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Collinear and soft divergences in perturbative quantum gravity are investigated to arbitrary orders in

amplitudes for wide-angle scattering, using methods developed for gauge theories. We show that collinear

singularities cancel when all such divergent diagrams are summed over, by using the gravitational Ward

identity that decouples unphysical polarizations from the S-matrix. This analysis generalizes a result

previously demonstrated in the eikonal approximation. We also confirm that the only virtual graviton

corrections that give soft logarithmic divergences are of the ladder and crossed ladder types.

DOI: 10.1103/PhysRevD.84.104040 PACS numbers: 04.60.�m, 11.10.Jj, 11.10.Lm

I. INTRODUCTION

Infrared divergences in perturbative quantum gravity
were investigated long ago in Ref. [1], where the exponen-
tiation of the singular contributions in the ladder and the
crossed ladder diagrams was verified by analogy to quan-
tum electrodynamics. In the scattering of massless parti-
cles, or at very high energies, graviton ladder diagrams,
like those in QED, also develop collinear singularities,
or ‘‘mass divergences.’’ In contrast to QED, however, it
turns out that collinear singularities cancel after the sum-
mation of all ladders, when treated in the eikonal approxi-
mation. The cancellation of the remaining, noncollinear
soft-graviton divergences between virtual and real ladder
emission processes was also pointed out in [1], and sub-
sequently confirmed in full quantum gravity at the one-
loop level in Ref. [2].

The infrared behavior of quantum gravity has been
revisited recently in [3,4] in the context of exploiting
analogies between gauge theories to gravity [5]. The study
of perturbative quantum gravity amplitudes and cross sec-
tions also complements studies of nonperturbative quan-
tum gravity at very high energies [6]. In this paper we
analyze amplitudes for fixed-angle scattering in quantum
gravity. We will identify at arbitrary orders the classes of
diagrams that give collinear or soft infrared divergences,
and generalize the cancellation of the former to energetic
lines, for which the eikonal approximation does not apply
in general.

We begin with a study of the collinear sector of quantum
gravity, including its coupling to gauge theory matter, with
the aim of complementing the work in Refs. [3,4], which
concentrated primarily on soft gravitons. We consider
amplitudes with all massless external lines, all at fixed
angles relative to each other, both incoming and outgoing.
We will show that for such ‘‘wide-angle’’ scattering,

perturbative amplitudes are free of collinear singularities
altogether to any fixed order, despite their presence on a
diagram-by-diagram basis. This result generalizes the ob-
servation of Ref. [1] in the eikonal approximation. We go
on to investigate soft-graviton singularities, and conclude
that they originate only from ladder exchange between
finite-energy lines [3,4]. To demonstrate these results, we
will use the general infrared analysis developed for gauge
theories in [7–9], and elaborated in [10]. To be specific, we
consider the harmonic, or de Donder, gauge for the quan-
tization of quantum gravity, with perturbation theory rules,
including ghosts [11,12] as summarized, for example, in
[13–15]. Happily, we will not need the detailed features of
the rules, only their covariance and a counting of numbers
of derivatives.
The method of [7] begins with the observation that a

necessary condition for infrared enhancement, whether
soft or collinear, is the presence of pinch singularities in
subspaces (pinch surfaces) of virtual loop momentum in-
tegrals [16,17]. Each such pinch surface is conveniently
characterized by a reduced diagram, consisting of the lines
that are forced on shell at the surface in question.
This analysis is particularly straightforward for wide-

angle scattering. At leading power a single effective vertex
in the reduced diagram mediates the hard scattering.
Specifically, an analysis of the pinch surfaces for wide-
angle scattering gives, for the most general reduced dia-
gram involving only massless lines (including gravitons),
the form shown in Fig. 1, where for purposes of illustration,
only four external legs are shown. The letters J and S
denote, respectively, the jet and soft subdiagrams and H
is a hard vertex [7,8]. At the pinch surface, all lines in each
jet Ji are collinear to each other and to the external line pi

to which they attach, all lines in S carry zero momentum,
and all lines inH are off shell. In the following sections we
study the nature of the various subdiagrams and find that a
remarkably simple structure emerges, as suggested by the
eikonal analysis of Ref. [1]. The infrared singular behavior
of quantum gravity is simpler than that of massless quan-
tum electrodynamics.
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In Sec. II we introduce a power-counting procedure to
identify the types of reduced diagrams that yield collinear
singularities in theories of pure gravity and of gravity
coupled to other matter. The infrared divergences in the
pure matter sector have been studied extensively in the
literature so we only focus on the new divergences that
arise as a result of gravitational interactions. We find that
the only types of diagrams that give mass divergences are
those with no internal graviton jet loops, and which contain
only three-point vertices. We also show that mass diver-
gences do not arise in diagrams with both standard model
particles and gravitons when only the gravitons attach to an
external leg.

Next, in Sec. III we develop a power-counting procedure
to find what types of reduced diagrams with virtual grav-
itons give soft divergences. We find that for the case of
virtual soft-graviton corrections to a hard vertex, only
diagrams of the ladder type give rise to soft divergences,
as previously observed in Refs. [3,4]. In addition, we
observe that the representation of divergent soft-graviton
interactions in terms of Wilson lines, as explicitly conjec-
tured in [3], follows readily from the cancellation of col-
linear singularities.

Section IV is devoted to the proof that collinear singu-
larities cancel when all collinear-divergent diagrams are
combined, using a gravitational Ward identity. As an illus-
tration of how the arguments of Sec. IV work, in the
Appendix we develop an extension of the analysis of
Ref. [1], to show explicitly the cancellation of the graviton
collinear singularities for kinematic regions where the
eikonal approximation applies.

II. JET POWER COUNTING

In this section we will build upon a power-counting
procedure for infrared divergences developed in
Refs. [7–9]. Let us consider a graviton jet attached to a

massless on-shell line with momentum p in an arbitrary
diagram as in Fig. 2. The graviton jet reattaches to the rest
of the diagram, labeled ‘‘rest’’ in the figure. For purposes
of classification, gravitons that reattach to the same exter-
nal leg from which they were emitted are considered as
part of the jet, rather than attached to the rest. Such external
leg corrections do not give rise to collinear singularities, as
we will show later.
Let LJ be the number of loops, NJ the number of lines in

jet J, and Nnum the total power of what we will call
‘‘normal variables’’ in the numerator that arise from the
vertices and propagators of the jet. Normal variables are
chosen such that they vanish at the pinch singular point that
causes the infrared divergence. Then, singularities of the
integrand appear through their dependence on normal
variables.
The loop momentum integrand corresponding to any

Feynman diagram can be made a homogeneous function
of the normal variables by keeping only the lowest power
in both the numerator and denominator factors. Counting
powers of normal variables then enables us to determine
the finiteness or potential for the divergence of the pinch
surface in question. This is measured by the degree of
divergence, given by the number of normal variables,
minus the homogeneity (power in normal variables) of
the product of denominators, plus the homogeneity for
the numerators. For examples, see Eqs. (3) and (15) below.
In order to identify the normal variables for collinear

singularities, let us make a change of variables in each jet
loop integral such that

Z
d4l�

Z
dl2?dl

þdl�; (1)

where l2? includes the two components of the loop

momenta l that are transverse to p and l� is defined as
1ffiffi
2

p ðl0 � ~l � p̂Þ, with p̂ a unit three-vector in the direction of

the jet. This change of variables actually requires one to
evaluate a Jacobian, but we omit this step as this factor will
not contain any singularities. Note that for a collinear line
we can rotate to a frame such that l� and l2?=l

þ become

small, so we choose these as the normal variables (for
convenience, both with dimensions of mass). With this

Rest

J

FIG. 2. A diagram with a graviton jet attached to an external
leg. We show the case where there are two gravitons being
emitted from the external line and two gravitons attaching to
the rest, but these can be any numbers. The analysis in Sec. II
shows that the numbers of gravitons emitted and attached do not
need to be the same.

J1 J

JJ

2

34

S

H

FIG. 1. A general reduced diagram at the pinched singular
point. J and S denote the jet and soft subdiagrams and H is a
hard vertex. Here each line may represent any number of soft
propagators connecting S to the remainder of the diagram, or the
jets Ji to the hard part H.
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choice, each jet loop will contribute two normal variables
to the total collinear degree of divergence of the diagram.
The consistency of this choice is discussed in Refs. [10,18].
A similar power counting plays a role in soft-collinear
effective theory [19].

In the de Donder gauge, the graviton propagator is [14]

i

2
½������ þ ������ � ������� 1

l2 þ i�
: (2)

Since l2 ¼ 2lþl� � l2?, each graviton propagator will be

linear in normal variables in the denominator. Thus, each
graviton jet line will contribute �1 to the degree of diver-
gence from the diagram. In summary, we can write the total
collinear degree of divergence of diagrams of the type
shown in Fig. 2 as

�CO ¼ 2LJ � NJ þ Nnum: (3)

A diagram can have a collinear singularity whenever
�CO � 0, and �CO ¼ 0 corresponds to a logarithmic
divergence.

As each jet line connects two vertices, we can also use
the relation

2NJ ¼
X
i�3

iVi þ NG; (4)

where Vi is the total number of i-point vertices in the
diagram, not counting those that attach to the rest (see
Fig. 2), and NG is the number of gravitons in the jet that
attach to the rest. Here we treat the rest as an NG þ 1-point
vertex in the jet subdiagram, and we do not count the
external line of the jet in NJ.

We can write the minimum homogeneity of normal
variables in the numerator as

Nnum ¼ 1

2
Nmom �min

�
1

2
Nmom;

X
k

k

2
Nk

�
; (5)

where Nmom is the total power of momentum vectors from
the vertices in the jet subdiagram and Nk is the number of
vertices with k powers of momentum that are contracted
with noncollinear vectors from the rest. The factor of 1

2

reflects that the scalar product of the momenta of any two
jet lines is linear in the normal variables of the jet, and
hence adds unity to the overall homogeneity of the nu-
merator. We subtract

P
k
k
2Nk from Nnum because each

graviton line attaches to the rest at a vertex involving
some integer, k, of powers of momenta, collectively de-
noted p0�, that are not collinear with p�. This is why we do
not classify gravitons reattaching to the same leg they were
emitted from as part of the rest, as in this case p0 ¼ p. The
graviton propagator can then contract the momenta in the
vertex in the rest with momentum vectors from a vertex in
the graviton jet. This will result in terms of order ðp � p0Þk.
These terms are zeroth order in normal variables. That is, at
each such vertex, k=2 factors of momenta that are nearly
proportional to p� can ‘‘escape’’ the jet, forming ‘‘large’’

invariants that do not vanish at the pinch surface. Thus, we
must subtract k=2 from Nnum for each of the Nk vertices
from the rest. The last term in (5) is inserted simply to
ensure that Nnum � 0 in all cases.
For gravity we make the expansion g�� ¼ ��� þ 	h��

and take the quantum field to be h��. Gravitational vertices

correspond to terms in the Lagrangian that are symboli-
cally of the form 	iþj�4@jhi. Let Vi;j be the number of

i-point vertices with j powers of momentum in the diagram
(not including those in the rest). This allows us to write
Nmom as

Nmom ¼ X
j

j
X
i�3

Vi;j: (6)

For the case of pure gravity we can write the Einstein-
Hilbert Lagrangian as [20]

LEH¼ ffiffiffiffiffiffiffi�g
p

R

¼ 1
2ðĝ�	ĝ
�ĝ
�;� þ2ĝ�	;� Þ;	þ 1

8ĝ
�	
;
 ĝ��;� ð2ĝ
�ĝ��ĝ	�

� ĝ
�ĝ�	ĝ���4��
	�



�ĝ��Þ; (7)

where a comma denotes an ordinary partial derivative and
ĝ�� ¼ ffiffiffi

g
p

g��. When written in this form, it is easy to see

that LEH only has terms with j ¼ 2, so we take all i-point
graviton vertices as having two powers of momentum. Of
course from an effective field theory point of view [15]
there should be higher-order terms in R, but this will serve
only to increase j in the vertices. Since it is clear from
Eqs. (3), (5), and (6) that increasing the number of deriva-
tives, j, will only increase �CO, considering only the linear
term in R gives the most infrared divergent case.
The coupling of matter to gravity is given by 	h��T

��,

where T�� is the energy momentum tensor of the matter
field. For bosons, the energy momentum tensor has at least
two derivatives, so this situation is similar to the pure
gravity case. For fermions, the energy momentum tensor

is proportional to �c��ð ~@� � @Q�Þc . However, for power-
counting purposes, using the Gordon identity, we may
replace �� by @�=m, where m is the fermion mass. (For
massless fermions, the vanishing normalization of spinors
leads to simply @�.)
If we combine the Euler identity (note that for the jet

subdiagram we consider the rest to be a vertex so the
number of vertices in the jet subdiagram is

P
iVi þ 1),

LJ ¼ NJ �
X
i�3

Vi; (8)

with Eqs. (3)–(6), we get the relation

�CO ¼ X
i�3

�
i

2
� 2

�
Vi þ 1

2
NG þ 1

2

X
j

j
X
i�3

Vi;j

�min

�
1

2

X
j

j
X
i�3

Vi;j;
X
k

k

2
Nk

�
: (9)
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Let us consider the case where

min

�
1

2

X
j

j
X
i�3

Vi;j;
X
k

k

2
Nk

�
¼ X

k

k

2
Nk; (10)

as this is the more divergent case (since the other option is
available solely to prevent Nnum from having an artificially
negative contribution to �CO). In this case,

�CO ¼ X
i�3

�
i

2
� 2

�
Vi þ 1

2
NG þ 1

2

X
j

j
X
i�3

Vi;j �
X
k

k

2
Nk:

(11)

We readily deduce the consequences of this result.

A. Ladder diagrams

As a first example, let us consider the simplest case of
ladder diagrams (Fig. 3). In this case, we only have three-
point vertices, which have two powers of momentum, and
no internal jet loops. Thus i ¼ 3 and j ¼ 2. For the case of
gravitational couplings k ¼ 2, so

P
k
k
2Nk ¼ NG. Applying

these conditions we have

�CO ¼ �1
2V3 þ V3;2 � 1

2NG: (12)

For ladder diagrams it is easy to see that V3 ¼ V3;2 ¼ NG,

so we have �CO ¼ 0, which corresponds to logarithmic
divergence.

B. Diagrams with only three-point vertices

Once again we have i ¼ 3, j ¼ 2. So, V3 ¼ V3;2, and

again for gravitational couplings
P

k
k
2Nk ¼ NG. Therefore

we (again) have

�CO ¼ 1
2ðV3 � NGÞ: (13)

Note in the case of diagrams with no internal jet loops as in
Fig. 4, we have V3 ¼ NG, and again we have a logarithmic
collinear divergence. On the other hand, if we add any
internal jet loops, V3 >NG and there is no collinear

singularity. Adding a four-point (or higher) vertex will
only increase the collinear degree of divergence and will
prevent a mass divergence. Thus, the only diagrams that
give mass divergences are those with no internal jet loops,
and with only three-point vertices. These include the ladder
diagrams discussed as the first example.

C. External leg corrections

As mentioned earlier, graviton lines that reattach to the
same leg from which they were emitted are not considered
as lines that attach onto the rest. This is because in this case
the momenta at the two vertices the graviton line connects
are collinear, so we get a numerator factor that is quadratic
in normal variables. Thus, these vertices do not contribute
to the subtraction of Nk from momentum factors in the
numerator in Eq. (5). Because of this, diagrams such as the
one in Fig. 5 do not have collinear singularities. For Fig. 5
in particular, using Eq. (11) we see that �CO ¼ 1. Gauge
invariance ensures the cancellation of the single particle
pole (which for power-counting purposes corresponds to
matching þ1 from the normal variables of the numerator
with �1 from the on-shell propagator.) We can see from
Eq. (11) that adding further graviton lines cannot decrease
the collinear degree of divergence wherever they are at-
tached. Thus, self-energy and other diagrams with graviton
lines that reattach to the same leg from which they were
emitted do not have collinear singularities.

D. Diagrams with gravitons turning into standard
model particles

Let us consider the case where a graviton emitted from
one of the external lines turns into standard model particles
such as gluons. Such an example is given in Fig. 6. For this
particular case, Eq. (3) tells us that

�CO ¼ 2ð2Þ � 4ð1Þ þ Nnum ¼ Nnum: (14)

If the gluons were gravitons, according to Eqs. (5) and (6),
we would have Nnum ¼ 1

2 ð4Þ � 2 ¼ 0 ¼ �CO and thus a

logarithmic collinear singularity. This is because k ¼ 2 for
all vertices of the rest to which gravitons attach. However,
for the case of gluons we would have k ¼ 1 for all vertices
on the rest. This means that for the case of gluons, Nnum ¼
1
2 ð4Þ � 1 ¼ 1 ¼ �CO, so there is no collinear singularity.

Note that since �CO � 0 for any diagram involving just
gravitons, adding further graviton lines does not change the
situation. Adding a higher point gluon-graviton vertex such

Rest

FIG. 3. A typical ladder diagram.

Rest

FIG. 4. A diagram with no internal jet loops and only three-
point vertices.

Rest

FIG. 5. An example of an external leg correction. These do not
result in collinear singularities.
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as the one in Fig. 7 does not help, as in this case the
contribution to �CO from LJ and NJ will already be posi-
tive and Nnum is at least zero. For instance, for the process
shown in Fig. 7, 2LJ � NJ ¼ 2. Thus, it is impossible to
have a collinear-divergent diagram with both standard
model particles and gravitons where only the gravitons
attach to the on-shell line. Precisely the same reasoning
applies to the vector ghosts of quantum gravity [11], be-
cause, although their interactions with gravitons are not
identical to those of photons or gluons, the number of
derivatives at the vertex is the same.

In summary, we have found that collinear divergences
may be found in diagrams (1) with no internal jet loops,
(2) with only three-point vertices among gravitons, and
(3) that do not link gravitons to collinear standard model
particles. We now turn to soft divergences.

III. SOFT POWER COUNTING

So far, we have concentrated on the ‘‘jet’’ subdiagrams
of the arbitrary pinch surface represented in Fig. 1. We now
describe the inclusion of interacting soft gravitons [3,4],
and show how our power-counting arguments confirm the
conclusion that to fixed order only ladderlike graphs show
soft divergence, factorizable onto products of Wilson lines.

We can carry out power counting for soft divergences
simultaneously with collinear divergences, by considering
diagrams of the type shown in Fig. 8, which shows soft
virtual graviton corrections to a hard vertex. All of the
graviton lines in S are soft. Each solid line represents any
set of collinear jet lines. In principle, the particles repre-
sented by the solid finite-momentum lines can have any
spin, because the dominant coupling of soft gravitons is to
momentum flow, and independent of spin [1]. We now
define, by analogy to Eq. (3) for the degree of collinear
divergence, a degree of soft divergence,

�soft ¼ 4LS � 2NS � NE þ Nsn; (15)

where LS is the number of loops in S, including loops that
link S with the jets, NS is the number of soft-graviton lines,
NE is the number of virtual finite-momentum lines in the
diagram, and Nsn is the contribution of soft normal varia-
bles to the numerator (for clarification of these quantities,
see the example given in Fig. 9). Specifically, we may take
NE to denote the change in the number of finite-momentum
lines due to the attachment of soft gravitons to the jet. For
simplicity, therefore, we choose the most singular case, in
which all soft gravitons attach to the jets at vertices with
only two finite-momentum lines.
For the soft subdiagram we can choose the normal

variables to be all four components of the loop momenta,
so that there is a factor of 4 times LS in (15). With this
choice, all soft-graviton denominators are quadratic in
normal variables, so there is a factor of �2 multiplying
NS. The denominators of the propagators corresponding to
the (nearly on-shell) virtual finite-momentum lines are, by
contrast, linear in graviton momenta. Thus, NE is associ-
ated with a factor of�1. Notice that this requires the scales
of normal variables for soft and collinear momenta to be

Rest

FIG. 7. A graviton jet turning into four gluons.

Rest

FIG. 6. A graviton jet turning into two gluons.

S

H

FIG. 8. Arbitrary diagram with virtual soft-graviton correc-
tions to a hard vertex. The finite-momentum lines are drawn
with a solid line.

H

FIG. 9. An example of the type of diagram that we discuss in
Sec. III. In this diagram LS ¼ 4, NS ¼ 8, and NE ¼ 4.
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the same. If, for example, the soft normal variables are
larger than the collinear normal variables, the denomina-
tors of finite-energy lines will be independent of the latter,
which would eliminate collinear singularities.

The linearity of finite-energy lines in soft normal vari-
ables, combined with the dominance of jet momenta in the
coupling of soft gravitons to finite-energy lines, is equiva-
lent to the eikonal approximation. We note that for wide-
angle scattering there are no additional pinches that would
invalidate the eikonal approximation. We will return to this
point below.

Using similar reasoning as with the case of collinear
power counting, we arrive at the relations

2NS ¼
X
i�3

iVi þ
X
m

mNðmÞ
hs ; (16)

NE ¼ Nhs; (17)

Nsn ¼
X
j

j
X
i�3

Vi;j; (18)

LS ¼ NS þ NE �X
i�3

Vi � Nhs; (19)

where again Vi is the number of i-point vertices in S and
Vi;j are the number of i-point vertices in S with j powers of

momentum. The term NðmÞ
hs is the number of vertices at

which m soft lines attach to a finite-momentum line, and

Nhs ¼
P

mN
ðmÞ
hs . Note the vertices that count towardsNhs do

not contribute to the homogeneity of normal variables from
the numerator, Nsn, as their numerator momentum factors
are given to leading power by the momenta of finite-
momentum lines, independent of soft normal variables.
Combining Eqs. (15)–(19), we get

�soft ¼
X
i�3

ði� 4ÞVi þ
X
j

j
X
i�3

Vi;j þ
X
m

mNðmÞ
hs � Nhs:

(20)

Using this relation, we see that if there are no soft-graviton
vertices in S (Vi ¼ 0, Vi;j ¼ 0) and only vertices with one

soft graviton attached to the finite-momentum lines

(
P

mmNðmÞ
hs ¼ Nð1Þ

hs ¼ Nhs), then �soft ¼ 0, indicating a

logarithmic soft divergence. An example of a diagram
that gives a logarithmic divergence is shown in Fig. 10.
On the other hand, if there is even one soft vertex in S
with j � 2 (as is the case for graviton vertices), or if
there is even one vertex with more than one soft graviton
coming off a finite-momentum line (in which caseP

mmNðmÞ
hs >Nhs), then �soft > 0 and there is no soft diver-

gence. Thus, in agreement with [3,4] we have seen that the
only diagrams that give rise to soft-graviton divergences
are ladder and crossed ladder diagrams with only three-
point vertices, where the ladders attach to finite-
momentum lines.

The above conclusions apply whether the jet subdia-
grams consist of single lines or contain loops. As we shall
see in the next section, however, collinear singularities
associated with nontrivial jet subdiagrams cancel, leaving
only single finite-energy lines to couple to the soft grav-
itons. In this sense, the factorization of soft infrared grav-
itons conjectured in Ref. [3] is automatic, because as noted
above, soft divergences are reproduced by considering only
the linear dependence of finite-energy denominators on
soft-graviton momenta. In addition, as we have seen, in-
frared divergences are associated with the coupling of soft
gravitons to a finite-energy graviton (or matter) line of
momentum p through the vertex 	p�p� only. Together,
these features of soft-graviton infrared divergences are
precisely the perturbation theory rules of the Wilson lines
described in Ref. [3], and this discussion serves as a proof
of the conjecture there. The importance of the cancellation
of collinear singularities was also noted in Ref. [4], and we
now turn to a proof of this cancellation independent of the
eikonal approximation for the collinear gravitons.

IV. CANCELLATION OF COLLINEAR
SINGULARITIES

In this section we give a general argument for the
cancellation of gravitational collinear singularities using
the basic gravitational Ward identity [21] that decouples
unphysical graviton polarizations from physical processes.
Our argument is independent of the eikonal approximation.
A combinatoric proof of this cancellation along the lines of
[1], in the special case of the eikonal approximation, is
given in the Appendix.
We have shown by power counting that collinear singu-

larities require graviton jets that have no internal loops and
only three-point vertices. Let us consider the addition of
such a jet to an arbitrary external line with momentum p�

as in Fig. 2, where j gravitons with momentum l�i and the

now off-shell continuation of the original external line with

H

FIG. 10. An example of a diagram with only three-point cou-
plings to hard lines that will lead to a soft divergence.
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momentum p� �P
l
�
i attach to the rest. We can represent

the matrix element corresponding to such a diagram as [22]

iM ¼
Z d4li

ð2Þ4 J
�
p� �Xj

i¼1

l�i

i ; fl�i

i g
�
f�i�ig

� R

�
p� �Xj

i¼1

l�i ; fl�i

i g
�f�i�ig

; (21)

where R and J correspond to the rest and jet subdiagrams,
respectively, and where f�i�ig represent the 2j spacetime
indices corresponding to the j collinear gravitons attached
to the rest.

Since all the lines attaching to R from J have momenta
collinear with the jet momentum p�, we can isolate the
leading power behavior near the collinear pinch surface, by
making the replacement l� ! l� �v

�v�, where we define
the lightlike vectors v� ¼ �

�
þ and �v� ¼ ���. Here we are

working in the basis of normal variables, where momen-
tum vectors now have the components l� ¼ ðlþ; l�; l?Þ
and l2 ¼ 2lþl� � l2?. After making this replacement and

pulling out the factors of v� and �v�, we can write the
function J as

J

�
p� �X

l�i

i ; fl�i

i g
�
f�i�ig

! J

�
p� �X

l�i

i ; fl�i

i g
�
f�i�ig

Y
i

�v�i �v�iv�i
v�i

: (22)

It is easy to see that to leading power in normal variables,

J

�
p� �X

l�i

i ; fl�i

i g
�
f�i�ig

�v�i �v�iv�i
v�i

¼ J

�
p� �X

l�i
i ; fl�i

i g
�
f�i�ig

n�i

n � li
n�i

n � li li;�i
li;�i ; (23)

for any vector n� that is not collinear with l�i by making the
substitution l� ! l� �v

�v� on the right-hand side of (23).
Thus, we can write (21) as

iM ¼
Z d4li

ð2Þ4 J
�
p� �X

l�i

i ; fl�i

i g
�
f�i�ig

Y
i

n�i

n � li

� n�i

n � li l�i
l�i
R

�
p� �X

l
�i

i ; fl�i

i g
�f�i�ig

: (24)

This is known as the ‘‘collinear approximation’’ [22,23].
We see from (24) that in the collinear approximation the j
gravitons that attach to the rest are longitudinally, or
‘‘scalar’’, polarized. This allows us to use the on-shell
Ward identity for gravitons [21], which enforces the de-
coupling of such unphysical polarizations,

l�j
l�j

S...�j�j... ¼ 0; (25)

where S...�j�j... is an arbitrary S-matrix element with the
polarization tensors factored out. For our particular case,
we can apply the Ward identity to the subdiagram rest,

which includes an external line with momentum
p� �P

l
�
i . In R, the latter may be considered on shell

with physical or scalar polarization, up to corrections that
are higher order in normal variables. Diagrammatically
this can be expressed by Fig. 11, which corresponds to a
single longitudinally, or scalar, polarized graviton (n ¼ 1)
attached to the rest, which is drawn with a dotted line. The
Ward identity (25) tells us that the sum of the diagrams
shown on the left-hand side of Fig. 11 plus the attachment
of the longitudinally polarized graviton on the external line
shown on the right-hand side is zero. The right-hand side of
Fig. 11 has the same collinear degree of divergence as a
self-energy correction, which, as we previously showed,
does not have a collinear singularity.
The application of the Ward identity to the case of two

longitudinally polarized gravitons (j ¼ 2) attached to the
rest is shown in Fig. 12. Note the first and third diagrams on
the right-hand side of Fig. 12 contain a self-energy-like
correction, so these are not collinearly divergent. The
second and fourth diagrams result in an internal jet loop,
and we know diagrams containing such loops are also not
collinearly divergent. So there are no collinear singularities
for this case either. Thus, the use of the Ward identities on
(24) allows us to rule out any collinear singularity in the
sum of diagrams contributing to it. For gauge theories, by
contrast, collinear singularities remain in the correspond-
ing set of diagrams when the Ward identities are applied
[22]. The application of this reasoning to collinear gauge
particles results in the factorization, rather than cancella-
tion, of collinear singularities.

Rest Rest

FIG. 11. The Ward identity for the case n ¼ 1.

Rest Rest Rest

Rest Rest

FIG. 12. The Ward identity for the case n ¼ 2. We do not
explicitly show the diagrams where the longitudinal gravitons
are interchanged.
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It is clear that adding any number of longitudinally
polarized gravitons and applying the Ward identity in the
manner above will always result in either additional self-
energy-like corrections or internal jet loops, which, as we
have seen, preclude collinear singularities. Thus, while
individual jet diagrams where an external leg emits a
graviton jet with no internal loops and only three-point
vertices may be divergent, when we consider the attach-
ment of such a jet with the rest of the diagram, the Ward
identity ensures that collinear singularities cancel. It is
instructive to verify the cancellation for the case where
collinear gravitons are relatively soft, so that we may apply
the eikonal approximation. This is shown in the Appendix.

V. CONCLUSION

In this paper we have introduced a power-counting
procedure in order to see what types of reduced diagrams
yield collinear and soft divergences in perturbative quan-
tum gravity. For the fixed-angle elastic scattering ampli-
tudes that we have considered, we find that the only types
of reduced diagrams that give soft divergences are those of
the ladder and crossed ladder types, where the soft grav-
itons interact only with finite-momentum lines and not
with each other [3,4]. These diagrams give rise to logarith-
mic soft divergences, which do not cancel when all dia-
grams of a given order are summed for an amplitude with
fixed external lines.

For the case of collinear singularities, we see that the
only types of diagrams that give mass divergences are
those with no internal jet loops and only three-point verti-
ces. These include the ladder and crossed ladder diagrams
[1]. When all possible diagrams of this class are summed,
the Ward identity ensures that the collinear singularities
cancel. This is in contrast to the case of massless QCD or
other massless gauge theories, where collinear singularities
factorize rather than cancel.

The absence of collinear singularities has its basis in
classical physics, where gravitational radiation is more
suppressed in the collinear direction than electromagnetic
radiation. Indeed, the leading multipole contributing to
electromagnetic radiation is the dipole, while for gravita-
tional radiation it is the quadrupole. This can be seen
conveniently in the rates of the lowest order modes of
radiation in the two theories [24]. For electromagnetic
radiation sourced by an electric dipole with dipole moment
p oscillating with frequency !, the energy rate is

d2E

d�dt
¼ !2

�
!2p2

8c3

�
sin2�: (26)

For gravitational radiation sourced by a mass M with
trajectory RðtÞ ¼ R0 sin!t, the energy rate is

d2E

d�dt
¼ G!6M4R4

0

4c3
sin4�; (27)

which clearly shows the additional suppression in the
forward direction.
The discussion in this paper has dealt with wide-angle

scattering only. These methods may be useful as well,
however, in studies of higher-order corrections for the
Regge limit in quantum gravity [25], and of higher-order
cancellations between virtual and real radiation.
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APPENDIX: CANCELLATION OF COLLINEAR
SINGULARITIES IN THE EIKONAL

APPROXIMATION

In this appendix, we review how the cancellation of
collinear singularities is realized in the eikonal approxima-
tion, as discussed by Weinberg in Ref. [1]. We present this
argument for completeness, and also because it confirms
the use of the Ward identity illustrated by Figs. 11 and 12.
In particular, we emphasize that although we derive the
factorization (and hence cancellation) of collinear gravi-
tons from the hard scattering by using the Ward identity of
Eq. (25), at no point does the hard scattering, whether in
the eikonal approximation or not, include all the diagrams
of an S-matrix element (see Fig. 12).
We start by rewriting Eq. (24), using the left-hand side of

Eq. (23),

iM ¼
Z d4li

ð2Þ4 Jm
�
p�
m �X

l�i
i ; fl�i

i g
�
f�i�ig

�Yj
i¼1

�v�i
m �v�i

m vm�i
vm�i

� RðeikÞ
�
p
�
m �X

l
�i

i ; fl�i

i g; fpng
�f�i�ig

; (A1)

where we now consider explicitly all of the E external legs
in the full diagram. The indices i refer to gluons li attach-
ing Jm to R, i ¼ 1; . . . ; j. The external leg connected to the
jet we consider has momentum pm (the nearly on-shell
portion of this line is not included in R), and the remaining
E� 1 noncollinear external legs have momentum pn, n �
m (these noncollinear legs are included explicitly in R).
In this discussion, we follow Ref. [1] by taking, for the

function R, representing the remainder of the diagram, a
product of eikonal lines, linked at a pointlike vertex
HðfpngÞ, and we treat all connections of collinear gravitons
to R in the eikonal approximation, summing over all
diagrams.
Let us denote by PðfNngÞ any unordered partition of the j

external graviton lines of Jm into a set of bins with Nn

gravitons attached to line pn. At fixed momenta li, each
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ordering corresponds to a distinct diagram, and we must
still sum over all orderings of graviton connections to each
line pn, n � m. In these terms we write the contraction of
the function R with vectors v in Eq. (A1) as

RðeikÞ
�
p
�
m �X

l
�i

i ; fl�i

i g; fpng
�f�i�igY

i

vm�i
vm�i

¼ X
PðfNngÞ

EnumðfNngÞEdenðfNngÞHðfpng; ðfNngÞÞ: (A2)

In this expression, the eikonal numerator factors are
given by

E numðfNngÞ ¼
YE�1

n�m

ððpn � vmÞ2ÞNn ; (A3)

since each graviton attached to a noncollinear external line
contributes a numerator factor of ðpn � vmÞ2.

Similarly, Eden summarizes all eikonal denominators,
including the sum over orderings of graviton lines (labeled
with the index i) from the jet Jm to each of the other
incoming massless lines, pn for a given choice of
PðfNngÞ. That is, for each partition P, we sum over all
permutations ðNnÞ of the connections of these lines to
each of the pn. To the sum of these connections we may
apply for each external line pn the well-known identity for
eikonal denominators, giving

E denðfNngÞ ¼
Y
n�m

X
ðNnÞ

YNn

a¼1

�Xa
i¼1

pn � qðnÞNn ðiÞ

��1

¼ Y
n�m

YNn

i¼1

ðpn � qðnÞi Þ�1; (A4)

where qðnÞi denotes the momentum of the ith graviton
attached to the nth noncollinear external line. The subscript

Nn
denotes that it is the momenta qðnÞi that we are permut-

ing over. This identity shows that the momentum depen-
dence associated with denominators factors into simple

products for each external graviton of RðeikÞ.
Before combining Eqs. (A3) and (A4) for the eikonal

numerator and denominator factors, respectively, we define

qðnÞi ¼ �ivm; (A5)

which holds in the leading collinear region. Each momen-

tum qðnÞi , and hence each �i, is independent of to which pn

the collinear graviton attaches. In these terms, we have

E denðfNngÞ ¼
Y
all i

Y
n�m

1

�i

ðpn � vmÞ�Nn; (A6)

so that the energy dependence of the collinear gravitons is
collected into a universal factor that is independent of the
partition P. Substituting the numerator and denominator

forms (A3) and (A6) into Eq. (A2) for RðeikÞ, we find

RðeikÞ
�
p
�
m�

X
l
�
i ;fl�i g;fpng

�f�i�igY
i

vm�i
vm�i

¼Hðfpng;ðfNngÞÞ
�Y
all i

1

�i

� X
PðfNngÞ

�YE�1

n�m

ðpn �vmÞNn

�
: (A7)

In this form we see explicitly that the factor RðeikÞ depends
only on the numbers Nn of each unordered assignment of
the collinear gluons li to the external lines pn. For fixed
fNng, the result is the same for every choice of unordered
partition PðfNngÞ.
We may make this independence explicit by replacing

the sum over unordered assignments by a sum over all Nn

that add up to j, multiplying each term in the sum by the
appropriate combinatoric weight. We thus have the sum

RðeikÞ / X
fNn=

P
Nn¼jg

j!

N1!N2! . . .Nm! . . .NE!

�YE
n�m

ðpn �vmÞNn

�
;

(A8)

where Nm! indicates that this factor is omitted in the
product. If we use the multinomial theorem, this directly
simplifies to

RðeikÞ /
�X
n�m

ðpn � vmÞ
�
j ¼ ð�pm � vmÞj ¼ 0; (A9)

where in the second equality we have used momentum
conservation, and in the third, the assumed masslessness of
pm, which implies pm � vm ¼ 0.
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