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Av. Rovisco Pais 1, 1049 Lisboa, Portugal

2Department of Physics and Astronomy, The University of Mississippi, University, Mississippi 38677, USA
3California Institute of Technology, Pasadena, California 91109, USA

(Received 5 September 2011; published 18 November 2011)

We develop a theoretical framework to study slowly rotating compact stars in a rather general class of

alternative theories of gravity, with the ultimate goal of investigating constraints on alternative theories

from electromagnetic and gravitational-wave observations of compact stars. Our Lagrangian includes as

special cases scalar-tensor theories (and indirectly fðRÞ theories) as well as models with a scalar field

coupled to quadratic curvature invariants. As a first application of the formalism, we discuss (for the first

time in the literature) compact stars in Einstein-Dilaton-Gauss-Bonnet gravity. We show that compact

objects with central densities typical of neutron stars cannot exist for certain values of the coupling

constants of the theory. In fact, the existence and stability of compact stars sets more stringent constraints

on the theory than the existence of black hole solutions. This work is a first step in a program to

systematically rule out (possibly using Bayesian model selection) theories that are incompatible with

astrophysical observations of compact stars.
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I. INTRODUCTION

Compact stars as nuclear physics laboratories. Studies
of compact stars in general relativity have been textbook
material for decades [1,2]. Neutron stars can be considered
‘‘cold’’ by nuclear physics standards, so their mass-radius
relation MðRÞ is uniquely determined by the equation of
state (EOS) of matter at high densities, i.e. by the relation
between pressure and energy density Pð�Þ. From an ob-
servational point of view, one usually assumes general
relativity to be correct. Under this assumption (which of
course is backed up by a wealth of observational evidence
[3]), the Holy Grail of astronomical observations of neu-
tron stars is the determination of the EOS from measure-
ments of macroscopic properties such as masses, radii and
moments of inertia.

Better observational estimates of neutron star masses
and radii are progressively improving our understanding
of the EOS. Lindblom [4] presented a concrete scheme for
reconstructing Pð�Þ from observations of MðRÞ. More
recently, Read et al. [5] approximated the high-density
EOS by piecewise polytropic models, showing that current
astrophysical measurements yield stringent constraints on
the piecewise polytropic parameters. In the same spirit,
Lindblom [6] proposed to replace piecewise polytropes by
spectral expansions, that should give a more faithful rep-
resentation of the EOS.

Our understanding of the functional form of the EOS
from observed masses and radii has made impressive
strides in the recent past [7–9] (see also [10,11] for

reviews). Demorest et al. [12] recently determined a value
M ¼ 1:97� 0:04M� for the mass of PSR J1614-2230, a
pulsar in a white dwarf-neutron star binary system. This
precisely measured mass is large enough to rule out
many candidate EOSs [13,14]. Vice versa, theoretical
progress in microscopic calculations based on chiral effec-
tive field theory is leading to a better understanding of
neutron-rich matter below nuclear densities, and hence
to more stringent constraints on the mass-radius relation-
ship [15].
Compact stars as strong gravity laboratories. Most

studies of the possibility of reconstructing the EOS from
compact star observations assume that general relativity is
the correct theory of gravity. General relativity passed all
observation tests so far [3], but the ‘‘real’’ theory of gravity
may well differ significantly from it in strong field regions.
In fact, cosmological observations and conceptual difficul-
ties in quantizing Einstein’s theory suggest that general
relativity may require modifications.
Compact stars are an ideal natural laboratory to look for

possible modifications of Einstein’s theory and their ob-
servational signatures [16]. Besides ruling out specific
models for the EOS, experiments may (and should) try to
rule out also alternative theories of gravity that are unable
to explain observations. A comprehensive study of how
EOS models and alternative theories affect macroscopic
observable quantities of compact stars requires a Bayesian
model selection framework, where one compares the pre-
dictions of any specific theory of gravity (and of different
EOS models) against the growing body of observational
data. Of course, an important prerequisite of any such
analysis is the construction of stellar models in the largest*paolo.pani@ist.utl.pt
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possible family of alternative theories of gravity that are
not ruled out by weak-field experiments, cosmological
constraints or observations of compact binary systems.
The present work is a first step in this direction.

The plan of the paper is as follows. In Sec. II, to put our
work in context, we briefly review some studies of compact
stars in alternative theories of gravity. In Sec. III we present
the Lagrangian for what we call ‘‘extended scalar-tensor
theories.’’ In Sec. IV we write down the equations describ-
ing the structure of static and slowly-rotating stars in this
class of theories, and we discuss our chosen models for the
EOS. In Sec. V we present numerical results and discuss
their implications. We conclude by discussing extensions
of the present work to other theories and comparisons with
observations. Unless stated otherwise, we use geometrical
units (G ¼ c ¼ 1).

II. STARS IN ALTERNATIVE THEORIES:
A BRIEF REVIEW

The study of compact stars in alternative theories of
gravity has a long history. In this paper we begin a system-
atic exploration of stellar structure in a large class of
modified gravity theories. Far from providing a compre-
hensive review, here we point to some relevant literature,
mainly to put our work in context.

Scalar-tensor theories. Scalar-tensor gravity is one of
the simplest and best-motivated modifications of general
relativity, because scalar fields are predicted by almost all
attempts to incorporate gravity into the standard model
[17]. Therefore it should come as no surprise that most
work on stellar structure concerns variants of scalar-tensor
theory. The equations of hydrostatic equilibrium in the
best-known variant of scalar-tensor theories (Brans-Dicke
theory) were first studied by Salmona [18]. Soon after,
Nutku [19] explored the radial stability of stellar models
using a post-Newtonian treatment. Hillebrandt and
Heintzmann [20] analyzed incompressible (constant den-
sity) configurations. Zaglauer [21] carried out a detailed
calculation of the so-called ‘‘sensitivities’’ of neutron stars,
which determine the amount of dipolar gravitational radia-
tion emitted by compact binaries in scalar-tensor theories
[22]. Most of these studies found that corrections to neu-
tron star structure are suppressed by a factor 1=!BD, where
!BD is the Brans-Dicke coupling constant. At present, the
most stringent bound on this parameter (!BD > 40; 000)
comes from Cassini measurements of the Shapiro time
delay [3].

As pointed out by Damour and Esposito-Farése [23],
the coupling of the scalar with matter can produce a
‘‘spontaneous scalarization’’ phenomenon by which cer-
tain ‘‘generalized’’ scalar-tensor theories may pass all
weak-field tests, and at the same time introduce macro-
scopically (and observationally) significant modifications
to the structure of compact stars. More detailed studies
of stellar structure [24,25], numerical simulations of

collapse [26–28] and a stability analysis [29] confirmed
that ‘‘spontaneously scalarized’’ configurations would
indeed be the end-state of stellar collapse in these
theories. In fact, spontaneously scalarized configurations
may arise as a result of semiclassical vacuum instabil-
ities [30]. Tsuchida et al. [31] extended the Buchdahl
inequality (M=R � 4=9 for incompressible stars) to gen-
eralized scalar-tensor theories. For a comprehensive
study of analytic solutions and an extensive bibliogra-
phy, see [32].
f(R) theories. Theories that replace the Ricci scalar R by

a generic function fðRÞ in the Einstein-Hilbert action1 can
always, at least in principle, be mapped into scalar-tensor
theories [35,36] (see also [37]). The existence of compact
stars in metric fðRÞ models that have been proposed to
explain cosmological observations, such as the Starobinsky
model [38], was studied by many authors [39–44] with
controversial results. One possible explanation of the par-
tial disagreement between different authors is that the
mapping between fðRÞ theories and scalar-tensor theories
is in general multivalued, and therefore one should be
careful when considering the scalar-tensor ‘‘equivalent’’
of an fðRÞ theory [45]. A perturbative approach to stellar
structure in fðRÞ gravity is also possible [46].
Higher-curvature gravity. Besides theories where the

Lagrangian is a generic function of R, it is of interest to
consider theories where the Lagrangian is built out of
quadratic [47] (or even higher-order) contractions of the
Riemann and Ricci tensors. As we explain below, the
requirement that the field equations should be second-order
means that quadratic corrections must appear in the Gauss-
Bonnet (GB) combination

R 2
GB ¼ R2 � 4RabR

ab þ RabcdR
abcd; (1)

where Rabcd is the Riemann tensor and Rab is the Ricci
tensor. Since the GB term in four dimensions is a topo-
logical invariant, the GB combination introduces modifi-
cations to general relativity only when coupled to a
nonzero scalar field or other forms of matter. The simplest
and best motivated case2 is Einstein-Dilaton-Gauss-Bonnet
(EDGB) gravity [48], where the GB term is coupled to a
dynamical scalar field, the dilaton. The EDGB correction to
the Einstein-Hilbert action appears in low-energy, tree-level
effective string theory [49].

1Here and below we refer to fðRÞ theories in the metric
formalism. Theories of the Palatini type have conceptual prob-
lems: for example, spherically symmetric polytropic ‘‘stars’’
present curvature singularities [33,34].

2In analogy with fðRÞ models, fðR2
GBÞ models have been

studied in a cosmological context. Observational constraints on
fðR2

GBÞmodels are quite tight (see e.g. Sections 12.3 and 12.4 of
[36]) and we will not include them in our analysis.
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The study of EDGB gravity in relativistic astrophysics
has been limited to a mathematical analysis of black hole
solutions [48,50–52] and, more recently, to their possible
observational signatures [47,53,54]. To our knowledge, the
present study is the first investigation of compact stars in
the theory (see Refs. [55,56] for other nonrotating solutions
in EDGB theory).

Parity-violating theories. Chern-Simons gravity is the
simplest theory that allows for parity-violating corrections
to general relativity [57]. Because of the nature of the
Chern-Simons corrections, all spherically symmetric
solutions of Einstein’s theory are also solutions of Chern-
Simons gravity. However, spinning objects in the nondy-
namical [58] and dynamical [59] versions of the theory are
affected by the Chern-Simons coupling. Future observa-
tions of the moment of inertia of compact stars may
strongly constrain the parameters of the theory [59].

Lorentz-violating theories. Einstein-aether theory intro-
duces a dynamical unit timelike vector coupled to gravity
as a natural way to implement Lorentz violation in
Einstein’s theory. In the parameter space compatible with
Solar System constraints, spherically symmetric neutron
stars in Einstein-aether theory have a lower maximum
mass than in general relativity [60,61]. Another popular
Lorentz-violating theory is Hořava gravity. The matching
conditions necessary to obtain stellar solutions in this
theory were considered in [62], but (to our knowledge)
there are no phenomenological studies of compact stars
using realistic EOS models.

Massive gravity. Recently, Damour et al. [63] reconsid-
ered the discontinuity problem of massive gravity and its
possible resolution through Vainshtein’s nonlinear resum-
mation of nonlinear effects. As part of this study, the
authors investigated the viability of spherically symmetric
stars in the theory. They showed that some solutions have
physical singularities, but also that there exist regular
solutions interpolating between a modified general relativ-
istic interior and a de Sitter exterior, with curvature pro-
portional to the square of the putative graviton mass. A
more phenomenological study of observational constraints
(including stellar rotation) is still lacking.

Eddington-inspired gravity. Bañados and Ferreira [64]
recently proposed a theory that is equivalent to general
relativity in vacuum, but differs from it in the coupling with
matter. An interesting aspect of this theory is that singu-
larities cannot form in early cosmology and during gravi-
tational collapse [64,65]. The maximum mass of compact
stars in the observationally viable sector of Eddington-
inspired gravity may be larger than in general relativity,
even for ‘‘ordinary’’ EOS models [65].

Gravitational-aether, f(T), TeVeS and other theories.
Some alternatives to general relativity that were proposed
to explain cosmological observations have also been
analyzed, at least to some extent, in the context
of compact stars. Among these theories we can list

‘‘gravitational-aether’’ theory [66], fðTÞ gravity [67] and
Bekenstein’s TeVeS [68]. In higher-dimensional brane-
world models, the embedding of four-dimensional stellar
solutions ‘‘on the brane’’ within acceptable higher-
dimensional solution is a nontrivial problem [69] (but see
[70] for related work in a slightly different context).

III. EXTENDED SCALAR-TENSOR THEORIES

From the previous summary it should be clear that it is
nearly impossible to discuss all strong-field modifications
of general relativity in a unified framework. However, in
this section we show that on the basis of some rather
general arguments we can easily write down a
Lagrangian encompassing the first four classes of theories
reviewed above (namely general scalar-tensor theories,
fðRÞ theories, EDGB gravity and Chern-Simons gravity).
Our starting point is a Lagrangian in which gravity is

coupled to a single (generically charged) scalar field � in
all possible ways, including all linearly independent qua-
dratic curvature corrections to general relativity. We call
these models ‘‘extended scalar-tensor theories.’’ The most
general Lagrangian of such a theory contains several func-
tions of the scalar field in the combination

L ¼ f0ðj�jÞR� �ðj�jÞ@a��@a�� Vðj�jÞ þ f1ðj�jÞR2

þ f2ðj�jÞRabR
ab þ f3ðj�jÞRabcdR

abcd

þ f4ðj�jÞRabcd
�Rabcd þLmat½�; A2ðj�jÞgab�; (2)

where �Rabcd is the dual of the Riemann tensor, which
introduces possible parity-violating corrections [57]. From
the Lagrangian above, the equations of motion read:

Gab þ 1

f0
½H ab þ Iab þ J ab þKab�

¼ 1

2f0
½A2Tmat

ab þ Tð�Þ
ab �; (3)

where Tmat
ab ¼ 2ð�gÞ�1=2�Sm=�gab is the matter stress-

energy tensor in the Jordan frame,

Tð�Þ
ab ¼ �½2@ða��@bÞ�� gab@c�

�@c��
� gabV þ 2rarbf0 � 2gabr2f0; (4)

and, following the notation of Ref. [47], we have defined
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H ab ��4vð1Þ
ða rbÞR� 2Rrðav

ð1Þ
bÞ þgab½2Rrcvð1Þ

c þ 4vð1Þ
c rcR�þf1

�
2RabR� 2rabR� 1

2
gab½R2� 4hR�

�
;

Iab ��vð2Þ
ða rbÞR� 2vð2Þ

c ½rðaRc
bÞ �rcRab�þrcvð2Þ

c Rab� 2Rcðarcvð2Þ
bÞ þgab½vð2Þ

c rcRþRcdrcv
ð2Þ
d �

þf2

�
2RcdRacbd�rabRþhRabþ 1

2
gab½hR�RcdR

cd�
�
;

J ab ��8vð3Þ
c ½rðaRbÞ

c�rcRab�þ 4Rd
acbrcvð3Þ

d �f3

�
2½RabR� 4RcdRacbdþrabR� 2hRab�� 1

2
gab½R2� 4RcdR

cd�
�
;

Kab � 4vð4Þ
c �cdeðareRbÞ

dþ 4rdv
ð4Þ
c

�Rða
c
bÞ
d; (5)

with vðiÞ
a � rafiðj�jÞ,rab ¼ rarb,h ¼ rara and �abcd

the Levi-Civita tensor. The modified Klein-Gordon equa-
tion reads

h�¼ �

2j�j� ½V 0 ��0@a��@a��f00R�f01R
2�f02RabR

ab

�f03RabcdR
abcd�f04Rabcd

�Rabcd�A0A3Tmat�;
(6)

together with its complex conjugate. In the equations
above, a prime denotes a derivative with respect to j�j.

As shown in Table I, this theory is sufficient to discuss
stellar structure in many of the alternative theories listed in
Sec. II (and it can also describe boson stars in general
relativity, if we work in vacuum). As a matter of fact, some
terms in the Lagrangian (2) are redundant. For example, in
ordinary scalar-tensor theories the functions f0 and � can
be removed via a conformal transformation of the metric
and a redefinition of the scalar field; i.e., by reformulating
the theory in the Einstein frame [24]. However, depending
on the explicit form of f0 and �, these transformations can
be hard (if not impossible) to write in closed analytic form.
For this reason we find it convenient to start from the
general Lagrangian (2), which reduces to standard scalar-
tensor theories in the Jordan frame if Aðj�jÞ � 1 and in the
Einstein frame if f0ðj�jÞ � 1=ð16�Þ and �ðj�jÞ � 1.
Another advantage of this approach is that, at least in
principle, it should also encompass generic fðRÞ theories,
which are equivalent to particular scalar-tensor theories
(but see [45] for possible issues with this point of view).

Simplifying the model

For generic coupling functions, the terms H ab, Iab,
J ab appearing on the left-hand side of the equations of
motion introduce higher-order derivatives of the metric
functions, unless quadratic terms in the curvature enter
the action in the GB combination (1). The GB combination
corresponds to setting f2 ¼ �4f1 and f3 ¼ f1 in our
model. Thus, if we only want second-order equations of
motion the Lagrangian (2) must reduce to

L ¼ f0ðj�jÞRþ f1ðj�jÞR2
GB þ f4ðj�jÞRabcd

�Rabcd

� �ðj�jÞ@a��@a�� Vðj�jÞ þLmat½�; A2ðj�jÞgab�:
(7)

In order to avoid the complications related to higher-
order derivatives, from now on we will specialize to this
Lagrangian.

IV. PERFECT-FLUID COMPACT STARS IN
EXTENDED SCALAR-TENSOR THEORIES

A. Static solutions

We begin by looking for static, spherically symmetric
equilibrium solutions of the field equations with metric

ds20 ¼ �BðrÞdt2 þ dr2

1� 2mðrÞ=rþ r2d�2 þ r2sin2�d’2

and a charged, spherically symmetric scalar field

TABLE I. Specific models obtained from the Lagrangian (2). Here � � ð16�GÞ�1.

f0 f1 f2 f3 f4 ! V � A Lmat

General relativity � 0 0 0 0 0 0 1 1 perfect fluid

Scalar-tensor (Jordan frame) [24] Fð�Þ 0 0 0 0 0 Vð�Þ �ð�Þ 1 perfect fluid

Scalar-tensor (Einstein frame) [23] � 0 0 0 0 0 Vð�Þ 2� Að�Þ perfect fluid

fðRÞ [36] � 0 0 0 0 0 �
Rf;R�f

16� �Gf2;R
2� f�1=2

0 ¼ f�1=2
;R perfect fluid

Quadratic gravity [47] � 	1� 	2� 	3� 	4� 0 0 1 1 perfect fluid

EDGB [48] � e
� �4f1 f1 0 0 0 1 1 perfect fluid

Dynamical Chern-Simons [59] � 0 0 0 
� 0 0 1 1 perfect fluid

Boson stars [71] � 0 0 0 0 ! m2

2 j�j2 1 1 0
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�ðt; rÞ ¼ �ðrÞe�i!t: (8)

Our ansatz for the scalar field also implies that the Klein-
Gordon equation (6) and its conjugate coincide. In general,
the term f4ð�ÞRabcd

�Rabcd gives rise to third-order deriva-
tives in the field equations [57]. However, because of the
assumed spherical symmetry, the Pontryagin density van-
ishes identically (Rabcd

�Rabcd � 0) and the equations of
motion do not depend on f4.

We consider perfect-fluid stars with energy density �ðrÞ
and pressure PðrÞ such that

T��
mat � T��

perfectfluid ¼ ð�þ PÞu�u� þ g��P; (9)

where the fluid four-velocity u� ¼ ð1= ffiffiffiffi
B

p
; 0; 0; 0Þ. Note

that the matter fields are defined in the Jordan frame. The

stress-energy tensor in the Einstein frame reads TðEÞ
�� ¼

A2ðj�jÞT��. To close the system, as usual, we must also

specify an EOS P ¼ Pð�Þ.
The field equations for a static, spherically symmetric

perfect-fluid star in extended scalar-tensor theories read

E00 ¼�r5!2�ð�Þ�2

B
� r5Vð�Þ� r5Að�Þ2�þ 4r3f0ð�Þm0 � 4r4f00ð�Þ�0 þ 6r3mf00ð�Þ�0 þ 16rmf01ð�Þ�0

� 48m2f01ð�Þ�0 þ 2r4f00ð�Þm0�0 � 16r2f01ð�Þm0�0 þ 48rmf01ð�Þm0�0 � r5�ð�Þ�02þ 2r4m�ð�Þ�02

� 2r5�02f000 ð�Þþ 4r4m�02f000 ð�Þ� 16r2m�02f001 ð�Þþ 32rm2�02f001 ð�Þ� 2rðr� 2mÞ½r3f00ð�Þþ 8mf01ð�Þ��00 ¼ 0;

(10)

E11 ¼ r4!2�ð�Þ�2 � ðr� 2mÞB0f2r2f0ð�Þ þ ½r3f00ð�Þ � 8ðr� 3mÞf01ð�Þ��0g þ rBf4f0ð�Þm
þ r½r2Að�Þ2P� r2Vð�Þ þ ðr� 2mÞ�0ð�4f00ð�Þ þ r�ð�Þ�0Þ�g ¼ 0; (11)

Econs ¼ 4r5Að�ÞB2f0ð�ÞPA0ð�Þ�0 þ r5Að�Þ2B½f0ð�ÞððPþ �ÞB0 þ 2BP0Þ � 2BPf00ð�Þ�0�
þ�0 � frf0ð�Þðr� 2mÞB02½r3f00ð�Þ þ 8mf01ð�Þ� þ 2Bfrf00ð�Þ½�r4!2�ð�Þ�2 þ ðr� 2mÞB0ðr3f00ð�Þ
� 8ðr� 3mÞf01ð�ÞÞ�0� þ f0ð�Þ½�r3mB0f00ð�Þ þ 8rmB0f01ð�Þ � 24m2B0f01ð�Þ þ r4B0f00ð�Þm0 � 8r2B0f01ð�Þm0

þ 24rmB0f01ð�Þm0 þ r5!2�2�0ð�Þ þ r4�ð�Þð2r!2�þ ðr� 2mÞB0�0Þ � rðr� 2mÞðr3f00ð�Þ þ 8mf01ð�ÞÞB00�g
þ 2r2B2frf00ð�Þ½r2Vð�Þ þ ðr� 2mÞ�0ð4f00ð�Þ � r�ð�Þ�0Þ� þ f0ð�Þ½rð4f00ð�Þm0 þ rð�rV0ð�Þ þ r�0ð�Þ�02

þ 2�ð�Þð�ð�2þm0Þ�0 þ r�00ÞÞ� � 2mð2f00ð�Þ þ rðr�0ð�Þ�02 þ �ð�Þð3�0 þ 2r�00ÞÞÞÞ�g ¼ 0; (12)

Escal ¼ rðr� 2mÞB02½r3f00ð�Þ þ 8mf01ð�Þ� þ 2BfB0½r3f00ð�Þð3mþ rð�2þm0ÞÞ þ 8ðr� 3mÞf01ð�Þðm� rm0Þ�
� r5!2�2�0ð�Þ þ r4�ð�Þ½2r!2�þ ðr� 2mÞB0�0� � rðr� 2mÞ½r3f00ð�Þ þ 8mf01ð�Þ�B00g
þ 2r3B2fr2Að�Þ3ð3P� �ÞA0ð�Þ þ 4f00ð�Þm0 � r2V0ð�Þ þ�0½�2�ð�Þð3mþ rð�2þm0ÞÞ
þ rðr� 2mÞ�0ð�Þ�0� þ 2rðr� 2mÞ�ð�Þ�00g ¼ 0; (13)

where E00 and E11 are the f0; 0g and f1; 1g components of
the modified Einstein equations, Econs ¼ raT

a2 � 0 and
Escal denotes the field equation for the scalar field.

To construct spherically symmetric and static stellar
configurations, we must solve the system above imposing
regularity conditions at the center of the star, i.e.

mð0Þ ¼ 0; �ð0Þ ¼ �c;

�ð0Þ ¼ �c; �0ð0Þ ¼ 0:
(14)

More in general, any field can be expanded close to the
center as

XðrÞ ¼ Xð0Þ þ Xð1Þrþ Xð2Þr2 þOðr3Þ; (15)

where X schematically denotes any of the variables �, P,
�, B and m. By using the field equations, all coefficients

XðiÞ ultimately depend on two parameters only, say

�ð0Þ ¼ �c and �ð0Þ ¼ �c. Finally, the value of �c is fixed
through a shooting method in order to obtain an asymptoti-
cally flat solution3: � ! 0 as r ! 1.
The outcome of this shooting method is a one-parameter

family of solutions characterized only by the central den-
sity �c. For any value of �c, we can compute the mass M

3This condition can be easily generalized to allow for non-
vanishing values of the scalar field (� ! �1 � 0 as r ! 1),
like those arising in fðRÞ theories and in other modified gravity
theories that want to reproduce cosmological dynamics.
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and the radius Rs of the star. As usual, the mass is obtained
from the asymptotic behavior at infinity

BðrÞ ! 1� 2M

r
; (16)

whereas the radius is computed by imposing the usual
matching condition at the stellar surface, PðRsÞ ¼ 0. In
the exterior of the star, P ¼ � ¼ 0. Finally, the baryonic
mass, corresponding to the energy that the system would
have if all baryons were dispersed to infinity, is defined as

�m ¼ mb

Z
d3x

ffiffiffiffiffiffiffi�g
p

u0nðrÞ; (17)

where n denotes the baryonic number. The normalized
binding energy �m=M� 1 is positive for bound (but not
necessarily stable) configurations.

B. Slowly rotating models

Once a static stellar model is known, it is easy to con-
struct the corresponding slowly rotating model by general-
izing the classic work by Hartle [72]. For this purpose, we
consider the metric ansatz

ds2 ¼ �BðrÞdt2 þ ½1� 2mðrÞ=r��1dr2 þ r2d�2

þ r2sin2�

�
d’� 
ðrÞ

2
dt

�
2

¼ ds20 � 
ðrÞr2sin2�dtd’þOð
2Þ: (18)

The stress-energy tensor for a rotating fluid can be easily
constructed from Eq. (9) and the four-velocity

u� ¼ fut; 0; 0;�utg;
ut ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ðgtt þ 2�gt’ þ�2g’’Þ
q ; (19)

where � is the angular velocity of the fluid.
Note that, for any nonconstant f4ðj�jÞ, the gravitomag-

netic part gt’ of the metric would source scalar perturba-

tions through first-order parity-violating terms in Eq. (6). If
f0, f1, A and � are constant and V � 0, the field equations
admit the same spherically symmetric solutions as in gen-
eral relativity, and the background scalar field vanishes. In
this case, the only first-order corrections arise from the
ft; ’g component of the Einstein equations and from the
(perturbed) scalar equation, since the stress-energy tensor
is quadratic in the scalar field. These two equations can be
solved for 
ðrÞ and for the scalar field perturbation for slow
rotation and small scalar fields. This was done in Ref. [59],
where the authors studied slowly rotating neutron stars in
dynamical Chern-Simons gravity (f4ðj�jÞ ¼ 	j�j). When
(as in our case) the background scalar field is nonvanishing,
all nontrivial Einstein equations would acquire first-order
corrections. Hence, if f4ðj�jÞ is not constant, Hartle’s
formalism cannot be applied. In particular, other first-
order metric corrections (in addition to the gravitomagnetic

part gt’) must be included in Eq. (18). This would result in

a system of equations which is very difficult to decouple.
To avoid these issues, from now on we will simply assume
that f4ðj�jÞ ¼ const. In this case the Pontryagin density
Rabcd

�Rabcd is a total derivative and the field equations do
not depend on the coupling f4. The generalization of
Hartle’s approach to deal with a generic coupling f4ðj�jÞ
would be an interesting extension of our work.
Using the definition of the four-velocity (19) and linear-

izing in the angular velocity�, we find that the solution to
the field equations corresponds to the background (non-
rotating) solution plus the solution 
ðrÞ of an ordinary
differential equation coming from the ft; ’g component
of the Einstein equations, namely:


 00ðrÞ þ C1ðrÞ
 0ðrÞ
¼ ½
ðrÞ ���

� r3Að�Þ2ðPþ �Þ
ðr� 2MÞ½r2f0ð�Þ � 4ðr� 2MÞf01ð�Þ�0� ; (20)

where

C1 ¼ 1

2rBðr� 2MÞðr2f0ð�Þ � 4ðr� 2MÞf01ð�Þ�0Þ
� ½rðr� 2MÞB0ð4ðr� 2MÞf01ð�Þ�0 � r2f0ð�ÞÞ
þ 2Bð�r2f0ð�Þð7Mþ rðM0 � 4ÞÞ þ ðr� 2MÞ
� ð�0ðr3f00ð�Þ þ 12f01ð�ÞðMþ rðM0 � 1ÞÞ
� 4rðr� 2MÞ�0f001 ð�ÞÞ � 4rðr� 2MÞf01ð�Þ�00ÞÞ�:

Equation (20) must be solved by imposing regularity con-
ditions at the center of the star: 
ð0Þ ¼ 
c, 


0ð0Þ ¼ 0. We
must also require continuity of 
ðrÞ at the stellar radius.
The asymptotic behavior at infinity reads


 ! 
1 þ 2J

r3
; (21)

where J denotes the angular momentum. For the solution
to be asymptotically flat, we must impose 
1 ¼ 0. This can
be easily achieved by noting that Eq. (20) is invariant under
the transformation


 ! 
 � �; � ! �� �; (22)

where � is some constant. Therefore we can proceed as
follows [72]: (1) integrate Eq. (20) imposing regularity at
the center and extract 
1 and 
 01 at some large (but finite)
radius r1; (2) find the physical value of the angular veloc-
ity, i.e., �� 
1. After this translation, 
 ! 2J=r3 at in-
finity; (3) compute

J ¼ � lim
r!1

r4
 01
6

: (23)

As we vary�� 
c we obtain models with different spe-

cific angular momentum J=M2. As long as � 	 ffiffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

s

p
,

the slow-rotation approximation is consistent. Ignoring
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terms ofOð�2Þ, the moment of inertia is given by I ¼ J=�
and it does not depend on 
c, but only on the stellar mass.
Thereforewe need to integrate Eq. (20) only once in order to
obtain I for a given mass.

With the slowly rotating solution at hand, we can also
study the possibility of ergoregion formation [73]. The
ergoregion can be found by computing the surface at which
gtt vanishes, i.e., from Eq. (18):

� BðrÞ þ 
2r2sin2� ¼ 0: (24)

On the equatorial plane we simply have

r
ðrÞ ¼
ffiffiffiffiffiffiffiffiffi
BðrÞ

p
; (25)

and, due to the linearity of the field equations, 
 will scale
linearly with �. Thus, one needs only a single integration
in order to compute the zeros of Eq. (25) as functions of�.
For a given value of �, there can be no zeros (i.e. no
ergoregion), two distinct zeros (with the ergoregion located
between them) or two coincident zeros. The ‘‘critical
frequency’’ at which we have two coincident zeros, say
�c, is the minimum rotation frequency for which an ergo-
region exists. The slow-rotation approximation imposes
� & �ms, where the mass shedding frequency is defined

as �ms �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

s

p
, following Hartle’s conventions. The

existence of an ergoregion requires �>�c, so an ergore-
gion can exist (in the slow-rotation approximation) only if

�c <�ms: (26)

C. Equation of state

We wish to establish some limits on the parameters of
allowed theories of gravity, given a set of EOS models
compatible with our present knowledge of nuclear physics.
Instead of general relativity being assumed, the parameters
characterizing any specific theory will be constrained
based on astrophysical observations. These constraints
will be sensitive to our assumptions on the EOS, that we
describe in this section.

A list of the EOS models used in this work is given in
Table II. For code testing purposes, we have considered the
same polytropic model used by Damour and Esposito-
Farése [23]:

�¼ nmbþK
n0mb

�� 1

�
n

n0

�
�
; P¼Kn0mb

�
n

n0

�
�
; (27)

with mb ¼ 1:66� 10�24 g, n0 ¼ 0:1 fm�3, � ¼ 2:34 and
K ¼ 0:0195.
We also considered two nuclear-physics motivated mod-

els (FPS [74] and APR [75], in the standard nomenclature),
which are, respectively, a soft EOS and a more standard
realistic EOS, as well as the stiffest possible EOS con-
structed by combining the upper limit in the crust-core
transition region of Hebeler et al. [15] with a causal limit
EOS as in [76]. The polytropic model (27) gives results
which are quantitatively very similar to those for the FPS
EOS.
We must remark that the FPS EOS seems to be ruled

out by the recent observation of a neutron star with M ¼
ð1:97� 0:04ÞM� [12], at least if we limit consideration to
nonrotating models4 within general relativity. However,
these observations could be explained in terms of modified
gravity at high density, rather than by invoking a different
EOS. In fact, in some alternative theories the maximum
mass of a neutron star can be sensibly larger than in
general relativity [30,65]. Another important motivation
to use the FPS EOS is to make direct comparison with
previous work. We explicitly checked that our two inde-
pendent codes (written in MATHEMATICA and C++) are in
excellent agreement with Refs. [5,78,79] in the general
relativistic limit.5

V. COMPACT STARS IN
GAUSS-BONNET GRAVITY

As a first application of the formalism discussed above,
in the remainder of this paper we study neutron stars in
EDGB gravity. We defer a more general study of the full
theory derived from the Lagrangian (7) to future work.
EDGB gravity is obtained from the Lagrangian (7)

by considering a real scalar field � ¼ � (or ! ¼ 0),
f0 � � ¼ ð16�Þ�1, V � 0 and

f1 � 	

16�
e
�; (28)

where 	 and 
 are coupling constants. When 
 ¼ ffiffiffi
2

p
, this

theory arises as a low-energy correction to the tree-level
action in heterotic string theory [49]. Here we adopt a
phenomenological point of view and consider 	 and 
 as
free (real) parameters. We will show by an explicit calcu-
lation that, under reasonable assumptions for the nuclear
EOS, the observation of compact stars with certain ob-
served properties (such as mass, radius or moment of

TABLE II. List of EOS used in this work.

EOS Reference

Polytropic [23]

FPS [74]

APR [75]

Causal limit [15,76]

4Rapidly rotating neutron stars have a larger maximum mass
which, using the FPS EOS, is still marginally compatible with
the observational errors in a small region of the parameter space:
some rapidly rotating models in Table 3 of [77] have a gravita-
tional mass compatible with the value measured in [12].

5Incidentally, the moment of inertia shown in Fig. 3 of [59] is
not computed using the FPS EOS, as erroneously written in the
caption of that figure. This explains why our results for the FPS
EOS do not agree with those in [59].
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inertia) leads to the existence of rather stringent exclusion
regions in the two-dimensional ð	;
Þ parameter space.

Some results are shown in Figs. 1–3 for different EOS
models and different values of 	 and 
. In each figure,
the top two panels show the mass-density relation and
the mass-radius relation for static (nonrotating) stars. The
bottom-left panel shows the binding energy as a function of
the central density. In the bottom right panel we display the
moment of inertia as a function of (gravitational) mass.

In our numerical calculations, we observed that the
scalar field in the interior of the star is always small: in
special cases it can be as large as �
 10�2, but more
typically � & 10�4 in most of the parameter space. In the
small-field limit,� 	 1, the coupling f1 in Eq. (28) can be
Taylor-expanded:

16�f1ð�Þ 
 	þ 	
�: (29)

Since the first term is constant and the GB term is a
topological invariant, the first nonvanishing corrections
arise from the second term. Therefore, in the small-field
limit the equilibrium structure depends only on the product
	
 of the coupling constants. This is confirmed by our
numerical results in Figs. 1–3: for instance the lines cor-
responding to 	 ¼ 20M2�,
2 ¼ 1 and 	 ¼ 10M2�,
2 ¼ 4

both correspond to the same 	
 ¼ 20M2�, and indeed they
lie almost exactly on top of each other.
A similar degeneracy will occur for any other functional

form of f1ð�Þ, provided that the scalar field remains small
everywhere, so that a Taylor expansion similar to Eq. (29)
holds. In this sense, most of our results remain valid for a
generic function f1ð�Þ, and not only for EDGB gravity.
Furthermore, since only the second term on the right

hand side of Eq. (29) contributes to the dynamics, it
follows that the field equations are (approximately) sym-
metric under the transformation

	 ! �	; � ! ��: (30)

Taking advantage of this symmetry, we present results only
for the case 	> 0. The solutions for 	< 0 can be (ap-
proximately) obtained by simply inverting the sign of the
scalar field while leaving other physical quantities (such as
the mass, the radius or the moment of inertia) unchanged.
This argument is confirmed by a numerical integration of
the field equations. We have explicitly checked that the
results shown in Figs. 1–3 differ by only 0.1% or less from
the corresponding quantities computed when 	< 0.
We note that, in the small 	 limit, black hole solutions

can be found analytically [50] and they share the same
symmetry (30), which is exact in this case. However,

1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

c 1015g cm3

M
M

GR
2 1, 10 M 2

2 1, 20 M 2

2 1, 50 M 2

2 2, 10 M 2

2 2, 20 M 2

2 2, 50 M 2

2 4, 10 M 2

2 4, 20 M 2

2 4, 50 M 2

9 10 11 12 13 14

0.5

1.0

1.5

2.0

2.5

R km

M
M

1 2 3 4 5

0.05

0.10

0.15

0.20

c 1015g cm3

m
M

1

FIG. 1 (color online). Compact star models in EDGB gravity for different values of the parameters 	 and 
, using the APR EOS. In
the bottom right panel we show the recent observation of a neutron star with M � 2M� and a possible future observation of the
moment of inertia confirming general relativity within 10% [82]. Curves terminate when the condition (31) is not fulfilled (cf. also the
exclusion plot in Fig. 5).
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FIG. 2 (color online). Compact star models in EDGB gravity for different values of the parameters 	 and 
, using the FPS EOS.
Curves terminate when the condition (31) is not fulfilled (cf. also the exclusion plot in Fig. 5).
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FIG. 3 (color online). Compact star models in EDGB gravity for different values of the parameters 	 and 
, using a causal EOS.
Curves terminate when the condition (31) is not fulfilled (cf. also the exclusion plot in Fig. 5).
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numerical black hole solutions found for generic values of
	 may be coupled to a large scalar field (cf. Table I in
Ref. [48]), so that the expansion (29) does not hold and the
degeneracy between 	 and�	 is broken. As we discussed
above, this is not the case for neutron stars, for which the
scalar field is typically small.

It is clear from Figs. 1–3 that, regardless of the EOS and
for any value of 	, the coupling to the dilaton tends to
reduce the importance of relativistic effects. Indeed, as
shown in Fig. 4, the maximum gravitational mass Mmax

monotonically decreases as a function of the product	
 of
the EDGB coupling parameters. Thus in EDGB gravity (as
well as in general relativity) soft EOS models, like FPS,
should be ruled out by observations of high-mass neutron
stars. This is similar to what happens in gravitational-
aether theory [66] and in Einstein-aether theory [61].

For small values of the product 	
, the maximum mass
in Fig. 4 corresponds to a local maximum in the mass-
density relation (cf. the upper left panels of Figs. 1–3). In
general relativity these local maxima (or, equivalently,
inversion points in the mass-radius diagram) correspond
to marginally stable equilibrium configurations, and solu-
tions to the right of the first maximum are unstable to radial
perturbations (see e.g. [2]). We conjecture that the same
property should hold also for extended scalar-tensor theo-
ries. This was proved for particular self-gravitating con-
figurations involving scalar fields [29,80,81], but a more
detailed stability analysis would be desirable (see also the
discussion in [32]). In EDGB theory, spherically symmet-
ric solutions can be constructed only up to a maximum
central density �max

c ð	;
Þ, for reasons explained below:
see, in particular, the discussion around Eq. (31). For large

	
 this maximum central density is such that the first local
maximum in the mass-density curve is never reached. In
Fig. 4, all values to the left of the solid circles correspond to
a maximum mass obtained from the radial stability crite-
rion. Values to the right of the solid circles correspond
instead to the massMmax obtained at the critical value of �c

beyond which we cannot find spherically symmetric
perfect-fluid solutions anymore.

Constraints on the EDGB couplings

In the near future, observations of double pulsars
may provide measurements of the moment of inertia to
an accuracy of 
10% [82] (but see Ref. [83] for some
criticism). Furthermore, precise observations of the mass-
radius relation could be obtained from thermonuclear
X-ray burst [84,85]. These observations could be used in
the context of a Bayesian model-selection framework to
place strong constraints on EDGB gravity and, more gen-
erally, to remove the degeneracy between different EOS
models and different proposed modifications of general
relativity.
Nevertheless, even without assuming any particular

EOS, we can set rather stringent theoretical constraints
on the EDGB parameters. Indeed, as shown in Figs. 1–3,
depending on 	 and 
, there is a maximum value of the
central density �c, above which no compact star models
can be constructed. For a given central density, the critical
value of 	
 can be computed analytically in the small �
limit, as follows. We first compute the series expansion
(15) up to Oðr2Þ. The resulting expressions are not very
illuminating, but in general the series coefficients contain
square roots, whose argument must be positive to ensure
the existence of physical (real-valued) solutions. When
�c 	 1, by imposing this ‘‘reality condition’’ we find

	2
2 <
1

7776�P4
c�c

�
128�3

c � 27P2
c�c þ 288Pc�

2
c þ 54P3

c

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3Pc þ�cÞð3Pc � 8�cÞ2ð3Pc þ 4�cÞ3

q �
:

(31)

For a given value of 	
, the condition above implies that a
maximum central density, �max

c , exists.
Equation (31) is in good agreement with numerical

results, as shown in Fig. 5. This figure is basically an
exclusion plot: it shows the maximum allowed values of
	
 as a function of the maximum central density �max

c for
different EOS models and nonrotating stars. For small
values of 	
 (i.e., on the right of the figure), a local
maximum in the mass-density relation is reached and the
maximum central density �max

c corresponds to the local
maximum of Mð�cÞ, i.e. to the first inversion point in the
mass-radius relation. If our stability conjecture is correct,
no stable static configurations can be constructed in the
region above these lines. The local maximum is never

FIG. 4 (color online). Maximum mass as a function of the
product 	
 of the EDGB coupling parameters, for different EOS
models and in the nonrotating case (cf. the main text for details).
To the left of the filled circle, this maximum mass corresponds to
the radial stability criterion; to the right, it corresponds to the
maximum central density for which we can construct static
equilibrium models. The recent measurement [12] of a neutron
star with M � 2M� is marked by a horizontal line. Only the
combination 	
 is bounded, due to the approximation � 	 1
(cf. Eq. (29)).
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reached to the left of the points marked by filled circles. In
this case, the Mð�cÞ curves terminate before reaching a
local maximum, and the maximum central density �max

c is
simply the point where the equilibrium sequence termi-
nates. Dotted lines correspond to the analytical prediction
(31), which agrees very well with the numerical value at
which we cannot compute equilibrium models anymore.
The bottom line is that no static models (either stable or
unstable) can be constructed in the shadowed regions
above these exclusion lines.

The quadratic EDGB corrections are expected to be
stronger in high-density (high-curvature) regions, so the
most stringent bounds should come from the stiffest EOS
models. Indeed, among the models we consider, the stron-
gest and weakest constraints come from the Causal EOS
and from the FPS EOS, respectively.

The bounds on the central density can be translated into
constraints on the maximum mass, which is an observable
quantity. As shown in Fig. 4, for a given EOS the maximum
mass is a monotonically decreasing function of 	
.

The requirement that the maximum mass Mmax sup-
ported by the theory should be larger than some trusted
observed value, can place a direct upper bound on 	
. In
Table III, we considerMmax * 1:4M�,Mmax * 1:7M� and
Mmax * 1:93M� (which is the lower bound of the recent
observation in [12]) and we translate them into upper
bounds on 	
 using the data plotted in Fig. 4. The
Causal EOS models predict an unrealistically large maxi-
mum mass, so all neutron stars withMmax & 2:8M� would
place very mild constraints on alternative theories, and we
omit this EOS from Table III.

For the ‘‘standard’’ value of the EDGB coupling

(
 ¼ ffiffiffi
2

p
), if we consider the APR EOS as our ‘‘best

candidate’’ EOS for a (nonexotic) neutron star interior
within general relativity, the results in Table III imply
	 & 23:8M2�.
This bound should be compared to the bound on 	

that comes from requiring the existence of black hole

solutions in the theory [48,53]. For 
 ¼ ffiffiffi
2

p
, this require-

ment implies

	

M2�
& 70

�
MBH

10M�

�
2
; (32)

where MBH is the black hole mass. The observation of
black holes withMBH � 8M� (such as Cyg X1) constrains
	 & 44M2�. The constraints on 	 coming from observa-
tions of compact stars (cf. Table III) are already smaller by
a factor
2 than those coming from the existence of stellar
black holes, and they could become even more stringent in
the near future.
We may hope that future observations of the moment of

inertia could place even tighter bounds on the theory.
Unfortunately this seems unlikely. To understand why,
we can either look at the bottom right panel of Fig. 1 or
at Fig. 6, where we show the moment of inertia for the APR
EOS (normalized by its value in general relativity) as a
function of 	
 for fixed values of the stellar mass. As it
turns out, for values of 	
 smaller than those listed in
Table III, the moment of inertia can deviate from the
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FIG. 5 (color online). Exclusion plot for the parameters 	
 in
the small �c limit and for nonrotating models. Only the combi-
nation 	
 is bounded, due to the approximation � 	 1 (cf.
Eq. (29)). In the region above the dotted lines no compact star
solution can be constructed (cf. Eq. (31)). In the region above the
thick lines (marked as ‘‘RI,’’ Radial Instability), static configu-
rations are unstable against radial perturbations (cf. the main text
for details). Markers indicate the maximum central density of
radially stable stars in general relativity.

TABLE III. Constraints on the EDGB parameters from an
observation of a nonrotating neutron star with mass M. For the
values of M we consider, constraints using the Causal EOS
would allow values of 	
 larger than 100M2�.

EOS Mmax * 1:4M� Mmax * 1:7M� Mmax * 1:93M�
FPS 	
 & 30:1M2� 	
 & 13:9M2� no models

APR 	
 & 50:3M2� 	
 & 41:9M2� 	
 & 33:6M2�
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FIG. 6 (color online). Moment of inertia normalized by its
value in general relativity for the APR EOS at fixed values of
the gravitational mass. Curves terminate at the bounds listed in
Table III (corresponding to the filled circles). The deviations
from general relativity are always smaller than 5%.
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general relativistic value by 5% at most. The precision of
future observations is expected to be 
10% in optimistic
scenarios [82]. Therefore, at least for EDGB gravity, the
most stringent constraints on 	
 should come from mass
measurements, rather than from measurements of the mo-
ment of inertia.

Let us mention, for completeness, that we also studied
the possibility of the formation of an ergoregion for slowly
rotating stars in EDGB gravity. For our ‘‘realistic’’ EOS
models the condition (26) is never met, and therefore no
ergoregion can form outside the star. This is because, for
phenomenologically viable parameters, the relativistic ef-
fects in this particular theory are actually smaller than in
general relativity. We can anticipate that other sectors of
the general theory described by the Lagrangian (7) could
enhance relativistic effects and favor the existence of the
ergoregion, with important implication for the stability of
these solutions [73]. A more detailed analysis will be
presented elsewhere.

VI. CONCLUSIONS AND OUTLOOK

Neutron stars are very promising laboratories to con-
strain strong-curvature corrections to general relativity.
New proposed theories of gravity are usually tested against
weak field observations and cosmological data, or by
studying the existence and nature of black hole solutions.
Our main goal in this paper was to develop a formalism for
a comprehensive study of stellar structure in a broad class
of alternatives to Einstein’s general relativity. We focused
on a class of theories (‘‘extended scalar-tensor theories’’)
where quadratic curvature corrections, nonminimal cou-
plings and parity-violating terms are coupled to standard
gravity through a single scalar field. Particular cases of this
model include, but are not limited to, quadratic gravity,
EDGB gravity, generic scalar-tensor theories and fðRÞ
theories (via their correspondence with scalar-tensor theo-
ries). We wrote down the field equations for static and
spherically symmetric perfect-fluid stars in the general
case, as well as the leading-order corrections in a slow-
rotation expansion. For a given model and a given central
density, the formalism allows us to obtain the mass, radius,
binding energy and moment of inertia of compact stars. In

future work we will show how these theoretical predictions
can be compared to observations in order to constrain the
parameter space of ‘‘extended scalar-tensor’’ and other
alternative theories.
As a first application, in the second part of the paper we

studied stellar structure in EDGB gravity. We found that, in
general, the GB coupling tends to reduce relativistic effects
in compact stars. We also showed that there is an exclusion
region in the two-dimensional plane of the GB coupling
parameters beyond which no compact star solutions can be
constructed: cf. Eq. (31), Fig. 4 and 5.
Stability requirements for static models and future

observational data could constrain the theory even fur-
ther. The existence of high-mass neutron stars put the
most stringent constraints on EDGB gravity (cf.
Table III). As it turns out, these bounds are tighter (by
a factor of a few) than the bound coming from the
existence of black hole solutions in EDGB theory, given
in Eq. (32). They are also tighter than the bounds that
could come from future precision measurements of the
moment of inertia.
In this sense, the existence of large-mass neutron stars

provides the best constraint on the EDGB coupling pa-
rameters obtained so far. Further explorations of stellar
structure and better observational data on the mass-radius
relation (see e.g. [84,85]) have the potential to exclude a
larger region of the parameter space of alternative theories.
There is of course the possibility that theoretical and ob-
servational work may give us hints on how to modify
general relativity to make it compatible with the standard
model, which would be even more exciting.
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