authors studied the phase transition of flat
Hořava-Lifshitz black holes by introducing aMaxwell field
and a complex scalar field and found that the results are
rather similar to those in the case of black holes in general
relativity. They thus concluded that the superconductivity
phenomenon is rather robust, insensitive to gravitational
theories at hand, but rather associated with asymptotic AdS
black holes. In [17], the work is extended to the case
without the detailed balance condition.
In this section, we only consider (3þ 1)-dimensional

charged Hořava-Lifshitz black holes. We do not include
effects of scalar fields. However, see Sec. V for further
discussion.
Following [5,46], we consider the Wick-rotated version

of the black hole metric with a BPS brane of tension �
wrapping one of the r ¼ const sections of the resulting
space of Euclidean signature. The Seiberg-Witten action is
then

SðrÞ ¼ �A��V; (47)

where

AðrÞ ¼ ffiffiffiffiffiffiffi
g		

p Z
d	

Z
r2d�k (48)

and

VðrÞ ¼
Z r

rþ

ffiffiffiffiffiffiffi
g		

p ffiffiffiffiffiffiffiffiffi
gr0r0

p
r02dr0

Z
d�k

Z
d	 (49)

are the brane area and volume enclosed by the brane,
respectively. Since the brane is BPS, we have � ¼ 3�=L
in the (3þ 1) dimension.
Recall that in performing Wick rotation, the time coor-

dinate t now parametrizes a circle. We can think of t=L as
an angular coordinate on this circle with periodicity P
chosen so that the metric is not singular at rþ.
The Seiberg-Witten action is

Sðx;k;q;�Þ

¼PL��k

L2

2

8><
>:x2

2
64kþx2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2x4þð1��2Þðc0x�q2

2 Þ
q

1��2

3
75

1=2

� 1ffiffiffi
2

p ðx3�x3þÞ
9>=
>;; (50)

where we recall that

c0 ¼ k2ð1� �2Þ þ x4þ þ 2kx2þ þ q2=2

xþ
: (51)

For a consistency check, as mentioned in Sec. II, for the
case � ¼ 1, we should recover a Reissner-Nordström-AdS
solution of general relativity. For the flat case, we then
have, henceforth ignoring the overall positive multiple
PL��kL

2=2,
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S / x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2
� xðx3þ þ q2

2xþ
Þ � q2

2

2x2

vuut � x3 � x3þffiffiffi
2

p : (52)

With xþ ¼ 1, we increase the electrical charge and
observe that eventually the action approaches zero at in-
finity for some near-extremal (NE) charge parameter qNE.
We claim that q2NE ¼ 2. Indeed, we can check that with this
value, the action becomes

S / x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2
� 2x� 1

2x2

s
� x3 � 1ffiffiffi

2
p (53)

¼ xffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 � 2xþ 1

p
� x3 � 1ffiffiffi

2
p ; (54)

which indeed tends to 0 as x ! 1.
As shown in Fig. 1, for any amount of charge exceeding

q ¼ ffiffiffi
2

p
, the action becomes negative at some finite x and

stays negative afterward. This signals instability by brane
production, and so the black holes become unstable before
extremality is reached. Correspondingly then, the tem-
peratures of such stable black holes are bounded away
from zero.

Comparing Eq. (3) and (35), we see that

q2

4x2
¼ Q2

4�3K4r2
: (55)

Recall that x ¼ ffiffiffiffiffiffiffiffiffi��
p

r ¼ ffiffiffiffiffiffiffiffiffiffiffi
2=L2

p
r; this reduces to

q2 ¼ � �Q2

�3K4
: (56)

Therefore our result that q2NE ¼ 2 agrees with the result in
[72], from which we know that for flat black holes in
general relativity with n-dimensional horizon, the near-
extremal charge satisfies

�Q2
NEL

2 ¼ 2ð5n�3Þ=ðnþ1Þðn� 1Þnð1�nÞ=ðnþ1Þ

� ½�2MKL2�2n=ðnþ1Þ (57)

and the horizon with this amount of charge satisfies

rNE ¼
�

ML2

2n�3n�n�1Kn

�
1=ðnþ1Þ

: (58)

Our case corresponds to n ¼ 2, and we have set xþ ¼ 1.
By setting L ¼ 1 and K ¼ 1 and varying M, we have
indeed

1ffiffiffi
2

p ¼ rNE ¼
�
ML2

�K2

�
1=3 ) M ¼ �ffiffiffi

8
p (59)

and thus

Q2
NE ¼ 4�3

�
1ffiffiffi
8

p
�
4=3 ) q2NE ¼ 2; (60)

as we have found previously. Therefore, we have a con-
sistency check that we do recover the result of Seiberg-
Witten instability for charged flat black holes in general
relativity when � ¼ 1.
The behavior of the Seiberg-Witten action hugely de-

pends on the value of �. Even for a fixed value, say � ¼ 0
for the detailed balance case, we see that for the uncharged
case (top-left diagram in Fig. 2), the action for k ¼ �1
black holes is positive and even greater than the flat and
positively curved cases, which is a completely different
behavior than its general relativistic counterpart in which
the action for negatively curved black holes always turns to
become negative at large x. Increasing electrical charge
does lower the action of such a detailed balance black hole,
but the asymptotic behavior does not change—the action
still tends to positive infinity at large x regardless of the
horizon curvature.
Note, however, that for some values of parameters, the

action does become negative for some intermediate range
of x, although it is positive for large x. Note that this also
happens for charged k ¼ 1 black holes at sufficiently small
�, although their action is always positive in the case of
general relativity. The fact that the action becomes nega-
tive at some finite range does signal nonperturbative in-
stability under brane nucleation as before, but of a milder
form. One way to interpret this is as follows: brane-
antibrane pairs are created at an exponential rate from
the reservoir of energy where the action is negative. For
the action which is negative between some finite range,
brane-antibrane pairs are produced with the expense of the
electrical charge � on the brane so that eventually the
action becomes less negative. In other words the black
hole spacetime which is unstable in this sense will even-
tually settle down below the threshold value that triggered
the instability. However, when everything has settled down
to a stable configuration, it is no longer the original space-
time. It has become a ‘‘nearby solution’’ in the sense of
Maldacena and Maoz [73]. We contrast this to the case of

10 20 30 40 50
x0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

S k 0, 1

FIG. 1. Flat black holes with � ¼ 1. From top to bottom, the
charge parameter values are q ¼ 0, 0.5, 1,

ffiffiffi
2

p
, and 1.48, re-

spectively. The value q ¼ ffiffiffi
2

p
corresponds to the amount of

charge where the Seiberg-Witten action becomes zero at infinity.
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k ¼ �1 black holes and near-extremal k ¼ 0 black holes
in general relativity in which once the action becomes
negative it stays negative. In such a scenario, the spacetime
is genuinely unstable because the action cannot become
positive by nucleating a finite number of brane-antibrane
pairs.

Nearby solutions in the sense of Maldacena and Maoz
may correspond to deforming the black holes in some
ways, which should not be confused with so-called
‘‘deformed’’ Hořava-Lifshitz black holes (Kehagias-
Sfetsos black holes) [66,74]. The latter refers to the situ-
ation where there exists a term in the IR modified action of
Hořava-Lifshitz gravity which allows one to obtain a
Minkowski vacuum instead of an AdS vacuum.

Furthermore, we observe in Fig. 3 that even for un-
charged black holes q ¼ 0, the actions for black holes of
different horizon curvature cross over as � varies from
0 to 1. With xþ set to 1, we observe that under a detailed
balance condition (� ¼ 0), the action for the k ¼ �1 black
hole is the highest, followed by k ¼ 0 and finally the
k ¼ þ1 case. But eventually it becomes the other way
around at � ! 1.

We observe that as the electrical charge increases, re-
gardless of values of � and k, the Seiberg-Witten action for
Hořava-Lifshitz black holes decreases. This is the same
behavior as is the case in general relativity.

We note that the actions for flat black holes remain
infinite as x ! 1 if � � 1; indeed from Eq. (50), we see
that, at large x,

S / x2
�
x2 � �x2

1� �2

�
1=2 � x3ffiffiffi

2
p ¼ x3

�
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ �
p � 1ffiffiffi

2
p

�
: (61)

Thus for 0 � � < 1, the Seiberg-Witten action always
blows up at infinity independent of the charge.
For the � ¼ 1 case which corresponds to general rela-

tivity, the result above does not hold because we have to
deal with indeterminate form. Indeed the action in this case
reduces to that of general relativity, that is, it asymptotes to
a constant, which does depend on the value of the charge as
we have seen. Therefore there is a discontinuity in the
behavior of the Seiberg-Witten action as � varies from
� ¼ 0 toward � ¼ 1.
For negatively curved black holes, the action at large x is

S / x2
�
�1þ x2

1þ �

�
1=2 � x3ffiffiffi

2
p ; (62)

which can be negative if and only if

� 1þ x2

1þ �
<

x2

2
; (63)

i.e. if and only if � > 1 as x ! 1.
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FIG. 2. Top left: Seiberg-Witten actions for uncharged black holes with � ¼ 0 where the curves from top to bottom are that of
k ¼ �1, k ¼ 0, k ¼ þ1, respectively. Top right, bottom left, and bottom right show the behavior for the action as charge is increased
(higher curves correspond to lower charge), for k ¼ þ1; 0;�1 cases, respectively. The horizons (origins) are set to x ¼ 2. Note that the
action for sufficiently charged k ¼ 1 black holes can be negative in some range of x.
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Therefore a similar phenomenon happens for negatively
curved black holes: while the Seiberg-Witten action even-
tually turns over and becomes negative and stays negative
for � ¼ 1, the action remains positive at infinity for all
values of � < 1. We plot the Seiberg-Witten actions of

topological black holes as the charge increases in Fig. 4
(also see Fig. 5).
In fact, we see from Fig. 6 that by holding the charge

fixed and increasing � toward 1, the turning point of the
action for k ¼ �1 black holes shifts progressively toward
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FIG. 4. The behavior of Seiberg-Witten actions as the charge increases. The first, second, and third rows correspond to k ¼ þ1,
k ¼ 0, and k ¼ �1 cases, respectively; while the first, second, and third column correspond to � ¼ 0:9999, � ¼ 0:5, and � ¼ 0,
respectively. Higher curves correspond to lower electrical charge. Horizons are set to unity for the k ¼ 1 and k ¼ 0 cases while
those for k ¼ �1 black holes are set to 2. The asymptotic behavior for � ! 1 is however misleading in this plot: The graphs for
Sðk ¼ 0; � ¼ 0:9999Þ and Sðk ¼ �1; � ¼ 0:9999Þ actually diverges to infinity, as shown by the plot with bigger scale in Fig. 5.
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FIG. 3. Seiberg-Witten actions for uncharged k ¼ þ1, k ¼ 0, and k ¼ �1 black holes are represented as solid curve, dotted curve,
and dash-dotted curve, respectively. The values of � from top left to top right are 0, 0.1, and 0.3; while the values from bottom left to
bottom right are 0.5, 0.65, and 1 (which reduces to general relativity). The horizons are set to unity.
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the right, and with � ! 1, this turning point gets pushed all
the way to infinity, i.e. it does not turn over for the case
� ¼ 1, which recovers the case for general relativity with
infinite reservoir of negative action. A similar phenomenon
happens for the case of k ¼ 0 black holes. The implication
of this observation is that the ‘‘amount of negative reser-
voir’’ is not bounded. As the brane-antibranes are produced
in huge numbers in the bulk, the black hole spacetime will
be disturbed so much that one may reasonably worry that it
might develop into true instability. That is to say, although
the Seiberg-Witten action at infinity is positive which
usually means the field theory on the boundary is stable,
this ‘‘stability’’ in the case of Hořava-Lifshitz black holes
should not be trusted until we have more details on how the
spacetime deforms and settles down after it gets rid of the
negative reservoir of action via the huge number of brane-
antibrane emissions.

V. DISCUSSION

We have studied the Seiberg-Witten stability issues of
asymptotically AdS Hořava-Lifshitz black holes and found
that for all three types of topological black holes (k ¼
�1; 0;þ1) there exists a parameter range in which the
Seiberg-Witten action dips below the x axis for intermedi-

ate values of x, where x ¼ r
ffiffiffiffiffiffiffiffiffi��

p
and r is the radial

coordinate, but pulls back up and diverges to infinity as

x ! 1. This means that although some of these black
holes are unstable in the Seiberg-Witten sense, there exist
nearby solutions which are stable in the Maldacena-Maoz
sense [73]. At this stage, the nature of these nearby solu-
tions and their possible implications on the dual field
theories are not clear, which we leave open for future
works to explore. In particular, we have been arguing
rather naively that such nearby solutions exist and this
needs to be proved. After all, not every naive deformation
of a black hole can be stable; without knowing the details it
is hard to guarantee at this point that there exists any stable
deformation in view of [75]. As stability is inversely pro-
portional to how much of the action is negative, we con-
jecture that:
(1) Uncharged positively curved AdS Hořava-Lifshitz

black holes are stable in the Seiberg-Witten sense,

while charged ones can be stable in Seiberg-Witten

sense if the action remains positive, or stable in the

Maldacena-Maoz sense if the action becomes nega-

tive for some finite region. For sufficiently charged
black holes, stability is less guaranteed as � ! 0.

(2) Uncharged flat AdS Hořava-Lifshitz black holes are
stable in the Seiberg-Witten sense. Charged ones
can be stable in Maldacena-Maoz sense if part of
the Seiberg-Witten action becomes negative, but
this stability is less guaranteed as � ! 1.
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FIG. 6. The actions Sðk ¼ 0Þ and Sðk ¼ �1Þ are not bounded below as � ! 1. The curves from top to bottom for Sðk ¼ �1Þ
correspond to � ¼ 0:999, � ¼ 0:9999 and � ¼ 0:999 99 respectively; while the curves from top to bottom for Sðk ¼ 0Þ correspond to
� ¼ 0:999 99, � ¼ 0:999 999 and � ¼ 0:999 999 9 respectively. The actions eventually recover their corresponding behaviors in
general relativity as � ¼ 1 and the turning point is pushed to infinity.
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FIG. 5. The Seiberg-Witten action for Sðk ¼ 0; � ¼ 0:9999Þ and Sðk ¼ �1; � ¼ 0:9999Þ diverge to infinity.
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(3) Uncharged negatively curved AdS Hořava-Lifshitz
black holes are stable in the Seiberg-Witten sense as
long as � is not too close to unity. (For black holes
with horizon set at x ¼ 2, the action starts to have a
negative portion at � * 0:98. The lower bound on �
before action starts to develop negative part be-
comes larger for larger black holes.) Charged ones
can be stable in the Maldacena-Maoz sense if part of
the Seiberg-Witten action becomes negative, but
again this stability is less guaranteed as � ! 1.

It is unlikely that in cases 2 and 3 the black hole space-
time can be stable for � close to 1, even in the Maldacena-
Maoz sense that there exists a nearby solution; instead
there might exist a critical value of � for a given value of
charge such that the black hole spacetime becomes genu-
inely unstable even in the Maldacena-Maoz sense. One
would need to know the exact ways the black hole space-
time changes in response to brane nucleations to know if
this is indeed the case, and if so to find such critical value.
Lacking a quantitative way to investigate this issue right
now, we leave this problem for future investigation.

At this point, we would like to remind the reader that our
analysis should be taken with skepticism, in view of the
caveats we mentioned in the introduction. Nevertheless, if
our analysis is at least qualitatively correct, it provides an
example of instability with the Seiberg-Witten action being
eventually positive but which is not bounded below as we
approach � ¼ 1. This recovers a general relativistic result
of Seiberg-Witten instability, which, though not a proof of
validity of our approach, is at least a consistency check.

We now note that our analysis is somewhat incomplete
since in the application to holographic superconductors, it
is typical to add not just a Maxwell field [16,17], but also a
scalar field. Therefore it is possible that in the cases where
the Seiberg-Witten action becomes negative for some finite
range of x, the solution can nevertheless be stabilized when
the scalar field is taken into account, even without deform-
ing the black hole. Note that in [16,17], the black holes
considered are uncharged, with the background Maxwell
field and scalar field weakly coupled to gravity, i.e. there is
no backreaction to the metric. There is no Seiberg-Witten
instability for all values of � for flat uncharged black holes

so all are fine in such applications, which is what motivated
our investigation in the first place.
Nevertheless, recall that in analysis of holographic

superconductors dual to Einstein-Maxwell-scalar black
holes, we expect the black holes to develop scalar hair
around and below a certain critical temperature Tc if the
Breitenlohner-Freedman bound is violated near the hori-
zon of near-extremal black holes [7,10,76]. Therefore it
will be interesting to explore the stability issue when both
the Maxwell field and scalar field are strongly coupled to
gravity in Hořava-Lifshitz theory. We expect that these
black holes would exhibit behavior similar to dilaton black
holes and as such be stable in the Seiberg-Witten sense
[52], although how much this behavior is preserved under
Hořava-Lifshitz gravity is yet to be explored.
Finally we recall that the present work only considers

Hořava-Lifshitz black holes for � ¼ 1. The case for gen-
eral � is not only difficult from a calculation point of view,
but also conceptually: the metrics are no longer asymptoti-
cally anti–de Sitter [59], and it is not clear whether ‘‘AdS’’/
CFT makes sense for such black holes (though perhaps not
entirely impossible—see e.g. so-called non-AdS/non-CFT
correspondence [77]). It might also be interesting to ex-
plore the Seiberg-Witten instability for Hořava-Lifshitz
black holes in higher dimensions (for a study of five-
dimensional Hořava-Lifshitz black holes, see [78]).
It is clear that Hořava-Lifshitz black holes, especially

in the case without detailed balance have rich physics in
need of further study. We may be able to learn something
interesting even if Hořava-Lifshitz gravity turns out not to
be a theory for describing gravity in our world.
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