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We perform fully general relativistic simulations to address the inspiral and merger of binary white

dwarf–neutron stars. The initial binary is in a circular orbit at the Roche critical separation. The goal is to

determine the ultimate fate of such systems. We focus on binaries whose total mass exceeds the maximum

mass (Mmax) a cold, degenerate equation of state can support against gravitational collapse. The time and

length scales span many orders of magnitude, making fully general relativistic hydrodynamic simulations

computationally prohibitive. For this reason, we model the white dwarf as a ‘‘pseudo—white dwarf’’ as in

our binary white dwarf–neutron star (WDNS) head-on collisions study [V. Paschalidis, Z. Etienne, Y. T.

Liu, and S. L. Shapiro, Phys. Rev. D 83, 064002 (2011)]. Our general relativistic hydrodynamic

simulations of a pseudo-WDNS (pWDNS) system with a 0:98M� white dwarf and a 1:4M� neutron

star show that the merger remnant is a spinning Thorne-Zytkow-like object (TZlO) surrounded by a

massive disk. The final total rest mass exceeds Mmax, but the remnant does not collapse promptly. To

assess whether the object will ultimately collapse after cooling, we introduce radiative thermal cooling.

We first apply our cooling algorithm to TZlOs formed in pWDNS head-on collisions, and show that these

objects collapse and form black holes on the cooling time scale, as expected. However, when we cool the

spinning TZlO formed in the merger of a circular-orbit pWDNS binary, the remnant does not collapse,

demonstrating that differential rotational support is sufficient to prevent collapse. Given that the final total

mass exceeds Mmax for our cold equation of state, magnetic fields and/or viscosity may redistribute

angular momentum, ultimately leading to delayed collapse to a black hole. We infer that the merger of

realistic massive WDNS binaries likely will lead to the formation of spinning TZlOs that undergo delayed

collapse.
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I. INTRODUCTION

During inspiral and merger, compact binaries emit a
large flux of gravitational waves (GWs), making them
among the most promising sources for GWs detectable
by ground-based laser interferometers like LIGO [1,2],
VIRGO [3,4], GEO [5], TAMA [6,7] and AIGO [8], as
well as by proposed space-based interferometers such as
LISA [9] and DECIGO [10]. Extracting physical informa-
tion about these binaries from their GWs may shed light on
determining their ultimate fate, but requires careful mod-
eling of these systems in full general relativity (see [11] for
review and references therein). Most effort to date has
focused on modeling black hole–black hole (BHBH) bi-
naries (see [12] and references therein), and neutron star–
neutron star (NSNS) binaries (see [13] for a review), with
some recent work on black hole–neutron star (BHNS)
binaries in full general relativity (GR)[14–32].

As a follow-up to our investigation of binary white
dwarf–neutron star (WDNS) head-on collisions [33], in
this work we perform fully general relativistic simulations
of circular-orbit WDNS binaries through inspiral and
merger. Throughout we call this the ‘‘inspiral case’’ to
distinguish it from the ‘‘head-on’’ collision case. WDNS
binaries are promising sources of low-frequency GWs (for
LISA and DECIGO) and, as we argued in [34], possibly

also high-frequency GWs (for LIGO, VIRGO, GEO,
TAMA and AIGO), if the remnant ultimately collapses to
a black hole.
Like neutron star–neutron star binaries, WDNS binaries

are known to exist. In [34] we compiled tables of 20
observed WDNS binaries and their measured orbital prop-
erties. The NS masses in these systems range between
1:26M� and 2:08M�, and their distribution is centered
around 1:5M�. On the other hand, the WD masses in these
systems range between 0:125M� and 1:3M�, and their
distribution is centered around 0:6M�. Eighteen of these
observed WDNS binaries have total mass greater than
1:65M�, 8 of which have a WD component with mass
greater than 0:8M�, and 5 have total mass greater than
2:2M�. This is interesting because the expected Tolman-
Oppenheimer-Volkoff (TOV) limiting mass for a cold,
degenerate gas must be larger than 1:97M� [35] and may
reach 2:2M� [36–44], depending on the equation of state
(EOS). One of the main goals of this work is to determine
whether a WDNS merger remnant will undergo prompt
collapse to a black hole.
Population synthesis calculations [45,46] show that

there are about 2:2� 106 WDNS binaries in our Galaxy,
and that they have a merger rate between 10�6 yr�1 and
1:4� 10�4 yr�1. Furthermore, these studies find that after
a year of integration, LISA-like interferometers should be

PHYSICAL REVIEW D 84, 104032 (2011)

1550-7998=2011=84(10)=104032(24) 104032-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.83.064002
http://dx.doi.org/10.1103/PhysRevD.84.104032


able to detect 1–40 WDNS premerger binaries. Recent
work by Thompson, Kistler, and Stanek [47] suggests
that the lower limit on the merger rate of binary WDNSs
in the Milky Way, at 95% confidence, is 2:5� 10�5 yr�1.
Thompson, Kistler, and Stanek also suggest that the merger
rate in the local universe is �0:5–1� 104 Gpc�3 yr�1.
Therefore, ignoring some uncertainties, all recent
population synthesis calculations suggest that LISA-like
projects should be able to detect a few WDNS premergers
per year.

A. Previous WDNS work

In [34] we focused on possible evolutionary scenarios
for circular WDNS binaries that have inspiraled suffi-
ciently close that they reach the termination point for
equilibrium configurations. This is the Roche limit for
WDNSs, at which point the WD fills its Roche lobe and
may experience one of at least two possible fates: (i) stable
mass transfer (SMT) from the WD across the inner
Lagrange point onto the NS, or (ii) tidal disruption of the
WD by the NS via unstable mass transfer (UMT).

Note that once an UMT binary reaches the critical Roche
separation, further inspiral and merger is governed by tidal
effects and hydrodynamical interactions and not GW
emission.

We also studied key parameters that determine whether a
system will undergo SMT or UMT and found that, for a
given NS mass, there exists a critical mass ratio qcrit � 0:5
that separates the UMTand SMT regimes. If the mass ratio
q ¼ MWD=MNS of a WDNS system is such that q > qcrit,
theWD quickly overfills its Roche lobe, and the binary will
ultimately undergo UMT. In the opposite case, q < qcrit,
the system will undergo SMT. We showed that a quasista-
tionary treatment is adequate to follow the evolution of an
SMT binary during this secular phase and calculated the
gravitational waveforms. We also pointed out that WDNS
observations suggest that there are known candidates re-
siding in both regimes.

In the case of tidal disruption (UMT), by contrast, the
system will evolve on a hydrodynamical (orbital) time
scale. In this scenario the NS may plunge into the WD
and spiral into the center of the star, forming a quasiequili-
brium configuration that resembles a Thorne-Zytkow ob-
ject [48]; alternatively, the NS may be the receptacle of
massive debris from the disrupted WD.

The ultimate fate of the merged WDNS depends on
(1) the initial mass of the cold progenitor stars, (2) the
degree of mass and angular momentum loss during theWD
disruption and binary merger phases, (3) the angular mo-
mentum profile of the WDNS remnant, and (4) the extent
to which disrupted debris is heated by shocks and/or nu-
clear reactions as it settles onto the NS and forms an
extended, massive mantle. These are issues that require a
hydrodynamic simulation to resolve. Note that Newtonian
work on binaries with a WD component has been

performed analytically in [34,49–53] and via Newtonian
hydrodynamic simulations in [54–59]. However, ascertain-
ing whether or not the neutron star ultimately undergoes
catastrophic collapse (either prompt or delayed) to a black
hole requires that such a simulation be performed in full
general relativity. In fact, even the final fate of the NS in the
alternative scenario in which there is a long epoch of SMT
may also lead to catastrophic collapse, if the neutron star
mass is close to the neutron star maximum mass. This
scenario too will require a general relativistic hydrody-
namic simulation to track.
In [33] we employed the Illinois adaptive mesh refine-

ment (AMR) relativistic hydrodynamics code [23,60] to
perform the first simulations of these systems in full GR. In
particular, we studied the head-on collision from rest at
large separation of a massiveWD and a NS. We focused on
compact objects whose total mass exceeds the maximum
mass supportable by a cold EOS in order to determine the
outcome of such collisions.
The vast range of time and length scales involved in the

WDNS problem make fully general relativistic simulations
extremely challenging. In [33] we demonstrated that the
length scales span 4 orders of magnitude, as measured in
neutron star radii, and that the associated time scales span 6
orders of magnitude in M, the total system mass. Current
numerical relativity techniques and available computa-
tional resources make such simulations prohibitive. For
this reason, we tackled this problem using a different
strategy.
In particular, we constructed a six-parameter piecewise

polytropic EOS which mimics realistic NS EOSs while, at
the same time, scales down the size of theWD.We call these
scaled-downWDs ‘‘pseudo-WDs (pWDs).’’We chose all of
the piecewise EOSs in such a way that the maximum NS
mass is 1:8M� [61], and themaximumWDmass is 1:43M�,
i.e., the Chandrasekhar mass. Furthermore, we made sure
these EOSs preserve the qualitative shape of the central
density-mass curves as well as the number of stable and
unstable NS and WD branches (see Figs. 1 and 2 in [33]).
Moreover, the scaling is performed so that all the length-
scale and time-scale inequalities of the realistic problem are
left unchanged. For a given set of EOS parameters, a
realistic WD has a counterpart pWD which has the same
mass but is smaller in size. As a result, for every realistic
WDNS system, we can construct a pseudo-WDNS
(pWDNS) counterpart which involves the same (realistic)
NS and the pWD counterpart of the WD.
Using pWDs we performed a sequence of head-on

simulations in which the EOS is changed so that the
pWDs have the same mass (0:98M�) but decreasing com-
pactions, while the compaction and mass of the NS in-
volved remains practically unchanged. More precisely,
while keeping the masses of the binary components and
the NS radius fixed, the pWD compaction was modified so
that the pWD:NS radius ratio varied between 5:1 and 20:1.
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We then scaled the results of our simulations to predict the
outcome in the realistic case: 500:1.

In addition to studying the effects of the pWD compac-
tion, we also studied the effects of NS mass. We considered
NSs with masses 1:4M�, 1:5M�, and 1:6M�.

All head-on collision simulations that we performed
showed that after the collision 14%–18% of the initial total
rest mass escapes to infinity. In all cases, the remnant rest
mass exceeded the maximum rest mass that our cold EOS
can support (1:92M�), and no case led to prompt collapse
to a black hole. This outcome arises because the final
configurations become hot, due to shock heating. All our
cases settle into a spherical quasiequilibrium configuration
consisting of a cold NS core surrounded by a hot mantle.
Hence, all remnants are Thorne-Zytkow-like objects
(TZlOs). Scaling our results to realistic WD compactions,
we predict that a realistic head-on collision will form a
quasiequilibrium TZlO.

Although the head-on collision simulations appear to
lead to a consistent result (the formation of a TZlO), these
results cannot be used to predict the final fate of WDNS
systems in circular orbit. On the one hand, one might
expect that the remnant in the inspiraling case will collapse
to a black hole, because shock heating is not likely to be as
intense as in the head-on case. On the other hand, the large
amount of angular momentum in the inspiraling binary
case may work to prevent prompt collapse. Therefore, to
predict whether the merged WDNS remnant will collapse,
promptly or following cooling, we need to perform fully
general relativistic simulations of WDNS binaries through
inspiral and merger. Such mergers may also give rise to
gamma ray bursts [62,63].

B. Goals and objectives

The purpose of the current work is threefold:
(a) We simulate the late inspiral and merger of a WDNS

system consisting of a 1:4M� NS and a 0:98M� WD
initially in circular orbit and at the Roche limit. As
in our head-on collision studies, we employ the
pWD approximation to make the computations fea-
sible [64]. The pWD approximation is useful for
predicting the ultimate fate of a realistic WDNS
merger using scaling. In particular, the collision
velocity (vc) and the preshocked WD sound speed

cs both scale as�ðM=RWDÞ1=2. This implies that the
Mach number (M ¼ vc=cs) is invariant under scal-
ing of RWD and so is the degree of shock heating.
The thermal energy, as well as the rotational kinetic
energy (T) and the gravitational potential energy
(W), all scale as �M2=RWD, when the binary
merges. Thus, T=jWj is also invariant under scaling
of RWD. These considerations simply mean that with
respect to gravity the relative importance of thermal
and rotational support in aWDNSmerger remnant is
approximately invariant, when the masses of the

binary components are fixed and the only quantity
that changes is the WD radius. As a consequence,
the results obtained when adopting pWDNS systems
can be scaled up to realistic WDNS systems. Note
that our compaction study in [33] confirms the above
scaling with the Mach number.

(b) We introduce a radiative cooling prescription and
modify our adiabatic simulations by allowing for
cooling to determine whether the merger remnant
will collapse without thermal support, if it fails to
collapse promptly. Otherwise, angular momentum
provides sufficient support to prevent collapse.

(c) We allow cooling to occur in the TZlOs formed in
our WDNS head-on collision simulations [33] to
confirm that these remnants collapse to a black
hole when the excess thermal energy is radiated
away. In other words, we demonstrate that it is
thermal pressure alone that prevents these objects
from undergoing prompt collapse, since angular
momentum support is completely absent in head-
on collisions. Delayed collapse occurs on a cooling
time scale in all cases, providing a consistency
check on our cooling implementation.

Our pWDNS merger calculations show that the inspiral
remnant is a spinning TZlO which is surrounded by a
massive, extended, hot disk. In contrast to our head-on
collisions, we do not find any outflows in the inspiraling
case. Therefore, the final total mass is greater than the
maximum mass supportable by our cold EOS and many
nuclear EOSs. However, the remnant does not collapse
promptly to a BH. We find that the remnant is both ther-
mally and centrifugally supported. To determine whether
centrifugal forces alone can support the remnant we incor-
porate cooling and find that the object does not collapse to
a black hole. Therefore, the extra support provided by
rotation is sufficient for preventing the collapse.
Even though the TZlO does not collapse after cooling,

we expect delayed collapse ultimately because the final
total rest mass (� 2:5M�) is larger than the maximum
possible mass supportable by our cold EOS (and many
nuclear EOSs), even allowing for uniform rotation. (The
maximum gravitational mass of a uniformly rotating star
with our adopted EOS is ’ 2:1M�.) We expect that col-
lapse to a BH will take place after viscosity or magnetic
fields redistribute the angular momentum, as in the case of
a hypermassive neutron star [65–67]. This conclusion will
be true in the case of realistic WDNS mergers, unless the
true nuclear EOS supports a uniformly rotating star with a
rest mass exceeding the remnant mass. Many viable EOSs
do not support rest masses as large as 2:5M� [37], the
remnant rest mass in our simulations.
This paper is organized as follows. In Sec. II the pWD

approximation and the EOS adopted in our simulations are
briefly reviewed. Section III outlines the initial data gen-
eration technique. Section IV summarizes the methods
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used for evolving the gravitational and matter fields.
Section V introduces our radiative cooling formalism,
which is then applied to the TZlO remnants from our
pWDNS head-on collision simulations in Sec. VI. We
present the results of our fully relativistic hydrodynamic
simulations of the binary pWDNS late inspiral and merger
in Sec. VII, and turn on cooling in Sec. VII C. In Sec. VIII
we discuss possible effects of nuclear reactions in realistic
WDNS mergers and give estimates of realistic cooling and
angular momentum redistribution time scales. Section IX
concludes with a summary of the main findings.
Throughout this work, geometrized units are adopted,
where G ¼ c ¼ 1, unless otherwise specified.

II. EQUATION OF STATE

We employ the following 6-parameter piecewise poly-
tropic cold EOS:

P

�0
¼

8><
>:
�1�

1=n1
0 ; �0 � �1

�2�
1=n2
0 ; �1 <�0 � �2

�3�
1=n3
0 ; �0 >�2;

(1)

where P is the pressure, �0 is the rest-mass density, and �1,
�2, �3, n1, n2, n3, �1, �2 are the parameters of the EOS.
The parameters in Eq. (1) are 8 in number, but continuity
requires that the following conditions be true:

�1 ¼ �2�
1=n2�1=n1
1 ; �2 ¼ �3�

1=n3�1=n2
2 : (2)

As a result, the adopted EOS has 6 free parameters: �3, n1,
n2, n3, �1, and �2.

Because of its multiple parameters, this EOS gives us the
freedom to capture the same characteristic curves and
turning points on a TOV mass-central density plot as
for a realistic cold, degenerate EOS (see [68]), as shown
in Fig. 1 in [33]. The EOS exhibits both stable
(dM=d�0;c > 0) and unstable (dM=d�0;c < 0) branches

for both WDs and NSs, as in the realistic case.
Furthermore, this EOS allows us to adjust the size of a

pWD of any given mass, thereby shifting the pWD branch
to smaller radii (see Fig. 2 in [33]), while keeping the NS
branch approximately unchanged. For more details about
our EOS and pWDs we refer the interested reader to [33].

In this work the EOS parameters correspond to the 10:1
EOS we considered in [33]: �3 ¼ 4993, �1 ¼ 1:515, �2 ¼
2:969, �3¼0:714, logð�1=�nucÞ¼�2:268, logð�2=�nucÞ¼
0:208, where all values are in geometrized units and
�i ¼ 1þ 1=ni, �nuc ¼ 1:485� 10�4 km�2. These pa-
rameters are chosen such that the ratio of the isotropic
radius of a TOV 0:98M� pWD to that of a TOV 1:5M�
NS is 10:1. In addition, the EOS has been constructed so
that the maximum gravitational mass of a NS is 1:8M�,
i.e., the same as that for the AP2 version of the Akmal-
Pandharipande-Ravenhall EOS [39,69], and the maximum
gravitational mass of a pWD is 1:43M�, i.e., the maximum
mass of a TOV WD obeying the Chandrasekhar EOS for
mean molecular weight �e ¼ 2.

III. INITIAL DATA

This section introduces the formalism adopted for gen-
erating valid general relativistic initial data for binary
pWDNS systems in circular orbit.

A. Gravitational field equations

The spacetime metric in the standard 3þ 1 form [70] is
written as

ds2 ¼ ��2dt2 þ �ijðdxi þ �idtÞðdxj þ �jdtÞ; (3)

where � is the lapse function, �i the shift vector, and �ij

the three-metric on spacelike hypersurfaces of constant
time t. Throughout the paper Latin indices run from 1 to
3, and Greek indices run from 0 to 3.
The three-metric �ij is then conformally decomposed as

�ij � �4fij; (4)

where � is the conformal factor and fij the conformal

metric. We adopt the standard approximation of a confor-
mally flat spacetime, so that fij ¼ �ij in Cartesian

coordinates.
We split the extrinsic curvature (Kij) into trace (K) and

trace-free parts (Aij)

Kij ¼ Aij þ 1
3�

ijK; (5)

take the initial slice to be maximal

K ¼ 0; (6)

and introduce a ‘‘conformal,’’ traceless extrinsic curvature
as

�A ij � �10Aij: (7)

Using Eqs. (4)–(7) and assuming the existence of an
approximate helical Killing vector, the Hamiltonian and
momentum constraint equations assume the form of the
conformal-thin-sandwich (CTS) equations [11]. The
Hamiltonian constraint becomes

�r 2� ¼ �1
8�

�7 �Aij
�Aij � 2��5�; (8)

where �r2 is the flat Laplacian operator associated with fij.

Here the source term � is defined as

� � n�n�T��; (9)

where n� is the normal vector to a t ¼ constant slice, and
T�� is the stress-energy tensor of the matter.

The momentum constraint yields

�r 2�i þ 1
3
�rið �rj�

jÞ ¼ 2 �Aij �rjð���6Þ þ 16���4ji;

(10)

where the source term ji is given by

j� � ���
�n�T

��: (11)
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Taking the trace of the evolution equation for Kij [see

Eq. (2.106) in [11]], imposing the maximal slicing condi-
tion Eq. (6), and combining the result with Eq. (8), we
obtain an equation for the lapse [11]

�r 2ð��Þ ¼ ��ð78��8 �Aij
�Aij þ 2��4ð�þ 2SÞÞ: (12)

Here the source term S is defined as

S � �ijTij: (13)

In all equations above

�A ij ¼ �6

2�

�
�ri�j þ �rj�i � 2

3
fij �rk�

k

�
; (14)

and �Aij ¼ fimfjn �A
mn.

Instead of solving Eq. (10) for the shift vector directly, it
is convenient to decompose �i as a sum of a vector and a
gradient (cf. [71]):

�i � Gi � 1
4
�riB: (15)

Equation (10) can then be replaced by the two equivalent
equations

�r 2Gi ¼ 2 �Aij �rjð���6Þ þ 16���4ji (16)

and

�r 2B ¼ �riG
i: (17)

Equations (8), (12), (16), and (17) form a system of 6
coupled, nonlinear elliptic equations for the 6 unknowns�,
��, Gi, and B, which must be solved iteratively. These
equations are elliptic and hence require outer boundary
conditions to be specified. We impose the same fall-off
boundary conditions as in [72], except that here we choose
the binary components to be initially lined up on the x axis
and the binary rotation axis parallel to the z axis. Table I lists
the full set of outer boundary conditions imposed in our
initial data.

B. Matter fields

As we argued in [34] the WD in a WDNS binary with
close separation likely will be tidally locked. For this
reason we focus on corotating WDNS systems only.

We assume that the matter is described by a perfect fluid
stress-energy tensor:

T�� ¼ ð�0 þ �i þ PÞu�u� þ Pg��; (18)

where g�� is the inverse of the four-metric and �0, �i, P,
u� are the rest-mass density, internal energy density, pres-
sure, and four-velocity of the fluid, respectively. For all
initial configurations, the pressure is given by the cold EOS
as specified in Eq. (1). The internal energy density can be
derived by integrating

d

�
�i

�0

�
¼ �Pd

�
1

�0

�
; (19)

and for Eq. (1) the integration yields

�i

�0
¼

8><
>:
n1�1�

1=n1
0 ; �0 � �1

n2�2�
1=n2
0 þ c2; �1 < �0 � �2

n��
1=n3
0 þ c3; �0 > �2;

(20)

where

c2 ¼ ðn1 � n2Þ�1�
1=n1
1 ; c3 ¼ c2 þ ðn2 � n3Þ�2�

1=n2
2 :

(21)

In Cartesian coordinates we choose the orbital plane of
the binary to be the z ¼ 0 plane, so that the fluid four-
velocity takes the form [11]

u� ¼ utð1;��y;�ðx� xrotÞ; 0Þ; (22)

where � is the constant orbital angular velocity and xrot is
the x coordinate of the axis of rotation. Following [72], we
introduce a vector

	� ¼ ð0;�y; ðx� xrotÞÞ; (23)

and rewrite the four-velocity as

u� ¼ utð�n� þ�	� þ ��Þ: (24)

The source term � in Eq. (9) can then be written

� ¼ �0 þ �i þ P

1� v2
� P; (25)

where v is the magnitude of the three-velocity of the fluid.
Using u�u� � �1, it can be shown that v2 is given by

v2 ¼ �4

�2
½ð�y� �xÞ2 þ ð�ðx� xrotÞ þ �yÞ2 þ ð�zÞ2�:

(26)

The momentum source ji in Eq. (11) becomes

ji ¼ ð�0 þ �i þ PÞ
�

ð�	i þ �iÞ
1� v2

; (27)

and S in Eq. (13) is given by

S ¼ ð�0 þ �i þ PÞ v2

1� v2
þ 3P: (28)

TABLE I. Outer boundary conditions imposed on the CTS
variables when generating WDNS initial data.

Variable Fall-off condition

�� 1 �1=r
�� 1 �1=r
Gx �y=r3

Gy �x=r3

Gz �xyz=r7

B �xy=r3
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C. Computational methods

We solve the nonlinear elliptic equations (8), (12), (16),
and (17) using a fixed-mesh-refinement (FMR) finite dif-
ference code we developed, which is based on the Portable,
Extensible Toolkit for Scientific Computation (PETSc)
library [73–75]. A full description of our code may be
found in [33]. Here we summarize the basic features.

The grid structure used in our FMR elliptic code is a
multilevel set of properly nested, uniform grids. We use
standard cell-centered, second-order accurate finite differ-
ence stencils for the Laplacian operator and the derivatives
of the variables, using first-order interpolation across the
refinement level boundaries when necessary. We calculate
the solution across the entire grid, and only on leaf cells
(i.e., cells within which there exist no higher resolution
cells). In [33] we performed a series of tests involving
single NSs, and we demonstrated that the code converges
to the expected solutions at second order.

Given the matter distribution, �, and xrot we solve the
CTS equations iteratively, addressing the nonlinearity of
Eq. (8) by performing Newton-Raphson iterations, until the
residuals of all six equations become smaller than some set
tolerance (usually set to 10�15).

We obtain theWD rest-mass density distribution,�, and
xrot at the Roche limit for equilibrium, corotating binary
WDNSs in circular orbit obeying our cold EOS using the
unigrid Newtonian code we developed and tested in [34].
At the Roche limit, the binary separation is large enough so
that the tidal effects on the NS are negligible, and hence the
NS will be spherical to a high degree and pointlike from the
point of view of the WD. Thus, in the Newtonian code we
model the NS as a point mass and we self-consistently
solve for the WD rest-mass density distribution via the
integrated Euler equation. We use the Newtonian equations
for this step, because it is computationally simple and fast.
Also, the large separation at the Roche limit ensures that
the WD and NS interaction lies in the Newtonian regime,
so that our initial configuration is nearly in equilibrium.

After the WD rest-mass density distribution has been
calculated, the point-mass NS is replaced by a TOV NS
with gravitational mass equal to that of the point-mass NS,
centered at the position of the point mass. For simplicity,
we model the NS as corotational because there is no
essential difference between an irrotational and a corota-
tional NS at such large separations. The spin of a corotating
NS is very small. To understand this, consider the ratio of
the angular velocity of the corotating NS (�cor) to that at
the mass-shedding (�ms) limit:

�cor

�ms

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Mtotal

MNS

s �
RNS

AR

�
3=2 � 1:3

�
RNS

AR

�
3=2

; (29)

where AR is the Roche limit separation. For the typical
system we consider RNS=AR � RNS=3RWD. For realistic
massive WDs RWD=RNS � 500, and for pWDs
RpWD=RNS � 10. Thus, �cor=�ms � 10�5 for realistic

WDNSs and �cor=�ms � 10�2 for pWDNSs. Therefore,
the corotation spin the NS acquires is very small and has no
physical significance.
Having prescribed the NS and pWD rest-mass density,

using second-order polynomial interpolation, we interpo-
late the NS and pWD matter distribution on the grid of our
FMR elliptic code and solve the CTS equations.

IV. EVOLUTION OF WDNS SYSTEMS

A. Basic equations

The formulation and numerical scheme for our simula-
tions are the same as those reported in [22,33,60,76], to
which the reader may refer for details. Here we introduce
our notation and summarize our method.
We use the 3þ 1 formulation of general relativity, in

which the metric is decomposed as in Eq. (3). In this
formalism, the fundamental dynamical variables for
the metric evolution are the spatial three-metric �ij and

extrinsic curvature Kij. The Baumgarte-Shapiro-Shibata-

Nakamura (BSSN) formalism [11,77,78] is adopted. The
BSSN evolution variables are the conformal exponent
 �
lnð�Þ=12, the conformal 3-metric ~�ij ¼ e�4
�ij, three

auxiliary functions ~�i � �~�ij
;j, the trace of the extrinsic

curvature K, and the trace-free part of the conformal

extrinsic curvature ~Aij � e�4
ðKij � �ijK=3Þ. Here � ¼
detð�ijÞ. The full spacetime metric g�� is related to the

three-metric ��� by ��� ¼ g�� þ n�n�, where the future-

directed, timelike unit vector n� normal to the time slice
can be written in terms of the lapse � and shift �i as n� ¼
��1ð1;��iÞ. The evolution equations of these BSSN var-
iables are given by Eqs. (9)–(13) in [22].
We adopt standard puncture gauge conditions: an advec-

tive ‘‘1þ log’’ slicing condition for the lapse and a
‘‘Gamma-freezing’’ condition for the shift [79]. Thus, we
have

@0� ¼ �2�K; (30)

@0�
i ¼ ð3=4ÞBi; (31)

@0B
i ¼ @0~�

i � �Bi; (32)

where @0 � @t � �j@j. We set the � parameter to

0:01 km�1 for all simulations presented in this work.
The fundamental matter variables are the rest-mass den-

sity �0, specific internal energy , pressure P, and four-
velocity u�. We write the stress-energy tensor as

T�� ¼ �0hu�u� þ Pg��; (33)

where h ¼ 1þ þ P=�0 is the specific enthalpy and  is
the specific internal energy. In our numerical implementa-
tion of the hydrodynamics equations, we evolve the fol-
lowing ‘‘conservative’’ variables:

�	 � � ffiffiffiffi
�

p
�0n�u

�; (34)
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~S i � � ffiffiffiffi
�

p
T��n

���
i; (35)

~� � ffiffiffiffi
�

p
T��n

�n� � �	: (36)

The evolution equations for these variables are given by
Eqs. (27)–(29) in [60].

The EOS we adopt for the evolution has both a thermal
and cold contribution, and can therefore be written

P ¼ Pth þ Pcold; (37)

where Pcold is given by Eq. (1) and the thermal pressure is
given by

Pth ¼ ð�th � 1Þ�0ð� coldÞ; (38)

where

cold ¼ �
Z

Pcolddð1=�0Þ: (39)

We set �th ¼ 1:66 ( ’ 5=3) in all our simulations. That is,
we set �th to the �1 exponent of the 10:1 EOS, appropriate
either for nonrelativistic cold, degenerate electrons or
(shock) heated, ideal nondegenerate baryons. Equation
(37) reduces to our piecewise polytropic law Eq. (1) for
the initial (cold) NS and pWD matter.

B. Evolution of the metric and hydrodynamics

We evolve the BSSN equations using fourth-order ac-
curate, cell-centered finite-differencing stencils, except on
shift advection terms, where fourth-order accurate upwind
stencils are applied. We apply Sommerfeld outgoing wave
boundary conditions on all BSSN fields, as in [22]. Our
code is embedded in the Cactus parallelization framework
[80], and our fourth-order Runge-Kutta time stepping is
managed by the MOL (Method of Lines) thorn, with the
Courant-Friedrichs-Lewy number set to 0.45 in all
pWDNS simulations. We use the Carpet [81] infrastructure
to implement the moving-box adaptive mesh refinement. In
all AMR simulations presented here, we use second-order
temporal prolongation, coupled with fifth-order spatial
prolongation, and impose equatorial symmetry to reduce
the computational cost.

We write the general relativistic hydrodynamics equa-
tions in conservative form. They are evolved via a high-
resolution shock-capturing technique [60,76] that employs
the piecewise parabolic (PPM) reconstruction scheme [82],
coupled to the Harten, Lax, and van Leer approximate
Riemman solver [83]. The adopted hydrodynamic scheme
is second-order accurate. To stabilize our hydrodynamic
scheme in regions where there is no matter, a tenuous
atmosphere is maintained on our grid, with a density floor
�atm set to 10�10 times the initial maximum density on our
grid. The average density of the pWD is 1011 gr=cm3, and
at least 6 orders of magnitude larger than that of the
artificial atmosphere. Thus, the atmosphere poses no prob-
lem in evolving the pWD. The initial atmospheric pressure

Patm is set by using the cold EOS (1). Throughout the
evolution, we impose limits on the pressure to prevent
spurious heating and negative values of the internal energy
. Specifically, we require Pmin � P � Pmax, where
Pmax ¼ 10Pcold and Pmin ¼ 0:8Pcold, where Pcold is the
pressure calculated using the cold EOS (1). Whenever P
exceeds Pmax or drops below Pmin, we reset P to Pmax or
Pmin, respectively. Following [23] we impose the upper
pressure limits only in regions where the rest-mass density
remains very low (�0 < 100�atm), but we impose the lower
limit everywhere on our grid. We impose the pressure floor
everywhere, because numerical error sometimes leads
� cold slightly below zero, resulting in negative thermal
pressure. We have found experimentally that if this situ-
ation arises, it can be avoided in the subsequent time steps
by imposing the pressure floor.
At each time step, the ‘‘primitive variables’’ �0, P, and

vi must be recovered from the conservative variables �	, ~�,
and ~Si. We perform the inversion numerically as specified
in [60]. We use the same technique as in [84,85] to ensure

that the values of ~Si and ~� yield physically valid primitive
variables.

C. Diagnostics

During the evolution, we monitor the normalized
Hamiltonian and momentum constraints as defined in
Eqs. (40)–(43) of [22]. We also monitor the Arnowitt-
Deser-Misner (ADM) mass and angular momentum of
the system. The equations used to calculate the ADM
mass and angular momentum with minimal numerical
noise are as follows [11]:

M ¼
Z

d3x

�
c 5�þ 1

16�
c 5 ~Aij

~Aij � 1

16�
~�ijk~�jik

þ 1� c

16�
~R� 1

24�
c 5K2

�
; (40)

Ji ¼ 1

8�
ij

n
Z

d3x

�
c 6

�
~Aj

n þ 2

3
xj@nK � 1

2
xj ~Akm@n ~�

km

�

þ 8�xjSn

�
: (41)

Here c ¼ e
, � ¼ n�n�T
��, Si ¼ �n��i�T

��, ~R is the

Ricci scalar associated with ~�ij, and
~�ijk are Christoffel

symbols associated with ~�ij.

When hydrodynamic matter is evolved on a fixed uni-
form grid, our hydrodynamic scheme guarantees that the
rest massM0 is conserved to machine round-off error. This
strict conservation is no longer maintained in an AMR grid,
where spatial and temporal prolongation is performed at
the refinement boundaries. Hence, we also monitor the rest
mass

M0 ¼
Z

�	d3x (42)
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during the evolution. Rest-mass conservation is also vio-
lated whenever �0 is reset to the atmosphere value. This
usually happens only in the very low-density atmosphere.
The low-density regions do not affect rest-mass conserva-
tion significantly.

In all simulations we present in this work the normalized
Hamiltonian constraint violations remain smaller than
0.9% and the normalized momentum constraint violations
smaller than 2.1%. Rest mass is conserved to within 4%
and angular momentum to within 10%.

Shocks occur when the stars collide. We measure the
entropy generated by shocks via the quantity K �
P=Pcold 
 1, where Pcold is the pressure associated
with the cold EOS that characterizes the initial matter
[see Eq. (1)].

V. RADIATIVE COOLING

Our binary WDNS head-on collision studies in [33]
demonstrate that the hot, quasiequilibrium TZlO remnants
do not collapse promptly to a black hole, even though the
final total mass is larger than the maximum mass support-
able by the cold EOS. This outcome might also arise in the
case of WDNS mergers in circular orbit, and can be due to
additional support provided by thermal pressure and/or
rapid rotation. In order to determine whether thermal sup-
port is dominant, we add radiative cooling to the GR
hydrodynamic equations. We now describe our formalism
for implementing this.

The dynamics of radiation is governed by [86–88]

r�R
�� ¼ �G�; (43)

where R�� is the radiation stress-energy tensor given by

R�� ¼
Z

d�d�I�N
�N�; (44)

and G� is the radiation four-force density given by

G� ¼
Z

d�d�ð��I� � j�ÞN�: (45)

In the equations above d� is the solid angle; � and I� ¼
I�ðx�; Ni; �Þ are the radiation frequency and specific inten-
sity of radiation at x� moving in direction N� ¼ p�=h�,
respectively. All quantities are measured in the local
Lorentz frame of a fiducial observer with four-velocity
u�fid, i.e.,

h� ¼ �p�u
�
fid; (46)

where p� is the photon four-momentum and h denotes
Planck’s constant. The energy-momentum conservation
equation then becomes

r�ðT�� þ R��Þ ¼ 0 (47)

or after using Eq. (43)

r�T
�� ¼ G�: (48)

After projecting this equation using the fluid four-velocity
u�, we obtain the modified energy equation:

u�r�" ¼ �ð"þ PÞr�u
� � u�G�; (49)

where the perfect fluid stress-energy tensor has been writ-
ten as

T�� ¼ ð"þ PÞu�u� þ Pg��; (50)

and " is the total energy density. Using the continuity
equation

r�ð�0u
�Þ ¼ 0; (51)

Eq. (49) becomes

u�r�" ¼ "þ P

�0

u�r��0 � u�G�: (52)

The total energy density is related to the specific thermal
energy via the following equation:

" ¼ �0ð1þ th þ coldÞ: (53)

Using Eqs. (52) and (53) we find that the specific thermal
energy evolves as

u�r�th ¼ Pth

�2
0

u�r��0 � 1

�0

u�G�; (54)

where we have used dcold=d�0 ¼ Pcold=�
2
0, and Pth ¼

P� Pcold.
In the comoving reference frame u�r� ¼ d=d�, where

� is the proper time. Thus, in the comoving frame Eq. (54)
becomes

d

d�
th ¼ Pth

�2
0

d

d�
�0 � 1

�0

u�G�: (55)

In order to achieve cooling, the radiation term in (55) must
be specified so that thermal energy can be removed. For
this reason we choose the following cooling law that gives
rise to exponential cooling:

u�G� ¼ th�0=�c; (56)

where �c > 0 is the cooling time scale. Substituting
Eq. (56) in Eq. (55) we obtain

d

d�
th ¼

�ð�th � 1Þ
�0

d�0

d�
� 1

�c

�
th; (57)

where we used Eq. (38) to substitute for the thermal
pressure.
The first term in brackets on the right-hand side of

Eq. (57) results from adiabatic compression or expansion.
The second term results from cooling and radiates away
thermal energy exponentially. Thus, if initially we have a
quasiequilibrium spherical object which is thermally sup-
ported, and we cool it quasistatically, i.e., choose a cooling
time scale much longer than the free-fall time scale of the
star, it will radiate thermal energy away and contract.
While the contraction generates extra heat, radiation tends
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to remove any residual thermal energy. Thus, after cooling,
TZlOs are expected either to collapse to a BH or to be
supported by the residual cold pressure and centrifugal
force.

In the optically thin regime, assuming the fluid radiates
isotropically in its rest frame, and using u�fid ¼ u�, the
source term G� is generally expressed as [87,88]

G� ¼ u�ð���Þ þ
Z

d�ð�a
� þ �s

�ÞF�
� ; (58)

where � and � are the heating and cooling terms, respec-
tively, given by

� ¼
Z

d�d��a
�I�; � ¼

Z
d�d�j�; (59)

and where �a
�, �

s
� are the absorption and scattering coef-

ficients, respectively, and j� is the emissivity. Finally, F�
� is

the total radiation flux four-vector

F�
� ¼ P�

�

Z
d�I�N

�; (60)

where the projection operator P�
� is defined as

P�
� � ��

� þ u�u�: (61)

If we assume that there is no absorption and no scatter-
ing, Eq. (58) becomes

G� ¼ �u��: (62)

As a result,

u�G
� ¼ �: (63)

A straightforward comparison of Eqs. (56) and (63) shows
that the integrated emissivity in our cooling model is
given by

� ¼ �0

�c
th: (64)

If we project Eq. (48) using the timelike unit vector n�

normal to spacelike hypersurfaces and the projection op-
erator h�� ¼ ��

� þ n�n�, we find that the 3þ 1 general

relativistic hydrodynamic equations become

@t ~Si þ @jð� ffiffiffiffi
�

p
Tj

iÞ ¼ 1
2�

ffiffiffiffi
�

p
T��g��;i � �

ffiffiffiffi
�

p
ui�; (65)

and

@t~�þ @ið�2 ffiffiffiffi
�

p
T0i � �	viÞ ¼ s� �2 ffiffiffiffi

�
p

u0�; (66)

where we have used Eq. (62) and � is given by Eq. (64).
Thus, cooling enters as a source term in the general rela-
tivistic hydrodynamic equations, which is precisely how
cooling is implemented in our high-resolution shock-
capturing code.

Note that the optically thin approximation employed
here is valid for neutrino cooling in the WDNS merger
scenario (head-on or otherwise). According to our analysis
in [33], the temperatures and densities of the hot mantle of

a TZlO are such that thermal neutrino emission likely will
be the dominant source of cooling. The diffuse TZlO
mantle composed of the WD debris is optically thin to
neutrinos, justifying the above approximation.
Finally, note that the self-gravity of the radiation is

neglected; i.e., we assume that radiation does not affect
the spacetime structure, so only the perfect fluid stress-
energy tensor contributes to the BSSN source terms. This is
a good approximation as long as the radiation energy
density is subdominant (n�n�R

�� � n�n�T
��). This is

indeed the case in a WDNS scenario because the rest mass
dominates the mass energy as can be inferred by the local
constraint violations. In addition, the NS (i.e., the most
compact object in our scenario) remains almost unaffected
and cold throughout the evolution; i.e., radiation has no
effect on the spacetime structure in the vicinity of the NS.
In all simulations we present here for radii (r) such that r *
Rcore � 20 km, the local constraint violations remain
smaller than 0.1% throughout the evolution after cooling
is turned on, justifying our neglecting of the radiation self-
gravity.

VI. COOLING OF TZLOS FORMED IN
HEAD-ON COLLISIONS

We found in [33] that all our binary pWDNS head-on
collisions formed hot, quasiequilibrium TZlOs, which
were more massive than the maximum mass our cold
EOS can support. However, these remnants did not col-
lapse promptly to a black hole. As there is no angular
momentum involved in a head-on collision, the additional
support that prevents collapse arises from thermal pressure
alone. Therefore, if one were to cool these objects, one
would expect that they would eventually collapse on a
cooling time scale. We check this expectation here so
that we may implement the same cooling mechanism in
the inspiral case, where the outcome is not so certain.
To determine the dominant cooling mechanism, and

hence the cooling time scale, one needs to know the density
and temperature of the matter. We estimated the tempera-
ture of realistic TZlOs to be of order 109 K. Given that
typical WD densities are of order 106 g=cm3, it is likely
that cooling will be dominated by thermal neutrino pro-
cesses. Realistic neutrino cooling time scales are at best of
order 1 yr (see discussion in Sec. VIII), or equivalently
�107 TZlO dynamical time scales. This slow cooling rate
ensures that the collapse of TZlOs will be quasistatic.
However, realistic cooling time scales are so long that it
would be impossible to follow this secular phase with
hydrodynamic simulations in full GR because of the pro-
hibitive computational cost.
Nevertheless, to confirm that these TZlOs collapse to

BHs after they have cooled, we can simply scale up the
cooling law, as long as we keep the cooling time scale
longer than the hydrodynamical time scale.
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We can estimate the dynamical time scale of a TZlO as

tTZlO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R3
TZlO

MTZlO

s
; (67)

where RTZlO and MTZlO are the radius and mass of the
remnant, respectively. Here we define the radius of TZlOs
by the radius of a coordinate sphere that contains 90% of
the remnant’s total mass. For case A1 we find tTZlO �
2300 km � 654:5 M. The TZlO dynamical time scale in
case A3 is approximately the same as that of case A1. We
choose �c ¼ 6000 km for both cases, so that initially �c �
2:6tTZlO. This way we reduce the simulation time, while
maintaining the time-scale inequality.

Though we choose �c to be only a few times tTZlO, it is
* 100 times larger than the dynamical time scale (tcore) of

the innermost, cold, NS core, which satisfies tcore=tTZlO �
153=2 � 60. This property is important because the core of
the TZlO collapses first. Finally, note that as the entire
remnant contracts, its dynamical time scale decreases so
that the required inequalities are better satisfied with in-
creasing time.

Our expectation is that these TZlOs will collapse fol-
lowing cooling and that collapse should occur on a cooling

time scale. Given that (a) the shock-induced thermal en-
ergy is comparable to the gravitational binding energy, and
(b) the total remnant mass is close to the maximummass of
a cold configuration allowed by our adopted EOS, we also
expect that a large fraction of the thermal energy needs to
be removed to induce collapse. Note that this expectation
applies solely to TZlOs formed in head-on collisions.
When TZlOs form after the merger of WDNSs in an
initially circular orbit, the remnant rotates. Hence, we
cannot tell a priori that collapse will take place because
of the additional centrifugal support.
Table II summarizes the physical parameters of the

head-on collision cases we study, and Table III presents
the AMR grid structure used in each case. All our simu-
lations with cooling turned on show that the TZlOs rem-
nants formed in the head-on collisions begin to contract,
and within a few cooling time scales collapse to a black
hole. In contrast, we find that when cooling is turned off
the remnant does not collapse and remains in quasiequili-
brium. All these results can be clearly seen in Figs. 1 and
2, which correspond to case A1. Case A3 is qualitatively
similar.
In Fig. 1 rest-mass density contours are plotted in

the orbital plane at selected times. Figure 2 shows the

TABLE II. Summary of initial configurations. MNS (MWD) is the ADM mass of an isolated NS (pWD)a, RNS (RWD) the isotropic
radius of an isolated NS (pWD), and CNS the compaction of an isolated NS, where the compaction is the ratio of the ADM mass of the
isolated star to its areal radius. All pWDs considered here have CWD ¼ 0:01. MADM is the ADM mass of the system and A the initial
binary separation in isotropic coordinates. Cases A1 and A3 are the same as the head-on collision cases we studied in [33]. The initial
coordinate separation for these cases was set to 587 km. Case A corresponds to our simulation of a binary pWDNS in circular orbit
starting at the Roche limit. For this case �MADM ¼ 6:95� 10�4. All cases have been produced with the 10:1 EOS of [33].

Case MNS=M� MWD=M� CNS J=M2
ADM RWD=RNS RWD=MADM MADM=M� A=RWD

A1 1.4 0.98 0.11 0. 8.88 41.18 2.41 4.00

A3 1.6 0.98 0.15 0. 11.15 37.46 2.65 4.00

A 1.4 0.98 0.11 2.88 8.88 40.05 2.48 3.14

aHere we list the ADM masses, isotropic radii, and compactions of the isolated NS stars, whose rest-mass density profiles were used to
generate initial data. The same holds for the pWDs in cases A1 and A3. In case A the pWD rest-mass density profile, the Roche limit
separation, and � were generated by a Newtonian binary WDNS code and then used in our CTS solver.

TABLE III. Grid configurations used in our simulations. Here M is the sum of the ADM masses of the isolated stars, �x is the grid
spacing in the innermost refinement box surrounding the NS, NNS denotes the number of grid points covering the diameter of the NS
initially, and NWD denotes the number of grid points covering the (smallest) diameter of the pWD initially. The outer boundary
distance to the center of mass is approximately 1020M in cases A1 and A3, and 540M in case A.

Case M=M� Grid hierarchy (in units of M)a �x NNS NWD

A1 2.38 (534.33, 267.16, 133.58, 66.79, 35.78, 19.08, 10.44, 7.156) M=6:71 63 35

A3 2.58 (467.27, 233.64, 116.82, 58.41, 29.20, 15.58, 8.518, 5.841) M=8:22 56 38

A 2.38 (270.87, 135.44, 67.72, 36.28[N/A], 19.35[N/A], 9.674[N/A], 5.744[N/A]) M=13:2 124 73

aThere are two sets of nested refinement boxes: one centered on the NS and one on the pWD. This column specifies the half-length of
the sides of the refinement boxes centered on both the NS and pWD. When there is no corresponding pWD refinement box (as the
pWD is much larger than the NS), we write [N/A] for that box.
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evolution of the maximum rest-mass density with and
without cooling, the minimum value of the lapse function,
and the rest mass contained within different radii from the
center of mass. If the cooling mechanism remains off, both
the maximum value of the density and the minimum value
of the lapse remain constant with time (see left and middle
panels of Fig. 2). We find that the same holds true for the
rest mass contained within 40 km and 220 km.

By contrast, if cooling is turned on, the maximum den-
sity (minimum lapse) increases (decreases) with time.
Moreover, the rest mass contained within 40 km and
220 km increases with time, indicating that the outer layers
are also contracting as the TZlO cools (see right panel in
Fig. 2). Initially, the maximum density (minimum lapse)
increases (decreases) almost linearly with time, until �0;max

crosses the value of 2:16� 1015 g=cm3, which corre-
sponds to that of a maximum-mass NS configuration built
with our cold EOS. Soon after this point, the remnant
essentially free-falls, the density blows up, the lapse func-
tion plummets, and a BH is eventually formed. The BH in

case A1 can be seen in Fig. 3, where we plot rest-mass
density contours and K ¼ P=Pcold contours in the orbital
plane in the innermost 12 km of the remnant, which contain
about 85% of the total mass at the time of BH formation.
TheK contours show that the matter around the BH is cold,
i.e., K � 1, as expected.
Cases A1 and A2 collapse to a black hole after about 5

and 3 cooling time scales, respectively, which is expected
as the collapse proceeds without additional shock heating.
The mass of the black hole when an apparent horizon forms
for the first time is MBH � 1:4M� and the coordinate
radius of the BH (in our adopted gauge) is RBH �
1:08 km � 0:53MBH. Thus we have demonstrated that
our cooling mechanism yields results which are consistent
with our theoretical expectations.

VII. BINARY WDNS INSPIRAL

To predict the final outcome of a binary WDNS in an
initially circular orbit, we performed a simulation of a

FIG. 1 (color online). Snapshots of rest-mass density profiles at selected times for head-on case A1 after cooling is turned on. The
contours represent the rest-mass density in the orbital plane, plotted according to �0 ¼ �0;max10

�0:68j�0:16ðj ¼ 0; 1; . . . ; 7Þ. The color
sequence from the center outward (dark red, red, orange, yellow, green, light green, blue, and light blue) implies a sequence from
higher to lower values. This roughly corresponds to a darker grey scale for higher values. Here �0;max ¼ 4:645�nuc, where �nuc ¼
2� 1014 g=cm3. These snapshots clearly demonstrate that the entire TZlO remnant collapses once cooling is turned on. Here
M ¼ 2:38M� ¼ 3:52 km ¼ 1:17� 10�5 s is the sum of the ADM masses of the isolated stars.

MERGER OF BINARY WHITE DWARF–NEUTRON STARS: . . . PHYSICAL REVIEW D 84, 104032 (2011)

104032-11



corotating binary pWDNS starting at the Roche limit sepa-
ration. Throughout, we label this case by the letter A.
Table II outlines the physical parameters of case A, and
Table III outlines the adopted AMR grid structure.

For the simulations performed here, we were able to
demonstrate 2nd-order convergence for the first quarter of
an orbit monitoring the conservation of angular momen-
tum, and the constraint violations. The convergence study

FIG. 2 (color online). Left panel: Evolution of maximum value of rest-mass density with cooling (solid curve) and without
cooling (dotted curve) for the case shown in Fig. 1. Here �0;max is the maximum value of the rest-mass density; �0;maxðtcÞ ¼
5:879� 10�4 km�2 ¼ 7:919� 1014 g=cm3 is the maximum value of rest-mass density at the time (tc ¼ 17 413M) when cooling is
turned on. The asterisk on the curve denotes the value of the central density corresponding to the maximum-mass TOV NS (�max;TOV ¼
2:16� 1015 g=cm3). Soon after the maximum density of the TZlO crosses �max;TOV, the remnant collapses to a BH. Middle panel:

Evolution of minimum value of the lapse function (�min) with cooling (solid curve) and without cooling (dotted curve). Right panel:
Evolution of rest mass contained within different radii with cooling turned on. HereM0;r<r0 stands for the rest mass contained within a

coordinate sphere of radius r0 in units of km, centered on the remnant’s center of mass. These plots demonstrate that the TZlO remnant
collapses as a whole. All plots correspond to case A1, and M ¼ 2:38M� ¼ 3:52 km ¼ 1:17� 10�5 s.

FIG. 3 (color online). Left: Snapshot of rest-mass density profile at the end of theA1 simulation shown in Fig. 1. Contours represent the
rest-mass density in the orbital plane, plotted according to �0 ¼ �0;max10

�0:5j�0:088ðj ¼ 0; 1; . . . ; 7Þ. Here �0;max ¼ 4:645�nuc, where

�nuc ¼ 2� 1014 g=cm3. Right: Snapshot ofK ¼ P=Pcold profile at the end of the A1 simulation. The contours representK in the orbital
plane, plotted according to K ¼ 10�0:1125jþ0:9ðj ¼ 0; 1; . . . ; 7Þ. The plot demonstrates that the matter near the BH is cold (K � 1), as
expected, andK increaseswith the distance from the core. The color coding is the same as that used in Fig. 1, withwhite indicatingK � 1.
The black disk in the center denotes theBHapparent horizon. The plots focus in the innermost 12 km from theTZlO center ofmass, where
the object is approximately spherical, and for this reason we do not showXZ and YZmeridional slices. HereM ¼ 2:38M� ¼ 3:52 km ¼
1:17� 10�5 s is the sum of the ADM masses of the isolated stars.
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showed that angular momentum decays linearly with time,
but the linear decay rate decreases with increasing reso-
lution to second order. Moreover, this decay rate remains
roughly constant up until merger. Furthermore, a resolu-
tion study using pWDNSs systems has been carried out in
[33], where we showed that the results were qualitatively
insensitive to resolution implying that the resolutions used
were sufficiently high. The resolution used in our inspiral
pWDNS calculations is twice that used in [33] indicating
that our simulations are well within the convergent
regime.

A. Initial configuration

We prepared valid general relativistic initial data as
described in Sec. III. The ADM masses of the compact
objects in isolation we consider are 0:98M� and 1:4M� for
the pWD and NS, respectively. After solving the CTS
equations, we map �0,� and �, �i, and vi, from the grids
used in the elliptic solver code onto the grids used in the
evolution code via second-order polynomial interpolation.

For accuracy, we make sure that the resolution of the initial
data grids is always higher than the resolution of the
evolution grids.

B. Dynamics of the WDNS merger

In [34] we analyzed the stability of corotating binary
WDNSs at the Roche limit, accounting for GR effects on
the mass-radius relationship of the WD. We concluded that
if the mass ratio q ¼ MWD=MNS is larger than a critical
mass ratio qcrit � 0:5, then mass transfer from the WD to
the NS will be unstable, and the WD will be tidally
disrupted. The binary pWDNS system simulated in this
work has a mass ratio q ¼ 0:7, so we expect that the system
should experience tidal disruption and merge on an orbital
time scale soon after mass transfer has started.
In our simulations, the pWDNS binary completes almost

2.5 orbits before the pWD is completely disrupted. Figure 4
plots rest-mass density contours in the orbital plane at
selected times for case A. The top row, middle panel shows
the binary shortly after completing the first orbit. At this

FIG. 4 (color online). Snapshots of rest-mass density profiles at selected times for case A. The contours represent the rest-mass
density in the orbital plane, plotted according to �0 ¼ �0;max10

�0:66j�0:16ðj ¼ 0; 1; . . . ; 9Þ. The insets focus on the NS and demonstrate

it is nearly unaffected by the merger. The inset density contours are plotted according to �0 ¼ �0;max10
�0:525j�0:861ðj ¼ 0; 1; . . . ; 7Þ. In

both cases �0;max ¼ 4:645�nuc, where �nuc ¼ 2� 1014 g=cm3. The color coding is the same as that used in Fig. 1, with white

indicating near vacuum. Here M ¼ 2:38M� ¼ 3:52 km ¼ 1:17� 10�5 s is the sum of the ADM masses of the isolated stars.
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time, an accretion stream from the pWD to the NS devel-
ops, followed by the formation of an accretion disk around
the NS. Matter from the accretion stream smashes into the
accretion disk, shock heating the gas at that location. This
process continues until the pWD is completely disrupted.
After pWD tidal disruption, a long tail forms that moves
outwards and around the NS. The pWD matter that orbits
the NS at closer separations collides with the tail inducing
further strong shocks.

The bottom row, left panel of Fig. 4 shows the system
after 3 orbits have been completed. At this point, the pWD
is completely disrupted and a large, rotating, massive
mantle and disk around the NS has begun to form. A tidal
tail is also visible. This snapshot is followed by a long
epoch in which the rotating mantle settles onto an extended
disk around the central object, composed of a slowly spin-
ning, cold NS core surrounded by a hot atmosphere and
disk composed of pWD debris. We find that even at this
late stage, the NS core maintains its original spin, and the
hot mantle surrounding it spins and settles into quasiequi-
librium. Nonaxisymmetric clumps of matter inspiraling
near the cold NS core launch spiral density waves into
the disk. The remnant of the pWDNS merger may be best
characterized as a spinning TZlO with an extended
(Rdisk � 1000 km), massive disk.

We define the radius of the TZlO (RTZlO) as the distance
between the center of mass and the ‘‘north’’ pole of the
remnant. The z radius of the remnant for a cutoff density
�10�8�0;max, where �0;max is the maximum density of the

remnant, is RTZlO � 300 km. We estimate the rest mass of
the TZlO (MTZlO) as the rest mass contained within a
sphere of coordinate radius equal to RTZlO, and the disk
mass (Mdisk) by subtractingMTZlO from the total rest mass.
We find MTZlO ¼ 1:82M� and Mdisk ¼ 0:7M�. The disk is
massive and * 50% of the original WD rest mass is
eventually stored in the disk.

To first order, the TZlO is spherical. This is evidenced by
the XY, XZ, and YZ density contour plots of Fig. 5, which
focus on the innermost regions of the remnant at the end of
the simulation.

The cutoff density in all the density contour plots we
show here is 10�8:5 km�2 � 10�5:3�0;max, which is ap-

proximately 4 decades above atmosphere density. The
equatorial and polar coordinate radii of these contours
are re � 350 km and rp � 150 km, respectively.

Therefore, the ratio of these radii is rp=re � 3=7. Given

that the core of the remnant is approximately spherical, the
smallness of the ratio rp=re indicates that the disk stores a

large amount of angular momentum.
In the bottom row of Fig. 5, we plot contours of K ¼

P=Pcold. These entropy contours show that the neutron star
core is cold K � 1 and that K increases with the distance
from the core in the orbital plane and with increasing z in
meridional planes. This is reminiscent of the K pattern
observed in our binary pWDNS head-on collision studies

in [33], where K � 1 in the core, but increases with
distance from the center. Note the spiral density wave
pattern visible in the bottom row, left panel of Fig. 5.
Unlike the head-on collision case, in which the outer-

most layers of the NS are shock heated and stripped away
when the NS smashes into the denser parts of the pWD
(Fig. 4 insets, [33]), after a pWDNS binary inspiral and
merger, the NS retains its outer layers, and its structure
remains nearly unaffected throughout the simulation
(Fig. 4 insets). Moreover, in the head-on collision, about
18% of the total initial rest mass is ejected to infinity, but in
the inspiral case, no ejection of matter to infinity is
observed.
As in the case of head-on collisions, we find that the

typical temperature in our inspiraling binary remnant is of
order 1011 K. In Fig. 6 we show temperature profiles of the
remnant. To estimate the temperature T, we assume that the
temperature dependence of th can be modeled as

th ¼ 3kT

2mn

þ f
aT4

�0

; (68)

where mn is the mass of a nucleon, k is Boltzmann’s
constant, and a is the radiation constant. The first term
represents the approximate thermal energy of the nucleons,
and the second term accounts for the thermal energy due to
relativistic particles. The factor f reflects the number of
species of relativistic particles that contribute to the ther-
mal energy. When T � 2me=k� 1010 K, where me is the
electron mass, thermal radiation is dominated by photons
and f ¼ 1. When T � 2me=k, electrons and positrons
become relativistic and also contribute to radiation, and
f ¼ 1þ 2� ð7=8Þ ¼ 11=4. At sufficiently high tempera-
tures and densities (T * 1011 K, �0 * 1012 g cm�3), neu-
trinos are generated copiously and become trapped. So,
taking into account three flavors of neutrinos and antineu-
trinos, f ¼ 11=4þ 6� ð7=8Þ ¼ 8. In our temperature
estimate, we find f self-consistently in the following sense:
we first calculate the temperature assuming f ¼ 0. If the
calculated temperature and density are inconsistent with
our choice of f (which we test based on the above inequal-
ities), then we choose a different f, until we find the value
of f which is consistent. We find that f ¼ 11=4 is consis-
tent with the temperatures and densities in our pWDNS
merger. However, we expect that in realistic mergers
f ¼ 1, as the expected temperatures are of order 109 K
[see discussion following Eq. (71)].
To solve Eq. (68) for T we need to know th. We

calculate th via

th ¼ ðK � 1ÞPcold

ð�th � 1Þ�0

; (69)

where Eqs. (37) and (38) and the definition of K were used
to obtain this last equation.
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As in our pWDNS head-on collision studies, we find that
the pWDNS binary remnant does not collapse promptly to a
BH. In contrast to the head-on collision cases, in which only
thermal pressure supported the remnant from prompt col-
lapse, collapse may be delayed in the pWDNS binary

inspiral case by both thermal pressure and centrifugal sup-
port. One way to assess the importance of thermal support
in the binary inspiral remnant is to apply the same cooling
recipe as in the case of TZlOs formed in head-on collisions
(see Sec. VI), and compare the result to an uncooled case.

FIG. 5 (color online). First row: Snapshots of rest-mass density profiles at selected times for case A. The contours represent the rest-
mass density in the orbital plane and the XZ and YZ meridional planes, plotted according to �0 ¼ �0;max10

�0:69j�0:16ðj ¼ 0; 1; . . . ; 7Þ,
where �0;max ¼ 4:645�nuc, and �nuc ¼ 2� 1014 g=cm3. Second row: Snapshots of K ¼ P=Pcold profiles at selected times for case A.

The contours represent K in the orbital plane and the XZ and YZ meridional planes, plotted according to K ¼ 10�0:1125jþ0:9ðj ¼
0; 1; . . . ; 7Þ. The plots show that the remnant NS core is approximately spherical and cold (K � 1). Far from the core the remnant is
hot. K increases as we move away from the core and the orbital plane. All plots focus in the innermost 200 km from the TZlO center of
mass. The color code used is the same as that defined in Fig. 1, with white in the second row indicating K � 1. Here M ¼ 2:38M� ¼
3:52 km ¼ 1:17� 10�5 s.
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C. Cooling of spinning TZlOs formed in
WDNS mergers

To determine whether the spinning TZlO from the
WDNS inspiral and merger will collapse to a BH following
cooling, we apply our cooling technique setting the cooling
time scale to the same value used earlier (�c ¼ 6000 km)
in Sec. VI. We turn on cooling after about 4.5 orbital time
scales and follow the subsequent evolution for about 7
cooling time scales.

Figure 7 plots density contours in the orbital plane at
selected times, and Fig. 8 shows the evolution of the
maximum rest-mass density and the rest mass contained
within spheres with different coordinate radii. These fig-
ures demonstrate that both the maximum density and the
rest mass within 40 km and 220 km increase as functions of
time. As the hot outermost layers become cooler, they
contract and accumulate onto the innermost colder parts.
For this reason the innermost density contours of like
density increase in size (see Fig. 7). The remnant is con-
tracting with time. The contraction is more rapid in the
beginning and begins to plateau after about 6 cooling time

scales. Therefore, the spinning TZlO does not collapse to a
BH when thermal support is removed.
Figure 9 shows density and K contours for the innermost

regions of the remnant in the XY, XZ, and YZ planes, 6
cooling time scales after cooling was turned on. The shape
of the NS core remains spherical throughout the evolution.
The XZ and YZ contours demonstrate that the disk and
mantle have become thinner, as expected when cooling
takes place. Because of this effect, this final configuration
is a massive accretion disk onto a NS, rather than a disk
around a TZlO.
The bottom row of Fig. 9 shows contours of K ¼

P=Pcold. Notice that the neutron star core remains cold
K � 1 at the end of the simulation and that elsewhere K
has decreased considerably compared to the run without
cooling. Here Kmax � 1:25, while in the run without cool-
ing Kmax � 10. In the innermost region, cold pressure
dominates, with K � 1:05. Given that the rest mass within
220 km of the remnant center of mass is greater than
2:05M�, which exceeds the maximum supportable mass
by our cold EOS, we conclude that the spinning TZlO is
centrifugally supported from collapse to a BH.
Based on these results and the scalability of our simu-

lations to the realistic scenario, we are led to the tentative
prediction that realistic WDNS mergers with total rest
mass & 2:5M�, the rest mass in our simulations, will not
collapse to a BH following cooling. This conclusion as-
sumes that angular momentum redistribution takes place
on a longer time scale than cooling.
Given the absence of outflows in our simulations (with

the caveat that we do not model nuclear reactions), the final
total rest mass (� 2:5M�) is larger than the maximum rest
mass supportable by our cold EOS, even allowing for
maximal uniform rotation. Therefore, we expect that after
viscosity and/or magnetic fields redistribute angular mo-
mentum, the remnant will collapse to a black hole. This
conclusion will be true in the case of realistic WDNS
mergers, unless the true nuclear EOS supports a uniformly
rotating star with a rest mass exceeding the remnant mass.
Many viable EOSs do not support a uniformly rotating cold
configuration with rest mass as large as 2:5M� [37], the
remnant rest mass in our simulations.

VIII. DISCUSSION

To identify the relevant nuclear reaction networks and
the dominant cooling mechanisms in realistic inspiraling
WDNS binaries, we need to estimate the temperatures of
realistic TZlOs. Moreover, to determine the time scale on
which angular momentum redistribution occurs we have to
consider viscosity and/or magnetic fields. In this section
we discuss these issues.

A. Temperature

The characteristic temperature of realistic TZlOs is ex-
pected to be of order 109 K. This is because the energy

FIG. 6. Temperature (T) profile for case A. The temperature is
presented in units of 1011 K, where K indicates degrees Kelvin
(not to be confused with the EOS entropy parameter K). The
solid curve corresponds to the values of T at the end of the
simulations and along the x axis for y ¼ yc, x > xc, where xc
(yc) is the x (y) position of the center of mass of the remnant. The
dotted curve corresponds to the values of T along the y axis for
y > yc, x ¼ xc. It is clear that typical temperatures are of order
1011 K, while the TZlO core is practically at 0 K. For a realistic
massive WDNS merger we expect T� 109 K [see discussion
following Eq. (71)].

PASCHALIDIS et al. PHYSICAL REVIEW D 84, 104032 (2011)

104032-16



available for shock heating is of order the gravitational
interaction energy when the two stars first touch,
MNSMWD=RWD. Our simulations demonstrate that the NS
is largely unaffected by shock heating and remains cold.
Hence, most of the thermal energy is stored in the WD
debris. The total thermal energy, Eth, is then

Eth �MWD

mn

kT�MNSMWD

RWD

: (70)

From this last equation we can estimate the characteristic
temperature as

T � CWDmn

qk
; (71)

where CWD ¼ MWD=RWD is the WD compaction. All
things being equal (i.e., no mass loss, same mass ratio,
etc.), characteristic TZlO temperatures should be propor-
tional to theWD compaction. The compaction of a realistic

FIG. 7 (color online). Snapshots of rest-mass density profiles at selected times for caseAwith cooling turned on. The contours represent
the rest-mass density in the orbital plane, plotted according to �0 ¼ �0;max10

�0:5j�0:16ðj ¼ 0; 1; . . . ; 8Þ, where �0;max ¼ 4:645�nuc, and

�nuc ¼ 2� 1014 g=cm3. The last two snapshots show that the contraction practically stops after about 6 cooling time scales. The color
code used is the same as that defined in Fig. 1 andM ¼ 2:38M� ¼ 3:52 km ¼ 1:17� 10�5 s.
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1:0M� WD that obeys the Chandrasekhar EOS is CWD ’
10�4 [34,68]. If the NS mass is 1:4M� then q ’ 0:7, and
Eq. (71) predicts T ’ 1:55� 109 K.

Note that applying Eq. (71) to case A, where CpWD ’
10�2, yields a temperature T ’ 1:55� 1011 K, i.e., in good
agreement with our simulations [89].

B. Nuclear fusion

Are realistic WDNS binary remnant densities and tem-
peratures high enough for nuclear reactions to take place?
The shock-heated matter is composed of hot (diluted) WD
debris, so its density is of order typical WD densities, i.e.,
106 g=cm3. A 1:0M� WD is sufficiently massive that its
main constituent elements are carbon and oxygen. While
the temperatures and densities we expect for realistic
mergers are probably not high enough for oxygen burning
to become important, they are sufficiently high for carbon
fusion to become dynamically relevant.

Nonexplosive nuclear reactions in the context of WDNS
mergers were recently considered in [90]. A one-
dimensional (1D) steady-state model of accretion onto a
NS was introduced, allowing for disk wind outflows that do
not exert any torque on the disk. It was found that heating
from nuclear burning is so important that a disk wind
eventually unbinds 50%–80% of the original WD mass.
It was suggested that these ejecta may include small quan-
tities of radioactive 56Ni. In such scenarios, detectable EM
signals will likely follow a WDNS merger. Although this

1D steady-state model includes much of the important
physics (albeit in parametrized form), it is simplified and
does not apply to the large mass-ratio mergers simulated
here. However, as in the 1D model we do expect that
nuclear burning will also be nonexplosive in a realistic
WDNS merger, as we now explain.
In a head-on collision of a WDNS binary with compan-

ions of comparable mass that collide at free-fall velocity,
the kinetic energy of motion is converted by shocks into
thermal energy in the WD remnant. This shock heating at
merger guarantees that a degenerate WD initially in hydro-
static equilibrium will acquire shock-induced thermal pres-
sure comparable in magnitude to its original equilibrium
degeneracy pressure, thereby lifting the degeneracy, i.e.,

Pth

�0
� kT

mn

� v2
ff �

GM

RWD

� Peq;WD

�0

� Pcold

�0

: (72)

The net effect should be to reduce the likelihood of ex-
plosive carbon burning, since a carbon flash requires a
degenerate environment. The reason for this is that if gas
pressure becomes a significant component of the total
pressure, then the pressure will be sensitive to the tempera-
ture. Therefore, if carbon fusion takes place, the released
heat will increase the gas temperature which will, in turn,
increase the pressure. As a result the gas will expand,
decreasing its density and temperature, and eventually

FIG. 8. Left: Evolution ofmaximumvalue of rest-mass densitywith cooling (solid curve) andwithout cooling (dotted curve) for caseA.
Here �0;max is the maximum value of the rest-mass density, and �0;maxðtcÞ ¼ 5:88� 10�4 km�2 ¼ 7:92� 1014 g=cm3 is the maximum

value of rest-mass density at the time (tc ¼ 36 705M) when cooling is turned on. Right: Evolution of rest mass within different radii with
cooling turned on. HereM0;r<r0 stands for the rest mass contained within a coordinate sphere of radius r0 in units of km, centered on the

remnant’s center of mass. These plots demonstrate that the TZlO remnant contracts when cooling is turned on. However, the values
of �0;max and M0;r<r0 begin to plateau after 6 cooling time scales, indicating no further contraction proceeds after this time. Here

M ¼ 2:38M� ¼ 3:52 km ¼ 1:17� 10�5 s is the sum of the ADM masses of the isolated stars.
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carbon fusion will be turned off. Such a process is self-
regulated, a well-known fact.

Shock heating plays a similar role in the merger of an
inspiraling binary, only it is not as strong and the fraction of
the thermal pressure generated will be smaller, due to the

role of angular momentum in lessening the impact and
contributing to the support of the remnant. Using our
estimated temperature T � 109 K and characteristic den-
sity 106 g=cm3 for realistic TZlOs, the ratio of thermal gas
pressure to the electron degenerate pressure is 4. This

FIG. 9 (color online). First row: Snapshots of rest-mass density profiles at selected times for case A with cooling. The contours
represent the rest-mass density in the orbital plane and the XZ and YZ meridional planes, plotted according to �0 ¼
�0;max10

�0:69j�0:16ðj ¼ 0; 1; . . . ; 7Þ, where �0;max ¼ 4:645�nuc, and �nuc ¼ 2� 1014 g=cm3. Second row: Snapshots of K ¼ P=Pcold

profiles at selected times for case Awith cooling. The contours represent K in the orbital plane and the XZ and YZ meridional planes,
plotted according to K ¼ 10�0:014jþ0:1ðj ¼ 0; 1; . . . ; 7Þ. The plots show that the remnant NS core is approximately spherical and cold
(K � 1). Far from the core the remnant is hotter. K increases as we move away from the core and the orbital plane. In contrast to the
case without cooling (see Fig. 5), the maximum value for K here is Kmax � 1:25. For easy comparison with the case without cooling
(Fig. 5), all plots focus in the innermost 200 km from the remnant center of mass. The color code used is the same as that defined in
Fig. 1, with white in the second row indicating K � 1. Here M ¼ 2:38M� ¼ 3:52 km ¼ 1:17� 10�5 s.
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implies that theWD debris would be nondegenerate. Under
these conditions a carbon flash is likely suppressed, but
further simulations would be useful to confirm this.

C. Neutrino cooling

For the estimated characteristic temperature T ¼ 109 K
and density �0 ¼ 106 g=cm3, the dominant cooling
mechanism likely will involve neutrino emission. At these
densities and temperatures, thermal neutrino processes
(pair neutrinos, photoneutrinos, plasmon decay, and
bremsstrahlung [68]) are important, with pair annihilation
(e� þ eþ ! �þ ��) being slightly more important than
the other processes (see Fig. 1 in [91] and Fig. 3a in
[92]). The pair neutrino cooling rate can be estimated
as [93]

pair� � 4:45� 109
T9

9

�6

½erg=g=s�; (73)

where T9 ¼ T=109 K, �6 ¼ �0=10
6 g cm�3, and the high-

temperature and nondegenerate limit has been assumed.
The specific thermal energy is approximately given by

th ¼ 3kT=mn. Based on this, the cooling time scale can be
estimated as

�cooling ¼ th


pair
�

� 1:76 yr
�6

T9
8
: (74)

Notice that for T9 ¼ 0:1, �cooling � 108 yr. Thus the object

cools fast when it is very hot, but when the temperature
drops to 108 K it takes hundreds of millions of years for
cooling to take place.

Based on these considerations and Eq. (73), the net
conclusion is that the neutrino cooling time scale is highly
temperature sensitive, and our pWDNS inspiral simulation
may only provide a crude estimate of temperature.
Therefore, simulations with more physics are necessary
to precisely calculate realistic TZlO temperatures, so that
the relevant cooling time scales may be better estimated.

Adopting the cooling rate (73) we can estimate whether
neutrinos fromWDNSmergers are detectable. The number
of detectable neutrinos (Nd) are approximately given by

Nd � L����T

4�D2 ��
; (75)

where L� is the total neutrino luminosity, �� the neutrino
detection cross section, �T the time interval over which
neutrinos are emitted, D the distance to the binary, and ��
the average neutrino energy. Given that �� � 10�44 cm2,
and the expected neutrino energy from pair annihilation is
� � 0:5 MeV, we estimate

Nd � 10�32 T9
9

�6

�
M

M�

��
��

10�44 cm2

��
�T

1 yr

��
��

0:5 MeV

��1

�
�

D

1 kpc

��2
; (76)

where we have assumed that the entire TZlO mantle emits
neutrinos at the same rate for a year.
Given this result, we conclude that neutrinos emitted in

WDNS mergers are unlikely to be detectable. However,
simulations with detailed microphysics [94] would be
useful to confirm this.

D. Angular momentum redistribution

Our inspiraling WDNS merger simulation with cooling
turned on shows that the remnant does not collapse to a BH
following cooling, because it is centrifugally supported.
Given that the mass of the remnant is larger than the
maximum mass supportable by our cold EOS, it is likely
that delayed collapse will take place after angular momen-
tum is redistributed.
Angular momentum redistribution will occur on the

viscous or Alfvén time scale. Assuming an � disk, the
viscous time scale (neglecting the disk self-gravity) is
given by

tvis ’ ��1

�
H

R

��2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R3

MTZlO

s
; (77)

where H is the disk scale height, R the characteristic disk
radius, and � the turbulent viscosity parameter. Using the
values for H=R and MTZlO found in our simulations we
estimate that in realistic WDNS mergers the viscous time
scale is

tvis ’ 20s

�
�

0:1

��1
�
H=R

1:0

��2
�

R

104 km

�
3=2

�
MTZlO

1:8M�

�
1=2

;

(78)

where R � 2RWD, i.e., near the Roche limit for a 1:0M�
WD with a 1:4M� NS.
The Alfvén time scale (tA ¼ R=vA, where vA is the

Alfvén speed) is given by

tA ’ ��1=2

�
H

R

��1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R3

MTZlO

s
; (79)

where the � parameter

� � B2

8�P
(80)

was introduced to obtain the last expression. If we use the
same values for R, H=R, and MTZlO as in Eq. (78), the
Alfvén time scale becomes
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tA ’ 6:5s

�
�

0:1

��1=2
�
H=R

1:0

��1
�

R

104 km

�
3=2

�
MTZlO

1:8M�

��1=2
:

(81)

We emphasize that the dimensionless parameters � and �
above are unknown and may both be � 1, in which case
the angular momentum redistribution time scale may be
as long as the cooling time scale. For example, observa-
tions of magnetic WDs indicate that surface magnetic field
strengths are B� 104–109 G [95] or ��10�17–10�7�1,
where we calculated the thermal pressure as P ¼ �0kT=mn

with �0 ¼ 106 g=cm3, T ¼ 109 K. If � & 10�15, then the
Alfvén time scale is longer than 1 yr, i.e., the cooling time
scale for T9 ¼ 1. However, field amplification via winding
and instabilities (e.g., magnetorotational instability) is al-
ways possible. Hence, we must await detailed calculations
for reliable estimates of the angular momentum redistrib-
ution time scale.

IX. SUMMARYAND CONCLUSIONS

This work is a follow-up to our study of binary WDNS
head-on collisions [33], focusing on the dynamics of an
initially circular, quasiequilibrium WDNS binary through
inspiral and merger. In particular, we begin with a circular
binary in which the WD has just filled its Roche lobe (the
Roche limit) and with systems whose total mass exceeds
the maximum mass that a cold EOS can support. The goal
is to determine whether a WDNS merger leads to either
prompt collapse to a BH or a spinning quasiequilibrium
configuration consisting of a cold NS surrounded by a hot
gaseous mantle of WD debris, or something else.

Because of the vast range of dynamical time and length
scales, hydrodynamic simulations in full GR of realistic
WDNS mergers (head-on or otherwise) are computation-
ally prohibitive. For this reason, we tackle the problem
using the same approach as in our investigation of binary
WDNS head-on collisions. In particular, we adopt the
pWD approximation with the 10:1 EOS constructed in
[33]. This EOS captures the main physical features of
NSs, but scales down the size of WDs so that the ratio of
the isotropic radius of a TOV 0:98M� pWD to that of a
TOV 1:5M� NS is 10:1 (hence the name of the EOS),
rather than the more realistic ratio 500:1. These pWDs
enable us to reduce the range of length and time scales
involved while maintaining all length- and time-scale in-
equalities, rendering the computations tractable and the
results scalable.

If the pWDNS merger does not result in prompt collapse
to a black hole, it is unlikely that the corresponding WDNS
merger will collapse promptly.

The reason for this expectation is that the pWD approxi-
mation is based on scaling. In particular, both the collision
velocity and the preshocked WD sound speed scale as

�ðM=RWDÞ1=2. This implies that the Mach number is in-
variant under scaling of RWD and so is the degree of shock

heating. So the thermal energy as well as the rotational
kinetic energy (T) and the gravitational potential energy
(W) all scale as�M2=RWD, when the binary merges. Thus
T=jWj is also invariant under scaling of RWD. These con-
siderations simply mean that with respect to gravity the
relative importance of thermal and rotational support in a
WDNS merger remnant is approximately invariant, when
the masses of the binary components are fixed and the only
quantity that changes is the WD radius. As a consequence,
the results obtained when adopting pWDNS systems can be
scaled up to realistic WDNS systems.
To predict whether a TZlO, which does not collapse to a

BH promptly, will collapse following cooling, we intro-
duced an artificial cooling mechanism (see Sec. V). If
following cooling the remnant collapses, we expect that
delayed collapse in the corresponding WDNS case likely
will take place on a cooling time scale.
To test our cooling prescription, we applied it to the

TZlOs formed in the WDNS head-on collision simulations
we performed in [33]. We demonstrated that these rem-
nants collapse to a black hole when the excess thermal
energy is radiated away, as expected.
Finally, we simulated the merger of an initially quasie-

quilibrium, corotational pWDNS system in circular orbit at
the Roche limit, composed of a 1:4M� NS and a 0:98M�
pWD. We find that the remnant of the pWDNS inspiral is a
spinning TZlO which is surrounded by an extended, hot
disk. The coordinate radius of the TZlO remnant and disk is
approximately 300 km and 1000 km, respectively. We esti-
mated the disk mass to be* 50% of the initial original WD
rest mass. In contrast to our binaryWDNS head-on collision
investigations, no outflows were observed in the circular
case. The final total ADM mass (� 2:4M�) is greater than
the maximum mass supportable by a cold, degenerate star
with our adopted NS EOS. However, the remnant does not
collapse promptly to a black hole. This is because the
remnant is both thermally and centrifugally supported. To
determine whether centrifugal support by itself supports the
remnant from collapse, we enabled our radiative cooling
mechanism and found that the object does not collapse to a
black hole following cooling. Therefore, the extra support
provided by rotation is sufficient for holding the collapse.
Although the TZlO does not collapse following cooling,

ultimate collapse to a BH is almost certain, since the final
total mass is larger than the maximum possible mass
supportable by our cold EOS (and many nuclear EOSs),
even allowing for maximal uniform rotation. Therefore,
delayed collapse likely will take place after viscosity or
magnetic fields redistribute the angular momentum and/or
following cooling. This conclusion will be true in the case
of realistic WDNS mergers, unless the true nuclear EOS
supports a uniformly rotating star with a rest mass exceed-
ing the remnant mass. Many viable EOSs do not support
rest masses as large as 2:5M� [37], the remnant rest mass in
our simulations.
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Our results hold true provided that nuclear burning
remains unimportant in the postmerger event. We esti-
mated that typical realistic TZlO temperatures will be of
order 109 K. For typical WD densities of order 106 g=cm3,
carbon is ignited and can become an important source of
heating. Though nuclear burning likely will play some role
in the postmerger evolution of a massive WDNS system,
we do not expect a carbon flash to occur. The reason for
this is that shocks at merger lift the degeneracy of the WD
matter. Given that a carbon flash requires a cold, degener-
ate environment, the net effect should be to reduce the
likelihood of explosive carbon burning. Nevertheless, fur-
ther simulations would be useful.

The neutrino cooling time scale is highly temperature
sensitive, and our pWDNS inspiral simulation may only
provide a crude estimate of temperature. Therefore, simu-
lations with more physics are necessary to precisely cal-
culate realistic TZlO temperatures, so that the relevant
cooling time scales may be better determined. Finally,

while our simulations indicate that prompt collapse to a
black hole is not possible for WDNS systems with total rest
mass & 2:5M�, it is likely that systems with greater mass
can collapse promptly. Therefore, more simulations in full
GR are necessary before a definitive solution to the prob-
lem can be given. We plan to address these issues in a
future work.
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