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Rotation of polarization in an external gravitational field is one of the effects of general relativity that

can serve as a basis for its precision tests. A careful analysis of reference frames is crucial for a proper

evaluation of this effect. We introduce an operationally-motivated local reference frame that allows for a

particularly simple description. We present a solution of null geodesics in Kerr space-time that is

organized around a new expansion parameter, allowing a better control of the series, and use it to

calculate the resulting polarization rotation. While this rotation depends on the reference-frame con-

vention, we demonstrate a gauge-independent geometric phase for closed paths in general space-times.
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I. INTRODUCTION

Electromagnetic waves—visible light and other bands of
the spectrum—are our prime source of information about
the Universe [1]. Since measurements of the light deflec-
tion near the Sun [2] were made in 1919 wave propagation
is used to test general relativity (GR). Two of the ‘‘classical
tests’’ of GR, light deflection and time delay, can be under-
stood in terms of geometric optics [3]. The first post-
eikonal approximation [4] allows to track the evolution
of electric and magnetic fields along the light rays and thus
discuss polarization.

In this approximation we speak about photons with a
null four-momentum k and a transversal four-vector polar-
ization f. Both vectors are parallel-transported along the
trajectory, which is a null geodesic [5,6]

k � k ¼ 0; rkk ¼ 0; (1)

k � f ¼ 0; rkf ¼ 0; (2)

where rk is a covariant derivative along k.
In the last decades polarization has been yielding im-

portant astrophysical and cosmological data. Cosmic mi-
crowave background [7], blazar flares [8,9], astrophysical
jets [9,10], and searches for dark matter [11] are just
several examples where polarization conveys crucial
information.

Photons are commonly used as physical carriers of
quantum information. The abstract unit of quantum infor-
mation is a qubit (a quantum bit) [12], and two linearly
independent polarizations encode the two basis states of a
qubit. One of the branches of quantum information is
quantum metrology, which aims to improve precision mea-
surements by using explicitly quantum effects, such as
entanglement [13]. Relativistic properties of the informa-
tion carriers [14,15] become important when quantum

technology is used in precision tests of relativity [16] or
quantum information processing on the orbit [17].
Gravity causes polarization to rotate. This effect is

known as a gravimagnetic/Faraday/Rytov-Skrotski�� rota-
tion [18–21]. Helicity is invariant under rotations, but
states of a definite helicity acquire phases e�i��.
Depending on the context we refer to �� either as a
polarization rotation or as a phase. Once evaluated this
phase can be encapsulated as a quantum gate [12] and
incorporated into (quantum) communication protocols or
metrology tasks.
In the Schwarzschild space-time, as well as at the lead-

ing order of the post-Newtonian approximation, this phase
is known to be zero [18,19,22,23]. It is higher-order gravi-
tational moments that are held responsible for the rotation
of the polarization plane. In particular, the GR effects were
shown to dramatically alter polarization of the X-ray ra-
diation that is coming from the accretion disc of the (then
presumed) black hole in Cyg X � 1 [24]. Numerous ana-
lytical and numerical studies of trajectories and polariza-
tions in different models and astrophysical regimes were
performed ([19–21,25–29], and references therein). The
scenarios included fast-moving gravitating bodies, influ-
ence of gravitational lenses and propagation through gravi-
tational waves.
The results are often contradictory. Some of the contra-

dictions result from genuine differences in superfluously
similar physical situations [20,28,29]. On the other hand,
polarization rotation is operationally meaningful if the
evolving polarization vector is compared with some stan-
dard polarization basis (two linear polarizations, right- and
left-circular polarizations, etc.) at each point along the ray
[30,31].
Setting up and aligning detectors requires alignment of

local reference frames. Much work has been done recently
on the role of reference frames in communications, espe-
cially in the context of quantum information [32]. Partial
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knowledge of reference frames can lead to loss of commu-
nication capacity, and mistakes in identifying the informa-
tion content of a physical system. The lack of definition for
polarization standards and an ad hoc introduction of the
angle adjustments is one reason for the variety of quoted
values for the phase ��. Even the consensual result of a
zero phase in the Schwarzschild space-time should be
qualified. Without specifying the appropriate reference
frame it is either meaningless or wrong.

In this article we investigate the role of local reference
frames in defining ��. The result is obviously gauge-
dependent, and additional considerations should be used
to fix the gauge. Communicating reference frames is some-
times a difficult procedure which may involve a high
communication cost. On a curved background of GR it
may require some knowledge of the metric at each point
along the trajectory. Using the method presented by us in
[31] we build a local reference frame in stationary space-
times, and then fix the standard polarizations in a single
construction using what we call the Newton gauge. Our
construction does not require communication between the
parties, gives a precise meaning to the idea that there is no
polarization rotation in the Schwarzschild space-time, and
reproduces the absence of phase in the Minkowski space-
time. From an operational point of view it allows us to set
up detectors at any point in space based only on the local
properties at that point. We illustrate the use of this gauge
by studying polarization rotation in the Kerr space-time,
and derive an explicit expression for �� in the scattering
scenario that is described below. The calculations are based
on the results of [6,21,25] with the added value of the
Newton gauge. Careful bookkeeping is required with re-
spect to the various coordinate systems used in different
parts of the calculation, as well as different orders of the
series expansion. To simplify the latter, we introduce a new
expansion parameter.

Closed paths result in a gauge-invariant gravity-induced
phase. We discuss them in Sec. IV. The rest of the paper is
organized as follows: First we discuss null trajectories in
the Kerr space-time. In Sec. III we review the Wigner’s
construction of setting standard polarizations in a local
frame, set up the Newton gauge and explicitly calculate
the rotation in the scattering scenario, where the light is
emitted and observed far from the gravitating body (r1,
r2 � M, a), but can pass close to it. Finally, we discuss
gauge-dependent and gauge-invariant aspects of our results
from mathematical and operational points of view
(Sec. IV). Summary of the important facts about the Kerr
space-time, as well as detailed calculations and special
cases are presented in the appendices.

We use �þþþ signature, set G ¼ c ¼ 1 and use
Einstein’s summation convention in all dimensions.
Three-dimensional vectors are written in boldface and

the unit vectors are distinguished by carets, such as b̂.
Local tetrad components are written with carets on indices,

such as k�̂, and the four-vector itself as k ¼ k�̂eð�Þ, where
eð�Þ are vectors of a local orthonormal tetrad.

II. NULL GEODESICS

A. Null geodesics in the Kerr space-time

The Kerr metric in the Boyer-Lyndquist coordinates is
given by [33]

ds2 ¼ �
�
1� 2Mr

�2

�
dt2 þ �2

�
dr2 þ �2d�2

þ
�
r2 þ a2 þ 2Mra2

�2
sin2�

�
sin2�d�2

� 4Mar

�2
sin2�dtd�; (3)

whereM is the mass and a ¼ J=M the angular momentum
per unit mass of the gravitating body. We use the standard
notations

�2 ¼ r2 þ a2cos2�; � ¼ r2 � 2Mrþ a2: (4)

Thanks to the three conserved quantities—the energy
E ¼ �k0, the z-component of the angular momentum L
and the constant � [6,34]—the geodesic equations in Kerr
space-time are integrable in quadratures. When dealing
with photons it is convenient to set the energy to unity
and to rescale other quantities [6]. Explicit form and the
asymptotic expansions of D ¼ L=E and � are given in
Appendix A. Fixing the energy and using the null vector
condition leaves us with only two components of the four-
momentum k. In specifying the initial data we usually take

k�1 and k�1 as independent.

We discuss polarization from the point of view of static
observers that are at rest in the ‘‘absolute’’ space t ¼ const:
At every point (outside the ergosphere, if the model rep-
resents a black hole) we introduce a chronometric ortho-
normal frame [5,35] (Appendix A), which will be used to
express the initial conditions and observed quantities.
The Hamilton-Jacobi equation for a null geodesic sepa-

rates and the trajectories can be deduced from it [6]. We
label their initial and final points as ðr1; �1; �1Þ and
ðr2; �2; �2Þ, respectively. The gauge convention that we
adapt (Sec. III B) makes the knowledge of �� redundant
for discussions of polarization rotation in the scattering
scenario (for the calculation of � see Appendix A). In
particular we are interested in the integrals

R :¼
Z r dr

� ffiffiffiffi
R

p ¼
Z � d�

� ffiffiffiffiffi
�

p ; (5)

where

R ¼ r4 þ ða2 �D2 � �Þr2
þ 2Mð�þ ðD� aÞ2Þr� a2�; (6)
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� ¼ �þ a2cos2��D2cot2�: (7)

Null geodesics in Kerr space-time are classified accord-
ing to the sign of the constant �. The scattering scenario
corresponds to �> 0, and typically �� r21. Following
[25] we also assume that the angle � reaches its extremal
value (either maximum or minimum) only once, �1 !
�max=min ! �2. Series expansions of the above integrals

are most conveniently written with the help of a new
constant

�2 :¼ D2 þ �: (8)

We use the parametrization D ¼ �cos�, and � ¼
�2sin2�, with 0 � � � �. In this notation the minimal
coordinate distance from the center is

rmin ¼ ��M� 3M2

2�
þ 2aM cos�

�
� a2cos2�

2�

þOð��2Þ: (9)

We perform the integration by the methods of [6,25]
(Appendix B). In the scattering scenario r1, r2 ! 1, while
the constants of motion are kept finite. Expansion in terms
of � gives

R ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � a2

p
�
c 1 þ c 2 � a2sin2�

4�2
ð3ðc 1 þ c 2Þ

þ sinc 1 cosc 1 þ sinc 2 cosc 2ÞÞ þOð��4Þ
�
;

(10)

where cosc ¼ cos�=�þ and �þ is defined in the
appendix.

To separate conceptual issues from the computational
details we make two simplifying assumptions. First, the
initial and final points are taken to lie in the asymptotically
flat regions, ri ! 1, while � andD are kept finite. Second,
in these regions the polar angle � (nearly) reaches its
asymptotic values �in and �out, respectively.

The asymptotic form of momentum can be deduced
from the equations of motion [6]. In the chronometric
tetrad basis the outgoing momentum tends to

k�̂ !
�
1; 1;� s	out

r
;

D

r sin�out

�
; (11)

where 	out :¼ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�outÞ

p
and s ¼ �1. This expression is

true in any scenario where an outgoing photon reaches the
asymptotically flat region.

The asymptotic expression for the incoming momentum
is similar,

k�̂ !
�
1;�1;

s	in

r
;

D

r sin�in

�
; (12)

where 	in :¼ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�inÞ

p
, and s ¼ �1 correspond to �in !

�max=�min ! �out, respectively.

Equating the radial and angular expressions for R we
obtain

�out ¼ �� �in � 4M

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2�� cos2�in

p
sin�in

þOð��2Þ;
(13)

with the higher-order terms and special cases described in
Appendix B. The plus sign corresponds to the trajectory in
which � first decreases with r and reaches �min before
increasing to �out.

B. Null geodesics in 1þ 3 formalism

In stationary space-times a tetrad of a static observer is
naturally related to Landau-Lifshitz 1þ 3 formalism [33].
Static observers follow the congruence of timelike Killing
vectors that defines a projection from the space-time mani-
fold M onto a three-dimensional space �3, �: M ! �3.
In practice it is performed by dropping the timelike

coordinate of an event, and vectors are projected by a
push-forward map ��k ¼ k in the same way.
Contravariant vector components satisfy

ðkÞm � ð��kÞm ¼ ðkÞm ¼ dxm=d
; m ¼ 1; 2; 3;

(14)

where 
 is the affine parameter.
The metric g on M can be written in terms of a three-

dimensional scalar h, a vector g, and a metric � on �3 as

ds2 ¼ �hðdx0 � gmdx
mÞ2 þ dl2; (15)

where the three-dimensional distance is given by dl2 ¼
�mndx

mdxn. The metric components are

�mn ¼
�
gmn � g0mg0n

g00

�
; (16)

and

h ¼ �g00; gm ¼ �g0m=g00: (17)

The inner product of three-vectors will always refer to this
metric, k � f ¼ �mnk

mfn. Vector products and differential
operators are defined as appropriate dual vectors [33].
Finally, the spatial projection of a null geodesic has a
length l that is related to the affine parameter 
 as

�
dl

d


�
2 ¼ k20

h
¼ k2 ¼: k2: (18)

For a static observer the three spatial basis vectors of the
local orthonormal tetrad are projected into an orthonormal
triad, ��eðmÞ ¼ êðmÞ, êðmÞ � êðnÞ ¼ �mn. We adapt a gauge

in which polarization is orthogonal to the observer’s four-
velocity, u � f ¼ 0. In a three-dimensional form this condi-
tion reads as k � f ¼ 0.
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In stationary space-times the evolution equations Eq. (1)
and (2) can be reduced into a convenient three-dimensional
form [20]. Using the relations between four- and three-
dimensional covariant derivatives, r� and Dm, respec-

tively, the propagation Eqs. (1) and (2) are brought to a
three-dimensional form [19,20],

Dk

d

¼ �	 kþ Eg � k

k2
k;

Df̂

d

¼ �	 f̂: (19)

The angular velocity of rotation � is

� ¼ 2!� ð! � k̂Þk̂� Eg 	 k; (20)

where g and h play the roles of a vector potential of a
gravimagnetic field Bg,

! ¼ � 1

2
k0curlg � � 1

2
k0Bg; (21)

and a scalar potential of a gravielectric field,

Eg ¼ �rh
2h

; (22)

respectively [36].

III. LOCAL REFERENCE FRAMES AND
POLARIZATION ROTATION

To discuss how a photon’s polarization rotates it is
necessary to define the standard polarization directions
along its trajectory. Only after physically defining two
standard polarizations it is meaningful to talk about polar-
ization rotation, and only in a particular gauge the
Schwarzschild space-time induces a zero phase on an
open trajectory.

A. Wigner phase—polarization convention

Transversality of electromagnetic waves makes the
choice of two standard polarization directions momentum-
dependent. On a curved background it also depends on the
location. Wigner’s construction of the massless represen-
tation of the Poincare group [37,38] is the basis for classi-
fication of states in quantum field theory. We use it at every
space-time point to produce standard polarization vectors.

The construction—part of the induced representation of
the Poincaré group [38]—consists of a choice of a standard
reference momentum kS and two polarizations, a standard
Lorentz transformation LðkÞ that takes kS to an arbitrary
momentum k, and a decomposition of an arbitrary Lorentz
transformation � in terms of the standard transformations
and Wigner’s little group element W. The standard refer-
ence three-momentum is directed along the z-axis of an
arbitrarily chosen reference frame, with its x and y axes

defining the two linear polarization vectors b̂S
1;2, respec-

tively. Hence kS ¼ ð1; 0; 0; 1Þ, and imposing the polariza-

tion gauge relates 3- and 4- polarization vectors,

b ¼ ð0; b̂1;2Þ1; 2.
The standard Lorentz transformation can be taken as1

LðkÞ ¼ Rðk̂ÞBzðkÞ; (23)

where BzðkÞ is a pure boost along the z-axis that takes kS to
ðk; 0; 0; kÞ, and the standard rotation Rðk̂Þ brings the z-axis
to the desired direction k̂ð�;�Þ first by rotating by �
around the y-axis and then by � around the z-axis,

Rðk̂Þ ¼ Rzð�ÞRyð�Þ: (24)

The standard polarization vectors for an arbitrary momen-
tum are defined as

b̂ iðkÞ ¼ Rðk̂Þb̂S
i ; (25)

and a general real four-vector of polarization can bewritten
as

f ¼ cos�b1ðkÞ þ sin�b2ðkÞ: (26)

Helicity is invariant under Lorentz transformations. The
corresponding polarization vectors are

b̂�ðkÞ ¼ 1ffiffiffi
2

p ðb̂1ðkÞ 
 ib̂2ðkÞÞ: (27)

Under a Lorentz transformation � a state of a definite

helicity acquires a phase e�i
ð�;kÞ, which can be read off
from Wigner’s little group element

Wð�; kÞ ¼ L�1ð�kÞ�LðkÞ ¼ Rzð
ÞTð�;	Þ: (28)

The little group elementW leaves the standard momentum
kS-invariant. Here Tð�;	Þ form a subgroup which is iso-
morphic to the translations of a Euclidean plane and Rzð
Þ
is a rotation around the origin of that plane, which in this
case is also a rotation around the z-axis.
If the transformation in question is a pure rotation R,

then the little group element is a rotation Rzð
Þ, and the
polarization three-vector is rotated by R itself [30].
The phase � has a simple geometric interpretation: it is

the angle between, say, b̂1ðRkÞ and Rb̂1ðkÞ. It is zero if
the standard polarizations of the new momentum are the
same as the rotated standard polarizations of the old
momentum.
This is what happens if a rotation R2ð!Þ is performed

around the current b̂2ðkÞ: the resulting phase��ðR2ð!ÞÞ is
zero [31]. Indeed, if k̂ ¼ k̂ð�;�Þ, then by setting k̂0 ¼
R2ð!Þk̂ and using the decomposition

R2ð!Þ ¼ Rðk̂ÞRyð!ÞR�1ðk̂Þ; (29)

1When it does not lead to confusion we use the same letter to
label a four-dimensional object and its three-dimensional part. In
particular, R stands both for a Lorentz transformation which is a
pure rotation, and for the corresponding three-dimensional rota-
tion matrix itself.
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we find that k̂0 ¼ k̂0ð�þ!;�Þ, and the little group ele-
ment is

W ¼ R�1ðk̂0ÞR2ð!ÞRðk̂Þ ¼ R�1
y ð�þ!ÞRyð�ÞRyð!Þ ¼ 1;

(30)

indicating the absence of rotation with respect to standard
polarization basis.

In a curved space-time one has to provide the standard
ðxyzÞ directions at every point. The next section deals with
this problem.

B. Newton gauge

The three-dimensional propagation Eqs. (19) in station-
ary space-times result in a joint rotation of polarization and
unit tangent vectors

Dk̂

d

¼ �	 k̂;

Df̂

d

¼ �	 f̂: (31)

In the Schwarzschild space-time test particles move in the
plane passing through the origin [5,6,33], � ¼ �Eg 	 k

and the covariant time-time component of the metric is
related to the Newtonian gravitational potential ’ as h ¼
g00 ¼ 1þ 2’ðrÞ ¼ 1� 2M=r. Requiring the resulting
phase to be zero, as in [18,19,26], constrains a choice of
local reference frames. We use the zero phase condition to
make a physically motivated choice of standard polariza-
tions that does not require references to a parallel transport
or communication between the observers.

Orient the local z-axis along the direction of the free-fall
acceleration, ẑ k r’ and the standard polarizations as

ŷ � b̂2 :¼ w	 k̂=jw	 k̂j; b̂1 :¼ k̂	 b̂2; (32)

where w is a free-fall acceleration in the frame of a static

observer. Then � ¼ �b̂2, and the propagation induces no
phase.

In a general static space-time we take the z-axis along
the local free-fall direction as seen by a static observer. In
the Kerr space-time its components are [35]

w1̂ ¼
Mð�2 � 2r2Þ ffiffiffiffi

�
p

�3ð�2 � 2MrÞ ¼ �M

r2
�M2

r3
þOðr�4Þ;

w2̂ ¼
Mra2 sin2�

�3ð�2 � 2MrÞ ¼ a2M
sin2�

r4
þOðr�5Þ;

w3̂ ¼ 0:

(33)

This convention, that we will call the Newton gauge, is
consistent: if we set ẑ ¼ �r̂ in the flat space-time, then no
phase is accrued as a result of the propagation. In addition
to being defined by local operations, the Newton gauge has
two further advantages. First, it does not rely on a weak
field approximation to define the reference direction.
Second, if the trajectory is closed or self-intersecting, the
reference direction ẑ is the same at the points of the
intersection.

C. Kerr space-time examples

We impose the temporal gauge in local frames, hence

f0̂ � 0 , ft � � 2Marf�sin2�

�2 � 2Mr

¼ � 2Maf3̂ sin�

r2
þOðr�3Þ; (34)

where we used f0̂ ¼ f�e0̂ð�Þ. This transversality reduces to
a familiar three-dimensional expression k � f � k � f ¼
f1̂k1̂ þ f2̂k2̂ þ f3̂k3̂ ¼ 0. This also implies

ft ¼ eð�Þtf�̂ ¼ eð0Þtf0̂ ¼ 0: (35)

In the Kerr space-time the Walker-Penrose quantity [39]
K2 þ iK1,

K1 ¼ rB� aA cos�; K2 ¼ rAþ aB cos�; (36)

where

A ¼ ðktfr � krftÞ þ aðkrf� � k�frÞsin2�; (37)

B ¼ ððr2 þ a2Þðk�k� � k�f�Þ � aðktf� � k�ftÞÞ sin�;
(38)

is conserved along null geodesics [6]. Transversality and
the gauge (34) make the Walker-Penrose constants func-

tions of only two polarization components, for example f2̂

and f3̂.
For a generic outgoing null geodesic in the asymptotic

regime the constants become

K1 ¼ �outf
2̂
out � s	outf

3̂
out;

K2 ¼ s	outf
2̂
out þ �outf

3̂
out;

(39)

where

�out :¼ D csc�out � a sin�out; (40)

and the analogous expression gives the constant in terms of
the initial data. Hence,

f1̂out ¼ 0; f3̂out ¼ � 1

	2
out þ �2

out

ð�s	outK1 þ �outK2Þ;

f2̂out ¼ � 1

	2
out þ �2

out

ð�s	outK2 � �outK1Þ: (41)

To determine the polarization rotation � we take the

initial polarization to be, say, fin ¼ b̂in
1 , which often con-

siderably simplifies the expression for K1 and K2. Since K1

and K2 are linear functions of polarization, expressing the

above result in the basis ðb̂out
1 ; b̂out

2 Þ the desired rotation
angle � is observed from
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1
0

� �
! T

1
0

� �
¼ cos�

sin�

� �
; (42)

where T is an orthogonal matrix that is described below.
We assume fixedD and �. Using Eq. (32) we find that at

the limit rin ! 1 the initial standard linear polarization
directions are

b̂in
1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 þ 	2
insin

2�in

q ð0; s	in sin�in; DÞ;

b̂in
2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 þ 	2
insin

2�in

q ð0; D;�s	in sin�inÞ:
(43)

Similarly, the final standard polarizations are

b̂out
1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 þ 	2
outsin

2�in
p ð0; s	out sin�out;�DÞ;

b̂out
2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 þ 	2
outsin

2�in
p ð0; D; s	out sin�outÞ:

(44)

The rotation matrices Nin and Nout from the polarization

bases to ð�̂; �̂Þ basis are given in the Appendix C.
Following [21] using the asymptotic relationship be-

tween Walker-Penrose constants and the components of
polarization one can introduce a transformation matrix R,

f2̂out
f3̂out

 !
¼ R

f2̂in
f3̂in

 !
: (45)

The transformation matrix has the form

R ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p 1 �x
�x �1

� �
; (46)

where the parameter x is given by

x ¼ s
	in�out � 	out�in

�in�out þ 	in	out

; (47)

with �in :¼ D csc�in � a sin�in. Finally,

T ¼ NoutRN
�1
in : (48)

Expansion in the inverse powers of � results in

T21 ¼ sin� ¼ � 4Ma

�2
cos�in þOð��3Þ: (49)

This is our main new result. Few special cases are of
interest. If the initial propagation is parallel to the z-axis
and the impact parameter equals b, then

�2 ¼ b2 � a2; D ¼ 0; (50)

and the polarization is rotated by

sin� ¼ 4Ma

�2
þ 15M2a

4�3
þOð��4Þ; (51)

and the antiparallel initial direction gives the opposite sign.

Motion in the equatorial plane corresponds to � ¼ 0
( sin� ¼ 0) and is qualitatively similar to the motion in
Schwarzschild space-time. If the trajectory starts there but
eventually moves outside, then the polarization is rotated
by

sin� ¼ s
8M2a

�3
sin�þOð��4Þ: (52)

In the case of initial propagation along the z-axis agrees
with both [18,20], if we take into account the respective
definitions of reference frames. On the other hand, in a
generic setting our Eq. (49) differs by a power of � from
[21] or [19] (both works predict ����3 but disagree on
the prefactors). The origin of this disagreement is in the
following. In addition to using a more transparent series
expansion, we use a different polarization basis from the
one in [21]. In particular, we do not require the knowledge
of �out ��in. Moreover, [19] considered only a Machian
effect (Sec. IV), which is dominated by the reference-
frame term [31].

V. GEOMETRIC PHASE

Amore geometric perspective on polarization rotation is
possible both in a static space-time, where we use the 1þ 3
formalism, as well as in arbitrary space-times. While the
phase �� is gauge-dependent for an open trajectory, we
will show that it is gauge-invariant on a closed path.
Consider the differential equations for polarization ro-

tation [31]. By setting f ¼ b1 at the starting point and using
the parallel transport equations Eqs. (1) and (2) we arrive at
the equation

d�

d

¼ 1

cos�
rkðf � b2Þ ¼ 1

f � b1 f � rkb2: (53)

In a static space-time projection of the polarization on �3

results in

d�

d

¼ 1

cos�

Dðf̂ � b̂2Þ
d


; (54)

hence the desired equation is

d�

d

¼ 1

f̂ � b̂1

�
Df̂

d

� b̂2 þ f̂ �Db̂2

d


�

¼ ! � k̂þ 1

f̂ � b̂2

f̂ �Db̂2

d

: (55)

The first term corresponds to the original Machian effect
that was postulated in [23], but the observable quantity
involves both the Machian and the reference-frame terms
[31].
Now we discuss the geometric meaning of these equa-

tions. First consider a basis of one-forms ð�1; �2; �3Þ that
is dual to the orthonormal polarization basis ðb̂1; b̂2; k̂Þ
at every point of the trajectory. A matrix of connection
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1-forms ! is written with the help of Ricci rotation coef-
ficients !{̂

|̂ l̂
as !{̂

l̂
¼ !{̂

|̂ l̂
�j [5,40], and a linear polariza-

tion is written as

f̂ ¼ f1̂b̂1 þ f2̂b̂2 ¼ cos�b̂1 þ sin�b̂2: (56)

Its covariant derivative equals to

Df̂

d

¼ k!â

3̂ ĉ
fcb̂a þ!3̂

3̂ ĉ
fckþ kðfĉÞb̂c; a; c ¼ 1; 2:

(57)

Taking into account the antisymmetry of the connections
!{̂

l̂
¼ !{̂ l̂ ¼ �!l̂ {̂, we find

Df

d

¼ ð�b̂1f

2̂ þ b̂2f
1̂Þ
�
d�

d

�!1̂

3̂ 2̂
k

�
þ k̂kð!3̂

3̂ 1̂
f1̂ þ!3̂

3̂ 2̂
f2̂Þ: (58)

A comparison with Eq. (31) leads to the identification

�1 ¼ � � b̂1 ¼ k!3̂
3̂ 2̂
, �2 ¼ �k!3̂

3̂ 1̂
and to an alternative

equation for the polarization rotation,

d�

d

¼ ! � k̂þ!1̂

3̂ 2̂
k: (59)

Given a trajectory with a tangent vector k one can define a

SO(2) line bundle with the connection �! ¼ !1̂
3̂ 2̂
kd
, simi-

larly to the usual treatment of geometric phase [40,41].

Freedom of choosing the polarization frame ðb̂1; b̂2Þ at
every point of the trajectory is represented by a SO(2)
rotation Rk̂ðc ð
ÞÞ. Under its action the connection trans-

forms as ! ! R!R�1 þ R�1dR [40], so

d�

d

! ! � k̂þ!1̂

3̂ 2̂
kþ dc

d

: (60)

In a static space-time we can consider a closed trajectory
in space. Then the resulting phase is gauge-invariant, since
the last term above is a total differential and drops out upon
the integration on a closed contour,

�� ¼
I

! � k̂d
þ
I

�!: (61)

We can formalize it with the help of a curvature 2-form is
introduced as �� :¼ d �!þ �! ^ �!: For the SO(2) bundle it
reduces to �� ¼ d �!, so by using Stokes’ theorem the
reference-frame term can be rewritten as a surface integral
of the bundle curvature asI

�! ¼
ZZ

��: (62)

A more practical expression follows from our previous

discussion: �� ¼ arcsinf̂out � b̂2. Conservation of K1 and
K2 in the Kerr space-time ensures that if a trajectory is

closed as a result of the initial conditions, then f̂out ¼ f̂in
and �� ¼ 0. The Newton gauge is designed to give a
zero phase along any trajectory in the Schwarzschild

space-time. As a result of the gauge invariance of
Eq. (61), no gravitationally-induced phase is accrued along
a closed trajectory in the Schwarzschild space-time, re-
gardless of the gauge convention.
In a general space-time we introduce an orthonormal

tetrad such that k ¼ ke0 þ ke3 at every point of the tra-
jectory. We again impose a temporal gauge and set e1;2 ¼
b1;2, where the local polarization basis is chosen according
to some procedure. Then from Eq. (26) it follows that

rkf ¼ k�̂eð�Þ!�̂
�̂ �̂f

�̂ þ df�̂

d

eð�Þ

¼ ð�f2̂eð1Þ þ f1̂eð2ÞÞ
�
d�

d

� ð!1̂

0̂ 2̂
þ!1̂

3̂ 2̂
Þk
�

þ ðkð!0̂
0̂ ĉ

þ!0̂
3̂ ĉ
ÞfĉÞeð0Þ þ ðkð!3̂

0̂ ĉ
þ!3̂

3̂ ĉ
ÞfĉÞeð3Þ

c ¼ 1; 2; (63)

where we used again the antisymmetry of the connection.
From the parallel transport condition rkf ¼ 0, we can see
that

ð!0̂
0̂ ĉ

þ!0̂
3̂ ĉ
Þfĉ ¼ ð!3̂

0̂ ĉ
þ!3̂

3̂ ĉ
Þfĉ ¼ 0 (64)

and

d� ¼ ð!1̂
0̂ 2̂

þ!1̂
3̂ 2̂
Þkd
 :¼ ��: (65)

We cannot have a closed trajectory in chronologically
protected space-time, so to obtain a gauge-invariant result
we consider two future-directed trajectories that begin and
end in the same space-time points. This layout is similar to
the two arms of a Mach-Zender interferometer [4]. We also
align the initial and final propagation directions of the
beams and use the same rules to define the standard polar-
izations. Similarly to the previous case the curvature is just
�� ¼ d ��, and the Stokes theorem gives the phase as

�� ¼
Z
�1

���
Z
�2

�� ¼
I
�

�� ¼
ZZ

��: (66)

V. CONCLUSIONS AND OUTLOOK

Rotation one ascribes to polarization as light propagates
on a curved background depends on the gauge conventions
that are used along the way. However, the closed-loop
phase is gauge-independent (assuming we use the same
reference frame for transmission and detection). Similarly
to other instances of a geometric phase, the phase �� is
given by the integral of the (bundle) curvature over the
surface that is bounded by the trajectory. The Newton
gauge provides a convenient local definition of the stan-
dard polarizations. It is motivated by its relative simplicity
and path-independence of the reference frames. It is also
the gauge in which the statement of a zero accrued phase
along an arbitrary path in the Schwarzschild space-time is
correct.
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Our results characterize the behavior of polarization
qubits on curved backgrounds. Specific regimes and real-
istic scenarios, both on the Kerr background and beyond,
are to be investigated farther. Of special interest are those
scenarios that will be experimentally feasible in the near
future, such as sending photons between satellites [17].
Once the expression for �� is obtained, it can be represent
it as the action of a quantum gate [12], similarly to the the
special-relativistic scenarios [14,42]. This will allow us to
use the full toolbox of quantum optics to design experi-
ments. Understanding of the polarization phase in GR
opens new possibilities for optics-based precision mea-
surements [31], both classical and quantum.
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APPENDIX A: SOME ASPECTS OF THE KERR
SPACE-TIME

1. Chronometric tetrad

We fix an orthonormal tetrad at every space-time point
(outside the static limit) by demanding that e0 is the four-
velocity of a static observer, and the vectors e1 and e2 are
proportional to the tangent vectors @r and @�. Their cova-
riant components eð�Þ� are

e ð0Þ ¼
0
@�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Mr

�2

s
; 0; 0;� 2Marsin2�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 2Mr

p
1
A (A1)

and

eð1Þ ¼ ð0; �=
ffiffiffiffi
�

p
; 0; 0Þ;

eð2Þ ¼ ð0; 0; �; 0Þ;

eð3Þ ¼
0
@0; 0; 0; � sin�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

�� a2sin2�

s 1
A

(A2)

Setting E ¼ �k0 ¼ 1 leads to

kt ¼ �2 � 2Mrak�sin2�

�2 � 2Mr
; (A3)

and kr is expressed from the null condition k2 ¼ 0,

ðkrÞ2 ¼ �½1� ðk�Þ2ð�� a2sin2�Þ � ðk�Þ2sin2���
�� a2sin2�

:

(69)

The spatial components of the momentum in the coor-

dinate and tetrad bases are related to km̂ ¼ eðmÞ
�k

� as

k1̂ ¼ kr�=
ffiffiffiffi
�

p
; (A5)

k2̂ ¼ k��; (A6)

k3̂ ¼ k�� sin�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

�� a2sin2�

s
; (A7)

while k2 ¼ k2 ¼ km̂km̂ satisfies

k2 ¼ 1þ 2Mr

�2 � 2Mr
¼ 1þ 2M

r
þOðr�2Þ: (A8)

2. Constants of motion

The rescaled (E ¼ 1) z-component of the angular mo-
mentum is

D ¼ 1

�2 � 2Mr
ðk�ða2 þ r2Þð�2 � 2MrÞ

� 2Marð1� k�asin2�ÞÞ: (A9)

The rescaled Carter’s constant

� :¼ K � ðD� aÞ2; (A10)

where the constant K is most conveniently expressed as

K :¼ ða sin��D= sin�Þ2 þ ð�2k�Þ2: (A11)

The asymptotic expressions when r ! 1 and the momen-
tum components are fixed are

D ¼ k3̂r sin�þOðr�1Þ; (A12)

� ¼ ðk2
3̂
cos2�þ k2

2̂
Þr2 þ acos2�ðaðk2

2̂
þ k2

3̂
� 1Þ

� 4Mk3̂ sin�Þ þOðr�1Þ; (A13)

� ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
2̂
þ k2

3̂

q
þOðr�1Þ; (A14)

cos� ¼ k3̂ sin�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
2̂
þ k2

3̂

q þOðr�2Þ: (A15)

Scattering with the impact parameter b that measures the
coordinate distance r cos� from the z-axis is most conven-
iently described with the help of a fiducial Cartesian sys-
tem. Its axes are ’’parallel’’ to the fictitious Cartesian axes
of the Byer-Lindquist coordinates, and in the asymptotic
region to the global Cartesian grid. We introduce the
momentum components p̂i that are related to the spherical

components k̂i the the usual relations. In this case for the
initial momentum parallel to the z-axis we have

D ¼ Oðr�3
1 Þ; � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

p
þOðr�2

1 Þ: (A16)
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Some care is needed in treating RðrÞ as a function of the
initial conditions when r1 ! 1. Introducing the constants
c0, c1, c2, we write it as

RðrÞ ¼: r4 � c22r
2
1r

2 þ c1r
2
1rþ c0r

2
1; (A17)

where

c22 :¼ ð�2 � a2Þ=r21 ¼ ðk2̂1Þ2 þ ðk3̂1Þ2 þOðr�2
1 Þ (A18)

c1 :¼ 2Mð�2 þ a2 � 2�a cos�Þ=r1

¼ 2M

�
c22 �

2ak2̂1 sin�1
r1

�
þOðr�2

1 Þ; (A19)

c0 :¼ �a2�2sin2�

¼ �a2ððk2̂1Þ2cos2�1 þ ðk3̂1Þ2Þ þOðr�2
1 Þ: (A20)

APPENDIX B: TRAJECTORIES

1. The r integral

The integral over r in Eq. (5) is split into three parts,

R :¼
Z r dr

� ffiffiffiffi
R

p ¼ R1 �R1 �R2; (B1)

where

R1 :¼ 2
Z 1

rmin

drffiffiffiffi
R

p ; Ri :¼
Z 1

ri

drffiffiffiffi
R

p : (B2)

We present a corrected expression for Ri and evaluate
the termR1 to the fourth order in �. Starting fromR1 in
using the method of [25].

Factoring out (r� rmin) and substituting r ¼ rmin=x
allows to write RðrÞ as

R ¼ r2min

x4

�
r2min þ Ax2 þ Bx3

rmin

þ Cx4

r2min

�
¼:

r2min

x4
~RðxÞ; (B3)

where the constants A, B, C are determined by the poly-
nomial division. Noting that ~Rð1Þ ¼ 0 we have

r2min ¼ �A� B

rmin

� C

r2min

(B4)

which gives

~RðxÞ ¼ �A� B

rmin

� C

rmin

þ Ax2 þ B

rmin

þ Cx4

r2min

: (B5)

Rewriting the equation and inserting the values for A, B
and C gives us

RðrÞ¼ r2min

x4
ð�2�a2Þð1�x2Þ

�
1þ a2�

r2minð�2�a2Þð1þx2Þ

� 2M

rmin

ðD�aÞ2þ�

�2�a2
1þxþx2

1þx

�
: (B6)

Defining

fðxÞ :¼ �ð1þ x2Þ
ð�2 � a2Þ ;

gðxÞ :¼ �2
ðD� aÞ2 þ �

�2 � a2
1þ xþ x2

1þ x
;

(B7)

we finally get

R1 ¼ 2
Z 1

rmin

drffiffiffiffi
R

p

¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � a2

p
Z 1

0
dx

�
ð1� x2Þ

	
�
1þ a2

r2min

fðxÞ þ M

rmin

gðxÞ
���1=2

: (B8)

Expanding the integrand up to the third order in � gives
Eq. (15).

R1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � a2

p
�
�þ 4M

�
þ �

�2

�
15

4
M2 � 3

4
a2sin2�

�

� 8aM

�2
cos�þ M

�3

�
128

3
M2 þ a2ð10cos2�

� 6sin2�Þ þ 15�Ma cos�

��
þOð��4Þ: (B9)

The second and third integrals can be performed as an
approximation in powers of r1, using Eq. (A17). Since

RðrÞ ¼ ðr4 � c22r
2
1r

2Þ
�
1þ ðc0 þ c1rÞr21

r2ðr2 � c22r
2
1Þ
�
; (B10)

the leading terms in the expansion are

Z 1

ri

drffiffiffiffi
R

p ¼ 1

c2r1
arcsin

c2r1
ri

� c1
2

�
2

ðc22r1Þ2
þ 2r2i � c22r

2
1

c42rir
2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2i � c22r

2
1

q �
þOðr�5

1 Þ;

(B11)

with ri being either r1 or r2, where in the latter case we
assume that r2 * r1.

2. The � integral

We calculate the integral
R
1=

ffiffiffiffiffi
�

p
d� using the method of

[6]. Noting that

� ¼ �þ ða�DÞ2 � ða sin��D csc�Þ2; (B12)

we perform a change of variables � :¼ cos� and obtain

I� ¼
Z d�ffiffiffiffiffi

�
p ¼

Z d�ffiffiffiffiffiffiffiffi
��

q ; (B13)

where for �> 0
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�� ¼ a2ð�2� þ�2Þð�2þ ��2Þ; 0 � �2 � �2þ;
(B14)

and

�2� :¼ 1

2a2

0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�2 � a2Þ2 þ 4a2�
q


 ð�2 � a2Þ
1
A:
(B15)

The calculation is performed using the approximations
to the auxiliary integral

Z �þ

��

d�ffiffiffiffiffiffiffiffi
��

q ¼ 1

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þ þ�2�

q Fðc ; k2Þ; (B16)

where Fðc ; k2Þ is the elliptic integral of the first kind, and
k2 :¼ �2þ=ð�2� þ�2þÞ; cosc :¼ ��=�þ; (B17)

with 0 � c � � and �þ ¼ þ
ffiffiffiffiffiffiffiffi
�2þ

q
.

The asymptotic expansion in the powers of � gives

�2þ ¼ sin2�þ a2

4�2
sin22�þOð��4Þ (B18)

�2� ¼ �2

a2
� cos2�þ a2

2�2
sin22�þOð��4Þ (B19)

so

k2 ¼ a2sin2�

�2
þOð��4Þ; (B20)

1

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þ þ�2�

q ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � a2

p
�
1� a2

�2
sin2�þOð��4Þ

�
:

(B21)

Trajectories of the type �1 ! �min=�max ! �2 corre-
spond to cos�min ¼ �þ, and cos�max ¼ ��þ < 0, respec-
tively. In both cases the integration leads to

R ¼ 1

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þ þ�2�

q ½Fðc 1; k
2Þ þ Fðc 2; k

2Þ�; (B22)

and the expansion in powers of � leads to Eq. (10).
Using that at the zeroth order (the flat space-time) c 1 þ

c 2 ¼ �, we expand c 2 ¼ �� c 1 þ �c as

c 2 ¼ �� c 1 þ
X
k


k

�k
: (B23)

Equating the two expressions for R1 in the scattering
scenario leads to


1 ¼ 4M; (B24)


2 ¼ 15M2�=4� 8Ma cos�; (B25)


3 ¼ Mð�6a2 � 128M2 þ 45Ma� cos�

� 24a2 cos2�þ a2ð3þ cos2c 1Þsin2�Þ: (B26)

Similarly, setting �2 ¼ �� �1 þ ��,

�� ¼
X
k

#k

�k
; (B27)

and expanding the both sides of

cosð�� ��Þ ¼ �þ cos

�
arccos

cos�1
�þ

� �c

�
; (B28)

we find

#1 ¼ 4M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2�� cos2�1

p
sin�1

: (B29)

In the special case of scattering with the initial momen-
tum parallel (antiparallel) to the z-axis the angular mo-
mentum is zero, so�þ ¼ 1 and �in ¼ c in ¼ 0, �, and it is
easy to see that �out ¼ �c , �� �c , respectively.

3. The � motion

The equation for � is given by [6]

� ¼ �
�
D
Z r drffiffiffiffi

R
p þ 2Ma

Z r rdr

�
ffiffiffiffi
R

p � a2D
Z r dr

�
ffiffiffiffi
R

p
�

�D

�Z � d�

sin2�
ffiffiffiffiffi
�

p �
Z � d�ffiffiffiffiffi

�
p

�
: (B30)

If � � const: the first and the last terms cancel thanks to
Eq. (5). For brevity we write the remaining terms as

�2 ��1 ¼: �
Z r

R�ðrÞdr�
Z �

Tð�Þd�: (B31)

We again decompose the radial integral as R� ¼
R�

1 �R�
1 �R�

2 , where

R �
1 ¼ 2

Z 1

rmin

R�ðrÞdr; R�
i ¼

Z 1

ri

R�ðrÞdr:
(B32)

Following the same procedure as in Sec. B 2 we find

R �
1 ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � a2
p

�
8M� a� cos�

4�

þMð3M�� 8a cos�Þ
6�2

þOð��3Þ
�
: (B33)

Expanding R�ðrÞ for r � r1 we obtain
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R�ðrÞ ¼ 2aMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 � c22r

2
1Þ

q
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c1r

2
1

rðr2�c2
2
r2
1
Þ þ

c0r
2
1

r2ðr2�c2
2
r2
1
Þ

r
Þðr2 þ a2 � 2MrÞ

þ a2D

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 � c22r

2
1Þ

q
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c1r

2
1

rðr2�c22r
2
1Þ
þ c0r

2
1

r2ðr2�c22r
2
1Þ

r
Þðr2 þ a2 � 2MrÞ

¼ a

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � c22r

2
1

q �
2M

�
1þ 2M

r

�
þ aD

r

�
þOðr�5Þ; (B34)

where the coefficients ci are defined in Appendix A 2.
HenceZ 1

ri

R�ðrÞdr ¼ 2aM

r2i þ ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c22r

2
1 þ r2i

q

� a2D

2c32r
3
1r

3
i

0
@c2r1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�c22r
2
1 þ r2i

q

� r2i arctan

0
@ c2r1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�c22r
2
1 þ r2i

q
1
A
1
AþOðr�5

1 Þ:

(B36)

Integral
R
Td� leads to the elliptic integral of the third

kind. A standard change of variables cos� ¼ � ¼ �þ cost
and the identity

sin 2� ¼ ð1��2þÞð1þ psin2tÞ; (B37)

where

p :¼ �2þ
1��2þ

¼ tan2�

�
1þ a2

�2

�
þOð��4Þ (B38)

lead toZ ��

�min

Tð�Þd� ¼ 1

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þ þ�2�

q D

1��2þ

	
Z c �

0

dt

ð1þ psin2tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2sin2t

p ;

(B39)

with cosc � ¼ cos��=�þ as in Appendix B 2. HenceZ ��

�min

Tð�Þd� ¼ �cos�

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þ þ�2�

q 1

1��2þ
	ð�p; c �; k2Þ;

(B40)

where 	ðq; c ; k2Þ is the elliptic integral of the third kind.
Expanding the prefactor in the powers of � gives

D

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þ þ�2�

q 1

1��2þ
¼ �sec�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � a2
p þOð��4Þ; (B41)

while

	ð�p; c ; 0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p

p
�
�

2
� arccotð ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p
p

tanc Þ
�

:¼ 	0ðp; c Þ (B42)

and

	ð�p; c ; k2Þ ¼ 	0ðp; c Þ þ k2

2p
ðc �	0ðp; c ÞÞ

þOðk4Þ: (B43)

Taking into account that

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p

p ¼ j cos�j
�
1� a2

�2
sin2�

�
þOð��4Þ; (B44)

we get for the scattering scenario

�out ��in ¼ �
D

jDj þ
X
i


i

�i ; (B45)

where the first two terms of the series are


1 ¼ 
1

cos2c cos�þ sin2c sec�
; (B46)

and


2 ¼ 
2ð3þ cos2�Þsec3�þ 4 sec�ð
2
1 sin2c 1 � 
2 cos2c 1Þtan2�

ð1þ sec2�� cos2c tan2�Þ2 þ 1

4
a2 cos�þ 2Ma; (B47)

where 
i are given in Appendix B 2.
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APPENDIX C: NEWTON GAUGE RELATIONSHIPS

In this Appendix we present a relationship between the
components of polarization in the chronometric tetrad and
the Newton gauge basis. This relationship allows to calcu-
late the Walker-Penrose conserved quantity from the op-
erationally meaningful polarization information and in the
asymptotic regime gives the matrices N of Eq. (48).

The transversally of polarization k̂ � f̂ ¼ 0 ensures the

linearity of the relationship between ðf2̂; f3̂Þ and ðfx; fyÞ,
where

f̂ ¼ fxb̂x þ fyb̂y: (C1)

Since by ¼ ŵ	 k=jŵ	 kj and bx ¼ �by 	 k̂, by using

Eq. (33) we find

by ¼ 1

N
ðw2̂k3̂;�w2̂k3̂;�w2̂k1̂ þ w1̂k2̂Þ; (C2)

bx¼ 1

N k
ðw2̂k1̂k2̂�w1̂ðk23̂þk2

2̂
Þ;

w2̂ðk22̂þk2
1̂
Þ�w1̂k1̂k2̂; �k3̂ðw1̂k1̂þw2̂k3̂ÞÞ; (C3)

N 2 ¼ ðw2̂k3̂Þ2 þ ðw2̂k3̂Þ2 þ ð�w2̂k1̂ þ a1̂k2̂Þ2: (C4)

Projecting f̂ on these directions gives

fy ¼ 1

N k1̂
ðf2̂ð�w1̂k1̂k3̂ � w2̂k3̂k2̂Þ

þ f3̂ðw1̂k1̂k2̂ þ a1̂ðk23̂ þ k2
1̂
ÞÞÞ; (C5)

fx ¼ 1

N k1̂
ðf2̂ðw2̂k1̂ � w1̂k2̂Þ þ f3̂ð�w1̂k3̂ÞÞ: (C6)

We define the transformation matrix N as

f2̂

f3̂

 !
¼ N

fy

fx

� �
: (C7)

In the asymptotic regime where f1̂ ! 0 it becomes or-
thogonal. Taking km̂ ¼ ð1; s	=r;D=r sin�Þ we obtain in
the leading order 1=r

N ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þD2=sin2�

p D= sin� s	
�s	 D= sin�

� �
: (C8)
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